
Graduate Theses, Dissertations, and Problem Reports 

2007 

Increased resistance of Escherichia coli O157:H7 to electron Increased resistance of Escherichia coli O157:H7 to electron 

beam following repetitive irradiation at sub-lethal doses and an beam following repetitive irradiation at sub-lethal doses and an 

analysis of genes of Escherichia coli resistance analysis of genes of Escherichia coli resistance 

Leah Levanduski 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Levanduski, Leah, "Increased resistance of Escherichia coli O157:H7 to electron beam following repetitive 
irradiation at sub-lethal doses and an analysis of genes of Escherichia coli resistance" (2007). Graduate 
Theses, Dissertations, and Problem Reports. 2561. 
https://researchrepository.wvu.edu/etd/2561 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2561?utm_source=researchrepository.wvu.edu%2Fetd%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

Increased Resistance of Escherichia coli O157:H7 to Electron Beam 
Following Repetitive Irradiation at Sub-lethal Doses and an Analysis of 

Genes of Escherichia coli Resistance 
 
 

Leah Levanduski 
 
 
 
 

Thesis submitted to the 
College of Agriculture, Forestry and Consumer Sciences  

at West Virginia University 
in partial fulfillment of the requirements  

for the degree of 
 
 
 
 

Master of Science 
In 

Food Microbiology 
 
 
 
 

Jacek Jaczynski, Ph.D., Chair 
Jianbo Yao, Ph.D. 

Kristen Matak, Ph.D. 
 

Department of Animal and Nutritional Sciences 

 

Morgantown, West Virginia 
2007 

 

Key words: Escherichia coli O157:H7, electron beam, inactivation kinetics, D10-value, 
non-thermal food preservation, micro-array 

 
Copyright 2007 Leah Levanduski



ABSTRACT 

Increased Resistance of Escherichia coli O157:H7 to Electron Beam Following 
Repetitive Irradiation at Sub-lethal Doses and an Analysis of Genes of Escherichia coli 

Resistance 
 

Leah Levanduski 
 

One way that food processors in the United States control food-borne pathogens in a 
non-thermal manner is with the application of electron beam (e-beam) radiation.  Increased 
resistance of Escherichia coli O157:H7 to various stressors such as pH, temperature, ionic 
strength, and antibiotics has been demonstrated; therefore, the objective of this study was to 
determine if the D10-value for E. coli O157:H7 (E. coli) in ground beef increases due to 
repetitive exposure to e-beam at sub-lethal levels.  Ground beef samples were inoculated with 
an ATCC strain of E. coli and incubated to approximately 109 CFU/g followed by e-beam 
processing.  Survivors were enumerated using a standard spread-plating technique.  Colonies 
of E. coli survivors from the highest e-beam dose were isolated and grown for the next cycle of 
inoculation in ground beef and e-beam processing.  Four such consecutive cycles of isolation 
and e-beam processing were performed.  The D10-values for E. coli survivors following each 
cycle of e-beam processing were calculated from survivor curves.  The D10-values increased (P 
< 0.05) with each subsequent cycle of e-beam processing, starting at 0.24±0.03 kGy for E. coli 
ATCC strain 35150 and reaching 0.63±0.02 kGy for E. coli isolate L3, which is the result of 
three cycles of e-beam exposure.  Following four cycles of e-beam processing, radio-resistance 
increased for isolate L4 (P < 0.05), resulting in the survival of this strain to an e-beam dose of 
3.0 kGy.  The data demonstrates that e-beam can efficiently inactivate E. coli in food products; 
however, the organism demonstrated increased resistance when repeatedly subjected to sub-
lethal e-beam processing.  Although the exact mechanism of increased radio-resistance of E. 
coli to e-beam is unclear at the moment, based on the available literature regarding increased 
resistance of E. coli to various stressors, it is likely that some genetic mechanism is involved.  
Therefore, we are currently investigating this hypothesis through genome-wide expression 
analysis using micro-array technology. 
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Increased Resistance of Escherichia coli O157:H7 to Electron Beam Following 

Repetitive Irradiation at Sub-lethal Doses 

INTRODUCTION 

Food-borne illness caused by the ingestion of food contaminated with Escherichia coli 

O157:H7 has been a growing problem in the United States since a meat-borne outbreak in 

1982 (Jay et al., 2005).  In 1997, a U.S. company voluntarily recalled almost 11.5 million kg of 

ground beef after 20 illnesses had been associated with meat contaminated with E. coli 

O157:H7 in Colorado.  In 2002, there were 36 food recalls in the U.S. due to E. coli O157:H7 

contamination.  All 36 recalls involved ground beef products.  Individual recalls ranged in size 

from almost 9 to 19 million kg.  In 1999, there were 62,458 confirmed cases of food-borne 

illnesses due to E. coli O157:H7, resulting in 1,843 hospitalizations and 52 deaths accounting 

for 0.7 billion dollars in estimated cost.  Recently, a multi-state outbreak of E. coli O157:H7 in 

the United States implicating contaminated spinach and later lettuce was responsible for over 

190 illnesses and 3 confirmed deaths (U.S. Food and Drug Administration, 2006).   

Escherichia coli is a normal inhabitant of the digestive tract of both humans and animals 

and most strains are generally considered harmless (Bell and Kyriakides, 1998).  However, 

ingestion of even low numbers of serotype O157:H7 may cause hemorrhagic colitis (HC) and 

hemolytic uremic syndrome (HUS), which may result in renal failure and death (WHO, 2007).   

            One method used as a means to non-thermally inactivate E. coli O157:H7 in food products 

is electron beam (e-beam) irradiation (Urbain, 1986).  This technology utilizes a stream of high-

energy electrons generated by a linear accelerator to directly damage the microbial DNA by 

introducing cross-linkages, thus rendering microorganisms unable to grow and reproduce 

(Tauxe, 2001).  However, available water in food (i.e., water activity) also plays a critical role in 

microbial inactivation, contributing to microbial death as an indirect effect due to water 
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radiolysis (Black and Jaczynski, 2006).  Tauxe (2001) has estimated that if 50% of meat and 

poultry food products were irradiated, an estimated 23,000 cases, 700 hospitalizations, and 20 

deaths caused by E. coli could be prevented annually.  According to the U.S. Department of 

Agriculture, the current maximum allowable dose of radiation is 4.5 kiloGrays (kGy) for 

refrigerated meat and 7.0 kGy for frozen meat products (U.S. Department of Agriculture, 

1999). 

Microbial adaptation and increased microbial resistance has been shown to occur under  

conditions previously thought to prevent microbial growth, such as low pH, high temperature, 

and antibiotics (Benjamin and Datta, 1995; Yuk and Marshall, 2003; Schroeder et al., 2002; Yuk 

and Marshall, 2004).  Acidic foods previously thought to be safe from pathogens have been 

implicated in outbreaks due to E. coli O157:H7.  For example, in 1996 three outbreaks due to 

contamination of apple cider with E. coli O157:H7 resulted in 66 illnesses and 1 death (Centers 

for Disease Control and Prevention, 1997). 

E. coli has the capability of developing an increased acid resistance if the cells have 

been pre-incubated at sub-lethally low pH, such as 2.5-2.0 (Benjamin and Datta, 1995; Lin et 

al., 1996).  Furthermore, increased acid resistance of E. coli also results in cross-protection 

against other stressors such as ionizing radiation, heat, salt (i.e., ionic strength), and 

lactoperoxidase system (Leyer et al., 1995; Buchanan et al., 1999).  A similar development of 

increased microbial resistance to antibiotics resulting in a cross-protection against e-beam was 

reported for nalidixic acid resistant Salmonella enterica subsp. enterica serotype Montevideo (James 

et al., 2007).  Black and Jaczynski (2007a) found that pre-incubation of E. coli O157:H7 under 

sub-lethally high ionic strength (i.e., salt content) in meat food products induces cross-

protection, resulting in increased radio-resistance to e-beam.  Yuk and Marshall (2003) 

demonstrated that pre-incubation of E. coli O157:H7 at sub-lethally high temperatures (45°C) 
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results in heat-adaptation and consequently, increased D10-value.  The development of heat 

adaptation was also accompanied by changes in membrane lipid composition that could 

potentially affect verotoxin production. 

 It appears, therefore, that E. coli O157:H7 has the capability to develop increased 

resistance to a variety of stressors commonly used in food to prevent microbial growth or to 

inactivate the pathogens.  It is likely that E. coli O157:H7 may also develop increased radio-

resistance to e-beam.  Increasing the use of e-beam radiation provides a greater chance of 

repetitive exposure of enterohemorrhagic strains like O157:H7 to this form of radiation.  

Given the 20-minute generation time of E. coli under optimal conditions in food such as meat 

products, E. coli O157:H7 could develop an increased radio-resistance due to repetitive 

exposure to e-beam at sub-lethal doses.   

To our knowledge there have been no published reports in literature regarding 

development of an increased radio-resistance of E. coli O157:H7 in food to e-beam radiation.  

The objective of this study was to determine if the D10-value for E. coli O157:H7 inoculated in 

ground beef increases following repetitive exposure to e-beam radiation at sub-lethal levels. 

