
Graduate Theses, Dissertations, and Problem Reports

2010

Prediction for Resolution Time of Softwar e Defect Prediction for Resolution Time of Softwar e Defect

Da Wang
West Virginia University

Follow this and additional works at: https:/ /researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Wang, Da, "Prediction for Resolution Time of Softwar e Defect" (2010). Graduate Theses, Dissertations,
and Problem Reports. 3072.
https:/ /researchrepository.wvu.edu/etd/3072

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies t o your use. For other uses you must obtain
permission fr om the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection b y an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

Prediction for Resolution Time of Software Defect

Da Wang

Problem Report submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Bojan Cukic, Ph.D., Chair
Tim Menzies, Ph.D.
James Harner, Ph.D.

Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia

2010

Keyword: Software Engineering, Data Mining, Random Forest, Prediction

Copyright 2010 Da Wang

ABSTRACT

Prediction for Resolution Time of Software Defect

Da Wang

In practical software development projects, solving test issues efficiently

during Software Development Life Cycle is critical to release software

products on time. Different test environments, test resources and test

requirements could result in different outcomes. Therefore, getting accurate

prediction of the software defects’ resolution time could be beneficial to the

practical projects. .

In our study, data mining techniques offer great promise in prediction of

software defects’ resolution time. Our research is conducted based on the

NASA Metrics Data Program (MDP). We first calculate the resolution time

for available projects. Using unsupervised discretization methods, we split

resolution time into certain interval as response variable. Then, investigating

the relationship between metric properties and time intervals, we fit a model

that attempts to produce prediction on resolution time. Experiments and

analysis successfully demonstrate the feasibility of our approach.

iii

ACKNOWLEDGMENTS

I would like to acknowledge my family for their support during this time. In addition, I

would like to thank my advisor Dr. Bojan Cukic and my advisory committee for their

continual advice and encouragement.

iv

Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1
1.2 GOAL ... 2
1.3 CONTRIBUTION ... 2
1.4 ORGANIZATION ... 2

CHAPTER 2 RELATED WORKS ... 4

2.1 PREDICTION IN SOFTWARE ENGINEERING .. 4
2.2 METRICS DATA PROGRAM ... 6
2.3 DATA MINING TECHNIQUES ... 9
2.3.1 PRE-PROCESSING THE DATA ... 9
2.3.2 MINING THE DATA ... 11
2.3.3 INTERPRETING THE RESULTS ... 12
2.4 CLASSIFICATION AND RANDOM FORESTS ... 13
2.5 EVALUATION OF CLASSIFICATION RESULTS .. 15
2.5.1 ACCURACY .. 16
2.5.2 PRECISION AND RECALL .. 17
2.5.3 ROC CURVES .. 17

CHAPTER 3 EXPERIMENT AND ANALYSIS ... 20

3.1 EXPERIMENT DESIGN ... 20
3.2 DISTRIBUTION OF RESPONSE VARIABLE (RESOLUTION TIME) 21
3.3 EQUAL FREQUNCY VS EQUAL WIDTH ... 23
3.4 3 BIN EQUAL FREQUENCY FOR ALL DATASETS ... 26
3.5 5BIN EQUAL FREQUENCY VS 3BIN VS 2BIN ... 30
3.6 DISCUSSION ... 33

CHAPTER 4 SUMMARY AND FUTURE WORK .. 36

4.1 SUMMARY ... 36
4.2 FUTURE WORK ... 37

REFERENCE .. 39

v

APPENDIX A TABLES AND MATRICES ... 41

vi

List of Figures

FIGURE 1 CLASSIFICATION PROCESS .. 13

FIGURE 2 CONFUSION MATRIX .. 16

FIGURE 3 BOXPLOTS OF RESOLUTION TIME ... 23

FIGURE 4 ROC CURVES FOR 3BIN ... 29

FIGURE 5 ROC CURVES FOR 5BIN ... 31

FIGURE 6 ROC CURVES FOR 2BIN ... 32

FIGURE 7 PERFORMANCE COMPARISON BOXPLOT ... 35

vii

List of Tables

TABLE 1 DATASETS USED IN THIS STUDY.. 7
TABLE 2 METRICS USED IN THIS STUDY [1] .. 9
TABLE 3 SUMMARY OF RESPONSE VARIABLE WEEKS .. 22
TABLE 4 EQUAL WIDTH TABLE 5 EQUAL FREQUENCY .. 24
TABLE 6 3BIN EQUAL WIDTH RESULT ... 25
TABLE 7 3BIN EQUAL WIDTH ... 25
TABLE 8 3BIN EQUAL FREQUENCY RESULT ... 25
TABLE 9 3BIN EQUAL FREQUENCY .. 26
TABLE 10 INSTANCES IN EACH BIN FOR 3BIN .. 27
TABLE 11 CONFUSION MATRICES & RESULTS FOR 3BIN ... 28
TABLE 12 PERFORMANCE COMPARISON .. 30
TABLE 13 INSTANCES IN EACH BIN FOR 5BIN .. 41
TABLE 14 INSTANCES IN EACH BIN FOR 2BIN .. 41
TABLE 15 CONFUSION MATRICES FOR 5BIN .. 42
TABLE 16 CONFUSION MATRICES FOR 2BIN .. 43

1

Chapter 1 Introduction

1.1 Motivation

In practical software development projects, controlling the Software

Development Life Cycle (SDLC), especially the software test period, and

then release the software on time would be a difficult challenge for project

managers. Different test environments, test resources and test requirements

could result in different outcomes for software test period, thereby the whole

SDLC. Therefore, getting accurate prediction of the software defects’

resolution time could be beneficial to the practical projects..

In this study, we want to investigate proper methodology to generate

accurate prediction of resolution time based on metrics properties, such as

the number of operators in a modul, the number of decision points, design

density, design complexity, and other attributes, in our datasets.

Data mining techniques have been used in software engineering area for

many years. In software quality assurance area, the fault-prone module

prediction is one of the topics that many researchers are interested in [1].

Module metrics have been successfully used for predicting fault-prone

modules. A study of data mining in module metrics, which is the topic of our

research, will be effective for predicting resolution time of software defects

accurately.

2

1.2 Goal

Based on previous motivation, the goal of this study is to provide evidence

that we could get an accurate prediction for resolution time of software

defects after implementing data mining techniques in module metric datasets.

We do not have related literature that can be used as reference to guide our

research. Thus we need to design our own experiments and validate the

assumption in our models. After comparing the performance of different

models we can confirm an optimal solution to predict resolution time of

software defects accurately.

