The Determination Of The Concrete Tensile Creep At Early Age Using The Ring Test

Tadamon Mohammed
tm0008@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Part of the Civil Engineering Commons, and the Structural Engineering Commons

Recommended Citation
Mohammed, Tadamon, "The Determination Of The Concrete Tensile Creep At Early Age Using The Ring Test" (2018). Graduate Theses, Dissertations, and Problem Reports. 3736.
https://researchrepository.wvu.edu/etd/3736

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.
THE DETERMINATION OF THE CONCRETE TENSILE CREEP AT EARLY AGE USING THE RING TEST

TADAMON MOHAMMED

THESIS SUBMITTED TO THE

Benjamin M. Statler College of Engineering and Mineral Resources
at West Virginia University

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE
IN
CIVIL ENGINEERING

Roger H. L. Chen, Ph.D, Chair
Yoojung Yoon, Ph.D
Fei Dai, Ph.D
Hailin Li, Ph.D

Department of Civil and Environmental Engineering
Morgantown, West Virginia
2018

Keywords: tensile creep, early age, shrinkage, degree of hydration, relative humidity, moisture loss.

Copyright 2018 Tadamon Mohammed
Abstract

THE DETERMINATION OF THE CONCRETE TENSILE CREEP AT EARLY AGE USING
THE RING TEST

Tadamon Mohammed

In this study, the modified double power law (MDPL) model is used to determine the
tensile creep of concrete at an early age based on the ASTM C1581 restrained shrinkage ring
test. Three concrete mixes using Ordinary Portland Cement (OPC) were tested. The three
concrete mixes were cast, and each underwent the ring tests up to cracking. Mechanical
properties of concrete at the age of 1, 3, 7, 14, and 28 days were tested to find the compressive
strength, tensile strength and Young’s Modulus of concrete. The strength tests results were
obtained from both 4x8 inch and 6x12 inch cylinders. The moisture distribution of the concrete
inside the ring was simulated and solved theoretically by solving Fick’s law of diffusion
equation. On the other hand, humidity sensors (SHT-21) were used at different depths to verify
the theoretical solution. The interfacial compressive stress generated on the steel ring, caused by
autogenous and drying shrinkages of concrete, is calculated using the experimentally measured
steel strains during the restrained shrinkage ring testing. Meanwhile, the theoretical value of the
interfacial compressive stress is calculated by a model with a known value of autogenous
shrinkage and drying shrinkage of concrete. The tensile creep of the concrete at early age was
then determined by comparing the theoretical interfacial compressive stress with the interfacial
compressive stresses obtained from the strain gage measurements.

Finite Element Model (FEM) simulation was performed using ABAQUS to analyze the
shrinkage and creep behavior in the concrete under the Restrained Shrinkage Ring Test. The
calculated humidity was used as an input in the FEM to calculate the shrinkage in concrete for a
5-layer concrete ring model through a user-defined subroutine. Concrete tensile creep was also
calculated from the subroutine using the shrinkage induced stress. The predicted creep behavior
was verified by comparing the steel strain obtained from the experiment with what was solved
using FEM. Furthermore, a stress analysis was performed to predict the critical time when the
concrete is at risk of cracking in the concrete ring. Using this method, creep relaxation
parameters were obtained for the concrete mix under different environmental temperatures and
humidity, thus, can be used under any other ambient environment. The determined tensile creep,
as a result, can be used in shrinkage-induced stress analyses, and further, be used for cracking
control of concrete structures at early age.
Acknowledgment

Now that I have reached the end of my university life, I would like to extend my thanks and gratitude to all those who contributed in guiding me as well as preparing me to be a good builder for this world. To all those who helped me in this humble work, thank you.

I would like to express the deepest appreciation to my advisor Dr. Roger Chen, who continually supported me through every step of this journey; without his guidance, encouragement, advice and persistent help, this thesis would not have been possible.

I would also like to thank my Thesis Committee, Dr. Yoojung Yoon, Dr. Fei Dai, and Dr. Hailin Li. for their time and effort.

To the joyous and idealistic spirit of my life for whom I can only bow with respect and reverence, my Family.

To whom I spent the most beautiful days of my lives, my Friends.