 

MATERIALS AND METHODS 

 
Sample preparation 

Lean ground beef was purchased from a local grocery store, vacuum packaged, and 

stored at -80ºC until needed.  Preliminary tests confirmed that the total coliform counts in the 

ground beef sample were below detectable levels.  Escherichia coli O157:H7 ATCC strain 35150 

(hereafter called E. coli) was used in our experiments.  E. coli lyfo-disks were reconstituted by 

crushing one pellet using a sterile spatula in 0.5 ml of sterile trypticase soy broth (TSB) 

(Becton, Dickinson, and Company, Sparks, MD).  The content was then aseptically transferred 
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to 10 mL of sterile TSB and allowed to grow at 35ºC for 24 hr in an incubator/shaker set at 

150 rpm (C24 Incubator/Shaker, New Brunswick Scientific, Edison, NJ).  A 2 mL aliquot of 

the E. coli culture was aseptically transferred to 38 mL of sterile TSB and allowed to grow at 

35ºC for 7 hr in the incubator/shaker set at 150 rpm.  Preliminary studies (data not shown) 

confirmed that this procedure yielded an E. coli culture at stationary phase of growth.   

The 7-hr E. coli culture was used as an inoculum for ground beef.  Prior to inoculation, 

the ground beef sample was thawed overnight in a refrigerator and the inoculum was added at 

5% to a thawed sample of ground beef.  Following inoculation, the ground beef sample was 

incubated (Isotemp Incubator, Fisher Scientific, Pittsburgh, PA) at 35 ºC for 30 hr.  

Preliminary studies (data not shown) verified that this procedure resulted in a concentration of 

E. coli at approximately 109 CFU/g of ground beef.  Distilled and de-ionized water (ddH2O) 

was periodically added to account for moisture loss during incubation and the sample was 

periodically mixed manually in order to ensure adequate distribution of microbial cells in the 

meat sample.   

Following incubation, 18 individual samples of approximately 12 g of inoculated beef 

were separately packed (Kapak SealPAK pouches, Kapak Corporation, Minneapolis, MN) and 

aerobically sealed (Kapak sealer, Kapak Corporation, Minneapolis, MN).  Each sample was 

spread evenly, resulting in a thickness of less than 1 mm in order to ensure complete 

penetration of e-beam and even distribution of absorbed dose throughout the sample 

(Jaczynski and Park, 2003).  The samples were stored at -80ºC until shipment.   

Following incubation and prior to the packing of the ground beef samples, water 

activity (Aw), ionic strength (IS), and pH were measured using a Aw meter (Hygrolab 3, 

Rotronic Instrument Corp., Huntington, NY), conductivity meter (AB30, Fisher Scientific, 

Pittsburgh, PA), and pH meter (AB15, Fisher Scientific, Fair Lawn, NJ), respectively.  The IS 

 4



was defined as an equivalent molar (M) concentration of NaCl and the IS was determined by 

comparing the conductivity of a meat sample to a standard curve constructed with NaCl.  The 

IS was expressed as an equivalent % NaCl.  The Aw, IS, and pH of a food matrix in which the 

microorganisms are inactivated may affect microbial radio-resistance to e-beam and hence, 

could have a confounding effect on the D10-values determined in our experiments (Black and 

Jaczynski, 2007a; Black and Jaczynski, 2007b; James et al., 2007).  The optimum Aw, IS, and 

pH of E. coli are 6-7, 0% and 0.995, respectively (The International Commission on 

Microbiological Specifications for Foods, 1996).  Therefore, we controlled for these factors in 

the inoculated ground beef samples in order to minimize their effects on the D-value in our 

experiment.  At least six Aw, IS, and pH measurements were taken and the results are reported 

as mean values of 1.00, 0%, and 5.5-6.0, respectively.      

 

Treatment 

Samples were packed and shipped according to an approved institutional protocol in a 

heavy-duty styrofoam cooler filled with dry ice.  Samples were shipped overnight to an e-beam 

processing facility (Sterigenics International, San Diego, CA).  At the e-beam facility, the 

samples were allowed to equilibrate to 4ºC overnight in a refrigerator prior to e-beam 

processing.  The samples at refrigeration temperature (4ºC) were subjected to one-sided e-

beam with energy fixed at 10 MeV and the following doses were applied – 0 (control), 0.5, 1.0, 

1.5, 2.0, and 2.5 kGy.  The applied e-beam doses were confirmed with film dosimetry 

(Jaczynski and Park, 2003).   

Immediately following the e-beam treatment, samples were frozen, packed, and 

shipped overnight back to the Food Microbiology laboratory at West Virginia University 

(WVU).  Upon arrival at WVU, the e-beam processed samples were stored at -80ºC until 
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analysis.  Preliminary studies (data not shown) determined that the freeze-thaw cycles in our 

experiments did not (P > 0.05) affect the E. coli survival and therefore, did not confound our 

results.  Three separate e-beam experiments (n = 3) were conducted for a total of 18 samples 

(six e-beam doses). 

 

Bacterial enumeration of E. coli survivors 

The samples were equilibrated to 4ºC overnight in a refrigerator prior to enumeration.  

Each sample was enumerated by aseptically placing 10 g of the e-beam processed sample using 

a sterile spatula into a sterile filter stomacher bag (Two-Chamber Filter Bag, Fisher Scientific, 

Pittsburgh, PA).  An aliquot of 90 ml of dilutent (Butterfield phosphate buffer, Hardy 

Diagnostics, Santa Maria, CA) was aseptically added to the filter stomacher bag and the bag 

was placed into a stomacher (Bag Mixer 400, Interscience, St. Nom, France) set at medium 

speed for 2 min.  Further serial dilutions were aseptically made by taking 10 ml of diluted 

sample and transferring it into a 90 ml diluent bottle, followed by shaking the bottle to 

uniformly distribute survivors.  An aliquot of 1 ml of each serial dilution was pipetted onto a 

petrifilm plate (Petrifilm E. coli/Coliform Count Plate, 3M, St. Paul, MN) and spread by a 

petrifilm spreader.  Plates were incubated at 35ºC for 48 hr using AOAC method 991.14.  

Only plates with 15-150 colonies were counted.  All bacterial enumerations were performed in 

duplicate and the mean values are reported as CFU/g.   

 

Isolation of E. coli survivors for repetitive e-beam processing 

Following the 48-hr incubation of the petrifilm plates, colonies of E. coli survivors 

from the highest e-beam dose were randomly isolated from the plates using aseptic techniques 

and incubated in 10 mL of sterile TSB at 35ºC for 24 hr in an incubator/shaker set at 150 rpm.  

A 2 mL aliquot of the resultant E. coli culture was aseptically added to 38 mL of sterile TSB 
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and incubated at 35ºC for 7 hr in an incubator/shaker set at 150 rpm.  Preliminary studies 

(data not shown) confirmed that this procedure yielded an E. coli culture at stationary phase of 

growth.   

As described before (see Sample preparation), the 7-hr E. coli culture was used as the 

inoculum for the next sample of ground beef and cycle of e-beam processing.  The isolation of 

E. coli survivors following e-beam processing was repeated four times and a total of five cycles 

of e-beam processing were conducted.  In the first cycle of e-beam processing, the ATCC E. 

coli strain 35150 was used.  The E. coli survivors isolated following the first cycle of e-beam 

processing were designated as L1 (hereafter called isolate L1), while the E. coli survivors 

isolated following the second cycle of e-beam processing using isolate L1 was designated as L2 

(hereafter called isolate L2).  Isolates L3 and L4 were obtained accordingly. 

 

Determining D10-values 

E. coli survivors following each cycle of e-beam processing were plotted on a 

logarithmic scale as a function of e-beam dose (kGy), resulting in survivor curves.  The D10-

value was determined by calculating the negative reciprocal of the slope of the survivor curve 

(equation 1) (Jaczynski and Park, 2003).  D10-value is recognized as the radiation dose needed 

to achieve one log cycle or 90% reduction of the microbial population (Urbain, 1986).  

 

t
DN

N *1log
100

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                             Equation 1 

 

N – number of survivors at e-beam dose, 

N0 – initial microbial concentration, 
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D10 – D10-value, decimal reduction dose, 

t – e-beam dose. 

 

Statistics  

Five cycles of e-beam processing were conducted, three separate experiments (n = 3) 

per one cycle.  Meat samples were randomly assigned to e-beam doses in each experiment.  All 

bacterial enumerations were performed in duplicate and the mean values are reported as 

CFU/g.  The enumeration counts (CFU/g) were log-converted and analyzed by linear 

regression using MS Office Excel software (Version 2003) in order to determine D10-values.  

Analysis of variance (ANOVA) was performed for a completely random sample model to 

detect significant differences in microbial survival with increasing e-beam dose.  Dunnett’s 

method of means comparison was used to compare the mean D10-values for each cycle of e-

beam processing.  All statistical analyses were calculated using JMP software (SAS Institute, 

2002). 

 

RESULTS AND DISCUSSION 

Survivor curves were plotted for E. coli O157:H7 ATCC 35150 (Fig. 2) and each 

successive isolate (L1, L2, L3, and L4) following repetitive e-beam processing (Fig. 3, 4, 5, and 

6).  The linear regression analysis of survivor curves yielded high correlation coefficients (R2).  

The D10-values for each isolate, therefore, were calculated from the survivor curves as a 

function of e-beam dose (Table 1). 

The ATCC strain had not previously been subjected to e-beam radiation before this 

experiment and the respective D10-value was expectedly the lowest at 0.24 kGy (Fig. 2).  The 

highest (P < 0.05) D10-value (0.63 kGy) was determined for isolate L3 following the third cycle 
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of e-beam processing (Fig. 5).  However, no further significant increases (P > 0.05) were seen 

for the fourth and final cycle of e-beam processing, with isolate L4 resulting in a D10-value of 

0.60 kGy (Fig. 1).  This was probably due to the fact that not all of the surviving E. coli cells 

had identical radio-resistance.  Likely, the surviving cells showed some distribution of radio-

resistance.  The distribution of microbial resistance due to application of various preservation 

processes has been described by Peleg and Cole (1996).  Therefore, the isolated survivors that 

were used for subsequent cycles of e-beam processing in our experiments could have had 

various levels of radio-resistance to e-beam.  In order to minimize this effect, the colonies 

following enumeration of survivors were isolated in a random manner and grown for 

inoculation of ground beef for subsequent cycles of e-beam processing.  However, even with 

random isolation, variation in the radio-resistance of E. coli isolates was reflected in our data as 

for example between isolates L3 and L4 (Fig. 1).   