1.3 Contribution

To build prediction model about software defects’ resolution time, a series

of experiments studying on NASA Metrics Data Program (MDP) are

conducted in this thesis to find the potential relationship between software

metrics and defect resolution time. The result shows that with appropriate

algorithm and methodology we may achieve a good model to predict the

resolution time on the basis of metrics data.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 presents a literature

review, which covers the usage of prediction in software engineering area as

well as the general information about the data sets in MDP depository and

general idea of data mining techniques. It also mentions the classification

method, Random Forest algorithm and the evaluation of classification results,

3

which are utilized in this study. Chapter 3 illustrates the experiment result

and conducts the evaluation and discussion on the result. Finally, Chapter 4

provides the conclusion and discusses the methods that can be implemented

to further optimize the analysis.

4

Chapter 2 Related Works

2.1 Prediction in Software Engineering

As more data are gathered, with the amount of data doubling every three

years, data mining is becoming a significant important tool to transform data

into information. Although M. Mendonca and N. L. Sunderhaft have applied

data mining techniques on software engineering data during 1990s [2], the

idea of using data mining skills has attracted a great deal of interest recently

within software engineering. We could dig into software engineering data

(such as code bases, execution traces, historical code changes, and bug

databases) to find out a large amount of information about a software

project’s status, progress, and evolution. Using this wealth of information

could help us on programming, static defect detection, testing, debugging,

and maintenance tasks in software engineering.

In software engineering field, many different data mining techniques (such

as association rules, classification, and clustering) have been utilized to

analyze the data [3].

Studying association rules that identify library components that are often

used by application components could be helpful in discovering library reuse

patterns in user-selected applications [4]. In 1999, Amir Michail proposed to

explore data mining techniques which are designed to find patterns in vast

collections of data. The association rules can help a developer discover

patterns for reusing library components. Moreover, these rules can be used

5

to warn developers automatically when their application reuses library

components in a different way from others’.

Classifying data could help do prediction in software engineering field. Amir

Michail and Tao Xie used a tool-based approach to help users avoid bugs in

GUI applications [5]. In this approach, it incorporates Distance Weighted

Nearest Neighbor Learner in the tool to generate bug prediction (bug or not

bug) automated. This idea makes sure the user could use the application

normally and report defect that they encounter to prevent anyone from

encountering those defects again.

Software failure prediction could also be executed by cluster analysis of

execution profiles [6]. Andy Podgurski, et al, [7, 8], suggested that using

cluster filtering together with stratified random sampling could estimate

software reliability efficiently. William Dickinson, et al, [6], evaluated the

effectiveness of this method for finding failures. The results show that

cluster filtering is a more effective approach for identifying failures in

populations of operational executions than simple random sampling.

Besides association rules, classification, and clustering, other methods are

also widely used in software engineering area, such as texting mining used

for static code analysis [9], and texting mining used for bug report analysis

[10].

6

2.2 Metrics Data Program

The data sets used in this study come from the NASA Metrics Data Program

(MDP) data repository [22]. Thirteen projects shown in Table 1 are used in

this study. Same data sets are available through the PROMISE [25]

repository too.

These data sets provide module metrics that describe 13 different NASA

projects. In this study, since we need to predict the defect resolution time

period for each project, the projects without resolution time would be

removed. Projects MC1, MC2 and PC5, which contain no date data, are not

used. Moreover, the number of faulty modules in projects KC3, MW1 and

PC2 are 25, 27 and 22 instances respectively, too small sample to predict

result correctly. We ignore these three projects too.

The remaining seven data sets contain defect_id, entry_type and entry_date

attributes. We calculate the resolution time for each defect and divide the

values by seven to generate a new attribute weeks as predicted variable. We

confirm that only the longest resolution time exists for each module, and

then remove module_id, defect_id, entry_type and entry_date metrics prior

to modeling. After removing and replacing these attributes, KC1 has 22

attributes that can be used as predictor variables, JM1 has 25, and the other

five data sets have 44 metrics.

Reverse engineering tool calculates metrics from flowcharts [23], dividing

the module metrics into three groups: design, code and other metrics (see

table 2) [1]. We use all the metrics in our study, regardless of the metric

7

groups. In future work, we may study metric groups separately. It could lead

to further research on the relationship between metrics properties and our

response variable.

Data Modules %

Faulty

of Faulty

Modules

of FM

with

Resolution

Time

Project Description Lang.

CM1 505 16.04% 81 75 Spacecraft instrument C
KC1 2407 12.17% 293 286 Storage management for

receiving/processing
ground data

C++

KC4 125 48% 60 57 A ground-based
subscription server

Perl

PC1 1107 6.59% 73 63 Flight software from an
earth orbiting satellite

C

PC3 1563 10.23% 160 160 Flight software for earth
orbiting satellite

C

PC4 1458 12.24% 178 178 Flight software for earth
orbiting satellite

C

JM1 10878 18.34% 1995 1350 A real time predictive
ground system

C

MC2 161 32.30% NA No date
data

A video guidance system C++

MC1 9466 0.64% NA No closed
date for
faults

A combustion experiment
of a space shuttle

C(C++)

PC5 17186 3.00% NA No date
data

A safety enhancement of a
cockpit upgrade system

C++

KC3 458 6.3% 29 25 Storage management for
ground data

Java

MW1 433 6.24% 27 27 A zero gravity experiment
related to combustion

C

PC2 5589 0.393% 22 22 Dynamic simulator for
attitude control systems

C

Table 1 Datasets Used in This Study

8

group metrics description or formula

code

PARAMETER_COUNT Number of parameters to a given module
NUM_OPERATORS:N1 The number of operators contained in a module
NUM_OPERANDS:N2 The number of operands contained in a module
NUM_UNIQUE_OPERATORS:μ1 The number of unique operators contained in a module
NUM_UNIQUE_OPERANDS:μ2 The number of unique operands contained in a module
HALSTEAD_CONTENT:μ The halstead length content of a module μ = μ1 + μ2
HALSTEAD_LENGTH:N The halstead length metric of a module N = N1 + N2
HALSTEAD_LEVEL:L The halstead level metric of a module L = 2*μ2/(μ1*N2)
HALSTEAD_DIFFICULTY:D The halstead difficulty metric of a module D = 1/L
HALSTEAD_VOLUME:V The halstead volume metric of a module V = N * log2(μ1 + μ2)
HALSTEAD_EFFORT:E The halstead effort metric of a module E = V/L
HALSTEAD_PROG_TIME: T The halstead programming time metric of a module T = E/18
HALSTEAD_ERROR_EST: B The halstead error estimate metric of a module B = E^(2/3)/1000
NUMBER_OF_LINES Number of lines in a module
LOC_BLANK The number of blank lines in a module
LOC_CODE_AND_COMMENT:NCSL
OC

