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Abstract The transformation of the mean and variance of
a normally distributed random variable was considered
through three different nonlinear functions: sin(x), cos(x),
and x¥, where k is a positive integer. The true mean and
variance of the these
transformations is theoretically derived within, and
verified with respect to Monte Carlo experiments. These
statistics are used as a reference in order to compare the
accuracy of two different linearization techniques:
analytical linearization used in the Extended Kalman
Filter (EKF) and statistical linearization used in the
Unscented Kalman Filter (UKF). This comparison
demonstrated the advantage of using the unscented
transformation in estimating the mean after transforming
through each of the considered nonlinear functions.
However, the variance estimation led to mixed results in
terms of which linearization technique provided the best
performance. As an additional analysis, the unscented
transformation was evaluated with respect to its primary
scaling parameter. A nonlinear filtering example is
presented to demonstrate the usefulness of the
theoretically derived results.

random variable after

Keywords Analytical Linearization, Nonlinear

Transformation, Sensor Fusion, Unscented Transformation
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1. Introduction

It is necessary in state [1] and parameter [2,3] estimation
problems to estimate the mean and covariance of a
random signal after propagating through a nonlinear
function. The Extended Kalman Filter (EKF) [4] and
Unscented Kalman Filter (UKF) [5] are two different
estimators commonly used for nonlinear state estimation
purposes. The EKF uses an analytical linearization for
dealing with the nonlinearity in the transformation, while
the UKF features a statistical linearization approach
called the “unscented transformation” [5]. Both filters
have been used for various sensor fusion applications,
such as Global Positioning System/Inertial Navigation
System (GPS/INS) integration [6-10], bearing-only
tracking [11,12], and relative navigation [13]. The EKF
and UKF have also been used for robotics applications
including inertial and vision sensor fusion [14-16],
tracking of people using mobile robots [17,18], surgical
robots [19], indoor attitude and heading estimation [20],
robot localization [21-23], and Simultaneous Localization
and Mapping (SLAM) [24-27].

The differences in the performance of the EKF and UKF

have been compared in various efforts; however, these
comparisons were either empirical or based on simulation
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studies, and do not offer analytical insight into the
linearization process. Additionally, the comparison of
these two filters has led to inconsistent conclusions
among different research groups. Some researchers have
reported for GPS/INS sensor fusion [10], spacecraft
attitude estimation [28], bearing-only tracking [11,12],
radar tracking [29], and simulation studies of the Van der
Pol oscillator, induction machine, reversible reaction, and
gas turbine hybrid systems [30] that the UKF performs
consistently and significantly better than the EKEF.
However, other researchers found that the UKF only
outperformed the EKF for GPS/INS sensor fusion under
large initialization errors [9,31-33]. Slight performance
advantage of the UKF over the EKF was reported for
angles-based GPS/INS  position
estimation [35], state estimation of induction motors [36],
and aerodynamic parameter estimation [37]. Some
studies of the problems of aircraft attitude estimation
[6,8], ballistic missile tracking [38] and quaternion motion
for human tracking [39] found insignificant differences in
EKF and UKF performance. Due to the inconsistencies in
the reported EKF and UKF performance, a detailed
evaluation method was considered necessary. Every data
point that can be provided becomes important in shaping
the overall impressions on these two filters. Since most
existing comparison and analysis for nonlinear filters is
experimentally based, some theoretical analysis is
beneficial to the research field.

navigation  [34],

The main contribution of this paper is a detailed
comparison of the analytical linearization technique of
the EKF with the unscented transformation of the UKF
with respect to three different nonlinear functions, using
analytically determined values of the true statistics after
the transformation. The analytical derivations provide a
computationally efficient truth reference for the nonlinear
transformation of statistics. Specifically, the considered
functions are sin(x), cos(x), and x*, where k is a positive
integer. These functions were selected to capture
nonlinearities that are commonly encountered in different
estimation problems. Additionally, these functions
contain desirable analytical properties which allow for
the derivation of the true mean and variance after the
transformation. The polynomial function is particularly
useful because its analytical properties can be used to
derive properties of other nonlinear functions through
their Taylor series approximations. This process is
demonstrated for the trigonometric functions, which
were presented because their statistics can be represented
with a closed-form solution. Also, the analytically derived
results, as well as the method used to obtain them, could
be wuseful for other analytical research in different
applications.