Analysis of variance (ANOVA) showed that the more microorganisms were subjected 

to e-beam processing, the greater their radio-resistance to e-beam (P < 0.05) (Table 1).  In 

addition, Dunnett’s method of means comparison showed that while the first two cycles of e-

beam processing yielded D10-values insignificantly (P > 0.05) different from the D10-value for 

the ATCC strain, the third and fourth cycles of e-beam processing resulted in significant 

increases (P < 0.05) of D10-value for isolates L3 and L4, respectively when compared to the 

D10-values for the ATCC strain, L1, and L2 (Fig. 1). 

Previous work by Black and Jaczynski (2006, 2007a, 2007b) demonstrated that sub-

lethal growth conditions for E. coli O157:H7 such as freezing temperatures, reduced water 

activity (Aw), and elevated ionic strength (IS) increase the D10-values for E. coli O157:H7 in 

various food matrices subjected to e-beam.  In the current research, we ensured that these 

factors did not affect the D10-value and therefore, did not confound increased radio-resistance 
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due to repetitive e-beam processing at sub-lethal doses.  Rodriguez et al. (2006) investigated 

surrogate microorganisms for common food-borne pathogens including E. coli in a model 

food system (10% w/w gelatin) for determination of inactivation kinetics with e-beam.  

Rodriguez et al. (2006) concluded that non-pathogenic E. coli K-12 was more radio-resistant 

than E. coli O157:H7 and determined D10-values at 0.88 and 0.36 kGy, respectively.  The D10-

value reported by these investigators for E. coli O157:H7 is similar to ours and a small 

difference is likely due to different food sample and much higher e-beam energy used in our 

experiment. 

Buchanan et al. (1999) demonstrated that E. coli O157:H7 incubated under acidic 

conditions were more likely to survive exposure to subsequent acidic environment, which was 

attributed to the induction of a pH-dependent stationary phase of microbial growth.  Likely, 

the prior exposure to acid stimulated an increased acid resistance in the microorganisms.  E. 

coli O157:H7 that were able to survive repetitive e-beam processing may have undergone a 

similar mechanism for increased radio-resistance.  However, Buchanan et al. (1999) allowed for 

the recovery of injured cells, which were in the range of 65 to 99% of total viable cells, by 

plating on a nutrient medium (brain heart infusion agar).  The selective media used in our 

experiments to enumerate survivors did not allow for the recovery of e-beam injured bacteria; 

therefore, the cells that survived and grew following e-beam processing were either un-injured 

by radiation or had developed an advanced method of DNA repair in order to repair the 

damage induced by the radiation.  If we had enumerated e-beam survivors using a nutrient 

medium allowing injury recovery, the resultant D10-values would most likely have been even 

greater.  Buchanan et al. (2004) theorized that acid habituation may synergistically increase 

microbial resistance to ionizing radiation, resulting in a cross-protection.  They determined that 

acid resistant E. coli strains had approximately a two-fold greater D10-value than the non-acid 
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resistant strains when inactivated with ionizing radiation.  Therefore, similar to our research, 

this data suggests that E. coli is capable of developing an increased radio-resistance. 

Leyer et al. (1995) proposed that acid resistance is due to E. coli’s ability to develop an 

acid tolerant response induced in stationary phase cells incubated at sub-lethally low pH.  In 

this regard, a similar mechanism can be proposed for the increased radio-resistance of E. coli to 

e-beam determined in our experiment.  When the E. coli survivors following e-beam 

processing were isolated and repetitively re-processed with e-beam at sub-lethally high doses, it 

is possible that they were able to develop a more e-beam tolerant response, resulting in greater 

radio-resistance to e-beam as evidenced by higher D10-values (Fig. 2, 3, 4, 5, and 6). 

Arnold and Kaspar (1995) demonstrated a genetic mechanism involved in the 

development of the tolerant response to various stressors, which was attributed to the rpoS 

gene.  Their research showed that if the rpoS gene is intact, E. coli can develop greater 

resistance to various stressors.  In a subsequent study, Cheville et al. (1996) used rpoS mutant 

and non-mutant E. coli strains and determined that mutant strains were less resistant to heat, 

acid, and high ionic strength than the non-mutant strains, confirming that the intact rpoS gene 

is necessary for increased resistance to those stressors.   Cheville et al. (1996) theorized that 

this gene likely encodes proteins or increases the transcription of proteins that are pivotal in 

microbial resistance.  Lin et al. (1996) also confirmed that the rpoS gene is involved in the 

development of increased acid resistance in enterohemorrhagic E. coli.  The development of the 

increased heat resistance of E. coli has also been linked to the rpoS gene and another heat shock 

gene, the rpoH gene (Yuk et al. 2003).  The genetic mechanism involving the rpoS gene may 

also play an important role in the development of the increased radio-resistance of E. coli to e-

beam.  In this study, E. coli were grown in TSB and ground beef, which are nutrient and water 

rich growth media.  Most likely, the rpoS gene was intact prior to e-beam processing.  The 
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microorganisms were subjected to e-beam while in the stationary phase of their growth, and 

therefore, the intact rpoS gene likely contributed to the development of the increased radio-

resistance to e-beam as evidenced by greater D10-values.  Current studies are investigating the 

genetic mechanism involved in the development of increased microbial radio-resistance to e-

beam with micro-arrays.  Micro-array is an emerging technique with the capability of high-

throughput, allowing rapid gene expression and comparative surveys of large numbers of 

microbial specimens.  Preliminary micro-array data suggests a correlation between up- and 

down-regulation of some genes and increased radio-resistance of E. coli to e-beam. 

The direct mechanism of microbial inactivation due to ionizing radiation, including e-

beam is the damage of microbial DNA (Urbain, 1986).  Since injured cells were not recovered 

in our experiments, the DNA had to be fully intact and functional in the survivor cells that 

reproduced and formed colonies during our enumeration procedure.  Therefore, E. coli likely 

has a mechanism for DNA repair after significant damage caused by e-beam.  The 

development of increased capability to repair DNA may also explain in part an increased 

radio-resistance of E. coli subjected to repetitive e-beam processing as determined in our 

experiments.  Inactivation of E. coli caused by the DNA damage was shown by Imlay and Linn 

(1987) who subjected E. coli to sub-lethal concentrations of hydrogen peroxide.  The surviving 

microorganisms developed an increased resistance via a greater repair of recombinational 

DNA.  Their research also suggested that the repair of recombinational DNA is non-specific 

and may be a general mechanism for microbial response to various stressors.  Witkin (1976) 

showed that UV radiation induces several mechanisms of DNA repair in E. coli, suggesting the 

use of a number of different genes.  While UV radiation and hydrogen peroxide do not cause 

the same damage to DNA as e-beam, the data from literature illustrating E. coli’s capability for 

the DNA repair following exposure to UV and other stressors indicates that a similar 
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mechanism may contribute to the development of increased radio-resistance of this 

microorganism to e-beam as determined in our experiments. 

Several theories have been proposed as possible mechanisms for the development of 

increased resistance of E. coli to various stressors.  However, it is likely that it is a combination 

of several of these mechanisms that confer increased radio-resistance of E. coli to e-beam.  

More research is needed in this area to fully understand the mechanism of increased microbial 

resistance to e-beam.  The increased microbial resistance of food-borne pathogens such as E. 

coli O157:H7 has significant practical implications for the food industry and general public 

health.  Most likely, the use of genetic analysis (through micro-arrays, for example) will offer 

food processors and regulatory agencies a method for rapid detection of pathogenic strains 

with increased radio-resistance; and if they occur, a proper counteraction can be devised. 

 

CONCLUSIONS 

E. coli O157:H7 has been shown to develop an increased resistance to a variety of 

stressors such as low pH, increased temperature and ionic strength, and antibiotics.  The D10-

values for E. coli O157:H7 inoculated in ground beef and repetitively subjected to e-beam 

resulted in a significant increase (P < 0.05) from 0.24±0.03 to 0.63±0.02 kGy for ATCC strain 

35150 and isolate L3, respectively.  Following four cycles of e-beam processing, the 

microorganisms were able to resist doses as high as 3.0 kGy.  While e-beam can efficiently 

inactivate E. coli in food products, it also has the capability to develop increased resistance to e-

beam if the same populations of E. coli in food products were to be repetitively subjected to e-

beam processing.  Many mechanisms have been proposed for the development of increased 

resistance of E. coli to various stressors in food products.  An exact mechanism for the 

increased radio-resistance of this food-borne pathogen to e-beam is still unclear and due to its 
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practical relevance for the food industry and general public health, the mechanism should be 

identified by further research.   

 

ACKNOWLEDGEMENTS 

This research was funded by the USDA Hatch program (project nr WVA00429).  

Special thanks to Sterigenics International for allowing us to use their e-beam facility.  Our 

appreciation extends to Carl A. Zinn and Richard Vallejo of Sterigenics for invaluable technical 

expertise with e-beam, Sarah K. Beamer for technical assistance in the laboratory, and Ida 

Holaskova for assistance with statistical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14



REFERENCES 

Arnold, K.W., Kaspar, C.W., 1995. Starvation- and stationary-phase-induced acid tolerance in 

Escherichia coli O157:H7.  Applied and Environmental Microbiology 61, 2037-2039. 

 

Bell, C., Kyriakides, A., 1999. E. coli, a practical approach to the organism and its control in 

foods. Blackwell Science, London, pp 200. 

