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ABSTRACT 

 

Prediction for Resolution Time of Software Defect 

Da Wang 

 

In practical software development projects, solving test issues efficiently 

during Software Development Life Cycle is critical to release software 

products on time. Different test environments, test resources and test 

requirements could result in different outcomes. Therefore, getting accurate 

prediction of the software defects’ resolution time could be beneficial to the 

practical projects. . 

 

In our study, data mining techniques offer great promise in prediction of 

software defects’ resolution time. Our research is conducted based on the 

NASA Metrics Data Program (MDP). We first calculate the resolution time 

for available projects. Using unsupervised discretization methods, we split 

resolution time into certain interval as response variable. Then, investigating 

the relationship between metric properties and time intervals, we fit a model 

that attempts to produce prediction on resolution time. Experiments and 

analysis successfully demonstrate the feasibility of our approach.  
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Chapter 1 Introduction 

1.1 Motivation 

In practical software development projects, controlling the Software 

Development Life Cycle (SDLC), especially the software test period, and 

then release the software on time would be a difficult challenge for project 

managers. Different test environments, test resources and test requirements 

could result in different outcomes for software test period, thereby the whole 

SDLC. Therefore, getting accurate prediction of the software defects’ 

resolution time could be beneficial to the practical projects..  

 

In this study, we want to investigate proper methodology to generate 

accurate prediction of resolution time based on metrics properties, such as 

the number of operators in a modul, the number of decision points, design 

density, design complexity, and other attributes, in our datasets. 

 

Data mining techniques have been used in software engineering area for 

many years. In software quality assurance area, the fault-prone module 

prediction is one of the topics that many researchers are interested in [1]. 

Module metrics have been successfully used for predicting fault-prone 

modules. A study of data mining in module metrics, which is the topic of our 

research, will be effective for predicting resolution time of software defects 

accurately. 
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1.2 Goal 

Based on previous motivation, the goal of this study is to provide evidence 

that we could get an accurate prediction for resolution time of software 

defects after implementing data mining techniques in module metric datasets. 

We do not have related literature that can be used as reference to guide our 

research. Thus we need to design our own experiments and validate the 

assumption in our models. After comparing the performance of different 

models we can confirm an optimal solution to predict resolution time of 

software defects accurately.  

 

1.3 Contribution 

To build prediction model about software defects’ resolution time, a series 

of experiments studying on NASA Metrics Data Program (MDP) are 

conducted in this thesis to find the potential relationship between software 

metrics and defect resolution time. The result shows that with appropriate 

algorithm and methodology we may achieve a good model to predict the 

resolution time on the basis of metrics data. 

 

1.4 Organization 

The rest of the thesis is organized as follows. Chapter 2 presents a literature 

review, which covers the usage of prediction in software engineering area as 

well as the general information about the data sets in MDP depository and 

general idea of data mining techniques. It also mentions the classification 

method, Random Forest algorithm and the evaluation of classification results, 
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which are utilized in this study. Chapter 3 illustrates the experiment result 

and conducts the evaluation and discussion on the result. Finally, Chapter 4 

provides the conclusion and discusses the methods that can be implemented 

to further optimize the analysis.  
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Chapter 2 Related Works 

2.1 Prediction in Software Engineering 

As more data are gathered, with the amount of data doubling every three 

years, data mining is becoming a significant important tool to transform data 

into information. Although M. Mendonca and N. L. Sunderhaft have applied 

data mining techniques on software engineering data during 1990s [2], the 

idea of using data mining skills has attracted a great deal of interest recently 

within software engineering. We could dig into software engineering data 

(such as code bases, execution traces, historical code changes, and bug 

databases) to find out a large amount of information about a software 

project’s status, progress, and evolution. Using this wealth of information 

could help us on programming, static defect detection, testing, debugging, 

and maintenance tasks in software engineering. 

 

In software engineering field, many different data mining techniques (such 

as association rules, classification, and clustering) have been utilized to 

analyze the data [3].  

 

Studying association rules that identify library components that are often 

used by application components could be helpful in discovering library reuse 

patterns in user-selected applications [4]. In 1999, Amir Michail proposed to 

explore data mining techniques which are designed to find patterns in vast 

collections of data. The association rules can help a developer discover 

patterns for reusing library components. Moreover, these rules can be used 
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to warn developers automatically when their application reuses library 

components in a different way from others’.  

 

Classifying data could help do prediction in software engineering field. Amir 

Michail and Tao Xie used a tool-based approach to help users avoid bugs in 

GUI applications [5]. In this approach, it incorporates Distance Weighted 

Nearest Neighbor Learner in the tool to generate bug prediction (bug or not 

bug) automated. This idea makes sure the user could use the application 

normally and report defect that they encounter to prevent anyone from 

encountering those defects again. 

 

Software failure prediction could also be executed by cluster analysis of 

execution profiles [6]. Andy Podgurski, et al, [7, 8], suggested that using 

cluster filtering together with stratified random sampling could estimate 

software reliability efficiently. William Dickinson, et al, [6], evaluated the 

effectiveness of this method for finding failures. The results show that 

cluster filtering is a more effective approach for identifying failures in 

populations of operational executions than simple random sampling.  

 

Besides association rules, classification, and clustering, other methods are 

also widely used in software engineering area, such as texting mining used 

for static code analysis [9], and texting mining used for bug report analysis 

[10]. 
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2.2 Metrics Data Program 

The data sets used in this study come from the NASA Metrics Data Program 

(MDP) data repository [22]. Thirteen projects shown in Table 1 are used in 

this study. Same data sets are available through the PROMISE [25] 

repository too. 

 

These data sets provide module metrics that describe 13 different NASA 

projects. In this study, since we need to predict the defect resolution time 

period for each project, the projects without resolution time would be 

removed. Projects MC1, MC2 and PC5, which contain no date data, are not 

used. Moreover, the number of faulty modules in projects KC3, MW1 and 

PC2 are 25, 27 and 22 instances respectively, too small sample to predict 

result correctly. We ignore these three projects too.  