The number of lines which contain both code and comment in a
module

LOC_COMMENTS The number of lines of comments in a module

LOC_EXECUTABLE
The number of lines of executable code for a module (not blank or
comment)

PERCENT_COMMENTS Percentage of the code that is comments
LOC_TOTAL The total number of lines for a given module

design

EDGE_COUNT:e
Number of edges found in a given module control from one module to
another

NODE_COUNT:n Number of nodes found in a given module
BRANCH_COUNT Branch count metrics
CALL_PAIRS Number of calls to other functions in a module
CONDITION_COUNT Number of conditionals in a given module
CYCLOMATIC_COMPLEXITY: v(G) The cyclomatic complexity of a module v(G) = e − n + 2
DECISION_COUNT Number of decision points in a given module
DECISION_DENSITY Condition_count/Decision_count
DESIGN_COMPLEXITY:iv(G) The design complexity of a module
DESIGN_DENSITY Design density is calculated as: iv(G)/v(G)
ESSENTIAL_COMPLEXITY:ev(G) The essential complexity of a module
ESSENTIAL_DENSITY Essential density is calculated as: (ev(G)−1)/(v(G)−1)
MAINTENANCE_SEVERITY Maintenance Severity is calculated as: ev(G)/v(G)

MODIFIED_CONDITION_COUNT
The effect of a condition affect a decision outcome by varying that
condition only

MULTIPLE_CONDITION_COUNT Number of multiple conditions that exist within a module

PATHOLOGICAL_COMPLEXITY
A measure of the degree to which a module contains extremely
unstructured constructs

9

others

NORMALIZED_CYLOMATIC_COMP
LEXITY v(G)/NUMBER_OF_LINES
GLOBAL_DATA_COMPLEXITY:gdv(
G)

the ratio of cyclomatic complexity of a module’s structure to its
parameter_count

GLOBAL_DATA_DENSITY Global Data density is calculated as: gdv(G)/v(G)
CYCLOMATIC_DENSITY v(G)/NCSLOC

Table 2 Metrics used in this study [1]

2.3 Data Mining Techniques

Generally, data mining (sometimes called knowledge discovery [11]) is the

process of analyzing data from different dimensions and summarizing it into

useful information. Although there are many different descriptions for this

process, rough procedure can be illustrated as pre-processing the raw data,

mining the data, and interpreting the results.

2.3.1 Pre-Processing the Data

The raw data in the real world is noisy, that is why we need pre-processing

procedure to provide quality data, and then to achieve quality mining results

and quality decisions. The preparation of incomplete, inconsistent and noisy

data comprises the majority of the work in a data mining application,

probably 90%. The tasks in data pre-processing include data cleaning,

integration, transformation, reduction and discretization.

At integration step, data from multiple sources are integrated and combined.

Detecting and resolving data value conflicts, as well as removing duplicates

and abundant data are the key tasks for this part.

10

At transformation step, data normalization, aggregation, generalization and

other techniques are applied. Normalization refers to scaling attribute values

to fall within a specified range. Aggregation indicates moving up in the

concept hierarchy on numeric attributes and generalization stands for

moving up in the concept hierarchy on nominal attributes.

At reduction step, the number of attribute, attribute values and tuples is

reduced in order to obtain a smaller volume of data set but yet produce the

same or similar analytical results. Attribute subset selection can be used to

choose a minimum set of attributes (features) that is sufficient for the data

mining task. Sampling can also be used to select a representative subset of

the data, but simple random sampling method may have poor performance in

conjunction with skewed data.

At descretization step, the continuous features or attributes of data set are

converted into descretized or nominal features, since some data mining

algorithms only accept categorical attributes. Typically, there are two types

of discretization, unsupervised discretization in which the class variable is

not used and supervised discretization, in which the value of class variable is

used. Unsupervised discretization involves binning methods, wherein equal-

interval (equal width) binning splits the whole range of numbers in intervals

with equal size while equal-frequency (equal depth) binning uses intervals

containing equal number of values. Supervised discretization relates to

entropy (information)-based discretization which recursively splits intervals

until the information gain of the resulting split “tells” it to stop.

11

2.3.2 Mining the data

The goal of data mining is to discover useful or interesting models for the

user. Commonly, it involves four types of tasks [11]: association rules,

regression model, classification and clustering.

Association rule mining, proposed by Agrawal et al, in 1993 [12], is data

mining model studied extensively by the database and data mining

community, which assumes all data are categorical. Normal association rule

mining does not have any target. It will find all possible rules which exist in

data and satisfy a user-specified minimum support and a user-specified

minimum confidence at the same time.

Regression is the best-known statistical technique that the data mining

community utilizes. Basically, regression is to develop a mathematical

model that fits the numeric data set. The simplest form of regression, linear

regression, uses the model of a straight line (y = ax + b) and determines the

suitable values for a and b to predict the value of y based upon a given value

of x. Other advanced methods, such as logistic regression, allow the use of

more complex models, such as a logistic function ze
xf

1
1)(

. The major

limitation of this technique is that it only works well with continuous

quantitative data.

Classification is a data mining technique used to predict categorical class

labels for data instances, and then classify data (construct a model) based on

training set and the values (class labels) in a classifying attribute and use it

12

in classifying new data. This paper is mainly focus on the usage of

classification technique in software metrics, so the detail information about

how to construct the classification models and the way to use these models

would be discussed later in this chapter.

Clustering is unsupervised classification with no predefined classes. From a

machine learning perspective, clusters correspond to hidden patterns and

cluster analysis is to group a set of data objects into clusters, the search for

clusters is unsupervised learning. K-means clustering is one of the simplest

methods of cluster analysis, which intends to partition all data objects into k

clusters in which each object belongs to the cluster with the nearest mean.

2.3.3 Interpreting the Results

The last step of discovering information from data is to interpret the data

mining results and verify the patterns produced by all kinds of algorithms we

used in the experiment. Not all results found by the data mining algorithms

are positive, which requires us to use some statistical methods or other

approaches to evaluate them. Commonly used performance measures for the

evaluation of data mining algorithms include, but not limited to, Accuracy,

Precision/Recall, Receiver Operating Characteristic (ROC) Curve and Area

under the Curve (AUC), which will be covered later in this chapter.

13

2.4 Classification and Random Forests

Unlike clustering, classification is a supervised machine learning method. It

builds a concise model of the distribution of class labels in terms of predictor

features. We can state the problem as follows: given training data T = (yn,

xn), n = 1, … , N, where the yn are the responses and xn are predictors,

produce a classifier C: X Y. This classifier will map any object x ∈ X to

its true classification label y ∈ Y defined by some unknown mapping M: X

 Y [13][14]. The process can be seen in Figure 1.