 

Benjamin, M.M., Datta, A.R., 1995.  Acid tolerance of enterohemorrhagic Escherichia coli.  

Applied and Environmental Microbiology 61, 1669-1672. 

 

Black, J.L., Jaczynski, J., 2006. Temperature effect on inactivation kinetics of Escherichia coli 

O157:H7 by electron beam in ground beef, chicken breast meat, and trout fillets. 

Journal of Food Science 71, 221-227. 

 

Black, J.L., Jaczynski, J., 2007a. Effect of ionic strength on inactivation kinetics of Escherichia 

coli O157:H7 by electron beam in ground beef, chicken breast meat, and trout fillets. 

International Journal of Food Science and Techonology. In Press doi:10.1111/j.1365-

2621.2006.01310. 

 

Black, J.L., Jaczynski, J., 2007b. Effect of water activity on inactivation kinetics of Escherichia 

coli O157:H7 by electron beam in ground beef, chicken breast meat, and trout fillets. 

International Journal of Food Science and Techonology. In Press doi:10.1111/j.1365-

2621.2006.01480. 

 

Buchanan, R.L., Edelson, S.G., Boyd, G., 1999. Effects of pH and acid resistance on the 

radiation resistance of enterohemorrhagic Escherichia coli. Journal of Food Protection 

62, 219-228. 

 

Buchanan, R.L., Edelson-Mammel, S.G., Boyd, G., Marmer, B.S., 2004. Influence of acidulant 

identity on the effects of pH and acid resistance on the radiation resistance of 

Escherichia coli O157:H7. Food Microbiology 21, 51-57. 

 

 15



Centers for Disease Control and Prevention, 1997. Outbreaks of Escherichia coli O157:H7 

infection and cryptosporidiosis associated with drinking unpasteurized apple cider – 

Connecticut and New York, October 1996. MMWR Morbidity and Mortality Weekly 

Report 1997 46(01), 4-8. 

 

Cheville, A.M., Arnold, K.W., Buchrieser, C., Cheng, C.M., Kaspar, C.W., 1996. rpoS regulation 

of acid, heat, and salt tolerance in Escherichia coli O157:H7. Applied and Environmental 

Microbiology 62, 1822-1824. 

 

Imlay, J.A., Linn, S., 1987.  Mutagenesis and stress responses induced in Escherichia coli by 

hydrogen peroxide. Journal of Bacteriology 169, 2967-2976. 

 

The International Commission on Microbiological Specifications for Foods.  1996.   

Intestinally pathogenic Escherichia coli. In Micro-organisms in Foods 5 Microbiological 

Specifications of Food Pathogens. Blackie Academic and Professional, London, pp 

126-140. 

Jaczynski J., Park J.W., 2003. Microbial inactivation and electron penetration in surimi seafood 

during electron beam processing. Journal of Food Science 68, 1788-1792. 

 

James, D.L., Jaczynski, J., Matak, K.E., 2007. Effect of electron beam irradiation on acid-

resistant Salmonella Montevideo in tomatoes. Journal of Food Protection. Submitted. 

 

Jay, J.M., Loessner, M.J., Golden, D.A., 2005. Foodborne gastroenteritis caused by Escherichia 

coli. In: J.M. Jay, M.J. Loessner, D.A. Golden (Eds.), Modern Food Microbiology, 7th 

ed. Springer Science, New York, pp. 637-655. 

 

Leyer, G.J., Wang, L., Johnson, E.A., 1995. Acid adaptation of Escherichia coli O157:H7 

increases survival in acidic foods. Applied and Environmental Microbiology 61, 3752-

3755. 

 

 16



Lin, J., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N., Foster, J.W., 1996. Mechanisms 

of acid resistance in enterohemorrhagic Escherichia coli. Applied and Environmental 

Microbiology 62, 3094-3100. 

 

Peleg, M., Cole, M.B., 1996. Reinterpretation of microbial survival curves. Critical Reviews in 

Food Science and Nutrition 38, 353-380.   

 

Rodriguez, O., Castell-Perez, M.E., Ekpanyaskun, N., Moreira, R.G., Castillo, A., 2006. 

Surrogates for validation of electron beam irradiation of foods. International Journal of 

Food Microbiology 110, 117-122.  

 

SAS Institute. 2002. SAS/STAT guide for personal computers, version 8.1. SAS Institute, Cary 

(NC).  

 

Schroeder, C.M., Zhao, C., DebRoy, C., Torcolini, J., Zhao, S., White, D.G., Wagner, D.D., 

McDermott, P.F., Walker, R.D., Meng, J., 2002. Antimicrobial resistance of Escherichia 

coli O157 isolated from humans, cattle, swine, and food.  Applied and Environmental 

Microbiology 68, 576-581. 

 

Tauxe, R.T., 2001. Food safety and irradiation: protecting the public from foodborne 

infections. Emerging Infectious Diseases 7(3 Suppl), 516-521. 

 

Urbain, W.M., 1986. Food Irradiation. Academic Press, Orlando, pp 351. 

 

U.S. Department of Agriculture, 1999. Irradiation of meat food products. Federal Register 

64(246), docket no. 97-076F. 

 

U.S. Food and Drug Administration. Spinach and E. coli outbreak. Accessed on September 21, 

2006. http://www.fda.gov/oc/opacom/hottopics/spinach.html. 

 

 17

http://www.fda.gov/oc/opacom/hottopics/spinach.html.%20Accessed%2021%20September%202006


Yuk, H., Marshall, D.L., 2003. Heat adaptation alters Escherichia coli O157:H7 membrane lipid 

composition and verotoxin production. Applied and Environmental Microbiology 69, 

5115-5119. 

 

Yuk, H., Marshall, D.L., 2004. Adaptation of Escherichia coli O157:H7 to pH alters membrane 

lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. 

Applied and Environmental Microbiology 70, 3500-3555. 

 

Witkin, E.M., 1976. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. 

Bacteriological Reviews 40, 869-907. 

 

World Health Organization. Accessed on April 25, 2007. 

http://www.who.int/mediacentre/factsheets/fs125/en/ 

 

 

 18



 19

FIGURE CAPTIONS 

Figure 1. D10-values for E. coli O157:H7 in ground beef subjected repetitively to sub-lethal 

levels of e-beam radiation.  Small bars on the data bars indicate standard deviation.  Different 

letters on the top of data bars indicate significant differences between mean D10-values of the 

E. coli O157:H7 isolates (P < 0.05). 

 

Figure 2. Survivor curve for E. coli O157:H7 (ATCC 35150) in ground beef subjected to e-

beam.  Bars on the data points indicate standard error.    

 

Figure 3. Survivor curve for E. coli isolate L1 (E. coli ATCC 35150 that was subjected to e-

beam and survived) in ground beef subjected to e-beam.  Bars on the data points indicate 

standard error.  

 

Figure 4. Survivor curve for E. coli isolate L2 (E. coli isolate L1 that was subjected to e-beam 

and survived) in ground beef subjected to e-beam.  Bars on the data points indicate standard 

error.    

   

Figure 5. Survivor curve for E. coli isolate L3 (E. coli isolate L2 that was subjected to e-beam 

and survived) in ground beef subjected to e-beam.  Bars on the data points indicate standard 

error.    

   

Figure 6. Survivor curve for E. coli isolate L4 (E. coli isolate L3 that was subjected to e-beam 

and survived) in ground beef subjected to e-beam.  Bars on the data points indicate standard 

error.    
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

y = -1.59x + 9.28
R2 = 0.99

0

500

1000

1500

2000

0 0.5 1 1.5 2 2.5
E-beam dose (kGy)

N
um

be
r o

f E
. c

ol
i 

su
rv

iv
or

s 
x 

10
^6

 (C
FU

/g
)

0

2

4

6

8

Lo
g 

(n
um

be
r o

f E
. c

ol
i 

su
rv

iv
or

s)

Number of E. coli survivors

Log (number of E. coli survivors)

D10-value = 0.63 kGy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24



y = -1.67x + 9.65
R2 = 0.99

0

1000

2000

3000

4000

0 1 2
E-beam dose (kGy)

N
um

be
r o

f E
. c

ol
i 

su
rv

iv
or

s 
x 

10
^6

 (C
FU

/g
)

0

2

4

6

8

Lo
g 

(n
um

be
r o

f E
. c

ol
i 

su
rv

iv
or

s)

Number of E. coli survivors

Log (number of E. coli survivors)

D10-value = 0.60 kGy

 25

Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1 

 Increased radio-resistance of E. coli O157:H7 in ground beef subjected repetitively to sub-

lethal levels of e-beam irradiation.  Data are given as mean ± standard deviation (n = 3).  

Mean D10-values in horizontal row with different letters indicate significant differences (P 

< 0.05).  

 

 

E. coli O157:H7 isolate 

 

ATCC 35150 L1 L2 L3 L4 

D10-value 0.24±0.03 b 0.33±0.08 b 0.36±0.02 b 0.63±0.02 a 0.60±0.02 a

R2 0.99 0.99 0.95 0.99 0.99 
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An Analysis of Genes of Escherichia coli Resistance 

INTRODUCTION 

Food-borne illnesses caused by enterohemmorhagic bacteria such as Escherichia coli 

cause millions of illnesses which cause hundreds of deaths (Altekruse, et al. 1997).  While E. 

coli is a natural inhabitant of the digestive tracts of humans and animals, certain strains of E. coli 

such as O157:H7 have recently emerged as pathogens that can be extremely harmful to 

humans when ingested in large quantities (Bell and Kyriakides, 1998; Tauxe 2002).  This can 

cause such painful symptoms as cramping, vomiting, and diarrhea and could potentially lead to 

the more serious renal disorder hemolytic uremic syndrome, which can result in death (WHO, 

2007).  E. coli O157:H7 is most typically found in meats such as ground beef, which is more 

prone to contamination due to the grinding process; however, recent outbreaks of E. coli-

related illnesses in foods such as apple cider and lettuce have caused some concern about 

effective means of microbial inactivation.  Foods such as apple cider had previously been 

considered safe from contamination by E. coli and other illness-causing bacteria due to their 

low pH of approximately 4.5.  It is now widely acknowledged that many bacteria, especially E. 

coli O157:H7, have the ability to adapt both physically and metabolically to endure such harsh 

environmental conditions as low pH, high temperature, high salinity, and antibiotics.   