 

The remaining seven data sets contain defect_id, entry_type and entry_date 

attributes. We calculate the resolution time for each defect and divide the 

values by seven to generate a new attribute weeks as predicted variable. We 

confirm that only the longest resolution time exists for each module, and 

then remove module_id, defect_id, entry_type and entry_date metrics prior 

to modeling. After removing and replacing these attributes, KC1 has 22 

attributes that can be used as predictor variables, JM1 has 25, and the other 

five data sets have 44 metrics. 

 

Reverse engineering tool calculates metrics from flowcharts [23], dividing 

the module metrics into three groups: design, code and other metrics (see 

table 2) [1]. We use all the metrics in our study, regardless of the metric 
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groups. In future work, we may study metric groups separately. It could lead 

to further research on the relationship between metrics properties and our 

response variable. 

 

Data Modules % 

Faulty 

# of Faulty 

Modules 

# of FM 

with 

Resolution 

Time 

Project Description Lang. 

CM1 505 16.04% 81 75 Spacecraft instrument C 
KC1 2407 12.17% 293 286 Storage management for 

receiving/processing 
ground data 

C++ 

KC4 125 48% 60 57 A ground-based 
subscription server 

Perl 

PC1 1107 6.59% 73 63 Flight software from an 
earth orbiting satellite 

C 

PC3 1563 10.23% 160 160 Flight software for earth 
orbiting satellite 

C 

PC4 1458 12.24% 178 178 Flight software for earth 
orbiting satellite 

C 

JM1 10878 18.34% 1995 1350 A real time predictive 
ground system 

C 

MC2 161 32.30% NA No date 
data 

A video guidance system C++ 

MC1 9466 0.64% NA No closed 
date for 
faults 

A combustion experiment 
of a space shuttle 

C(C++) 

PC5 17186 3.00% NA No date 
data 

A safety enhancement of a 
cockpit upgrade system 

C++ 

KC3 458 6.3% 29 25 Storage management for 
ground data 

Java 

MW1 433 6.24% 27 27 A zero gravity experiment 
related to combustion 

C 

PC2 5589 0.393% 22 22 Dynamic simulator for 
attitude control systems 

C 

Table 1 Datasets Used in This Study 
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group metrics description or formula 

code 

PARAMETER_COUNT Number of parameters to a given module 
NUM_OPERATORS:N1 The number of operators contained in a module 
NUM_OPERANDS:N2 The number of operands contained in a module 
NUM_UNIQUE_OPERATORS:μ1 The number of unique operators contained in a module 
NUM_UNIQUE_OPERANDS:μ2 The number of unique operands contained in a module 
HALSTEAD_CONTENT:μ The halstead length content of a module μ = μ1 + μ2 
HALSTEAD_LENGTH:N The halstead length metric of a module N = N1 + N2 
HALSTEAD_LEVEL:L The halstead level metric of a module L  = 2*μ2/(μ1*N2) 
HALSTEAD_DIFFICULTY:D The halstead difficulty metric of a module D = 1/L 
HALSTEAD_VOLUME:V The halstead volume metric of a module V = N * log2(μ1 + μ2) 
HALSTEAD_EFFORT:E The halstead effort metric of a module E = V/L 
HALSTEAD_PROG_TIME: T The halstead programming time metric of a module T = E/18 
HALSTEAD_ERROR_EST: B The halstead error estimate metric of a module B = E^(2/3)/1000 
NUMBER_OF_LINES Number of lines in a module 
LOC_BLANK The number of blank lines in a module 
LOC_CODE_AND_COMMENT:NCSL
OC 

The number of lines which contain both code and comment in a 
module 

LOC_COMMENTS The number of lines of comments in a module 

LOC_EXECUTABLE 
The number of lines of executable code for a module (not blank or 
comment) 

PERCENT_COMMENTS Percentage of the code that is comments 
LOC_TOTAL The total number of lines for a given module 

design 

EDGE_COUNT:e 
Number of edges found in a given module control from one module to 
another 

NODE_COUNT:n Number of nodes found in a given module 
BRANCH_COUNT Branch count metrics 
CALL_PAIRS Number of calls to other functions in a module 
CONDITION_COUNT Number of conditionals in a given module 
CYCLOMATIC_COMPLEXITY: v(G) The cyclomatic complexity of a module v(G) = e − n + 2 
DECISION_COUNT Number of decision points in a given module 
DECISION_DENSITY Condition_count/Decision_count 
DESIGN_COMPLEXITY:iv(G) The design complexity of a module 
DESIGN_DENSITY Design density is calculated as: iv(G)/v(G) 
ESSENTIAL_COMPLEXITY:ev(G) The essential complexity of a module 
ESSENTIAL_DENSITY Essential density is calculated as: (ev(G)−1)/(v(G)−1) 
MAINTENANCE_SEVERITY Maintenance Severity is calculated as: ev(G)/v(G) 

MODIFIED_CONDITION_COUNT  
The effect of a condition affect a decision outcome by varying that 
condition only 

MULTIPLE_CONDITION_COUNT  Number of multiple conditions that exist within a module 

PATHOLOGICAL_COMPLEXITY  
A measure of the degree to which a module contains extremely 
unstructured constructs 
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others 

NORMALIZED_CYLOMATIC_COMP
LEXITY  v(G)/NUMBER_OF_LINES 
GLOBAL_DATA_COMPLEXITY:gdv(
G)  

the ratio of cyclomatic complexity of a module’s structure to its 
parameter_count 

GLOBAL_DATA_DENSITY  Global Data density is calculated as: gdv(G)/v(G) 
CYCLOMATIC_DENSITY v(G)/NCSLOC 

Table 2 Metrics used in this study [1] 

 

2.3 Data Mining Techniques 

Generally, data mining (sometimes called knowledge discovery [11]) is the 

process of analyzing data from different dimensions and summarizing it into 

useful information. Although there are many different descriptions for this 

process, rough procedure can be illustrated as pre-processing the raw data, 

mining the data, and interpreting the results.  