Figure 1 Classification Process

The most widely used classification algorithms include neural network, k-

nearest neighbors, naïve Bayes, boosting and decision tree. In our study, we

use Random Forest (RF), an ensemble classifier of decision trees, developed

by Leo Breiman and Adele Cutler as the main method. It demonstrates good

performance on software engineering studies [15]. Random Forest is a

14

classifier consisting of a collection of tree structured predictors, where each

tree depends on independent identically distributed random vectors [16].

Each tree constructs as following strategy:

1. Draw T bootstrap samples from the original data. For each sample,

grows a tree;

2. Choose m -- number of variables used to split each node. m << M,

where M is the number of variables in the classifier. m is a constant

while growing the tree;

3. When growing a tree at each node, select m variables at random and

use them to find the best split. Grow the tree to a maximal extent

without pruning.

4. To classify or predict new data, collect the votes from every tree in

the forest and then use majority voting to decide on the class label.

The RF uses randomly selected inputs or combinations of inputs at each

node to grow each tree. The resulting forests produce highly accurate results

for many data sets in an efficient way. It comprises effective method to

estimate missing data and maintain accuracy when large portion of data are

missing. It can also balance error in class population unbalanced data sets.

The RF is more robust to noise and outliers than many other methods. Thus,

the classification accuracy of random forests is more significant over other

methods in larger data sets [15]. It can handle large data sets containing

15

thousands of input variables without variable deletion, making it a good

choice for our study on software engineering metrics data.

2.5 Evaluation of classification results

As we generate a suitable classification for the original data, we need to test

whether this classification is the best fit for the data. Thus, we need to

introduce more evaluation approaches to prove that our algorithms bring us a

correct and meaningful interpretation for the original information. Normally,

we can use Accuracy, Precision/Recall, Receiver Operating Characteristic

(ROC) Curve and Area under the Curve (AUC) as our evaluation methods.

Before we introduce the evaluation methods, we need to explain confusion

matrices. In the field of artificial intelligence, confusion matrix is used to

represent the instances showing whether the system is confusing among

different classes. Each column of the confusion matrix indicates the

components in a predicted class, while each row indicates the components in

a true class. With the help of confusion matrix, we may observe directly that

how many correct predictions we have made and how many failures we have

made. Figure 2 shows us an example of confusion matrix. Here, True

Positive (TP) and True Negative (TN) are correct classifications. The

number of True Positive is the number of items correctly predicted as

belonging to the positive class, and the number of True Negative is the

number of items correctly predicted as belonging to the negative class. False

Positive (FP) occurs when the outcome is incorrectly labeled as positive

when it is not and False Negative (FN) occurs when the outcome is

incorrectly labeled as negative when it is actually positive.

16

In statistical null hypothesis statement, False Negative is known as Type I

errors which reject the null hypothesis given that it is actually true. Also,

False Positive is known as Type II errors which are failing to reject the null

hypothesis given that the alternative hypothesis is actually true.

Figure 2 Confusion Matrix

2.5.1 Accuracy

Accuracy is the degree of closeness of a measured or calculated quantity to

its actual (true) value [13]. For confusion matrix, the accuracy is all true

results out of the whole population. It could be determined by following

equation:

).....(.
)...(.

NegativeFalsePositiveFalseNegativeTruePositiveTrueofnumber

NegativeTruePositiveTrueofnumber
Accuracy

On most problems, obtaining Accuracy is easy. However, 99% accuracy

cannot secure a good performance, while 10% accuracy does not necessarily

17

lead to a bad prediction. It depends on the problem and data, in which other

elements may count on higher weight.

2.5.2 Precision and Recall

In statistical classification task, we also use Precision and Recall to evaluate

the basic tradeoff. Precision can be considered as a measure of exactness

while Recall is a measure of completeness. In definition, the Precision for a

class is the number of true positive divided by the total number of

observations labeled as belonging to the positive class, i.e. the sum of true

positive and false positive. Recall is defined as the number of true positive

over the total number of observations that truly belong to positive class, i.e.

the sum of true positive and false negative. They can be demonstrated by

following equations:

)...(.
...Pr

PositiveFalsePositiveTrueofnumber

PositiveTrueofnumber
ecision

)...(.
...Re

NegativeFalsePositiveTrueofnumber

PositiveTrueofnumber
call

2.5.3 ROC Curves

Receiver Operating Characteristic (ROC) curve is useful for organizing

classifiers and provides intuitive way to visualize their performance. In

18

addition to a useful performance graphing method, it has properties that

make itself useful when learning in the presence of unbalanced classes.

ROC curves are two dimensional graphs which plot True Positive Rate (TP

Rate) as a function of False Positive Rate (FP Rate) across all possible

experimental threshold settings. They describe the relative tradeoffs between

benefits (True Positive) and costs (False Positive). The True Positive Rate

(also called Probability of Detection pd and Recall) and False Positive Rate

(also called Probability of False Alarm pf) of the classifier can be estimated

as follows:

Positivetotal

PositiveTrueofnumber
callpdRatePositiveTrue

.
...Re..

Negativetotal

PositiveFalseofnumber
pfRatePositiveFalse

.
.....

A typical ROC curve will have a concave shape that starts from point (0, 0)

and ends at (1, 1). Point (0, 1) represents perfect classification. Informally,

one point in ROC curve is better than another if it has higher TP Rate and

lower FP Rate.

The area under the ROC curve, abbreviated AUC [17], is a common method

to numerically evaluate the performance of different classifier. Since the

AUC is a portion of the area of the unit square, its value should fall between

0 and 1. However, since a random guess can produce a diagonal line

between (0, 0) and (1, 1), which has an area of 0.5, the realistic classifier

19

should have an AUC greater than 0.5. Also, a well performed ROC curve for

a classifier should lie on the left side of the diagonal line between (0, 0) and

(1, 1).

Within the past two decades, ROC curves and AUC have become the

standard tools for analysis and comparison of classifiers for binary

classification [18]. The ROC curves conveniently display the tradeoff

between TP Rate and FP Rate for two class problems. Thus, when we are

dealing with multi-classes problems, we need to make an extension to the

ROC analysis. One method for handling multi-classes is to produce n

different ROC curves, one for each class [19] [20]. Since AUC is a measure

of the discriminability of a pair of classes, the multi-classes’ problem will

introduce the issue of combining multiple pair wise values, which make it

more complicated. Thus, we may calculate AUCs for multi-class problems

by generating ROC curve for each class in turn, measuring the area under

each curve, and then summing the AUCs weighted by the data:

)(cipAUCAUC citotal , where AUCci is the AUC for each class and p(ci) is

the probability of this class [19].

