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procedures, Chapter 3 will show the main results of the experiments and finally 

Chapter 4 will discus the results based on the theories presented in this chapter. 

 

 

4 BASIC CONCEPTS 
 

Prior to introducing the phenomena of cluster roughening and de-wetting, it is 

necessary to explain basic concepts such as surface energy and atomic diffusion 

in surfaces.  

 

4.1  SURFACE ENERGY 

 

The surface energy (or surface tension) is the amount of energy necessary to 

generate one unit of surface area.  In order to create an extra surface, it is 

necessary to destroy the bonds of the atoms located at the surface/vacuum 

interface, thus exposing the atoms of the bulk; evidently this process requires 

some energy.  Surface energy is important because it determines the equilibrium 

 

 
 
 

Figure 4.  AFM images of a 5 nm cobalt thin film on sapphire (110) annealed 
at different temperatures.  Snapshots show the same section of the film 
annealed at (a) T = 462 °C, (b) T = 482 °C and (c) T = 524 °C. Size of the 
images: 1 × 1 µµµµm2.  After Ref. [21].      
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shape of crystals and plays an important role in de-wetting and crystal growth.  

Figure 5 shows the process of area formation for a monoatomic solid.  The solid 

in state 1 is surrounded by a layer of atoms covering a certain area depicted in 

blue.  The solid in state 2 creates a unit of extra area A in green.  For this 

representation and assuming mass conservation, the surface energy can be 

expressed as 

 

(1) 

)(
1 12

tottot EE
A

−=γ , 

 

where 1

totE  is the total energy for the configuration 1 and 2

totE  is the total energy 

for the configuration 2.  In general it is very difficult to measure surface energies; 

however with the ever-increasing computer speeds, it is possible nowadays to 

calculate the energies from first principles quickly and in a reliable manner.  

Figure 6 shows the surface energy computed for several 3d transition metals.26  

 

 
Figure 5.  The figure depicts the formation of a unit of area A for a 
monoatomic solid. 
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From the figure it is clear that the surface energy increases when the d-band is 

half occupied.  This result is related to the number of broken bonds on the 

surface; for half-full d-bands, the number of surface broken bonds is higher than 

the number of broken bonds for almost full or almost empty bands.  Hence the 

surface energy increases for V, Cr and Mn.  

 

A liquid or an amorphous material can minimize its surface energy by decreasing 

the area exposed to vacuum, but this is not necessarily true for crystals.  

Anisotropy plays an important role in surface energy, determining the final shape 

of a crystal and in most cases their equilibrium shapes may be a very complex 

polyhedron.  Experimentally this can be observed when a crystal is cleaved along 

different orientations.  For some directions the crystal might break apart very 

easily but for others it might require a significant amount of energy.  In general, 

cleaving is easier along planes where the surface energy is smaller or on other 

words in planes where atoms in the surface are less coordinates.  This concept 

can be seen through the Friedel model 27  in which the surface energy 

( )bs zz−∝ 1γ , where zs is the coordination number of an atom located in the 

surface and zb the coordination number of an atom in the bulk.  Table 1 shows 

the surface energy for fcc Ni and Cu along different orientations.  The surface 

energy is 1.952 J/m2 for the Cu(111) plane, 2.237 J/m2 for the (110) plane and 

2.166 J/m2 for the (100) plane.  The difference in energy results from ratio zs/zb. 

For example the number of nearest neighbors for an atom in the bulk of a fcc 

lattice is 12.  An atom in the same lattice located on the surface of a (111) plane 

has 9 nearest neighbors (zs/zb = 9/12) and 3 broken bonds per atom at the 

surface.  Similarly, for atoms on the surface of a fcc (110) plane zs/zb = 7/12 (5 

broken bonds per atom) and for atoms on the fcc (110) plane zs/zb = 8/12 (4 

broken bonds per atom).  Hence using the Friedel model the surface energy 

goes as: fcc(111) < fcc(100) < fcc(110).  For Ni the energy for the fcc(111) is the 

smallest, which agrees well with Friedel model.  However the surface energy for 

the fcc(110) plane is slightly smaller than the energy for the fcc(100) plane.  This 

difference is due to the fact that the Friedel model is not perfect and other 
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important phenomena modify the final surface energy of crystals, such as surface 

reconstruction, surface relaxation and the polar or non-polar character of a given 

surface plane.  