One antimicrobial method that has emerged as a way to circumvent the problem of 

resistance without altering food quality is the use of radiation, specifically electron beam 

radiation (e-beam).  E-beam is a nonthermal inactivation method similar to pasteurization that 

disrupts DNA by introducing cross-links, rendering the organism unable to reproduce its 

DNA (EPA – Food Irradiation 2007).  The more complex an organism, the more susceptible 

its DNA is to e-beam; therefore, an organism as small as E. coli can withstand a higher dose 
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than a more evolved organism (Tauxe 2001).  The maximum dose of e-beam radiation allowed 

for refrigerated meats is 4.5 kilograys (kGy), while the maximum dose for frozen foods is 7.0 

kGy.  However, it has recently been established that E. coli O157:H7 also has the ability to 

survive and adapt to electron beam irradiation at levels approaching the recommended 

maximum dosage of 4.5 kGys (Levanduski & Jaczynski, 2007).  In light of this new research, it 

is necessary to devise a rapid screening method for the detection of radio-resistant strains of 

bacteria in order to avoid exposing these strains to additional radiation, unwittingly increasing 

their resistance even further.  In addition, according to Dowd and Ishizaki (2006), using 

microarray as a rapid detection method for radio-resistant strains that will be more difficult to 

eliminate through radiation or that could possibly harbor more virulent factors would 

significantly reduce the number of Class I recalls of beef products by eliminating the marketing 

of foods carrying resistant strains to consumers. 

One method that has been suggested for this rapid detection is through the use of 

oligonucleotide microarray analysis.  This technique utilizes probes generated from all possible 

genes contained within an organism to hybridize with a sample of fluorescently labeled 

complementary DNA (cDNA) prepared from the messenger RNA (mRNA) of the two strains 

of interest by reverse transcriptase.  Because bacterial mRNA does not have a polyA tail, 

oligodT could not be used as is normally done for vertebral tissue gene analysis.  Instead, 

cDNA was prepared from mRNA by way of random hexamers, which indiscriminately and 

randomly adhere to the mRNA and then elongate to form cDNA.  The amount of 

fluorescence from each of the sample strains is then scanned and quantitated to determine 

how gene expression has been altered by the procedure in question; in this case, repeated 

exposure to sub-lethal doses of electron beam irradiation.  The higher the fluorescence, the 

more the gene is expressed and vice versa.   
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We were able to formulate several hypotheses as to which genes should be most 

affected by repeated exposure to e-beam radiation at sub-lethal doses based on previous work 

on genetic analyses of other resistant strains.  No study has been done as of yet that has 

attempted a genome-wide analysis by micro-array of the effects of resistance to e-beam 

radiation on E. coli O157:H7.  

One of the most important methods of radio-resistance in light of the fact that injured 

cells were not recovered in the previous experiment is that of increased DNA repair.  

Therefore, we must first establish several methods by which E. coli is able to promptly repair 

its DNA after it has been damaged.  The first of these is the SOS response, which protects 

DNA in the major groove from damage via methylation (Little and Mount 1982).  The 

response must first be induced by a signal that simply represents some change in the normal 

milieu of the cell (in this case, damage to the cell’s DNA), which activates a series of reactions.  

The induction signal activates the RecA protein protease to cleave and inactivate the LexA 

repressor protein.  The SOS genes are then translated at a vastly increased rate until the 

damage is repaired, at which point, their expression level drops.  More than 30 genes are 

thought to be repressed by the LexA protein and activated upon its cleavage (Khil and 

Camerini-Otero 2002), including the din genes (damage-inducible genes which have unknown 

function), the excision repair gene uvrA, and many others (Little and Mount 1982).  It is 

unlikely, however, that an increase in the genes of the SOS response will show a drastic 

increase in regulation on a microarray study, however, because the expression levels of both 

RecA and LexA drop within hours of application of the DNA-damaging agent (Little and 

Mount 1982). 

Khil and Camerini-Otero (2002) found that upon treatment of E. coli with mitomycin 

C (a DNA-specific chemotherapy drug that induces interstrand cross-links), nearly 30% of all 
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genes present showed significant differences in their respective expression levels.  They 

reasoned that since DNA is an absolutely essential aspect of life, any treatment resulting in its 

damage, compounded with the fact that E. coli has such a short generation time and thus a 

rapid growth rate, will affect many more genes when compared with other forms of 

inactivation.  Of those genes affected, roughly 22% showed an up-regulation of expression 

levels, including many SOS-inducible genes as well as others involved in transport, membrane 

structure, nucleotide biosynthesis, degradation, detoxification, and regulation of gene 

expression.  A much higher number of genes were found to be down-regulated after exposure 

to mitomycin C, including some ribosomal genes, those involved in protein synthesis, and 

some subunits of DNA polymerase III (although not polymerases I or II).  This is not a 

surprising result since DNA polymerase III is the primary polymerase involved in replication 

of DNA, while polymerases I and II function more in proofreading and correcting errors (Khil 

and Camerini-Otero 2006).    

UV radiation is a comparable treatment to electron beam because it inactivates 

microbes in much the same way, by inducing DNA damage by introducing thymine-thymine 

dimers in the DNA, rendering the replication machinery unable to replicate and reproduce the 

DNA.  Most cells repair the damage done by UV radiation by the process of nucleotide 

excision repair, which simply removes the thymine-thymine dimers.  A study done by 

Courcelle et al. (2001) examined the genetic consequences of UV exposure on both wild type 

and SOS-deficient E. coli cells.  Many of the genes that exhibited an increase in expression 

levels were directly regulated by the SOS response gene lexA.  Expectedly, most of the 

upregulated genes that are linked to lexA are for proteins involved in DNA repair (i.e. recN), 

excision nucleases (i.e uvrB), inhibitors of cell division (i.e. sulA), and heat shock proteins (i.e. 

ibpB and hslU).  The majority of the up-regulated genes showed the highest expression levels at 
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40 minutes after exposure to radiation and then expression gradually decreased after this point.  

It is also important to note that some of the genes that were up-regulated are not associated 

with the LexA-controlled SOS response.   Among the most significant of these are the 

ribonucleotide reductase genes nrdA and nrdB, which function to control the synthesis of 

DNA by regulating the cellular concentration of the diphosphate precursors of 

deoxyribonucleotides.  Also among the induced genes of LexA-independent origin are 

additional heat shock proteins, chaperones, and genes involved with purine, pyrimidine, and 

RNA metabolism.  The increased expression of these genes was only seen for the wild type 

cells with an intact SOS response.  SOS-deficient cells showed no increased activity in any of 

the aforementioned genes.  In addition, some genes must also be repressed after a trauma such 

as UV exposure.  The researchers hypothesized that the down-regulation was due to an active 

repression process within the cell or a direct result of the damage caused by UV radiation 

(Courcelle et al. 2001). 

Heat shock proteins are vital to any organism and serve as chaperones for the correct 

refolding of proteins after denaturation due to some stress.  Denaturation of proteins is most 

commonly caused by heat; however, other sources (such as radiation) which cause DNA 

damage may cause the sequence to be misread, leading to misfolded proteins and thus may 

initiate the transcription of heat shock genes, which is evidenced by research of Thomas and 

Baneyx (1998).  The adjacent ibpA and ibpB genes were manipulated in this study by the 

replacement of a kanamycin resistance gene in order to achieve a null mutation of the heat 

shock genes.  Thomas and Baneyx (1998) showed that the lack of these specific heat shock 

proteins was not detrimental when a mild heat stress was applied; however, when an extreme 

heat stress was utilized, the loss of these genes caused decreased viability at temperatures 

above 46°C.  Additionally, when these heat shock proteins were over-expressed, a 5- to 10-
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fold decrease in viability at 50°C was observed.  The observation that these proteins are not 

necessarily needed for the correct refolding of proteins after the application of a denaturing 

stress led Thomas and Baneyx to the conclusion that the heat shock proteins are not the only 

proteins that play a main chaperone role in refolding, but instead are part of vast array of 

reconstructive genes which work in concert as a back-up system in case one of them should 

fail (1998).  Following this reasoning, it may be that many of the unknown genes that are 

observed to be up-regulated as a result of a DNA-damaging stress may in fact be involved in 

the refolding of damaged proteins.   

It has been suggested that tolerance to certain environmental stresses may not be 

because of any particular adaptive qualities incurred by the cell, but rather is a result of the 

cell’s ability to enter into a protective stationary phase and not necessarily a result of (or 

perhaps in combination with) a system of DNA repair (Cheville et al. 1996).  Entrance into 

this phase is under the control of the rpoS gene system, which regulates some 30 genes.  

Cheville et al. (1996) have demonstrated that a strain of E. coli lacking the rpoS gene system was 

significantly less tolerant to acid, heat, and salt challenges than a strain with an intact rpoS 

system.  They reasoned that this system of genes is up-regulated when the cell is placed in an 

environment that is not conducive for growth and survival and produces proteins that are 

either lacking or exhibit very low expression in optimal growth conditions (Cheville et al. 