20

Chapter 3 Experiment and Analysis

3.1 Experiment Design

We build our predictive models using Random Forest algorithm from Weka

package to predict software defects’ resolution time. Recall that we use 7

datasets from Metrics Data Program (CM1, JM1, KC1, KC4, PC1, PC3 and

PC4), each containing three groups of metrics: design, code and all. We use

all the metrics in our study, regardless of the metric groups. The predicted

(response) variable is weeks for each defect, which is calculated from getting

resolution days by subtracting the opened_time from closed_time in

entry_date metric and then dividing the resolution days by 7. We confirm

that only the longest resolution time exists for each faulty module, and then

remove the instances without a weeks attribute, and module_id, defect_id,

entry_type and entry_date metrics prior to modeling.

We use 10-fold cross validation to fit the predictive model while using

Random Forest learner with 500 trees (the default is 10 trees in Weka, an

insufficient number based on prior experience). 90% of the data will work as

training set and 10% as testing set. We will use Accuracy, Precision/Recall

and ROC curves to measure the performance of decision models. For each

ROC curve, the AUC is calculated using the Trapezoid rule. Since we need

to deal with models of multi-classes, we generate ROC curve for each class

of each data set to visualize the results. The evaluation methods include, but

not limited to, weighted average AUC [19]. Recall that weighted average

21

AUC is calculated by:)(cipAUCAUC ciweighted , where AUCci is the AUC

for each class and p(ci) is the probability of this class [19].

In the remainder of this section, we first briefly analyze the response

variable, weeks, in our study, and then we execute experiments to determine

a suitable discretization method for our data sets. Next, we compare the

performance for each model we fit based on Accuracy, ROC curves and

AUC. Finally, we conclude the optimal model that best fit most of our

datasets.

3.2 Distribution of Response Variable (Resolution Time)

The purpose of this study is to fit a model to help predict the resolution time

for a specific software engineering project. The best way to help managers

control the project is to tell them how many days the engineers need to finish

the test procedure. To predict the exact days that we need to solve all defects

in a module or project, however, cannot be precise. Thus, we expand the

response variable from days to weeks as resolution time and improve the

precision of prediction.

After generating the response variable weeks to our dataset, we make a

summary of this attribute, see Table 3. The unit for each cell is weeks. The

minimum resolution time for one module in dataset PC4, for example, is 1

week, and the maximum is 91 weeks. This table also gives us the 1st and 3rd

quartiles, as well as the median and mean. Median clarifies the middle value

of resolution time while mean exhibits the average. 1st and 3rd quartiles show

22

the values on the rank of ¼ and ¾ from minimum. To visualize the

distribution, we use box plots to show this response variable.

 CM1 JM1 KC1 KC4 PC1 PC3 PC4
Min 0 0 1 5 1 6 1
1st Q 5 15 11 15 3 23 12
Median 14 34 20 20 7 33 48
Mean 15.03 36.84 20.03 24.47 11.86 35.31 39.12
3rd Q 16 50 27 25 11 41 55
Max 51 131 116 89 74 99 91

Table 3 Summary of Response Variable weeks

From the box plots we may see that there are many statistical outliers in all

datasets except PC4. Also, datasets CM1 and PC4 show more severe

skewness.

23

Figure 3 Boxplots of Resolution Time

3.3 Equal Frequncy vs Equal Width

Since we need to convert the variable weeks into nominal features, we have

to implement a suitable unsupervised discretization method for our datasets.

Recall that unsupervised discretization involves binning methods, wherein

equal-interval (equal width) binning splits the whole range of numbers in

intervals with equal size while equal-frequency (equal depth) binning uses

intervals containing equal number of values. Because almost all datasets we

are studying involve many statistical outliers which bias the mean value,

equal width method would generate bins with major portion of the instances

24

and bins with few instances. The consequence is that we may get high

accuracy of prediction for one class but poor result for other classes.

We execute an experiment on dataset PC1 to compare the results of equal

width and equal frequency discretization method. For the sake of

convenience, we choose 3 as our bin number. Then we discretize the

response variable weeks in both equal width and equal frequency methods.

Table 4 and 5 shows the discretization results. The minimum and maximum

resolution times for dataset PC1 are 0 week and 74 weeks, respectively. The

range is 74 weeks. For 3bin equal width method, we divide the range by 3 to

make sure each bin contains the same width, and then we get 3 intervals of 0

to 25.3 weeks, 25.3 to 49.6 weeks, and 49.6 to 74 weeks. For 3bin equal

frequency method, we make sure each bin contains the same number (or

close number) of instances. Thus we count the total instance number and

divide the total instance by 3 to fit suitable intervals.

Time

Interval(Weeks)
of

Instances

Time
Interval(Weeks)

of
Instances

a 0-25.3 53

a 0-3.5 20
b 25.3-

49.6
8

b 3.5-10.5 22

c 49.6-74 2

c 10.5-74 21

Table 4 Equal Width Table 5 Equal Frequency

We may see that Class a of 3bin equal width method contains 84% of the

total instances, and the other two only contain 16%. On the contrary, 3bin

equal frequency method assigns almost the same number of instances to

each interval. Then, we use the Time Interval (weeks) as our response

25

variable to execute Random Forest to predict how many weeks should be

used to resolve software defects.

For 3bin equal width method, we calculate a result of Accuracy, Precision,

Recall and AUC in Table 6 and a confusion matrix in Table 7. For 3bin

equal frequency method, we produce a result of similar statistics in Table 8

and 9.

Class Accuracy

(%)
TP Rate FP Rate Precision Recall AUC

a 1 0.9 0.855 1 0.674
b 0.125 0 1 0.125 0.705
c 0 0 0 0 0.275
Average 85.71 0.375 0.3 0.618 0.375 0.551

Table 6 3bin Equal Width Result

Confusion Matrix

 a b c
a 53 0 0
b 7 1 0
c 2 0 0

Table 7 3bin Equal Width

Class Accuracy

(%)
TP Rate FP Rate Precision Recall AUC

a 0.45 0.233 0.474 0.45 0.71
b 0.545 0.195 0.6 0.545 0.671
c 0.571 0.286 0.5 0.571 0.711
Average 52.381 0.522 0.238 0.525 0.522 0.697

Table 8 3bin Equal Frequency Result

26

Confusion Matrix

 a b c
a 9 5 6
b 4 12 6
c 6 3 12

Table 9 3bin Equal Frequency

From the result tables and confusion matrices, we can see that although 3bin

Equal Width method yields a better accuracy, it only predicts one correct

instance for Class b and c. Thus, the 85% prediction accuracy cannot lead to

any meaningful conclusion for our study. Also, the weighted average AUC

for 3 classes of 0.55 is only a little higher than a realistic threshold of 0.5,

which further proves that the performance of 3bin Equal Width is really bad.