 

2.3.1 Pre-Processing the Data 

The raw data in the real world is noisy, that is why we need pre-processing 

procedure to provide quality data, and then to achieve quality mining results 

and quality decisions. The preparation of incomplete, inconsistent and noisy 

data comprises the majority of the work in a data mining application, 

probably 90%. The tasks in data pre-processing include data cleaning, 

integration, transformation, reduction and discretization. 

 

At integration step, data from multiple sources are integrated and combined. 

Detecting and resolving data value conflicts, as well as removing duplicates 

and abundant data are the key tasks for this part.  
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At transformation step, data normalization, aggregation, generalization and 

other techniques are applied. Normalization refers to scaling attribute values 

to fall within a specified range. Aggregation indicates moving up in the 

concept hierarchy on numeric attributes and generalization stands for 

moving up in the concept hierarchy on nominal attributes.  

 

At reduction step, the number of attribute, attribute values and tuples is 

reduced in order to obtain a smaller volume of data set but yet produce the 

same or similar analytical results. Attribute subset selection can be used to 

choose a minimum set of attributes (features) that is sufficient for the data 

mining task. Sampling can also be used to select a representative subset of 

the data, but simple random sampling method may have poor performance in 

conjunction with skewed data. 

 

At descretization step, the continuous features or attributes of data set are 

converted into descretized or nominal features, since some data mining 

algorithms only accept categorical attributes. Typically, there are two types 

of discretization, unsupervised discretization in which the class variable is 

not used and supervised discretization, in which the value of class variable is 

used. Unsupervised discretization involves binning methods, wherein equal-

interval (equal width) binning splits the whole range of numbers in intervals 

with equal size while equal-frequency (equal depth) binning uses intervals 

containing equal number of values. Supervised discretization relates to 

entropy (information)-based discretization which recursively splits intervals 

until the information gain of the resulting split “tells” it to stop.  
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2.3.2 Mining the data 

The goal of data mining is to discover useful or interesting models for the 

user. Commonly, it involves four types of tasks [11]: association rules, 

regression model, classification and clustering. 

 

Association rule mining, proposed by Agrawal et al, in 1993 [12], is data 

mining model studied extensively by the database and data mining 

community, which assumes all data are categorical. Normal association rule 

mining does not have any target. It will find all possible rules which exist in 

data and satisfy a user-specified minimum support and a user-specified 

minimum confidence at the same time. 

 

Regression is the best-known statistical technique that the data mining 

community utilizes. Basically, regression is to develop a mathematical 

model that fits the numeric data set. The simplest form of regression, linear 

regression, uses the model of a straight line (y = ax + b) and determines the 

suitable values for a and b to predict the value of y based upon a given value 

of x. Other advanced methods, such as logistic regression, allow the use of 

more complex models, such as a logistic function ze
xf




1
1)(

. The major 

limitation of this technique is that it only works well with continuous 

quantitative data. 

 

Classification is a data mining technique used to predict categorical class 

labels for data instances, and then classify data (construct a model) based on 

training set and the values (class labels) in a classifying attribute and use it 



12 

 
 

in classifying new data. This paper is mainly focus on the usage of 

classification technique in software metrics, so the detail information about 

how to construct the classification models and the way to use these models 

would be discussed later in this chapter. 

 

Clustering is unsupervised classification with no predefined classes. From a 

machine learning perspective, clusters correspond to hidden patterns and 

cluster analysis is to group a set of data objects into clusters, the search for 

clusters is unsupervised learning. K-means clustering is one of the simplest 

methods of cluster analysis, which intends to partition all data objects into k 

clusters in which each object belongs to the cluster with the nearest mean.  

 

2.3.3 Interpreting the Results  

The last step of discovering information from data is to interpret the data 

mining results and verify the patterns produced by all kinds of algorithms we 

used in the experiment. Not all results found by the data mining algorithms 

are positive, which requires us to use some statistical methods or other 

approaches to evaluate them. Commonly used performance measures for the 

evaluation of data mining algorithms include, but not limited to, Accuracy, 

Precision/Recall, Receiver Operating Characteristic (ROC) Curve and Area 

under the Curve (AUC), which will be covered later in this chapter. 
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2.4 Classification and Random Forests 

Unlike clustering, classification is a supervised machine learning method. It 

builds a concise model of the distribution of class labels in terms of predictor 

features. We can state the problem as follows: given training data T = (yn, 

xn), n = 1, … , N, where the yn are the responses and xn are predictors, 

produce a classifier C: X  Y. This classifier will map any object x ∈  X to 

its true classification label y ∈  Y defined by some unknown mapping M: X 

 Y [13][14]. The process can be seen in Figure 1. 

 

 
Figure 1 Classification Process 

 

The most widely used classification algorithms include neural network, k-

nearest neighbors, naïve Bayes, boosting and decision tree. In our study, we 

use Random Forest (RF), an ensemble classifier of decision trees, developed 

by Leo Breiman and Adele Cutler as the main method. It demonstrates good 

performance on software engineering studies [15]. Random Forest is a 
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classifier consisting of a collection of tree structured predictors, where each 

tree depends on independent identically distributed random vectors [16]. 

Each tree constructs as following strategy: 

 

1.  Draw T bootstrap samples from the original data. For each sample, 

grows a tree; 

 

2.  Choose m -- number of variables used to split each node. m << M, 

where M is the number of variables in the classifier. m is a constant 

while growing the tree; 

 

3.  When growing a tree at each node, select m variables at random and 

use them to find the best split. Grow the tree to a maximal extent 

without pruning. 

 
4.  To classify or predict new data, collect the votes from every tree in 

the forest and then use majority voting to decide on the class label. 

 

The RF uses randomly selected inputs or combinations of inputs at each 

node to grow each tree. The resulting forests produce highly accurate results 

for many data sets in an efficient way. It comprises effective method to 

estimate missing data and maintain accuracy when large portion of data are 

missing. It can also balance error in class population unbalanced data sets. 