1996).  Interestingly, this gene was found to be unchanged after a treatment of UV exposure 

(Courcelle et al. 2001), which is perhaps due to the fact that it plays no role in the repair of 

DNA damage.   

One gene in particular has been found to play a role in both protection against 

oxidative stress and high pressure resistance is the Dps gene.  The example of protection 

against oxidative stress is of particular interest to us due to the fact that e-beam causes the 
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formation of oxygen radicals, which contribute to microbial death via the indirect effect of 

water radiolysis (Black and Jaczynski, 2006).  When the bacterial cell experiences oxidative 

stress, repair mechanisms are initiated to scavenge the oxidative culprit and restore the nucleic 

acids to their functional state (Martinez and Kolter, 1997).  These systems are regulated by 

several genes, in particular oxyR, a regulon dependent on the aforementioned SOS response 

and which codes for the gene Dps.  Martinez and Kolter (1997) theorized that Dps is able to 

incur resistance to oxidative stress by initiating the cell to enter a starvation state, in which its 

metabolic systems are much less affected by environmental stresses.  They found that cells 

lacking Dps had a four-fold higher number of single-strand DNA breaks than those that 

contained the intact gene when under a 2mM H2O2 treatment.   In addition, Dps-containing 

cells also exhibited a degree of protection at H2O2 concentrations of 100 mM, which readily 

degraded the DNA in Dps-lacking cells.  Martinez and Kolter concluded that Dps is able to 

protect against oxidative stress by directly binding to DNA in order to prevent nicking, strand 

breaks, and point mutations.  This theory remains unproven, however, and other theories as to 

the role of Dps in the defense against oxygen radicals also exist.   

Exposure to ultra-high pressure (UHP) is also thought to initiate the SOS response 

and thus the expression of the Dps protein via the induction of oxidative stress (Malone et al. 

2006).   Malone et al. tested the effects of a UHP treatment on the genetic response of E. coli 

O157:H7.  A variety of E. coli strains were held at 500 MPa for 1 min at 23°C and then 

analyzed by microarray.  Upon analysis, it was found that the dps gene was significantly down-

regulated, perhaps because the main target of UHP is the cell membrane and not DNA 

damage.  Malone et al. reasoned that the DNA-binding gene dps was down-regulated in order 

for the cell’s DNA to have time to renature without the added difficulty of a bulky, bound 

protein.  However, dps was still found to be vital to the survival of the cell when exposed to 
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UHP.  A dps null mutant was almost twice as sensitive to UHP as a wild type cell.  The heat 

shock genes ibpA and ibpB were also analyzed, and interestingly, ibpA expression increased 

almost two-fold while ibpB expression remained unchanged.  When these genes were replaced 

by null mutations, viability was only slightly decreased.  This result may be due to the fact that, 

again, DNA is not the target of UHP-based inactivation and that protein denaturation may 

only be a minor result of UHP.  Finally, the rpoS gene, which is necessary for entrance into the 

stationary phase, was found to have no change in expression upon analysis of the genetics of 

UHP treatment; however, mutant strains lacking rpoS were significantly less viable when 

exposed to UHP than wild type cells (Malone et al. 2006). 

Resistance to extreme environmental stresses is clearly a result of many genes working 

in concert to allow the cell to withstand the stress and repair any damage that it may incur 

upon the cell’s DNA.  Microarray analysis has been performed many times to determine the 

roles of resistance genes for other stimuli; however, no analysis has yet been done to test the 

genes involved in resistance to electron beam radiation.  Therefore, the objective of this study 

was to create a strain of E. coli O157:H7 that had become resistant to some stressful stimuli (in 

this case, e-beam radiation) by repeatedly exposing it to the stress at sub-lethal levels and to 

analyze the genome-wide effect on the stress response genes.   

MATERIALS & METHODS 

Isolation of Strains 

The ATCC strain used was reconstituted from a pellet of ATCC strain #35150.  Strain L4 was 

the result of a series of electron beam radiation treatments.  The initial ATCC strain of E. coli 

O157:H7 grown in trypticase soy broth (TSB – Becton, Dickinson, and Company, Sparks, MD) 

overnight with shaking at 150 rpm (C24 Incubator/Shaker, New Brunswick Scientific, Edison, 

NJ).  A further inoculum of 2 mL of survivors was added to 38 mL of sterile TSB and grown 

overnight.  A 5% inoculum size was then added to a sample of ground beef purchased from a local 
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grocery store and thawed overnight to 4°C.  The total mixture was incubated (Isotemp Incubator, 

Fisher Scientific, Pittsburgh, PA) at 35 ºC for 30 hours.  Preliminary studies showed that the final 

microbial count for all samples reached approximately 109 upon completion of incubation for 30 

hours.  Following incubation, 18 individual samples of approximately 10 g of inoculated beef were 

separately packaged into bags (Kapak SealPAK 4” by 6” pouches, Kapak Corporation, 

Minneapolis, MN), aerobically sealed (Kapak sealer, Kapak Corporation, Minneapolis, MN), and 

subjected to a dose of e-beam radiation ranging from 0 to 2.5 kGy (See Treatment section of 

Chapter 2).  Each bagged sample was spread evenly to a width of approximately 1 mm in order to 

ensure complete penetration of electron beams throughout the sample.  Double bagging (Kapak 

SealPAK 6.5” by 8” pouches, Kapak Corporation, Minneapolis, MN) was utilized to ensure that 

no contamination occurred and samples were stored at -80ºC until shipment.   

Treatment 

Samples were packaged in a Styrofoam cooler containing dry ice to maintain freezing 

temperatures and maintain microbial populations without causing inactivation.  Samples were 

shipped overnight to an e-beam processing facility (Sterigenics International, San Diego, CA).  

Once received at the facility, each sample was thawed to 4ºC before undergoing treatment.  

Treatment consisted of exposure of microbes in triplicate to one-sided e-beam radiation in five 

increasing doses – 0 (control), 0.5 kGy, 1.0 kGy, 1.5 kGy, 2.0 kGy, and 2.5 kGy – for a total of 18 

samples.  Immediately following treatment, samples were stored in a -80ºC freezer.  Samples were 

packaged in a Styrofoam cooler with dry ice to maintain freezing temperatures and shipped back to 

the Food Microbiology laboratory at West Virginia University and stored in a -80ºC freezer until 

analysis.   

Enumeration 

All 18 samples were thawed to 4ºC.  Each sample was enumerated by placing 10 g of the 

e-beam treated sample using a sterile spatula into a sterile filter stomacher bag (Two-Chamber 
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FILTRABAG, Fisher Scientific, Pittsburgh, PA).  An aliquot of 90 ml of dilutent (Butterfield 

phosphate buffer, Hardy Diagnostics, Santa Maria, CA) was aseptically added to the filter 

stomacher bag and the bag was placed into a stomacher (Bag Mixer 400, Interscience, St. Nom, 

France) for 2 min.  Further serial dilutions were aseptically made by taking 10 ml of diluted sample 

and transferring it into a 90 ml diluent bottle, followed by manual shaking to uniformly distribute 

survivors.  An aliquot of 1 ml of each serial dilution was pipetted onto a petrifilm plate (Petrifilm 

E. coli/Coliform Count Plate, 3M, St. Paul, MN) and spread by a petrifilm spreader.  Plates were 

incubated at 35ºC for 48 hr using AOAC method 991.14.  Only plates with 15-150 colonies were 

counted (Procedure adapted from Black and Jaczynski).  Following enumeration, survivors from 

the highest e-beam dose were removed at random from the plates using a sterile loop and grown in 

10 mL of sterile TSB with shaking (150 rpm).  A further inoculum of 2 mL of survivors was added 

to 38 mL of sterile TSB and grown overnight.  These recovered microbes were then used as the 

inoculum for the next sample of ground beef and round of radiation.  This process was repeated 

four times for a total of five exposures to increasing e-beam levels.  Survivors of the fifth exposure 

to e-beam were isolated and grown in TSB and became strain L4. 

Steps for Micro-array Analysis 

 Micro-array analysis was performed by first isolating total RNA from the bacteria 

(MasterPure RNA Purification Kit, Epicentre Biotechnologies, Madison, WI).  From total 

RNA, we were able to isolate and purify mRNA (MICROBExpress Bacterial mRNA 

Purification Kit, Ambion, Austin, TX).  Complementary DNA (cDNA) was then prepared 

using random hexamers.   cDNA was then labeled using Cy3 and Cy5 dyes with incorporated 

dye swapping.  Pre- and post-hybridization washes were done according to Corning Epoxide 

Coated Slides Instruction Manual (Corning Incorporated, Corning, NY) and all arrays were 

done manually overnight in a water bath at 42°C (Precision Analog Devises Microprocessor 
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Controlled 280 Series Water Bath, MA).  For a complete description of protocols, please see 

Appendix A. 

  
RESULTS & DISCUSSION 

 After 15 attempts at microarray analysis, the project was abandoned due to lack of time, 

 success of hybridization, and reproducible results.  Of the 15 attempts, only two produced 

quantitatable results (Figure 1).  This technology is very delicate and requires near-perfect 

conditions to be successful; unfortunately, due to unknown complications, the experiment was 

not successful.  Hybridization was always successful for one dye only, regardless of dye 

swapping, while the other dye always exhibited an overabundance of background hybridization 

with very little clean, quantitatable hybridization to probes.  With additional time and careful 

work, we are sure that the project will be successful, possibly resulting in a patent issuance for 

the rapid and accurate detection of radio-resistant strains of E. coli O157:H7. 
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Figure 1.  