Therefore, for the subsequent experiments, we use Equal Frequency as our

discretization methodology.

For the first experiment in our study, we discretize the response variable into

3 bins to verify either Equal Width method or Equal Frequency method is

suitable for our model. However, how many bins are suitable for our study is

still unknown. Next, we need to implement experiments for all datasets

using equal frequency method and then to compare the performance of

prediction on different discretized response.

3.4 3 bin Equal Frequency for All Datasets

The narrower each time interval is, the more meaningful our prediction can

be. Thus, we care about not only the performance of each model, but also the

prediction detail each model can give us. In this study, we discretize the

response variable (weeks) into 3 bins and execute the experiments for all

27

datasets first. The following tables and graphs demonstrate our important

statistics and results.

Table 10 shows the discretized response variable for each data set. Table 11

exhibits the confusion matrix and performance result for each data set.

Figure 4 displays the ROC curve for each data set.

Classes CM1 JM1 KC1 KC4

Time

Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

a 0-7.5 24 0-27.5 455 0-15.5 94 0-17.5 20

b 7.5-17 37 27.5-
42.5

439 15.5-
22.5

92 17.5-
21.5

20

c 18-51 14 42.5-
131

456 22.5-
116

100 21.5-89 17

Classes PC1 PC3 PC4

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

 a 0-3.5 20 0-27.5 54 0-28.5 60
 b 3.5-10.5 22 27.5-

37.5
51 28.5-

54.5
43

 c 10.5-74 21 37.5-99 55 54.5-91 73
 Table 10 Instances in Each Bin for 3Bin

From Table 11, we can see that all data sets, except PC3, demonstrate

accuracy over 50%. That means more than half of the instances are classified

into correct classes. Both CM1 and KC4 achieve accuracy of 65%. Also,

weighted average AUC over 0.7 and ROC curves close to upper axes prove

that 3Bin Equal Frequency offers a sound performance on prediction of

software resolution time for these data sets. The results of accuracy and

AUC are consistent of inconsistent.

28

CM1 JM1 KC1

Confusion Matrix Result Confusion Matrix Result Confusion
Matrix Result

Classes a b c Accuracy
(%)

AUC a b c Accuracy
(%)

AUC a b c Accuracy
(%)

AUC

a 18 5 1 0.8 a 278 100 77 0.79 a 45 27 22 0.67
b 7 28 2 0.78 b 101 221 117 0.72 b 35 43 14 0.71
c 4 7 3 0.79 c 93 103 260 0.76 c 20 16 64 0.8

Weighted Average 65.333 0.79 Weighted Average 56.889 0.76 Weighted
Average

53.147 0.73

KC4 PC1 PC3

Confusion Matrix Result Confusion Matrix Result Confusion
Matrix Result

 a b c Accuracy
(%)

AUC a b c Accuracy
(%)

AUC a b c Accuracy
(%)

AUC

a 15 5 0 0.84 a 9 5 6 0.71 a 21 16 17 0.61
b 7 11 2 0.78 b 4 12 6 0.67 b 15 18 18 0.57
c 2 4 11 0.84 c 6 3 12 0.71 c 17 11 27 0.66

Weighted Average 64.912 0.82 Weighted Average 52.381 0.7 Weighted
Average

40 0.61

 PC4

Confusion Matrix Result

 a b c Accuracy
(%)

AUC

a 25 18 17 0.7

b 18 14 11 0.71

c 14 5 54 0.79

Weighted Average 53.977 0.74

Table 11 Confusion Matrices & Results for 3Bin

29

CM1 JM1 KC1

KC4 PC1 PC3

PC4

Figure 4 ROC Curves for 3Bin

30

3.5 5Bin Equal Frequency vs 3Bin vs 2Bin

In previous experiment, we evaluate the performance of 3Bin Equal

Frequency method. In this study, we want to compare the impact of different

class (bin) numbers on prediction performance. The bin numbers are 5 bins

(denoted by 5Bin), 3 bins (3Bin) and 2 bins (2Bin).

To clearly compare the performance of 5Bin, 3Bin and 2Bin, we summarize

the results into Table 12. In Appendix A, Table 13 and 14 shows the

discretized response variable for 5Bin and 2Bin, respectively; Table 15

exhibits the confusion matrices for 5Bin while Table 16 for 2Bin. Figure 5

and 6 visually demonstrates the prediction performance for 5Bin and 2Bin.

In Table 12, we use Accuracy, Recall and AUC to evaluate the performance

of the prediction. Here, Recall and AUC are both weighted average for 5

bins and 3 bins equal frequency methods.

 5 bins equal frequency 3 bins equal frequency 2 bins equal frequency

Datasets Accuracy Recall AUC Accuracy Recall AUC Accuracy Recall AUC

CM1 58.667 0.5870 0.799 65.3 0.5737 0.788 78.667* 0.7865* 0.838*
JM1 46.9 0.4676 0.774 56.9 0.5613 0.756 69.7* 0.6970* 0.778*
KC1 40.91 0.3998 0.7234 53.1469 0.5287 0.727 69.5804* 0.6960* 0.771*
KC4 47.368 0.4618 0.74 64.9123 0.6490 0.819* 71.9298* 0.7105* 0.769
PC1 46.0317 0.4422 0.722* 52.381 0.5220 0.697 61.9048* 0.6195* 0.688
PC3 25.625 0.2694 0.621 40 0.4110 0.614 60.625* 0.6005* 0.674*
PC4 47.7273 0.4152 0.768* 53.9773 0.4943 0.737 65.9091* 0.6590* 0.753

Table 12 Performance Comparison

31

CM1 JM1 KC1

KC4 PC1 PC3

PC4

Figure 5 ROC Curves for 5Bin

We compare the prediction performance among 5 bins, 3 bins and 2 bins

equal frequency methods. In Table 12, the cell with asterisk (*) means it

32

performs the best in Accuracy, Recall or AUC when comparing to other

methods. 5Bin method shows the worst accuracy. Only one data set achieves

accuracy higher than 50%. 2Bin method demonstrates the best score on

accuracy and recall. All three methods exhibit adequate AUC.

CM1 JM1 KC1

KC4 PC1 PC3

PC4

Figure 6 ROC Curves for 2Bin

33

In Figure 5, several classes in data sets KC4, PC1 and PC3 do not present a

good ROC curves since they are too close to the threshold line. This reflects

a bad classification for certain instance. In Figure 6, except for data set PC1

and PC3, most ROC curves are in a good shape and imply acceptable

performance.