To facilitate the analytical derivations, the distribution of

the random signal is assumed to be Gaussian, with
known mean and standard deviation. This distribution
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was selected because the propagation of Gaussian noise
through nonlinear equations is a commonly considered
problem in the technical community [6-13], and is the
distribution that is assumed by both the EKF and UKEF.
Other nonlinear estimators such as particle filters can be
used to approximate other distributions if necessary
[1,7,40,41].

This rest of the paper is organized as follows. First, the
true mean and variance after the transformation of a zero
mean normally distributed variable are considered in
Section 2. In Section 3, these relationships are extended in
order to determine the true statistics after the
transformation of a non-zero mean random variable. In
Section 4, the comparison of the analytical and statistical
linearization techniques is presented. A nonlinear
filtering example is provided in Section 5, followed by the
conclusions in Section 6.

2. Nonlinear Transformations of a Zero Mean
Normally Distributed Variable

Consider a normally distributed random variable, x, with
zero mean, and variance, 02, i.e., X ~ N(O,o-z) . Let f(x) be
the probability density function of x, and M(t) be the

moment generating function of x, given by [42]:
2
=X

f(x)= 20’ 1

2no

1
120

M(t)=e2’ @)

Let y be some nonlinear function of x, y = g(x). For each of
these nonlinear functions, the mean and variance after the
nonlinear transformation can be determined using the
expectation operator [42]:

E[g(9] = [g00f(x)dx 3)
2.1 Polynomial Functions of Zero Mean Variables

The nonlinear function y = x* is considered as a general
case to capture the effects of polynomials, where k is a
positive integer. For this function, the expectation integral
does not need to be evaluated; instead, the moment
generating function, M(t), can be used to derive the
moments of this function [42]:

k
E|:Xk:| — 0 Ivi(t) (4)
LN
Thus, the mean of y is given by:
E|:X2k—1:| -0
B[] = (2k-1)1o™ ()
k=1,2,3,..
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where !! is the double factorial operator [43]. To calculate
the variance of y, the computational formula of the
variance is used [42]:

2
o =E[y’]-E[y] )
Using (5) and (6), the variance of y = x* is calculated using;:

R (2k-1)110* k=13,5,..
ol = (7)
Y[k =)= (k=)o k=2,46,..

2.2 Trigonometric Functions of Zero Mean Variables

Consider the nonlinear function y = sin(x). Solving (3)
directly for this function is not a trivial matter. However,
if the sine function is expanded using its Taylor series, the
expectation becomes:

© . 2n+ w (=1)"E 2n+1
E[sinx]—E{z(_l) X 1}—2( : [X }

Z (2n+1)! (2n+1)!

3} E|:X5

+
5!

8)

E [x
~Ex)-—
By applying (5), the expectation in (8) gives E[sin x] =0.

For y = cos(x), a similar procedure is used to calculate the
mean of y:

o _ln 2n B
E[cost:E{z( (2)n))(! :z

20 a0 (2n)! o)
E| x2 E|x*
ks

Applying (5) leads to the following simplifications:

2 (-)"2n-D! ,,
E[cosx]:g%z
- e (10)
_ - 2n _ o
_HZ::‘](Zn)!! -e’

Next, the variances for the sine and cosine functions are
calculated using (6). The variance of the sine function is
given by:

0'3 = E[sin® x] - E[sinx]?

o= EF—COSZX} _?

y 2
(11)
» 11
oy —E—EE[COSZX]
1 2
2 _ _ 420
7 =5(1-*)

The variance of the cosine function is given by:
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65 = E[cos® x] - E[cosx]?

o2 = E{l+c052x}_e_az

y 2
12)
» 1.1 2 (
o.=—+—E|cos2x |-e
y 2 2 |: :|
2_1 —o? 2
7 =3{1-)

This method of using the statistical properties of the
polynomial function from (5) and utilizing the Taylor
series expansion can be applied to other nonlinear
functions. The details are omitted here for conciseness,
but this method was applied to some additional nonlinear
functions to demonstrate its usefulness. The results from
this analysis are summarized in Table 1.