 

The RF is more robust to noise and outliers than many other methods. Thus, 

the classification accuracy of random forests is more significant over other 

methods in larger data sets [15]. It can handle large data sets containing 
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thousands of input variables without variable deletion, making it a good 

choice for our study on software engineering metrics data. 

 

2.5 Evaluation of classification results 

As we generate a suitable classification for the original data, we need to test 

whether this classification is the best fit for the data. Thus, we need to 

introduce more evaluation approaches to prove that our algorithms bring us a 

correct and meaningful interpretation for the original information. Normally, 

we can use Accuracy, Precision/Recall, Receiver Operating Characteristic 

(ROC) Curve and Area under the Curve (AUC) as our evaluation methods. 

 

Before we introduce the evaluation methods, we need to explain confusion 

matrices. In the field of artificial intelligence, confusion matrix is used to 

represent the instances showing whether the system is confusing among 

different classes. Each column of the confusion matrix indicates the 

components in a predicted class, while each row indicates the components in 

a true class. With the help of confusion matrix, we may observe directly that 

how many correct predictions we have made and how many failures we have 

made. Figure 2 shows us an example of confusion matrix. Here, True 

Positive (TP) and True Negative (TN) are correct classifications. The 

number of True Positive is the number of items correctly predicted as 

belonging to the positive class, and the number of True Negative is the 

number of items correctly predicted as belonging to the negative class. False 

Positive (FP) occurs when the outcome is incorrectly labeled as positive 

when it is not and False Negative (FN) occurs when the outcome is 

incorrectly labeled as negative when it is actually positive.  
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In statistical null hypothesis statement, False Negative is known as Type I 

errors which reject the null hypothesis given that it is actually true. Also, 

False Positive is known as Type II errors which are failing to reject the null 

hypothesis given that the alternative hypothesis is actually true. 

 

 
Figure 2 Confusion Matrix 

 

2.5.1 Accuracy  

Accuracy is the degree of closeness of a measured or calculated quantity to 

its actual (true) value [13]. For confusion matrix, the accuracy is all true 

results out of the whole population. It could be determined by following 

equation:  

 

).....(.
)...(.

NegativeFalsePositiveFalseNegativeTruePositiveTrueofnumber

NegativeTruePositiveTrueofnumber
Accuracy




  

 

On most problems, obtaining Accuracy is easy. However, 99% accuracy 

cannot secure a good performance, while 10% accuracy does not necessarily 
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lead to a bad prediction. It depends on the problem and data, in which other 

elements may count on higher weight. 

 

2.5.2 Precision and Recall 

In statistical classification task, we also use Precision and Recall to evaluate 

the basic tradeoff. Precision can be considered as a measure of exactness 

while Recall is a measure of completeness. In definition, the Precision for a 

class is the number of true positive divided by the total number of 

observations labeled as belonging to the positive class, i.e. the sum of true 

positive and false positive. Recall is defined as the number of true positive 

over the total number of observations that truly belong to positive class, i.e. 

the sum of true positive and false negative. They can be demonstrated by 

following equations: 

 

)...(.
...Pr

PositiveFalsePositiveTrueofnumber

PositiveTrueofnumber
ecision


  

 

)...(.
...Re

NegativeFalsePositiveTrueofnumber

PositiveTrueofnumber
call


  

 

 

2.5.3 ROC Curves 

Receiver Operating Characteristic (ROC) curve is useful for organizing 

classifiers and provides intuitive way to visualize their performance. In 
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addition to a useful performance graphing method, it has properties that 

make itself useful when learning in the presence of unbalanced classes.  

 

ROC curves are two dimensional graphs which plot True Positive Rate (TP 

Rate) as a function of False Positive Rate (FP Rate) across all possible 

experimental threshold settings. They describe the relative tradeoffs between 

benefits (True Positive) and costs (False Positive). The True Positive Rate 

(also called Probability of Detection pd and Recall) and False Positive Rate 

(also called Probability of False Alarm pf) of the classifier can be estimated 

as follows: 

 

Positivetotal

PositiveTrueofnumber
callpdRatePositiveTrue

.
...Re..   

 

Negativetotal

PositiveFalseofnumber
pfRatePositiveFalse

.
.....   

 

A typical ROC curve will have a concave shape that starts from point (0, 0) 

and ends at (1, 1). Point (0, 1) represents perfect classification. Informally, 

one point in ROC curve is better than another if it has higher TP Rate and 

lower FP Rate.  

 

The area under the ROC curve, abbreviated AUC [17], is a common method 

to numerically evaluate the performance of different classifier. Since the 

AUC is a portion of the area of the unit square, its value should fall between 

0 and 1. However, since a random guess can produce a diagonal line 

between (0, 0) and (1, 1), which has an area of 0.5, the realistic classifier 
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should have an AUC greater than 0.5. Also, a well performed ROC curve for 

a classifier should lie on the left side of the diagonal line between (0, 0) and 

(1, 1).  

 

Within the past two decades, ROC curves and AUC have become the 

standard tools for analysis and comparison of classifiers for binary 

classification [18]. The ROC curves conveniently display the tradeoff 

between TP Rate and FP Rate for two class problems. Thus, when we are 

dealing with multi-classes problems, we need to make an extension to the 

ROC analysis. One method for handling multi-classes is to produce n 

different ROC curves, one for each class [19] [20]. Since AUC is a measure 

of the discriminability of a pair of classes, the multi-classes’ problem will 

introduce the issue of combining multiple pair wise values, which make it 

more complicated. Thus, we may calculate AUCs for multi-class problems 

by generating ROC curve for each class in turn, measuring the area under 

each curve, and then summing the AUCs weighted by the data: 

  )(cipAUCAUC citotal , where AUCci is the AUC for each class and p(ci) is 

the probability of this class [19]. 
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Chapter 3 Experiment and Analysis 

3.1 Experiment Design 

We build our predictive models using Random Forest algorithm from Weka 

package to predict software defects’ resolution time. Recall that we use 7 

datasets from Metrics Data Program (CM1, JM1, KC1, KC4, PC1, PC3 and 

PC4), each containing three groups of metrics: design, code and all. We use 

all the metrics in our study, regardless of the metric groups. The predicted 

(response) variable is weeks for each defect, which is calculated from getting 

resolution days by subtracting the opened_time from closed_time in 

entry_date metric and then dividing the resolution days by 7. We confirm 

that only the longest resolution time exists for each faulty module, and then 

remove the instances without a weeks attribute, and module_id, defect_id, 

entry_type and entry_date metrics prior to modeling.  