Taking into account the anisotropy of the surface energy for crystals, their final 

shape can be calculated from the following expression:28 

(2) 

∫ =dAhkl)(γ minimum, 

 

where γ(hkl) is the surface energy of the atoms in the (hkl) plane and dA is an 

element of area of the crystal.  In order to determine the minimum energy 

configuration of a crystal, the Wulff construction plays an important role.  Wulff 

plots are built by drawing γ(hkl) in polar coordinates.  Here γ is the magnitude of 

the radial vector proportional to the surface energy of an (hkl) plane and the polar 

angle θ is the angle of the direction <hkl>.  The final Wulff structure is given by 

 

 
Figure 6.  Surface energy for several 3d transition metals. Data taken 
from Ref. [26]. 

Plane Cu 
γ (J/m2) 

 Ni  
γ (J/m2) 

(111) 1.952 2.011 
(100) 2.166 2.426 
(110) 2.237 2.368 

 

Table 1.  Surface energy for fcc Ni and Cu on different crystallographic 
planes.26  
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the intersection of different planes perpendicular to the radial vectors γ(θ).  Figure 

7 shows a Wulff construction for bcc Fe.  Here γ(010) is the radial vector 

proportional to a surface energy of 2.222 J/m2 and γ(110) the radius of a vector 

proportional to 2.430 J/m2 (energies extracted from Ref. 26).  It is evident from 

the sketch that the (110) plane (with the highest surface energy) is the one least 

exposed to vacuum because it minimize the total surface energy of the crystal. 

 

4.2  DIFFUSSION 

 

Diffusion is a kinetic process that generates the homogenization of chemical 

components in a single phase.  In solids, diffusion occurs on the atomic scale but 

as time increases the length scale over which the uniformity takes place might 

extend to macroscopic distances.  The first observations of diffusion were carried 

out in 1855 by A. Fick in a water-salt system; his experiments allowed him to 

derive phenomenological laws of diffusion and to introduce for the first time the 

concept of diffusivity. 

 

 

 
Figure 7.  Wulff construction for bcc Fe in the (001) plane. 
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Fick’s first phenomenological law states that the magnitude of the mass flux is 

proportional to the gradient of the concentration at that point, so that  

 

(3) 
CDJ ∇−=

rr
, 

where J
r
 is the mass flux per unit of area and time,i D is the diffusivity in units of 

m2 s-1 and C the concentration in kg m-3.  This law states that the mass flux will 

flow from high concentration points to low concentration points.  The particular 

characteristics of the system as well as the temperature dependence on the 

mass flux are hidden within the diffusivity constant. 

 

If the system under study does not have sinks or sources of material, mass is 

conserved and therefore the difference between the inflow and outflow of mass in 

a given volume of space dV must be equal to the change of the concentration in 

that region of space.  This is expressed by 

 

(4) 

J
t

C rr
⋅∇−=

∂
∂

. 

If 0<⋅∇ J
rr

there is a converging flow at that point and the concentration increases 

with time.  On the other hand, if 0>⋅∇ J
rr

there is a divergent flow at that point and 

the concentration will decrease. 

 

It is possible to combine Fick’s first law with the mass conservation expression as 

(5) 

t

C
CD

∂
∂=∇−⋅∇− )(

rr
, 

or  

(6) 

t

C

D
C

∂
∂=∇ 12 . 

                                            
i Note that these units correspond to a system with diffusion in 3D.  In the case of a system with 
diffusion in 2D, the mass flux has units of Kg m-1 s-1 and the concentration units of Kg m-2.   
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Equation (6) is the so-called Fick’s second law and in general it is used to 

calculate the appropriate form of the concentration field for a given geometry and 

boundary conditions of a system. 

 

 

5 CLUSTER RIPENING 
 

5.1   3D/3D MODEL FOR RIPENING 

 

The ripening problem for 3D/3D (3 dimensional clusters with diffusion in 3 

dimensions) was studied by Lifshitz and Slyzov many years ago in what is called 

the LS theory.29  Later on, the ripening problem was extended to 2D/2D by 

Marqusee30 and to 3D/2D by Sorolin31.  The LS theory supposes the existence of 

a distribution of spherical droplets in a minority phase immersed in a medium 

with some concentration of material in the majority phase.  Fick’s first law states 

that the flow of material in and out of the droplet will depend on the gradient of 

the concentration field as 

(7) 
CDJ ∇−=

rr
, 

 

where J
r
 is the mass flow current, D the diffusion and C the concentration field.  

In order to determine C, Fick’s second law (Equation 6) must be solved.  