3.6 Discussion

Because we use Accuracy to measure the percentage of observations that

have been correctly classified, this metric is intended to indicate how well

the prediction model works in the sense of how close to true value that the

classifications as faulty or not faulty actually are. When the Accuracy is low,

most of our predictions are incorrect. Therefore, it is quite important to have

a high Accuracy. As we discussed in Experiment Design section, however, a

high Accuracy value does not necessarily imply good predictions. Thus we

can conclude that although relatively high Accuracy is important and

necessary, it is not sufficient to consider a model with high Accuracy as

good prediction because of the paucity of faults in the system [21].

Precision focuses on labeling an observation as belonging to one class that

does indeed belong to that class, but does not care about the observation in

that class which are labeled incorrectly. For this reason, we conclude that

low Precision might infer the inefficiency but is not equivalent to poor

prediction. On other hand, Recall emphasizes the percentage of true

positives that have been correctly identified as such. Therefore, although the

34

definition for Precision and Recall are similar to some extent, the

consequence of low Recall is far more important than low Precision [21].

As stated above, Thomas J. Ostrand and Elaine J. Weyuker [21] suggested

that high Accuracy and high Recall are good measures for a successful

prediction. Thus, from above comparison we can see that for 5 bins equal

frequency method, the prediction Accuracy and Recall for 6 out of 7 datasets

are below 50% and 0.5 respectively. The low Accuracy of below 50% shows

that more than 50% observations are labeled as a wrong class, which is a

really depressing result. However, it is understandable, since 5bin equal

frequency method discretizes the response into 5 bins which make the width

of each interval narrower and more difficult to specify.

In contrast, the Accuracy and Recall for 3 bins and 2 bins equal frequency

methods are better for analysis. Although 2 bins equal frequency method

demonstrates much higher scores for these two metrics, both methods yield

similar and favorable ROC curves and AUC. According to the result of AUC,

only one dataset using 2 bins equal frequency method is superior to 3 bins

equal frequency method by 5%. For other datasets, the differences are not

distinct and even the performance of 2 datasets using 3 bins method is better.

35

Figure 7 Performance Comparison Boxplot

Figure 7 graphically depicts numerical data distributions of Accuracy, Recall

and AUC for 5Bin, 3Bin and 2Bin methods. It shows the smallest instance,

lower quartile, median, upper quartile and the largest instance. The line

inside the box displays the median which follows the central tendency.

Based on these plots, 2Bin method is significantly superior to 3Bin and 5Bin

methods upon Accuracy and Recall. All three methods present similar AUC

distributions.

The reason that 2 bins equal frequency method performs better is

understandable, because this approach divide the response into only two bins

which make each interval larger than other methods and is easier to classify

an observation in this range. For practical usage of this study, we not only

want to figure out the best model, but also expect to bring out more

interpretation for the prediction. Thus, if we process a prediction which does

not require especially high prediction performance, but pursue more

meaningful explanation for the data, then 3 bins equal frequency method

could be a good fit for the model.

36

Chapter 4 Summary and Future Work

4.1 Summary

The goal of this thesis is to study the metrics data which involves different

code and design metric features and to find the relationship among these

factors, and thus further implement the predicting model to help software

development project managers better organize their project schedules.

We have analyzed seven data sets from NASA MDP which offer defect and

product metrics. The algorithm we used for classification is Random Forest

[16], which has demonstrated superior performance on software fault-

proneness prediction [15].

First, we identify the discretization method used for classifying response

variables into nominal feature. Although Equal Width method generates

much better result on Accuracy and other metrics, the skewness of the data

suggests that labeling the majority of observations as one class and

generating better prediction for this class does not make any meaningful

interpretation for the data. This backups our conclusion that pure high

performance does not lend any support to the interpretation of prediction.

We favor not only the performance of prediction, but also the meaningful

explanation for predicted classification.

37

Next, after confirming the methodology, we fit the models for the data sets

with 5 bins, 3 bins and 2 bins discretization and compare the performance

for each method. Our experiments indicate a general trend for MDP data sets

that the performance of models which have wider bin width is better. This is

understandable, since wider width helps decrease the precision and makes it

easier to predict. Although 2 bins discretization shows the best performance,

3 bins discretization also demonstrates acceptable result. Because 3 bins

discretization provides more detail information about the classification, in

case the best prediction performance does not stand the highest priority, then

this model would be a good fit for the data.

Based on the insights we obtained from experiments, we conclude that using

predictive model to predict software resolution time based on code and

design metrics is reasonable and efficient. The proposed algorithm of

Random Forest already generates a favorable result when dealing with

binary classification. The algorithm also performs well confronting multi-

classes problems, though the decrease of the prediction performance occurs

as the increase of the classes we defined.

4.2 Future Work

Although our experiments have shown that using Random Forest algorithm

to fit a predictive model based on metrics data performs favorably for binary

classification, the less prediction detail still has its limitation. Thus, other

methodologies need to be implemented in future work to further improve the

prediction performance for multi-classes’ classification.

38

Yue, et al [1] suggested that the metrics in our study should be divided into

three groups: design, code, and other metrics. We may fit predictive models

with each group of metrics respectively to see the relationship between the

predictors and the response variable. With less predictor, the model could be

easier, and the connection between predictor variables and response variable

may be also easier to construct. No matter whether we use one group of the

metrics or all metrics to fit a predictive model, we can always remove

irrelevant attributes before we execute the prediction. Statistical methods of

Mallows Cp statistics, Akaike Information Criterion and Bayes Information

Criterion [24] can be good measurement of variable selection. Principal

Components built-in algorithm in some machine learning software package

is also helpful to perform attribution selection and obtain robust principal

variables. All above methods can be used in data pre-processing section to

improve the prediction performance for our data.

39

Reference

[1] Yue Jiang, Bojan Cukic, Tim Menzies, Nick Bartlow, “Comparing Design and Code
Metrics for Software Quality Prediction”. pages 11-18. PROMISE '08: Proceedings of the
4th international workshop on Predictor models in software engineering, May 2008

[2] M. Mendonca and N. L. Sunderhaft. “Mining software engineering data: A survey”. A
DACS state-of-the-art report, Data & Analysis Center for Software, Rome, NY, 1999.

[3] http://ase.csc.ncsu.edu/dmse/miningalgs.html

[4] Amir Michail. “Data Mining Library Reuse Patterns in User-Selected Applications”.
ASE 1999.

[5] Amir Michail and Tao Xie. “Helping Users Avoid Bugs in GUI Applications”. ICSE
2005.

[6] William Dickinson, David Leon and Andy Podgurski. “Finding Failures by Cluster
Analysis of Execution Profiles”. ICSE 2001.