 

We use 10-fold cross validation to fit the predictive model while using 

Random Forest learner with 500 trees (the default is 10 trees in Weka, an 

insufficient number based on prior experience). 90% of the data will work as 

training set and 10% as testing set. We will use Accuracy, Precision/Recall 

and ROC curves to measure the performance of decision models. For each 

ROC curve, the AUC is calculated using the Trapezoid rule. Since we need 

to deal with models of multi-classes, we generate ROC curve for each class 

of each data set to visualize the results. The evaluation methods include, but 

not limited to, weighted average AUC [19]. Recall that weighted average 
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AUC is calculated by:   )(cipAUCAUC ciweighted , where AUCci is the AUC 

for each class and p(ci) is the probability of this class [19]. 

 

In the remainder of this section, we first briefly analyze the response 

variable, weeks, in our study, and then we execute experiments to determine 

a suitable discretization method for our data sets. Next, we compare the 

performance for each model we fit based on Accuracy, ROC curves and 

AUC. Finally, we conclude the optimal model that best fit most of our 

datasets.  

 

3.2 Distribution of Response Variable (Resolution Time) 

The purpose of this study is to fit a model to help predict the resolution time 

for a specific software engineering project. The best way to help managers 

control the project is to tell them how many days the engineers need to finish 

the test procedure. To predict the exact days that we need to solve all defects 

in a module or project, however, cannot be precise. Thus, we expand the 

response variable from days to weeks as resolution time and improve the 

precision of prediction.  

 

After generating the response variable weeks to our dataset, we make a 

summary of this attribute, see Table 3. The unit for each cell is weeks. The 

minimum resolution time for one module in dataset PC4, for example, is 1 

week, and the maximum is 91 weeks. This table also gives us the 1st and 3rd 

quartiles, as well as the median and mean. Median clarifies the middle value 

of resolution time while mean exhibits the average. 1st and 3rd quartiles show 
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the values on the rank of ¼ and ¾ from minimum. To visualize the 

distribution, we use box plots to show this response variable.  

 
 CM1 JM1 KC1 KC4 PC1 PC3 PC4 
Min 0 0 1 5 1 6 1 
1st Q 5 15 11 15 3 23 12 
Median 14 34 20 20 7 33 48 
Mean 15.03 36.84 20.03 24.47 11.86 35.31 39.12 
3rd Q 16 50 27 25 11 41 55 
Max 51 131 116 89 74 99 91 

Table 3 Summary of Response Variable weeks 

 

From the box plots we may see that there are many statistical outliers in all 

datasets except PC4. Also, datasets CM1 and PC4 show more severe 

skewness.  
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Figure 3 Boxplots of Resolution Time 

 

3.3 Equal Frequncy vs Equal Width 

Since we need to convert the variable weeks into nominal features, we have 

to implement a suitable unsupervised discretization method for our datasets. 

Recall that unsupervised discretization involves binning methods, wherein 

equal-interval (equal width) binning splits the whole range of numbers in 

intervals with equal size while equal-frequency (equal depth) binning uses 

intervals containing equal number of values. Because almost all datasets we 

are studying involve many statistical outliers which bias the mean value, 

equal width method would generate bins with major portion of the instances 
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and bins with few instances. The consequence is that we may get high 

accuracy of prediction for one class but poor result for other classes.  

 

We execute an experiment on dataset PC1 to compare the results of equal 

width and equal frequency discretization method. For the sake of 

convenience, we choose 3 as our bin number. Then we discretize the 

response variable weeks in both equal width and equal frequency methods. 

Table 4 and 5 shows the discretization results. The minimum and maximum 

resolution times for dataset PC1 are 0 week and 74 weeks, respectively. The 

range is 74 weeks. For 3bin equal width method, we divide the range by 3 to 

make sure each bin contains the same width, and then we get 3 intervals of 0 

to 25.3 weeks, 25.3 to 49.6 weeks, and 49.6 to 74 weeks. For 3bin equal 

frequency method, we make sure each bin contains the same number (or 

close number) of instances. Thus we count the total instance number and 

divide the total instance by 3 to fit suitable intervals.  

 
Time 

Interval(Weeks) 
# of 

Instances 
 

Time 
Interval(Weeks) 

# of 
Instances 

a  0-25.3 53 
 

a  0-3.5 20 
b  25.3-

49.6 
8 

 

b  3.5-10.5  22 

c 49.6-74 2 
 

c 10.5-74 21 

Table 4 Equal Width   Table 5 Equal Frequency 

 

We may see that Class a of 3bin equal width method contains 84% of the 

total instances, and the other two only contain 16%. On the contrary, 3bin 

equal frequency method assigns almost the same number of instances to 

each interval. Then, we use the Time Interval (weeks) as our response 
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variable to execute Random Forest to predict how many weeks should be 

used to resolve software defects.  

 

For 3bin equal width method, we calculate a result of Accuracy, Precision, 

Recall and AUC in Table 6 and a confusion matrix in Table 7. For 3bin 

equal frequency method, we produce a result of similar statistics in Table 8 

and 9. 