Supposing a steady state and considering spherical coordinates, Fick’s second 

law becomes 

(8) 

0
1 2

2

2 =








∂
∂

∂
∂=∇

r

C
r

rr
C , 

where r is the curvature radius measured from the center of the droplet.  Solving 

the equation for C results in 
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(9) 

B
r

A
rC +−=)( . 

Note that for large r, 

(10) 
BrC

r
=

∞→
)(lim . 

This is an interesting result because the steady state solution of Fick’s second 

law in 3D is finite when r goes to infinity.  The constants A and B can be 

determined in the limit where r = R, where R is the radius of the droplet and C(R) 

is the concentration at the droplet edge.  For r = infinity (i.e. for a flat surface) a 

constant concentration field C is assumed, so that 

(11) 

B
R

A
RCRrC +−=== )()( , 

and therefore 

(12) 
BCrC ==∞= )( . 

This leads to 

(13) 

C
R

A
RC +−=)( , 

hence 

(14) 

[ ]
r

R
CRCCrC −+= )()( . 

 

The last equation is the concentration field as a function of the distance from the 

cluster’s center for a 3D droplet.  Then, the total mass flowing into the droplet per 

unit of time is given by: 

(15) 

RCDRI |4 2 ∇=
r

π  

or 
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(16) 
( ))(4 2 RCCDRI −= π . 

 

The mass flowing into the droplet will produce a variation in the volume of the 

cluster with time 

(17) 

RRR
dt

d
I &23 4

3

4 πρρπ =






= , 

where ρ is the density of the cluster’s material (Kg m-3).  The last equation 

assumes that the drops are isotropic.  Finally, equating relationships (16) and 

(17) results in  

(18) 

( ))(RCC
R

D
R −=

ρ
& . 

 

Equation (18) is the central result of the LS theory.  If the concentration of the 

medium is greater than the concentration at the droplet edge, the cluster will 

grow with time, but if the concentration of the medium is smaller than the 

cluster’s edge, the droplet or cluster will become smaller and eventually it will 

disappear; this result is called Ostwald ripening.  To determine the behavior of 

the cluster’s radius with time, the radial dependence of the cluster concentration 

must be known.  Gibbs and Thomson determined the form of C(R) in what is 

called the GT equation:32 

(19) 








 Ω=
RkT

CRC
γ

exp)( , 

where γ is the surface energy of the droplet, Ω is the volume per atomic unit, k is 

Boltzmann’s constant, R is the curvature radius of the cluster and T is the 

temperature.  This equation predicts that small clusters (small curvature radius) 

will have large concentration at the surface.  With the assumption that γΩ << RkT, 

Equation (19) and that )(RCC >  (cluster’s growth): 
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(20) 








 Ω+≈
RkT

CRC
γ

1)( . 

 

Plugging Equation (20) into (18) yields 
 (21) 

constRR ≈&2 , 

and this leads to a dependence of the cluster radius with time 
(22) 

3

1

tR ∝ . 

The last equation predicts a power law of cluster’s growth with an exponent of 

1/3.  Of course if )(RCC <  then 
31tR −∝  and the cluster shrinks with time.  

This exponent was determined under the assumption of diffusion in 3D for a 3D 

cluster, but as will be demonstrated in the next section, this power law also 

applies to 2D/2D systems under special circumstances. 

 

5.2   2D/2D MODEL FOR RIPENING 

 

The ripening problem for 2 dimensional clusters with diffusion in 2 dimensions is 

more challenging because the concentration field diverges when r goes to infinity 

as can be seen by solving the steady state Fick’s second law in polar 

coordinates, 

(23) 

0
12 =









∂
∂

∂
∂=∇

r

C
r

rr
C , 

so that 

(24) 
rArC ln)( += . 

 

To overcome this problem, Marqusee30 proposed a modification of Fick’s second 

law (Equation 6) including a source and a sink term for the concentration field.  

The modified equation is 
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(25) 

SCDCD
t

C +−∇=
∂
∂ −22 ξ , 

 

where CD 2−ξ is a sink term with units of Kg m-2 s-1, ξ is a screening length in 

units of meters and S is a source term.  In a steady state the source and the sink 

terms have to be equal, so that 

(26) 

CDS
t

C 20 −=⇒=
∂
∂ ξ , 

and therefore Equation (25) can be written as  

(27) 
[ ] 022 =−∇ − Cδξ , 

 

where CRCC −= )(δ .  The solution to this equation is given by 

(28) 

[ ] ( )
( )ξ

ξ
RK

rK
CRCCrC

0

1)()( −+= , 

where K0 and K1 are the zeroth and first order modified Bessel functions, 

respectively.  Plugging the concentration field given by the last equation into 

Fick’s first law yields 

(29) 

RCRDI |2 ∇= π , 

where 

(30) 

[ ] ( )
( )ξ

ξ
ξ

π
RK

RK
CRC

DR
I

0

1)(
2 −= . 