[7] Andy Podgurski, Wassim Masri, Yolanda McCleese, Francis G. Wolff, and Charles
Yang. “Estimation of software reliability by stratified sampling”. ACM Transactions on
Software Engineering and Methodology (TOSEM), v.8 n.3, p.263-283, July 1999.

[8] Andy Podgurski, and Charles Yang, “Partition testing, stratified sampling, and cluster
analysis”. Proceedings of the 1st ACM SIGSOFT symposium on Foundations of software
engineering, p.169-181, December 08-10, 1993.

[9] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre Baldi.
“Mining Concepts from Code with Probabilistic Topic Models”. ASE 2007

[10] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. “Detection of Duplicate
Defect Reports Using Natural Language Processing”. ICSE 2007.

[11] Fayyad, Usama; Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996). “From
Data Mining to Knowledge Discovery in Databases”.

[12] R. Agrawal, T. Imielinski, A. Swami. “Mining Association Rules Between Sets of
Items in Large Databases”, SIGMOD Conference 1993: 207-216

[13] http://en.wikipedia.org/wiki/

[14] Leo Breiman, Machine Learning, Wald Lecture I, July 2002

http://ase.csc.ncsu.edu/dmse/miningalgs.html
http://portal.acm.org/citation.cfm?id=167076&dl=GUIDE&coll=GUIDE&CFID=61825475&CFTOKEN=58782270
http://portal.acm.org/citation.cfm?id=167076&dl=GUIDE&coll=GUIDE&CFID=61825475&CFTOKEN=58782270
http://portal.acm.org/citation.cfm?id=167076&dl=GUIDE&coll=GUIDE&CFID=61825475&CFTOKEN=58782270
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf
http://en.wikipedia.org/wiki/

40

[15] L. Guo, Y. Ma, B. Cukic, and H. Singh. “Robust prediction of fault-proneness by
random forests”, 15th International Symposium on Software Reliability Engineering
ISSRE’04, pages 417–428, 2004

[16] L. Breiman. Random forests. Machine Learning, 45(1):5-32, October 2001

[17] Bradley, A.P,. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”, Pattern Recognition. 30 (7), pages 1145–1159, 1997

[18] J. E. Fieldsend and R. M. Everson. “Formulation and comparison of multi-class
ROC surfaces”, Proceedings of the ICML 2005 workshop on ROC Analysis in Machine
Learning, 2005.

[19] Tom Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters,
Volume 27, Issue 8 (June 2006)

[20] Stephan M. Winkler, Michael Affenzeller, Stefan Wagner, “Sets of Receiver
Operating Characteristic Curves and their Use in the Evaluation of Multi-Class
Classification”, GECCO’06, July 8–12, 2006

[21] Thomas J. Ostrand, Elaine J. Weyuker, “How to Measure Success of Fault
Prediction Models”, SOQUA'07, September 3-4, 2007, Dubrovnik, Croatia

[22] Metric data program. NASA Independent Verification and Validation facility,
Available from http://MDP.ivv.nasa.gov.

[23] Do-178b and mccabe iq. Available from
http://www.mccabe.com/iq_research_whitepapers.htm.

[24] Julian Faraway, Linear Model with R.

[25] http://promisedata.org/?cat=4

http://www.mccabe.com/iq_research_whitepapers.htm
http://promisedata.org/?cat=4

41

Appendix A Tables and Matrices

Classes CM1 JM1 KC1 KC4

Time

Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

a 0-4.5 16 0-10.5 293 0-7.5 65 0-14.5 12

b 4.5-11.5 15 10.5-
29.5

305 7.5-16.5 58 14.5-
17.5

8

c 11.5-
15.5

7 29.5-
41.5

268 16.5-
21.5

57 17.5-
20.5

11

d 15.5-
17.5

23 41.5-
55.5

245 21.5-
28.5

66 20.5-
29.5

14

e 17.5-51 14 55.5-
131

239 28.5-
116

40 29.5-89 12

Classes PC1 PC3 PC4

Time

Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

 a 0-1.5 11 0-21.5 33 0-10.5 38
 b 1.5-4.5 12 21.5-

30.5
33 10.5-

40.5
33

 c 4.5-9.5 11 30.5-
35.5

30 40.5-
54.5

32

 d 9.5-13.5 15 35.5-
47.5

32 54.5-
56.5

40

 e 13.5-74 14 47.5-99 32 56.5-91 33
 Table 13 Instances in Each Bin for 5Bin

Classes CM1 JM1 KC1 KC4

Time

Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

a 0-15 38 0-34.5 684 0-18.5 141 0-20.5 31

b 16-51 37 34.5-
131

666 18.5-
100

145 20.5-89 26

Classes PC1 PC3 PC4

Time

Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

Time
Interval
(Weeks)

of
Instances

 a 0-7.5 32 0-32.5 75 0-48 88
 b 7.5-74 31 32.5-99 85 49-91 88
 Table 14 Instances in Each Bin for 2Bin

42

CM1 JM1

 Confusion Matrix Confusion Matrix
Classes a b c d e a b c d e

a 11 3 0 2 0 144 68 37 14 30
b 4 6 0 4 1 58 148 46 23 30
c 1 1 4 1 0 35 52 114 36 31
d 0 2 0 18 3 30 43 37 116 19

e 3 1 0 5 5 35 36 35 22 111

KC1 KC4
 Confusion Matrix Confusion Matrix
Classes a b c d e a b c d e

a 23 14 14 6 8 7 3 1 1 0
b 15 22 10 9 2 2 6 0 0 0
c 12 6 24 11 4 3 1 3 4 0
d 7 5 13 36 5 1 0 4 4 5

e 6 5 8 9 12 1 1 1 4 5

PC1 PC3
 Confusion Matrix Confusion Matrix
Classes a b c d e a b c d e

a 4 1 1 2 3 4 1 1 2 3
b 0 5 2 2 3 0 5 2 2 3
c 2 1 3 2 3 2 1 3 2 3
d 0 1 1 12 1 0 1 1 12 1

e 0 3 3 3 5 0 3 3 3 5

PC4
 Confusion Matrix
 Classes a b c d e
 a 17 5 4 10 2
 b 2 21 6 4 0
 c 4 8 12 4 4
 d 8 3 1 19 9
 e 4 3 1 9 16
 Table 15 Confusion Matrices for 5Bin

43

CM1 JM1 KC1 KC4

 Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
Classes a b a b a b a b

a 31 7 474 210 99 42 25 6

b 9 28 199 467 45 100 10 16

PC1 PC3 PC4
 Classes a b a b a b
 a 19 13 38 37 59 29
 b 11 20 26 59 31 57
 Table 16 Confusion Matrices for 2Bin

		2010-12-13T12:46:46-0500
	John H. Hagen