 
Class Accuracy 

(%) 
TP Rate FP Rate Precision Recall AUC 

a   1 0.9 0.855 1 0.674 
b   0.125 0 1 0.125 0.705 
c   0 0 0 0 0.275 
Average 85.71 0.375 0.3  0.618  0.375 0.551 

Table 6 3bin Equal Width Result 

 
Confusion Matrix 

 a b c 
a 53 0 0 
b 7 1 0 
c 2 0 0 

Table 7 3bin Equal Width 

 
Class Accuracy 

(%) 
TP Rate FP Rate Precision Recall AUC 

a   0.45 0.233 0.474 0.45 0.71 
b   0.545 0.195 0.6 0.545 0.671 
c   0.571 0.286 0.5 0.571 0.711 
Average 52.381 0.522  0.238 0.525  0.522  0.697 

Table 8 3bin Equal Frequency Result 
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Confusion Matrix 

 a b c 
a 9 5 6 
b 4 12 6 
c 6 3 12 

Table 9 3bin Equal Frequency 

 

From the result tables and confusion matrices, we can see that although 3bin 

Equal Width method yields a better accuracy, it only predicts one correct 

instance for Class b and c. Thus, the 85% prediction accuracy cannot lead to 

any meaningful conclusion for our study. Also, the weighted average AUC 

for 3 classes of 0.55 is only a little higher than a realistic threshold of 0.5, 

which further proves that the performance of 3bin Equal Width is really bad. 

Therefore, for the subsequent experiments, we use Equal Frequency as our 

discretization methodology.  

 

For the first experiment in our study, we discretize the response variable into 

3 bins to verify either Equal Width method or Equal Frequency method is 

suitable for our model. However, how many bins are suitable for our study is 

still unknown. Next, we need to implement experiments for all datasets 

using equal frequency method and then to compare the performance of 

prediction on different discretized response. 

3.4 3 bin Equal Frequency for All Datasets 

The narrower each time interval is, the more meaningful our prediction can 

be. Thus, we care about not only the performance of each model, but also the 

prediction detail each model can give us. In this study, we discretize the 

response variable (weeks) into 3 bins and execute the experiments for all 
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datasets first. The following tables and graphs demonstrate our important 

statistics and results. 

 

Table 10 shows the discretized response variable for each data set. Table 11 

exhibits the confusion matrix and performance result for each data set. 

Figure 4 displays the ROC curve for each data set. 

 
Classes CM1 JM1 KC1 KC4 

  
Time 

Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

a  0-7.5 24 0-27.5 455 0-15.5 94 0-17.5 20 

b  7.5-17 37 27.5-
42.5 

439 15.5-
22.5 

92 17.5-
21.5  

20 

c  18-51 14 42.5-
131 

456 22.5-
116 

100 21.5-89 17 

Classes PC1 PC3 PC4 

  
  

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

  a  0-3.5 20 0-27.5 54 0-28.5 60 
  b  3.5-10.5  22 27.5-

37.5  
51 28.5-

54.5  
43 

  c  10.5-74 21 37.5-99 55 54.5-91 73 
  Table 10 Instances in Each Bin for 3Bin 

 

From Table 11, we can see that all data sets, except PC3, demonstrate 

accuracy over 50%. That means more than half of the instances are classified 

into correct classes. Both CM1 and KC4 achieve accuracy of 65%. Also, 

weighted average AUC over 0.7 and ROC curves close to upper axes prove 

that 3Bin Equal Frequency offers a sound performance on prediction of 

software resolution time for these data sets. The results of accuracy and 

AUC are consistent of inconsistent. 
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CM1 JM1 KC1 

Confusion Matrix Result Confusion Matrix Result Confusion 
Matrix Result 

Classes a b c Accuracy 
(%) 

AUC  a b c Accuracy 
(%) 

AUC  a b c Accuracy 
(%) 

AUC 

a 18 5 1  0.8 a 278 100 77  0.79 a 45 27 22  0.67 
b 7 28 2  0.78 b 101 221 117  0.72 b 35 43 14  0.71 
c 4 7 3  0.79 c 93 103 260  0.76 c 20 16 64  0.8 

Weighted Average 65.333 0.79 Weighted Average 56.889 0.76 Weighted 
Average 

53.147 0.73 

KC4 PC1 PC3 

Confusion Matrix Result Confusion Matrix Result Confusion 
Matrix Result 

 a b c Accuracy 
(%) 

AUC  a b c Accuracy 
(%) 

AUC  a b c Accuracy 
(%) 

AUC 

a 15 5 0  0.84 a 9 5 6  0.71 a 21 16 17  0.61 
b 7 11 2  0.78 b 4 12 6  0.67 b 15 18 18  0.57 
c 2 4 11  0.84 c 6 3 12  0.71 c 17 11 27  0.66 

Weighted Average 64.912 0.82 Weighted Average 52.381 0.7 Weighted 
Average 

40 0.61 

 PC4  

      
Confusion Matrix Result  

 

      

 a b c Accuracy 
(%) 

AUC       

      
a 25 18 17  0.7       

      
b 18 14 11  0.71       

      
c 14 5 54  0.79       

      
Weighted Average 53.977 0.74       

Table 11 Confusion Matrices & Results for 3Bin 
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CM1    JM1    KC1 

 
KC4    PC1    PC3 

 
PC4 

Figure 4 ROC Curves for 3Bin 
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3.5 5Bin Equal Frequency vs 3Bin vs 2Bin 

In previous experiment, we evaluate the performance of 3Bin Equal 

Frequency method. In this study, we want to compare the impact of different 

class (bin) numbers on prediction performance. The bin numbers are 5 bins 

(denoted by 5Bin), 3 bins (3Bin) and 2 bins (2Bin). 

 

To clearly compare the performance of 5Bin, 3Bin and 2Bin, we summarize 

the results into Table 12. In Appendix A, Table 13 and 14 shows the 

discretized response variable for 5Bin and 2Bin, respectively; Table 15 

exhibits the confusion matrices for 5Bin while Table 16 for 2Bin. Figure 5 

and 6 visually demonstrates the prediction performance for 5Bin and 2Bin. 

 

In Table 12, we use Accuracy, Recall and AUC to evaluate the performance 

of the prediction. Here, Recall and AUC are both weighted average for 5 

bins and 3 bins equal frequency methods.  