 

The mass flux in and out of the droplet will be equal to the change of mass in the 

2D cluster such that 

(31) 

( ) RRR
dt

d
I &πρρπ 22 == , 
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where ρ is the mass density of the cluster with units of Kg m-2.  Equating (30) and 

(31) yields 

(32) 
( )
( ) [ ])(

0

1 RCC
RK

RKD
R −=

ξ
ξ

ρξ
& . 

 

In this case, the growth law does not lead to a power law because of the 

presence of the modified Bessel function.  Also, the growth depends on the 

surrounding medium through the screening length, which in turn might depend on 

time.  However, if R << ξ, 

(33) 

( ) 






≈
R

RK
ξξ ln0 , 

and  

(34) 

R
K

ξ≈1 . 

 

Replacing these approximations into equation (32) results in 

(35) 

( ) [ ])(
ln

rCC
RR

D
R −=

ξρ
& . 

 

Studies show30,33 that there is only a weak dependence of the ln(ξ/R) term on R, 

which is the same as considering a screen length of the form 

(36) 
R)1( −= λξ , 

where λ is a constant. Using this expression for the screen length, the GT 

equation and )(rCC >  in Equation (35) then 

(37) 
3/12 tRconstRR ∝⇒=& . 
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In this situation, a power law of 1/3 results as in the 3D/3D model.  In general for 

a 2D/2D system, a power law cluster growth behavior is not valid because of the 

dependence of the concentration field on the screening length.  On the other 

hand, a power law can be deduced if the screening length is much larger than 

the radius of the cluster (i.e. low density of clusters per unit area) and if there is a 

weak dependence of the screen length on R. 

 

 
 

Figure 8.  STM image showing the decay of a 2D Ag cluster on Ag (111) 
at room temperature. After Ref. [6]. 

 
 
 
 

 
 

Figure 9.  Decay of the radius for a 2D Ag island on Ag (111). After Ref. [6]. 
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Experimental evidence for 2D/2D ripening is shown in Figures 8 and 9.  Figure 8 

shows a 2 dimensional cluster of Ag on top of Ag (111) at room temperature.6  

The cluster is placed at about 50 nm from a substrate step (top edge on the 

images).  In the snapshots it is clear that the cluster becomes smaller with time 

as predicted by the ripening process disappearing completely after 720 seconds. 

Figure 9 shows the evolution of the cluster’s radius; the solid line is the fitting of 

the radius with time using a power exponent of 1/3, this exponent is consistent 

with 2D island decay due to diffusion in 2D.  

 

5.3   3D/2D MODEL FOR RIPENING 

 

The case of 3-dimensional clusters with diffusion on a 2D surface has the same 

problem as the 2D/2D system because of the divergence of the concentration 

field at long distances.  Here it also is necessary to apply a source and a sink to 

balance the concentration equation when r = infinity.  Applying the same ideas 

used in the 2D/2D case,  

(38) 

[ ] ( )
( )ξ

ξ
ξ

π
RK

RK
RCC

DR
I

0

1)(
2 −= . 

 

Equation (38) has the same form as Equation (30), but differences appear when 

considering the mass rate entering a spherical cluster with radius R (same as the 

3D/3D case), where 

(39) 

RRR
dt

d
I &23 4

3

4 πρρπ =






= . 

 

Equating (38) and (39) results in 

(40) 
( )
( ) [ ])(

2 0

1 RCC
RK

RK

R

D
R −=

ξ
ξ

ρξ
& . 
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The growth rate for 3D/2D also does not follow a power law similar to the 2D/2D 

case because of the modified Bessel function.  Considering again R << ξ yields 

(41) 

( ) [ ]CRC
RR

D
R −= )(

ln

1

2 2 ξρ
& . 

 

Using the condition for the screen length in Equation (37), the GT equation and 

the condition )(RCC >  results in 

(42) 
4/13 tRconstRR ∝⇒=& . 