I would like to acknowledge WVDOT, whose funding provided the materials and equipment necessary to conduct this research. I would like to thank the entire research team, for assistance with all concrete castings necessary to complete this research study.

Especially, Guadalupe Leon, Seyed Navid Mardmomen.
Table of Contents

Acknowledgment iii
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
 Moisture Distribution at Early-Age 4
 Self-Desiccation Model 7
 Relative Humidity-Based Degree of Hydration 8
 Elastic Modulus-Based Degree of Hydration 9
 Concrete Creep 9
 Double Power Law for Basic Creep of Concrete 11
 B3 Model 12
 Concrete Shrinkage 14
 Restrained Shrinkage Ring Test 17
 Factors Affect the Concrete Shrinkage 23
 Air Content 25
 Fly Ash 25
 Slag 25
 Summary of Influence Factors on Concrete Shrinkage 26
Chapter 3 Laboratory Experimental Procedures & Results 27
 Mix Design and Concrete Casting 27
 Slump Test 30
 Air Content Test (Pressure Method) 31
 Water Cement Ratio (Microwave Method) 32
 Setting Time Test 35
 Degree of Hydration 37
 Elastic Modulus Testing 39
 Compressive Strength Testing 41
 Tensile Strength Test 44
 Shrinkage Test 47
 Ambient Temperature and Humidity 52
Internal Humidity-Temperature Sensor and Measurement System 57
Restrained Shrinkage Ring Test .. 63
Direct Tensile Test (Dog-Bone) .. 71
Chapter 4 Analysis and Interpretation of Results ... 72
Humidity Analysis .. 72
 Simulating Half-Wrapped Specimens .. 72
 Simulating No-Wrapped Specimens .. 73
 Moisture Transport Model .. 74
 Moisture Distribution .. 79
Shrinkage Modeling ... 83
 Shrinkage Distributions ... 85
 Shrinkage Model Vs Shrinkage Experiments ... 93
Tensile Creep Analysis .. 96
 Interfacial Compressive Stress Analysis ... 96
Strength Analysis ... 103
 Effect of size of test specimen on the compressive and tensile strength of concrete. .. 103
Air Content Effects ... 105
Finite Element Model .. 108
 Modified Double Power Law .. 110
 B3 Model .. 115
Summary of Procedures ... 123
Chapter 5 Conclusions and Recommendations .. 125
 Recommendations for Future Study .. 128
References ... 129
List of Figures