 The image on the left represents a scan of the ATCC strain labeled with Cyanine 3 dye 

obtained June 26, 2007.  The image on the right represents a scan of the L4 strain labeled with 

Cyanine 5 dye obtained on June 26, 2007.  These images were scanned from the same 

microarray chip and represent quantitatable images from which statistically significant data can 

be obtained.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  

The image on the left represents a scan of the ATCC strain labeled with Cyanine 3 dye 

obtained June 15, 2007.  The image on the right represents a scan of the L4 strain labeled with 

Cyanine 5 dye obtained on June 15, 2007.  These images were scanned from the same micro-

array chip, but hybridization was poor for the Cyanine 3 dye and contained too much 

background noise.  Therefore, these images represent data that is not quantitatable and thus 

not of use for the purpose of obtaining statistically significant data.   
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APPENDIX A: STEPS FOR MICROARRAY ANALYSIS 

1. ISOLATION OF TOTAL RNA (adapted from the protocol for MasterPure RNA 
Purification kit, Epicentre Biotechnologies, Madison, WI) 

a. Cell Samples 
i. Separate total volume E. coli into separate 10 mL conical tubes 
ii. Dilute 1 μl of 50 μg/μl Proteinase K into 300 μl Tissue and Cell Lysis 

Solution for each sample 
iii. Pellet cells by centrifugation (0.1-0.5 ml of and overnight culture of E. 

coli) and discard supernatant, leaving approx 25 μl of liquid 
iv. Vortex mix 10 s to resuspend cell pellet 
v. Add 300 μl of Tissue and Cell Lysis Solution containing the Proteinase 

K and mix thoroughly  
vi. Incubate at 65°C for 15 min; vortex mix every 5 min (may appear 

foamy) 
vii. Place samples on ice for 3-5 min and then proceed with RNA 

precipitation 
 

b. Precipitation of Total RNA 
i. Add 175 μl of MPC Protein Precipitation Reagent to 300 μl of lysed 

sample and vortex mix vigorously for 10 s 
ii. Pellet the debris by centrifugation for 10 min at >10,000 x g in a 

microfuge 
iii. Transfer the supernatant to a clean micro centrifuge tube and discard 

pellet 
iv. Add 500 μl of isopropanol to recovered supernatant 
v. Invert the tube several (30-40) times 
vi. Pellet RNA by centrifugation at 4°C for 10 min in a micro centrifuge 
vii. Carefully pour off the isopropanol without dislodging the RNA pellet. 

   
c. Removal of Contaminating DNA from RNA Preparations, freeze at -

80C  
i. Remove all of the residual isopropanol with a pipette 
ii. Prepare 200 μl of DNase I solution for each sample by diluting 5 μl of 

RNase-free DNase I up to 200 μl with 1X DNase Buffer 
iii. Completely resuspend the nucleic acid pellet in 200 μl of DNase I 

solution 
iv. Incubate at 37°C for 10 min.  Additional incubation up to 30 min may 

be necessary to remove all contaminating DNA 
v. Add 200 μl of 2X T and C Lysis Solution; vortex mix for 5 s 
vi. Add 200 μl of MPC Protein Precipitation Reagent; vortex mix 10 s; 

place on ice 3-5 min 
vii. Pellet the debris by centrifugation for 10 min at >10,000 g in a 

microfuge (Beckman Coulter, Microfuge R Centrifuge, Fullerton, Ca) 
viii. Transfer the supernatant containing the RNA into a clean micro 

centrifuge tube and discard the pellet 
ix. Add 500 μl of isopropanol to the supernatant 
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x. Invert the tube 30-40 times 
xi. Pellet the purified RNA by centrifugation at 4°C for 10 min in a micro 

centrifuge 
xii. Carefully pour off isopropanol without dislodging the pellet 
xiii. Rinse twice with 75% ethanol, being careful to not dislodge the pellet.  

Centrifuge briefly if the pellet is dislodged.  Remove all residual ethanol 
with a pipette. 

xiv. Resuspend the RNA in 35 μl of TE buffer 
xv. Add 1μl of ScriptGuard RNase Inhibitor.  Final volume: 36 μl 

 
2. ISOLATION OF mRNA USING MICROBexpress BACTERIA mRNA 

PURIFICATION KIT (AM1905, Ambion, Austin, TX) 
a. RNA Precipitation Instruction 

i. Precipitate the RNA by adding the following and mixing well:  
1. 0.1 (3.6 μl) volume 5 M ammonium acetate or 3 M sodium 

acetate 
2. (optional) 5 μg (1 μl) glycogen 
3. 2.5-3 (~100μl ) volumes 100% ethanol 

ii. Leave the mixture at -20°C overnight, or quick-freeze it in a -80°C 
freezer for 30 min 

iii. Recover the RNA by centrifugation at >12,000 x g for 30 min at 4°C 
iv. Carefully remove and discard supernatant.  The RNA pellet may not 

adhere tightly to the walls of the tubes, so remove the supernatant by 
gentle aspiration with a fine-tipped pipette 

v. Centrifuge the tube briefly a second time, and aspirate any additional 
fluid that collects with a fine-tipped pipette 

vi. Add 1 ml ice-cold 70% ethanol and vortex tube 
vii. Re-pellet the RNA by centrifugation for 10 min at 4°C.  Remove the 

supernatant carefully as described in steps (iv) and (v) 
viii. Repeat steps (vi) and (vii) 
ix. Dissolve the RNA in ~15 μl TE buffer 
x. Check mRNA yield in spectrophotometer (NanoDrop ND-1000 

Spectrophotometer, Wilmington, De) 
 

b. Anneal RNA and Capture Oligonucleotide Mix (NOTE: the most accurate 
way to evaluate the mRNA enrichment of samples at the end of the procedure is to include a 
mock reaction sample where the Capture Oligo Mix is not included, but otherwise the 
sample is subjected to the entire MICROBExpress procedure.) 

i. Pipette 200 μl Binding Buffer into a PCR tube  
ii. Add total RNA (2-10 μg RNA in a maximum volume of 15 μl) to 

Binding Buffer (amount of total RNA can be calculated from spec 
reading) 

iii. Close the tube and tap or vortex gently 
iv. Add 4 μl of Capture Oligo Mix to the RNA in Binding Buffer (only 2 

out of 3 tubes if following mock reaction protocol) 

 44



v. Incubate mixture at 70°C for 10 min to denature secondary structure in RNA, 
including the 16S and 23S rRNAs.  This heat denaturation helps to facilitate maximal 
hybridization of rRNAs to the capture oligonucleotides. 

vi. Anneal at 37°C for 15 min.  This allows the capture oligonucleotides to 
hybridize to homologous regions of the 16S and 23S rRNAs.  The binding buffer is 
optimized to function specifically and efficiently at this temp.  Prepare the Oligo 
MagBeads as described in the next section during this incubation. 

 
c. Prepare the Oligo MagBeads 

i. Withdraw 50 μl Oligo MagBeads per sample to a 1.5 ml tube 
ii. Capture the Oligo MagBeads by placing the tube on a magnetic stand 

(Single Place Magnetic Stand, Ambion, Austin, TX) for roughly 3 min 
and carefully remove the supernatant by aspiration and discard 

iii. Wash the Oligo MagBeads with an equal volume of Nuclease-free 
water 

1. Add 50 μl Nuclease-free water to the captured Oligo 
MagBeads 

2. Remove the tube from the magnetic stand and resuspend the 
beads by brief, gentle vortexing 

3. Recapture the Oligo MagBeads with a magnetic stand and 
carefully aspirate and discard the water, leaving the beads in the 
tube 

iv. Equilibrate the Oligo MagBeads with an equal volume of Binding 
Buffer 

1. Add 50 μl Binding Buffer to the captured Oligo MagBeads  
2. Remove the tube from the magnetic stand and resuspend the 

beads by brief, gentle vortexing 
3. Recapture the Oligo MagBeads with a magnetic stand and 

carefully aspirate and discard the Binding Buffer, leaving the 
beads in the tube 

v. Resuspend the Oligo MagBeads in an equal volume of Binding Buffer 
and bring the slurry to 37°C (Select Heatblock, VWR Scientific 
Products, Seattle, Wa) 

1. Repeat steps (iv) 1-2 
2. Place the Oligo MagBead slurry in a 37°C incubator and allow 

the temp to equilibrate to 37°C before proceeding 
 

d. Capture the rRNA and Recover the Enriched mRNA 
i. Heat the Wash Solution to 37°C to be used in step (iv) 
ii. Add 50μl prepared Oligo MagBeads to the RNA/Capture Oligo Mix 

and incubate at 37°C for 15 min 
1. Gently vortex the tube of washed and equilibrated Oligo 

MagBeads from step c.v. to resuspend them and add 50 μl of 
Oligo MagBeads to the RNA/Capture Oligo Mix  

2. Very gently vortex or tap the tube to mix and microfuge very 
briefly to get the mixture to the bottom of the tube 
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3. Incubate at 37°C for 15 min.  During this step, the 
oligonucleotide sequence on the Oligo MagBeads anneals to 
the Capture Oligonucleotides and the Capture 
Oligonucleotides remain hybridized to the 16S and 23S 
rRNAs.   

iii. Capture the Oligo MagBeads and move the mRNA to a Collection 
Tube 

1. Capture the Oligo MagBeads by placing the tube on the 
Magnetic Stand.  Leave the tube on the stand until all of the 
Oligo MagBeads are arranged inside the tube near the magnet 
(~3 min) 

2. Aspirate the supernatant which contains the enriched mRNA, 
being careful not to dislodge the Oligo MagBeads.  Transfer it 
to a new collection tube on ice. 