 

Therefore, a power law of ¼ is expected for a 3-dimensional cluster with diffusion 

in 2D only under special circumstances.  In general no power law should be 

expected due to the dependence of the growth equation with the screening 

 
 

Figure 10.  STM images of Mg silicide islands on Si (001) annealed at 500 
°C for several minutes.  After Ref. [12]. 
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length.  An example of ripening in 3D/2D can be observed in Figure 10, where a 

Mg thin film (0.1 ML) forms isolated clusters on Si (001) after annealing at 500 °C 

for several minutes.34  The number of clusters decreases with time while their 

diameter increases phenomena which are described by the ripening theory.  On 

the other hand, the average height of the clusters (Figure 11) increases with time 

following a power law with an exponent of 0.25.  The low coverage of Mg might 

have produced a screening length that was much larger than the radius of the 

clusters leading to the theoretical (3D/2D) power law growth of H ~ t ¼ . 

 

 

 

 
Figure 11.  Average cluster’s height H as a function of time for Mg 
silicide islands on Si (001).  The dashed line shows the linear fitting of 
H4 versus time.  After Ref. [12]. 
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Figure 12.  Sketch of a drop on top of a surface depicting the Young-
Dupre model of dewetting. γCV , γSV  and γCS are interface energies at the 
cluster/vacuum, surface/vacuum, and cluster/surface interfaces, 
respectively; δ is the angle between the drop and the substrate and R is 
the radius of curvature of the drop (after Ref. [3]). 
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6 DEWETTING 
 

De-wetting is the property of solids or liquids to form clusters or drops on top of 

substrates.  A classic model for de-wetting is the Young-Dupre equation3  

(43) 
δγγγ cosCVCSSV += , 

where SVγ is the surface energy of the substrate/vacuum interface, CSγ is the 

surface energy of the cluster/substrate interface and CVγ is the surface energy of 

the cluster/vacuum interface (Figure 12).  This formula predicts a complete 

wetting of the surface for δ = 0.  For δ > 0 the film should break in droplets; 

therefore de-wetting occurs when 0>−+ SVCSCV γγγ . 

 

 
Figure 13.  De-wetting evolution with time.  Bottom images  correspond 
to a diblock copolymer 45 nm thick on Si annealed at 170 °C.  Annealing 
times from left to right:  2hr, 12 hr and 48 hr. Image sizes: 60 × 60 µm.  
After Ref. [35]. 
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Unfortunately, the interfacial energies are in general unknown or poorly 

estimated; hence de-wetting can not be predicted accurately.  Another problem is 

that the Young-Dupre equation works only for liquids but fails for solid crystals on 

solid interfaces because the rounded contact shapes are replaced by anisotropic 

crystallographic facets.36  

 

Another approach is to analyze surface dynamic processes by studying the 

evolution of clusters and pits as a function of time.  This procedure separates the 

de-wetting process into 3 stages (Figure 13).  In the early stage, the concern is to 

analyze how the films become rough and how this roughening produces holes in 

the film.  In the intermediate stage, the evolution of holes as a function of time is 

analyzed.  Finally, in the late stage the coalescence of holes with each other is 

studied, which eventually produces a rupture of the film and the formation of 

drops on top of the substrate.   

 

6.1  EARLY STAGE OF DE-WETTING 

 

The aim of this thesis is to understand the roughening and de-wetting 

phenomena of cobalt films on sapphire, and therefore most of our attention will 

be devoted to understanding the early stages of de-wetting rather than the 

intermediate and late stages.  Early stages of de-wetting have been extensively 

studied in polymers, oils and liquid, and therefore the first part of this section will 

be devoted to presenting the basic theories and concepts of de-wetting 

applicable to liquids, while the second part will explain the kinetic theory of de-

wetting applicable to solids.  

 

6.1.1 De-wetting in fluids 

 

There are 2 main processes in triggering dewetting: spinodal and heterogeneous 

de-wetting. 
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Spinodal dewetting  

 

In thin films there are 2 main interactions in the surface: capillarity and long range 

interactions.  Capillarity or surface tension makes the film flat and smooth 

whereas long range interactions (like Van der Waals forces) have a tendency to 

thicken the film.  The interplay of these interactions determines the stability of the 

film.  Unstable or metastable films might develop surface corrugations that grow 

exponentially with time, eventually producing the rupture of the film.  Vrij and 

Overbeek 37  were the first to analyze this problem theoretically using a 

mathematical analogy between spinodal decomposition of a fluid mixture (hence 

the name given to the spinodal de-wetting), where the fluctuations in the fluid 

composition were replaced by height fluctuations in the surface of annealed films.  