8(x) E[g(0)] o*(8(x)
E|:X2k—1:|:0 (2k-1)1167*
. . x] ok 1) ok k=1,3,5,...
X [X }( ~1)to [(2k-1)1-(k-1)t]o*
k=1,2,3,.. k=2,4,6,..
sinx E[sin x] =0 %(1 _e2’ )
- 1 2\
cosx E[costze 2 E(l_e )
eX E[e"} =e%2 e” (eaz 71)
sinhx E[sinhx]=0 1(e2”2 - 1)
2
L 1 oV
coshx E[coshx]:e 2 E(l_e 2)

Table 1. Mean and Variance for Nonlinear Transformations of a
Zero Mean Normal Variable

3. Nonlinear Transformations of a Non-Zero
Mean Normally Distributed Variable

Consider a normally distributed random variable, z, with
mean, y, and variance, 0?, i.e., z~ N( i, 0'2) . Note that z is
equivalently distributed to x, except for a shift in the
mean from O to y, i.e.,, z=x+ . To take advantage of the
relationships from Table 1, this change of variables from z
to x is utilized. Now, let y be some nonlinear function of
z, y = g(z). Again, the same three different nonlinear
functions are considered: g(z) = sin(z), g(z) = cos(z), and
8(z) = z5, where k is a positive integer.

3.1 Polynomial Functions of Non-Zero Mean Variables
First the nonlinear function y = zF is considered. The

expected value of y can be obtained using the binomial
expansion [42]:
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4

E[Zk] = E‘[(X +y)k} = E[i(kfj!)ljlﬂki)(i}
o (13)

i[A]-3

[ ]

where the expectations of x are given by (5):

(k —1)'1'

8 k! k=2 _2i
E[Z ]_;‘(k—Zi)!(Zi)!!# o (14)

The variance is then determined using (6) and (14) to be:

i (2k ,LIZk_Zi 2i
£ (2k - 2i)!(2i)!!

2
_ 'f KL g
im0 (k=212)!

3.2 Trigonometric Functions of Non-Zero Mean Variables

(15)

Next the nonlinear function y = sin(z) is considered. The
expected value of y can be obtained by taking advantage
of the relationship of z to x, as well as trigonometric
identities:

E[sinz} = E[sin(x + y)}
= E[sinxcosu + Cosxsin,u] (16)

= E[sinx]cos,u + E[cos x]sin,u

Using the previously determined expectations of the sine
and cosine functions with respect to x in Table 1, the
expected value of y is determined as:

70—2

E[sinz] =(sin,u)eT 17)

The variance is then derived from (6) and (17), as well as
Table 1:

aj =E[sin’ (x + u)] - E[sin(x + I
1 1 o2 .
0'3 = E{2—2C05(2(x +,u))}—e " sin? U

1 1
o, =———E| cos2xcos2u—sin2xsin?2
573 [ u ]

y
_efo'z sinzy (18)
0_2 — l—ECOSZ,UEI:COS 2x] - e_O.Z Sil"l2 U
yo2 2
» 1.1 20 _ 07| 1= c0s(24)
o, =———cos(2u)e —-e P e—
Y 2 2 (,u) 2

0'3 = %(1 e )[1 e COS(Z,U):|

For the nonlinear function y = cos(z), similar procedures
can be used as for the sine function, and the expected
value and variance after the transformation has been
found as:
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E[cosz] :(cos,u)e% 19)
0'; :%(1—6"2 ){l—e"’2 cos(Zy)} (20)

The results of this analysis are summarized in Table 2.

8(2) E[g(2)] o’ (8(2))
k I Co
| e g‘”‘(i?’.@””ﬂmai
. /2
<o _[]_20 (k- 21]’()!!(2]')!! a ngzj}
sinz (sin,u)e% %(1—(&"’2 )[1+e"’2 cos(Z,u)]
cosz (Cosy)e% %(1—e“72 )[1—e‘“2 cos(zy)}

Table 2. Mean and Variance for Nonlinear Transformations of a
Non-Zero Mean Normal Variable

4. Comparison of Linearization
Techniques in Nonlinear Filters

Consider a nonlinear transformation of the form y = g(z),
where z~ N( I, 0'2) . The Analytical Linearization (AL)
method as implemented in the EKF estimates the mean
and variance after the transformation as:

E[g(2)]~g(E[z]) 1)
o[ B)
oy =’ {62 (22)
z=E[z]

These values were calculated using (21) and (22) for each
of the three considered nonlinear transformations and the
results are summarized in Table 3.

y=8(2) E[y] o)
k
Z k 212 2k-2
k=1,23,.. H oku
sinz sin,u 0'2 C052 u
cosz cosu o?sin’ u