iv. Recover any remaining mRNA from the Oligo MagBeads by washing 
1. Add 100 μl Wash Solution that has been pre-warmed to 37°C 

to the captured Oligo MagBeads. 
2. Remove the tube from the magnetic stand and resuspend the 

beads by brief, gentle vortexing in the 37°C Wash Solution.  
This wash step recovers mRNAs that were inadvertently 
trapped in the rRNA:Capture Oligonucleotide hybrids 

3. Recapture the Oligo MagBeads and carefully recover the 
supernatant.  Pool this supernatant with the RNA already in 
the collection tube and proceed immediately to the 
precipitation described next 

 
e. Precipitate and Resuspend the Enriched mRNA 

i. Ethanol precipitate the enriched mRNA 
1. Add the following to the pooled mRNA (the volume should 

be ~350 μl), and briefly vortex to mix: 
a. 1/10th volume 3 M Sodium Acetate (35 μl) 
b. 1/50th volume Glycogen (5mg/ml), and final 

concentration will be 100 μg/ml (7 μl) 
2. Add 3 volumes ice cold 100% ethanol (1175 μl) and vortex to 

mix  
3. Precipitate at -20°C for at least 1 hr 
4. Centrifuge for 30 min at 13,000 rpm and carefully decant and 

discard supernatant 
5. Do a 70% ethanol wash as follows: 

a. Add 750 μl ice cold 70% ethanol and vortex 
b. Centrifuge for 5 min at 13,000 rpm.  Discard 

supernatant 
6. Do a second 70% ethanol wash as in step 5 
7. Briefly re-spin the tube after discarding the second 70% 

ethanol wash.  Carefully remove any remaining supernatant 
with a pipetter, being careful not to dislodge the pellet. 
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8. Air dry the pellet for 5 min.  DO NOT air dry pellet for more 
than 5 min. 

ii. Resuspend the enriched mRNA in an appropriate buffer 
1. Resuspend the RNA pellet in 25 μl TE buffer 
2. Rehydrate the RNA for 15 min at room temp.  Vortex the 

sample vigorously if necessary to resuspend RNA.  Collect by 
brief centrifugation 

iii. Remove residual Oligo MagBeads if necessary 
1. To remove beads, put the tube on the magnetic stand for ~3 

min and move the enriched mRNA solution to a new RNase-
free tube.  Enriched mRNA yield from 10 μg of high 
quality total RNA is typically 1-2.5 μg 

iv. Run a spectrophotometer analysis of Nucleic Acid using a 1 μL sample 
of RNA.  Blank spec once with water.  Change setting to RNA, blank 
again with water.  Measure sample.  This will tell you how much RNA 
you will need to get X μg of total RNA 

 
3. cDNA SYNTHESIS (3 hrs), freeze at -80°C 

a. In a PCR tube, combine ~11 μl mRNA + 2 μl dNTP + 2 μl Random 
Hexamers (stored at -20°C).  Incubate at 65°C for 10 min (MJ Research, 
PTC-200 Peltier Thermal Cylcer, Waltham, Ma) then immediately quench on 
ice for at least 1 min. 

b. Add the following to each tube: 6 μl 5x S Buffer + 1.5 μl 0.1m DTT + 2μl 
SuperScript III RT + 5.5 μl DEPC-treated water.  Incubate at 42°C in PCR 
machine for at least 2 hours, then at 70°C for 10-15 min.  Total volume = 
30μl. 

 
4. PREP FOR MICROARRAY (~5.5 hrs) 

a. Alkaline Hydrolysis and Neutralization 
i. Add 15μl of 1M NaOH to each reaction tube to hydrolyze the RNA  
ii. Mix thoroughly and incubate tubes at 70°C for 10 min 
iii. Add 15μl of 1N HCl to neutralize the pH and mix gently 

 
b. Ethanol precipitation of aminoallyl labeled cDNA 

i. Transfer the cDNA from the PCR tubes to 1.5 ml tubes 
ii. Add 4μl of 3M Sodium Acetate (pH 5.2) and 85μl of ice-cold 100% 

ethanol 
iii. Keep at -20°C for at least 30 min to precipitate DNA (or precipitate 

overnight for best results) 
iv. Spin at max speed (20,800 RCF) for 20 min at 4°C 
v. Wash cDNA pellets with 500μl of 70% ice-cold ethanol 
vi. Quick spin pellets (~2-3 min) and air dry.  Resuspend DNA in 25 μl of 

0.1M Na2CO3 (pH 9) 
 

c. Coupling Aminoallyl cDNA to Cy Dyes 
i. Add 4.5 μl Cy3 (red) dye to ATCC cDNA 
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ii. Add 4.5 μl Cy5 (blue) dye to L4 cDNA 
iii. Wrap all reaction tubes in foil and incubate for 1-2 hours in the dark at 

room temp 
 

d. Start Hybridization Station Protocol and heat up the EB Buffer at 
70°C in PCR machine.  ~120 μl per tube 

  
e.    

Purification of labeled cDNA using QIAquick PCR purification kit 
(Qiagen Sciences, Maryland), freeze at -80°C 

i. Add 20 μl water to each tube for a total volume of 50 μl 
ii. Add 250 μl of PB Buffer (Qiagen supplied) and mix briefly 
iii. Place a QIA quick spin column in a 2 ml collection tube 
iv. Apply the sample to the column and centrifuge at 13,000 rpm for 1 

min 
v. Discard flow-through and place QIA quick column back into same 

tube 
vi. Add 750 μl of PE Buffer to column and centrifuge briefly at 13,000 

rpm for 1 min 
vii. Empty collection tube and centrifuge column for additional 1 min at 

max speed 
viii. Place column in a clean 1.5 ml microfuge tube (cut the lid off) 
ix. Carefully add 50 μl of EB Buffer (pre-warmed to 70°C) to the center 

of the column membrane.  Centrifuge at 13,000 rpm for 1 min to elute 
(collect by dissolving) the DNA.  Repeat this elution step with an 
additional 50 μl EB buffer.  The final elution volume should be ~100 
μl. 

 
f. Pre-Hybridization of slides to block unused surface of the slide an remove 

loosely bound probe DNA (as described in Corning Epoxide Coated Slides 
Instruction Manual – Corning Incorp., Corning, NY.  Slides were purchased 
from Dr. Anthony Cornish at the University of Alberta, Alberta, Canada.) 

i. Prepare prehybridization solution consisting of 5 x SSC (12.5 mL 20 x 
SSC), 0.1% SDS (0.25 mL 20% SDS), and 0.1 mg/ml BSA (5 mg BSA).  
Combine ingredients in water (37.25 mL). Using Coplin jars, use only 
50 mL of solution per step. 

ii. Warm prehybridization solution to 42°C 
iii. Immerse arrays in prehybridization solution and incubate at 42°C for 

45-60 min 
iv. Transfer prehybridized arrays to 0.1 x SSC and incubate at ambient 

temperature (22-25°C) for 5 min 
v. Repeat step (iv) twice, for a total of 3 washes 
vi. Transfer arrays to purified water and incubate at ambient temperature 

for 30 seconds 
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vii. Dry arrays by centrifugation at 1,600 x g for 2 min.  Keep arrays in a 
dust-free environment while completing the preparation of the 
hybridization solution. 

 
g. Concentrate labeled cDNA samples using vacufuge 

i. Place eluted DNA in microfuge into the vacufuge (Eppendorf 
Vacufuge, Hamburg, Germany) and “dry” it (concentrate it) by 
vacuum at 60°C without spinning (Brake + Temp+ Start) until only 
~10-20μl remain (~30-45 min) 

ii. Rehydrate with 50 μl hybridization solution (Ambion Slide 3 
Hybridization Solution, Ambion, Austin, TX – stored at 4°C) for each 
tube.  Pipette up and down gently to ensure DNA does not stick to 
membrane.  (Should have a total of 80-90 μl for manual hybridization) 

iii. Heat at 42°C for 5-10 min 
iv. Vortex and spin down 
v. Pool the two samples into one PCR tube 
vi. Heat to 95°C for 5 min in PCR machine.  Sample may remain at 95°C 

longer if bubbles remain in solution 
 

5. HYBRIDIZATION (for manual hybridization only) 
a. Place one drop of water in each hole at either end of the hybridization 

chamber.  Line the bottom of the chamber with water to prevent the array 
from drying out overnight. 

b. Load labeled cDNA samples combined with hybridization solution into 
hybridization chamber 

c. Hybridize overnight (12-16 hrs) in a water bath (Precision Analog Devises 
Microprocessor Controlled 280 Series Water Bath, Ma)at 42°C followed by 
posthybridization washing 

d. Turn on microarray scanner (ScanArray Lite Microarray Scanner, Perkin 
Elmer, Downers Grove, Il) 15 minutes before hybridization is finished to 
preheat lasers 

 
6. POSTHYBRIDIZATION WASHES 

a. Immerse arrays in 2 x SSC, 0.1% SDS at 42°C until the cover glass moves 
freely away from the slide 

b. Transfer arrays to 2 x SSC, 0.1% SDS at 42°C for 5 min 
c. Transfer arrays to 1 x SSC at room temperature for 2 min 
d. Repeat step c 
e. Transfer arrays to 0.1 x SSC at room temperature for 1 min 
f. Repeat step e 
g. Dry array by centrifugation at 1600 g for 2 min 
 

7. SCANNING THE SLIDE (Scan Array Lite, Microarray Scanner, Perkin Elmer) 
a. Insert slide with bar code side facing up.  Hit SCAN button.  Run EasyScan 

at 10 pm.  Scan takes ~30 minutes. 
b. Adjust palette on right lower corner.  Cy3 appears green, Cy5 appears red. 
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c. For each dye, adjust black threshold ~360.  Full color, 3 x 3 median to apply 
filter  
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