 
Figure 14.  One Fourier components with wavelength Λ and amplitude B 
of a corrugated thin film due to surface instabilities.  h0 is the initial 
thickness of the film. 
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They assumed that these anomalies in the film thickness (corrugations) could be 

decomposed into Fourier components as is shown in Figure 14. 

 

The excess Gibbs free energy of this corrugated film compared with a completely 

flat thin film is: 

(44) 
=∆G extra area × γ + effective interfacial energy, 

where the extra area is the difference in surface area between the flat and 

corrugated films and γ is the surface tension (or interface energy).  The effective 

interfacial energy ( )(hφ ) is defined as the energy required to bring 2 interfaces 

from the infinity to some separation distance h.  In the case of interest, h is the 

thickness of the film and the interfaces are substrate/film and film/vacuum.  

 

By looking at Figure 14, the extra area can be written as 

(45) 

( ) ( )[ ]{ } dy
dy

dz
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
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


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
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


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0

2/122
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On the other hand, the excess of interfacial energy of one of the Fourier 

components is 

(46) 

( )
2

2

2

0

( ) 1 ( )
int ...

2

d h d h
energy h h

dh dh

Α  Φ Φ= ∆ + ∆ + 
 
∫ , 

where 0hhh −=∆ . 

 

The Fourier components are given by 
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(47) 










Λ
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








Λ
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Plugging equations (45), (46) and (47) into (44) results in 

(48) 

or,

2 2
2 2

2

0 0 0

2 2
2 2 2 2

2 2

0 0

1 2 1 2
2 sin sin

2 2

1 4 2 1 2
cos 0 sin

2 2

dz d y d y
G dy B dy B dy

dy dh dh

y d y
G B dy B dy

dh

π πγ

π π πγ

Λ Λ Λ

Λ Λ

       Φ Φ ∆ = + +         Λ Λ        

   Φ∆ = + +   Λ Λ Λ   
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Because the integrals in the Equation (48) are positive, the fluctuations will tend 

to grow if 

(49) 
2 2

2 2

2 2

4
0

d
B B

dh

πγ Φ+ <
Λ

. 

Hence fluctuations will grow if the characteristic corrugation wavelength is larger 

than some critical wavelength Λcrit given by  

(50) 

( )

1/ 2
2

2 2

4
crit

d dh

π γ −
 Λ > Λ =
 Φ 

. 

 

The film will therefore be unstable and experience spinodal de-wetting whenever 
2 2/ 0d dhΦ < .  This is illustrated in Figure 15, where the effective interfacial 

potential is plotted as a function of the film thickness for 3 different films: (1) 

stable, (2) unstable and (3) metastable.  For the unstable film, if h > h* the 

second derivative of the potential will be negative and the film will spontaneously 

experience spinodal de-wetting.  On the other hand, curve (1) shows that the 
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global energy minimum can occur when the thickness is infinite and the film is 

said to be stable.  In case (3), the film is unstable for the region h* < h < h3 

(where the second derivative of the effective interfacial potential is negative) but 

for h > h3, the film is stable and it can de-wet only via nucleation.  In this case, 

because the two energy minima are separated by a potential barrier, the film is 

said to be metastable. 

 

Now suppose that the film is composed of non-polar molecules.   A long range 

interaction may exist, such as a Van der Waals interaction, given by 

(51) 

2
( )

12

A
h

hπ
Φ = − , 

where A is the Hamaker constant.5  Using this expression in Equation (50) results 

in  

(52) 

A
hcrit

γπ 3
2 8=Λ . 

 

 

 
Figure 15.  Differences between effective interfacial potential in a film.  
Curve (1) describes a stable film, (2) an unstable film and (3) a 
metastable film.  After Ref. [38]. 
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Hence an experimental proof of spinodal dewetting is to measure the critical 

wavelength for a given film and determine whether it scales with h2, in which 

case the height instabilities are dominated by a long range Van der Waals 

interaction. 

 

This one-dimensional model can be extended two dimensions using a height 

profile of the form5 

(53) 
{ }rqithhtrz

rrr ⋅×+= exp)(),( δ , 

 

where r and q = 2πΛ-1 are a vector and wavevector, respectively, both parallel to 

the substrate surface.  The amplitude of the corrugations δh(t) may be a function 

of time, and as will be shown later, it can grow exponentially during the early 

stages of the de-wetting process.  