Table 3. Mean and Variance Estimates from Analytical Linearization

The Unscented Transformation (UT) is a statistical
linearization technique used by the UKF. For the
considered scalar case, the UT consists of the calculation
of three sigma points:

r=[8(w) gu+ac) gu-ac)] (23)
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where a is the primary sigma point scaling parameter,
which is suggested to vary between 0.001 and 1 [10].
Weighted averages are taken to recover the mean and
variance of these sigma points, as in:

az

Lot
@ (24)

" ﬁ[g(ﬂ +a0) +g(u-ao)]

E[g(z) |~ =

[

2_
o’ z(“ _ LI +ﬂ][g(y)—}7]2
(25)

v [+ a0)-5T +[glu-a0)-5T |

where ¥ is the mean estimate from (24) and g is the
secondary sigma point scaling parameter. For Gaussian
distributions, g = 2 is optimal [10]; therefore = 2 was
used for this study. Unlike the AL, the UT does not yield
simple explicit solutions for the transformed mean and
variance of the considered nonlinear functions; therefore
these explicit solutions are not presented.

Since the linearization process is a function of the prior
mean and variance, plots were generated to illustrate the
differences between the statistical
linearization techniques. Additionally, the Monte Carlo
method was included to verify the theoretically derived
results, i.e., n = 10° points were generated from the prior
distribution, propagated through the nonlinear function,
and then the mean and variance statistics were calculated,

analytical and

as in

1 n

e[y]-25:t(x) (26)
1 n

% =i -]

The differences between the Monte Carlo and theoretical
estimates for the mean and variance are negligible for all
of the considered cases, thus demonstrating the validity
of the theoretically derived equations. For the unscented
transformation, four different cases of & were considered:
0.25, 0.5, 0.75, and 1.0. These values were selected to
represent a few cases in the range of possible values for a.
Each presented figure shows the error in the transformed
mean or variance estimate from the linearization process
as compared to the theoretically derived truth from Table
2. These errors are plotted with respect to the prior
standard deviation, o.

First, two cases of the nonlinear function y = z* are
considered: k = 2 and k = 3. For both cases, E[z] = 0.1.
Alternatively, due to the relationship between z and x,
this function can be considered as y = (x+0.1)*. For k = 2,

www.intechopen.com

the mean and variance estimates for each case of &« were
the same, and therefore only one line is plotted for the
UT, as shown in Figure 1.

Mean Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)

2 T T T T T T T T T
= | | | | | | | | |
[ | | | | | | | | |
‘ﬁ T T 1 1 1 | | 1
3 | | | I | | | |
N N T T T Y IO e R ST B
g | | | | | | T |
= | | | | | | | |
-4 I | | | | | I I \
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
o
Variance Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)
20 T T T T T T T T T
| | | | | | | | |
N o | | | | | | | | |
' 1 1 1 [ e S 1 T
8 AL | | |
> | | | |
5 20 Monte Carlo **7**7**7*\‘***
UT o = 0.25, 0.5, 0.75, 1.0 | | | |
40 T T T T T I I I I
0 02 04 06 08 1 12 14 16 18 2

Figure 1. Mean and Variance Estimate Errors for y = (x + 0.1)?

It is shown in Figure 1 that the AL error increases as the
prior variance increases, while the UT provides perfect
estimation of both the mean and the variance. As
expected, the Monte Carlo method provides near perfect
estimation of the statistics. For k = 3, the mean estimate
again is not a function of «; however, the variance
estimate is function of a. The results for this case are
shown in Figure 2.

Mean Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)

0.5 T T T T T T T
= | | | | | | |
w 0 [ S — ——— T o i
' | | | [ | |
3 05 AL B
> | |
§ aH Monte Carlo 4 _ 4
= UT o =0.25, 0.5, 0.75, 1.0 ! !
15 T T T T T I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4
(2
Variance Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)
50 T T T T
AL | | | |
i UT o = 0.25 I I | |
) UTq =05 ] ‘ ‘ o ™
= UTa =075 el
s UTa =10 : : ‘\\ : :
Monte Carlo N
50 I I R I
0 0.2 0.4 0.6 0.8 1 1.2 1.4
o

Figure 2. Mean and Variance Estimate Errors for y = (x + 0.1)?