 
  5 bins equal frequency 3 bins equal frequency 2 bins equal frequency 

Datasets Accuracy Recall AUC Accuracy Recall AUC Accuracy Recall AUC 

CM1 58.667 0.5870 0.799 65.3 0.5737 0.788 78.667* 0.7865* 0.838* 
JM1 46.9 0.4676 0.774 56.9 0.5613 0.756 69.7* 0.6970* 0.778* 
KC1 40.91 0.3998 0.7234 53.1469 0.5287 0.727 69.5804* 0.6960* 0.771* 
KC4 47.368 0.4618 0.74 64.9123 0.6490 0.819* 71.9298* 0.7105* 0.769 
PC1 46.0317 0.4422 0.722* 52.381 0.5220 0.697 61.9048* 0.6195* 0.688 
PC3 25.625 0.2694 0.621 40 0.4110 0.614 60.625* 0.6005* 0.674* 
PC4 47.7273 0.4152 0.768* 53.9773 0.4943 0.737 65.9091* 0.6590* 0.753 

Table 12 Performance Comparison 
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CM1    JM1    KC1 

 
KC4    PC1    PC3 

 
PC4 

Figure 5 ROC Curves for 5Bin 

 

We compare the prediction performance among 5 bins, 3 bins and 2 bins 

equal frequency methods. In Table 12, the cell with asterisk (*) means it 
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performs the best in Accuracy, Recall or AUC when comparing to other 

methods. 5Bin method shows the worst accuracy. Only one data set achieves 

accuracy higher than 50%. 2Bin method demonstrates the best score on 

accuracy and recall. All three methods exhibit adequate AUC.  

 

 
CM1    JM1    KC1 

 
KC4    PC1    PC3 

 
PC4 

Figure 6 ROC Curves for 2Bin 
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In Figure 5, several classes in data sets KC4, PC1 and PC3 do not present a 

good ROC curves since they are too close to the threshold line. This reflects 

a bad classification for certain instance. In Figure 6, except for data set PC1 

and PC3, most ROC curves are in a good shape and imply acceptable 

performance.  

 

3.6 Discussion 

Because we use Accuracy to measure the percentage of observations that 

have been correctly classified, this metric is intended to indicate how well 

the prediction model works in the sense of how close to true value that the 

classifications as faulty or not faulty actually are. When the Accuracy is low, 

most of our predictions are incorrect. Therefore, it is quite important to have 

a high Accuracy. As we discussed in Experiment Design section, however, a 

high Accuracy value does not necessarily imply good predictions. Thus we 

can conclude that although relatively high Accuracy is important and 

necessary, it is not sufficient to consider a model with high Accuracy as 

good prediction because of the paucity of faults in the system [21].  

 

Precision focuses on labeling an observation as belonging to one class that 

does indeed belong to that class, but does not care about the observation in 

that class which are labeled incorrectly. For this reason, we conclude that 

low Precision might infer the inefficiency but is not equivalent to poor 

prediction. On other hand, Recall emphasizes the percentage of true 

positives that have been correctly identified as such. Therefore, although the 
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definition for Precision and Recall are similar to some extent, the 

consequence of low Recall is far more important than low Precision [21].  

 

As stated above, Thomas J. Ostrand and Elaine J. Weyuker [21] suggested 

that high Accuracy and high Recall are good measures for a successful 

prediction. Thus, from above comparison we can see that for 5 bins equal 

frequency method, the prediction Accuracy and Recall for 6 out of 7 datasets 

are below 50% and 0.5 respectively. The low Accuracy of below 50% shows 

that more than 50% observations are labeled as a wrong class, which is a 

really depressing result. However, it is understandable, since 5bin equal 

frequency method discretizes the response into 5 bins which make the width 

of each interval narrower and more difficult to specify.  

 

In contrast, the Accuracy and Recall for 3 bins and 2 bins equal frequency 

methods are better for analysis. Although 2 bins equal frequency method 

demonstrates much higher scores for these two metrics, both methods yield 

similar and favorable ROC curves and AUC. According to the result of AUC, 

only one dataset using 2 bins equal frequency method is superior to 3 bins 

equal frequency method by 5%. For other datasets, the differences are not 

distinct and even the performance of 2 datasets using 3 bins method is better. 
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Figure 7 Performance Comparison Boxplot 

 

Figure 7 graphically depicts numerical data distributions of Accuracy, Recall 

and AUC for 5Bin, 3Bin and 2Bin methods. It shows the smallest instance, 

lower quartile, median, upper quartile and the largest instance. The line 

inside the box displays the median which follows the central tendency. 

Based on these plots, 2Bin method is significantly superior to 3Bin and 5Bin 

methods upon Accuracy and Recall. All three methods present similar AUC 

distributions. 

 

The reason that 2 bins equal frequency method performs better is 

understandable, because this approach divide the response into only two bins 

which make each interval larger than other methods and is easier to classify 

an observation in this range. For practical usage of this study, we not only 

want to figure out the best model, but also expect to bring out more 

interpretation for the prediction. Thus, if we process a prediction which does 

not require especially high prediction performance, but pursue more 

meaningful explanation for the data, then 3 bins equal frequency method 

could be a good fit for the model. 
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Chapter 4 Summary and Future Work 

4.1 Summary 

The goal of this thesis is to study the metrics data which involves different 

code and design metric features and to find the relationship among these 

factors, and thus further implement the predicting model to help software 

development project managers better organize their project schedules.  

 

We have analyzed seven data sets from NASA MDP which offer defect and 

product metrics. The algorithm we used for classification is Random Forest 

[16], which has demonstrated superior performance on software fault-

proneness prediction [15].  

 

First, we identify the discretization method used for classifying response 

variables into nominal feature. Although Equal Width method generates 

much better result on Accuracy and other metrics, the skewness of the data 

suggests that labeling the majority of observations as one class and 

generating better prediction for this class does not make any meaningful 

interpretation for the data. This backups our conclusion that pure high 

performance does not lend any support to the interpretation of prediction. 