For the case shown in Figure 2, the AL again shows an
increasing error trend with prior variance. The UT
provides perfect mean estimation, but the variance
estimate is now only slightly more accurate than the AL,
with a = 1.0 giving the greatest accuracy. For this case,
errors in the Monte Carlo method become more apparent
as the prior variance increases. This indicates that a larger
number of points would be required to accurately
estimate the statistics. This particular case demonstrates
the usefulness of the theoretically derived statistics in
Table 2, as the Monte Carlo method can become
inaccurate even for a reasonably large number of points.
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Therefore, using Monte Carlo as a truth reference may be
invalid under certain conditions. The derived statistics in
Table 2 are clearly advantageous for this case in terms of
computation and accuracy.

The next considered case is y = sin(x). The mean estimate
for this case is identically zero for both techniques, so it is
not shown. The variance estimate, however, shown in
Figure 3, shows that the UT contains greater accuracy
than the AL for all cases of a, with & = 1.0 giving the best
variance estimate.

Variance Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)
T T T
3H AL
UT o =0.25
UTa =05
UT o =0.75
UTa =10
Monte Carlo

.62
y
N

Var(y)es‘

Figure 3. Variance Estimate Error for y = sin(x)

Next, two non-zero mean cases are considered for the
sine function. The mean and variance estimates for y =
sin(z) with E[z] = 71/4 are shown in Figure 4, and similarly
for y = sin(z) with E[z] = 7/2 in Figure 5.

Mean Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)

T T T T T T T T T
= | | | | | | | I
E 0'5777\777\777\777\7777:12_;7:;777777’
- | [ S Bt | | | |
8 0 SR I I I I I I
=) | | | | [ = N
g I | I I | | T
S OSF--r - - T T T T
I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
G
Variance Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)
3 AL
'S UT o =025
o 2 UTo =05
s 1 UTa =075
g UTo =10
L
0 Monte Carlo | ‘ ‘ ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2

Figure 4. Mean and Variance Estimate Errors for y = sin(x+m/4)

Mean Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)

T

Mean(y),, - Ely]

Variance Estimate Error for Analytical Linearization (AL)
and Unscented Transformation (UT)

AL |
——UTa =025 :
UTa =05 |
UTa =075
UTa=10 |
Monte Carlo
0 02 04 06 08 1 12 14 16 18 2

-oy
IS

N}

Var(y)eg,

o

Figure 5. Mean and Variance Estimate Errors for y = sin(x+m/2)
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For the cases shown in Figure 4 and Figure 5, the UT
provides more accurate mean estimation; however, the
AL provides
Comparable cases for the cosine function were generated,
and yielded equivalent results to those of the sine
function, as expected, following the co-function identities,
i.e., cos(x) = sin(rt/2—x). For each of the cases for the sine
and cosine functions, it is interesting to note that the
value of @ = 1.0 gave the most accurate mean and variance
estimates for the UT. Also, the Monte Carlo method
provides near perfect estimation of the statistics, as
expected.

a more accurate variance estimate.

Figure 4 and Figure 5 show specific cases of the prior
mean in order to give snapshots of the performance. To
more fully capture the effects of different means, the AL
and UT were evaluated for the sine function over a set of
values for the standard deviation ranging from 0 to 2 and
for the mean ranging from 0 to 77/2. Only the case of a =
1.0 was considered here for the UT. The absolute value of
the mean estimate error and variance estimate error are
displayed for AL in Figure 6 and UT in Figure 7 as
contours. In these figures, the darker areas indicate
higher linearization errors with respect to the analytical
truth.

Analytical Mean Estimate Error

15 0.8
0.6
1
ES 0.4 =
0.5
0.2
0 . . . 0
0 0.5 1 15 2

c
Analytical Variance Estimate Error

15
1
=
0.5
0 . .
1 15 2

c

N w
Ac?

[y

o

Figure 6. Analytical Linearization Error for y = sin(z)

UT Mean Estimate Error

15 0.8
0.6
= 0.4
0.5
0.2
o . . . o
5 2

0 0.5 1 1

-

1Apl

o
UT Variance Estimate Error

15
3
2
=4 o
<
05 1
0 . . . o
15 2

Figure 7. Unscented Transformation Error for y = sin(z)
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There are two important observations to make in Figure 6
and Figure 7. First, for all cases of prior mean and standard
deviation, the UT yields more accurate estimation of the
mean. Second, the variance estimate errors of the AL are
sometimes better than the UT, and vice versa. This is
demonstrated by the different shapes of the contour
graphs, with AL having higher errors for smaller means
and the UT having higher errors for larger means. Because
of this observation, neither the AL nor UT can claim better
estimation of the variance for all cases.

5. Nonlinear Filtering Example

In order to demonstrate the usefulness of the derived
analytical relationships, an example of a nonlinear
filtering problem is considered. Consider the following
discrete-time nonlinear system:

Xy =sinx; 4
Vi =X + V. (27)
v, ~N(O,R)

where k is the discrete time index, x is the state, y is the
output, and v is the measurement noise with known
variance, R. This problem is approached with the EKF, the
UKF, a theoretical filter which uses the relationships
summarized in Table 2, a Monte Carlo based filter, and a
particle filter. For this implementation of the UKEF, the
scaling parameters were set to a = 1.0 and f = 2. The Monte
Carlo filter generated n = 10° points at each time step from
the prior distribution to recover the statistics after the
nonlinear transformation using (26). Note that this Monte
Carlo filter is not a particle filter, but is instead a Kalman
filter that uses the Monte Carlo method to determine the a
priori statistics at each time step. This Monte Carlo filter is a
statistical means of approximating the theoretical filter. A
linear Kalman filter measurement update [1] is used for the
EKF, UKEF, theoretical, and Monte Carlo filters, since the
output equation is linear. To provide additional comparison,
a simple Sampling Importance Resampling (SIR) particle
filter [40] was implemented using 10° particles.

First, the true state trajectory is determined for an initial
state, X, =7Z'/4. This trajectory is used to simulate the
measurement, with added measurement noise with
variance, R = 0.25. This measurement is shown with the
true state trajectory in Figure 8.

1.5
1

0.5H/

x 0
05 ‘
|
A - - d—pF - - - — True State Trajectory
| | | | | Measurement
15 I ! I I I
0 10 20 30 40 50 60 70 80 90 100

Time Step, k

Figure 8. Nonlinear Filtering Example: State and Measurement
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Using this measurement, each filter algorithm is executed
for 100 discrete time steps, each using assumed initial
conditions:

Xy =X, +7r/3=77z/12

28
B, = (/ 3)2 (28)
where P is the variance of the state. These initial
conditions were selected to capture the effects of a
reasonably large initialization error. Note that the initial
error was selected as one standard deviation from the
assumed initial variance. The state estimation error
results of this simulation are shown in Figure 9.

UKF
- T TT————T- Monte Carlo A
[ Theoretical
[ Particle

-
B - - — —
FF----1--1

Time Step, k

Figure 9. Nonlinear Filtering Example: Estimation Error

Negligible differences are shown in Figure 9 between the
Monte Carlo and theoretical filters. To quantify the
performance of each filter, the root mean square error
(RMSE) was calculated, and is shown in Table 4.

Nonlinear Filter RMSE
EKF 0.048597
UKF 0.044619
Monte Carlo 0.029997
Theoretical 0.029989
Particle (SIR) 0.019786

Table 4. Nonlinear Filtering Example: Root Mean Square Error

From these results, a slight performance advantage is
demonstrated for the UKF over the EKF, and a more
significant performance advantage is shown for the
Monte Carlo and theoretical filters over both the EKF and
the UKF. This improvement comes purely from the
removal of the linearization errors that are incurred by
the EKF and UKF. The particle filter was able to achieve
the highest accuracy, due to the removal of the Gaussian
noise assumption that is required by the other methods.
This indicates that even with perfect linearization,
Kalman-based filtering techniques may not be as effective
as particle filtering.

6. Conclusions

The results of a comparison of analytical linearization and
unscented transformation techniques to recover the mean

and variance after three different nonlinear
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transformations were presented in this paper. The true
statistics were theoretically derived for each of the
considered functions in order to compare the errors of the
different methods. These theoretical results were verified
with respect to Monte Carlo simulations. For all of the
considered cases, the unscented transformation yielded
equal or greater accuracy in the estimation of the mean.
However, mixed conclusions were reached about the
accuracy of the variance. For some cases the analytical
linearization obtained greater accuracy than the
unscented transformation, while for other cases the
opposite was noticed. Another interesting observation is
that for each function, increasing « in the unscented
gave equal or Dbetter accuracy.
Additionally, a nonlinear filtering example was given to
demonstrate the effectiveness of the theoretical estimates
either as a

transformation

in practice, validation tool or for
implementation. This example showed that there is room
for improvement in both the EKF and the UKF in terms of
linearization errors for certain applications, and that a
particle filter is still able to outperform a Kalman-based

filter even with no linearization error.
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