We favor not only the performance of prediction, but also the meaningful 

explanation for predicted classification. 
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Next, after confirming the methodology, we fit the models for the data sets 

with 5 bins, 3 bins and 2 bins discretization and compare the performance 

for each method. Our experiments indicate a general trend for MDP data sets 

that the performance of models which have wider bin width is better. This is 

understandable, since wider width helps decrease the precision and makes it 

easier to predict. Although 2 bins discretization shows the best performance, 

3 bins discretization also demonstrates acceptable result. Because 3 bins 

discretization provides more detail information about the classification, in 

case the best prediction performance does not stand the highest priority, then 

this model would be a good fit for the data. 

 

Based on the insights we obtained from experiments, we conclude that using 

predictive model to predict software resolution time based on code and 

design metrics is reasonable and efficient. The proposed algorithm of 

Random Forest already generates a favorable result when dealing with 

binary classification. The algorithm also performs well confronting multi-

classes problems, though the decrease of the prediction performance occurs 

as the increase of the classes we defined.  

 

4.2 Future Work 

Although our experiments have shown that using Random Forest algorithm 

to fit a predictive model based on metrics data performs favorably for binary 

classification, the less prediction detail still has its limitation. Thus, other 

methodologies need to be implemented in future work to further improve the 

prediction performance for multi-classes’ classification.  

 



38 

 
 

Yue, et al [1] suggested that the metrics in our study should be divided into 

three groups: design, code, and other metrics. We may fit predictive models 

with each group of metrics respectively to see the relationship between the 

predictors and the response variable. With less predictor, the model could be 

easier, and the connection between predictor variables and response variable 

may be also easier to construct. No matter whether we use one group of the 

metrics or all metrics to fit a predictive model, we can always remove 

irrelevant attributes before we execute the prediction. Statistical methods of 

Mallows Cp statistics, Akaike Information Criterion and Bayes Information 

Criterion [24] can be good measurement of variable selection. Principal 

Components built-in algorithm in some machine learning software package 

is also helpful to perform attribution selection and obtain robust principal 

variables. All above methods can be used in data pre-processing section to 

improve the prediction performance for our data. 
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Appendix A Tables and Matrices 

Classes CM1 JM1 KC1 KC4 

  
Time 

Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

a  0-4.5 16 0-10.5 293 0-7.5 65 0-14.5 12 

b  4.5-11.5  15 10.5-
29.5 

305 7.5-16.5  58 14.5-
17.5  

8 

c  11.5-
15.5 

7 29.5-
41.5 

268 16.5-
21.5 

57 17.5-
20.5 

11 

d 15.5-
17.5  

23 41.5-
55.5 

245 21.5-
28.5  

66 20.5-
29.5  

14 

e 17.5-51 14 55.5-
131 

239 28.5-
116 

40 29.5-89 12 

Classes PC1 PC3 PC4 
  

  
Time 

Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

  a  0-1.5 11 0-21.5 33 0-10.5 38 
  b  1.5-4.5  12 21.5-

30.5  
33 10.5-

40.5  
33 

  c  4.5-9.5 11 30.5-
35.5 

30 40.5-
54.5 

32 

  d 9.5-13.5  15 35.5-
47.5  

32 54.5-
56.5  

40 

  e 13.5-74 14 47.5-99 32 56.5-91 33 
  Table 13 Instances in Each Bin for 5Bin 

 

Classes CM1 JM1 KC1 KC4 

  
Time 

Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

a 0-15 38 0-34.5 684 0-18.5 141 0-20.5 31 

b 16-51 37 34.5-
131 

666 18.5-
100 

145 20.5-89 26 

Classes PC1 PC3 PC4 
  

  
Time 

Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

Time 
Interval 
(Weeks) 

# of 
Instances 

  a 0-7.5 32 0-32.5 75 0-48 88 
  b 7.5-74 31 32.5-99 85 49-91 88 
  Table 14 Instances in Each Bin for 2Bin 
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CM1 JM1 

  Confusion Matrix Confusion Matrix 
Classes a b c d e a b c d e 

a 11 3 0 2 0 144 68 37 14 30 
b 4 6 0 4 1 58 148 46 23 30 
c 1 1 4 1 0 35 52 114 36 31 
d 0 2 0 18 3 30 43 37 116 19 

e 3 1 0 5 5 35 36 35 22 111 

KC1 KC4 
  Confusion Matrix Confusion Matrix 
Classes a b c d e a b c d e 

a 23 14 14 6 8 7 3 1 1 0 
b 15 22 10 9 2 2 6 0 0 0 
c 12 6 24 11 4 3 1 3 4 0 
d 7 5 13 36 5 1 0 4 4 5 

e 6 5 8 9 12 1 1 1 4 5 

PC1 PC3 
  Confusion Matrix Confusion Matrix 
Classes a b c d e a b c d e 

a 4 1 1 2 3 4 1 1 2 3 
b 0 5 2 2 3 0 5 2 2 3 
c 2 1 3 2 3 2 1 3 2 3 
d 0 1 1 12 1 0 1 1 12 1 

e 0 3 3 3 5 0 3 3 3 5 

PC4 
       Confusion Matrix 
     Classes a b c d e 
     a 17 5 4 10 2 
     b 2 21 6 4 0 
     c 4 8 12 4 4 
     d 8 3 1 19 9 
     e 4 3 1 9 16 
     Table 15 Confusion Matrices for 5Bin 

 
 
 
 
 
 
 
 



43 

 
 

 
CM1 JM1 KC1 KC4 

  Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix 
Classes a b a b a b a b 

a 31 7 474 210 99 42 25 6 

b 9 28 199 467 45 100 10 16 

PC1 PC3 PC4 
  Classes a b a b a b 
  a 19 13 38 37 59 29 
  b 11 20 26 59 31 57 
  Table 16 Confusion Matrices for 2Bin 
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