Figure 1 Schematic description of stress relaxation due to creep in concrete slab (Weiss, 2006) _______________ 3
Figure 2 Two stages of humidity development inside of concrete (Jun Zhang; Kun Qi; and Yu Huang, 2009) 5
Figure 3 Decomposing of the concrete-steel composite ring (Yuan Gao, Jun Zhang, Po Han 2013) __________ 17
Figure 4 Procedures of creep correction on the effective shrinkage strain. (Yuan Gao, Jun Zhang, Po Han 2013) 20
Figure 5 Influence of water/cement ratio and aggregate content on shrinkage (J. J. Brooks 1989) ___________ 24
Figure 6 The pattern of shrinkage as a function of cement content, water content, and water/cement ratio; concrete moist-cured for 28 days, thereafter dried for 450 days. (J. J. Brooks 1989) ___________ 24
Figure 7 Standard Slump Cone Mold (ASTM C143, 2010). ________________________________ 30
Figure 8 Type B Air Content Apparatus (ASTM C231, 2003). _______________________________ 31
Figure 9 Water Cement ratio (Microwave method) ___ 33
Figure 10 Setting Time Test __ 35
Figure 11 Setting Time Test results ___ 36
Figure 12 Relationship of cement hydration degree and age ________________________________ 38
Figure 13 Elastic modulus-based degree of hydration model VS actual experiment results OPC 2 39
Figure 14 Elastic modulus-based degree of hydration model VS actual experiment results OPC 3 40
Figure 15 Compressive Strength development curves for concrete cylinders OPC 1 __________ 41
Figure 16 Compressive Strength development curves for concrete cylinders OPC 2 __________ 42
Figure 17 Compressive Strength development curves for concrete cylinders OPC 3 __________ 43
Figure 18 Tensile Strength development curves for concrete cylinders OPC 2 ____________ 45
Figure 19 Tensile Strength development curves for concrete cylinders OPC 3 ____________ 46
Figure 20 comparator to measure the length change ______________________________________ 47
Figure 21 Shrinkage specimens (2) No-Wrap (3) Half-Wrapped __________________________ 48
Figure 22 Average Shrinkage (micro-strain) Experiments OPC 1 ________________________ 49
Figure 23 Average Shrinkage (micro-strain) Experiments OPC 2 ________________________ 49
Figure 24 Average Shrinkage (micro-strain) Experiments OPC 3 ________________________ 50
Figure 25 Average No-Wrap Shrinkage (micro-strain) Experiments ______________________ 51
Figure 26 Average Half-Wrap Shrinkage (micro-strain) Experiments ______________________ 51
Figure 27 Ambient temperature and humidity for OPC 1 ________________________________ 54
Figure 28 Ambient temperature and humidity for OPC 2 ________________________________ 54
Figure 29 Ambient temperature and humidity for OPC 3 ________________________________ 55
Figure 30 The difference between the partial and the saturation pressure ___________________ 55
Figure 31 The integration of the difference between the partial and the saturation pressure 56
Figure 32 Overview of RH-Temp measurement system. David A Lange (2004) _________________ 57
Figure 33 Data collector box ___ 58
Figure 34 Proposed design End-tube covered with the Gore-Tex fabric ______________________ 59
Figure 35 Waterproof - Gore-Tex fabric ___ 59
Figure 36 Designed box to measure the humidity at different depth _______________________ 60
Figure 37 Humidity measurements at a different depth from the uncovered box OPC 1 _______ 60
Figure 38 Humidity measurements at a different depth from the sealed box OPC 1 _________ 61
Figure 39 Geometry of the ring specimen. (Yuan Gao, Jun Zhang, Po Han 2013) __________ 63
Figure 40 Ring specimens __ 66
Figure 41 Steel Strain from the ring experiment OPC 1 ________________________________ 67
Figure 42 Average Steel Strain OPC 1 __ 67
Figure 43 Steel Strain from the ring experiment OPC 2 ________________________________ 68
List of Tables

Table 1 Water/Cement and Aggregate/Cement ratio effects on the concrete shrinkage (J. J. Brooks 1989) 23
Table 2 Summary of influence factors on concrete shrinkage (Peter Taylor and Xuhao Wang, 2014) 26
Table 3 Mix Designs for Concrete Mixtures per yd3 29
Table 4 Mechanical Properties of the Mixes 33
Table 5 Setting Time Test results 36
Table 6 Elastic modulus measurements for Concrete Batches OPC 2 39
Table 7 Elastic modulus measurements for Concrete Batches OPC 3 40
Table 8 Compressive Strength measurements for Concrete Batches OPC 1 42
Table 9 Compressive Strength measurements for Concrete Batches OPC 2 42
Table 10 Compressive Strength measurements for Concrete Batches OPC 3 43
Table 11 Tensile Strength measurements for Concrete Batches OPC 2 45
Table 12 Tensile Strength measurements for Concrete Batches OPC 3 46
Table 13 MDBL model parameters 101
Table 14 B3 model parameters 115
Table 15 Comparison between the predicted and the actual cracks 121
Chapter 1 Introduction

Shrinkage in concrete is one of the main characteristics of concrete that causes initial cracks in structures to form. Shrinkage is affected by the amount of water lost from the surface of the concrete, which is influenced by temperature, ambient relative humidity, and wind velocity. In general, shrinkage associated with moisture loss of the concrete follows this rule: the more loss of moisture, the higher shrinkage expected in the concrete. There are two main causes for the moisture loss: moisture loss due to the environment, and self-desiccation (DOH). The moisture loss due the environment happens when the environmental humidity is lower than the humidity inside the concrete, as a result, the water in the concrete evaporates. Experimentally, more water losses will happen at the surface due to the ambient humidity, causing more shrinkage to arise at the surface.

According to (Merima Šahinagić-Isović, Goran Markovski, Marko Ćećez, 2012) Shrinkage in concrete can be classified by

1. Autogenous shrinkage or hydration shrinkage: it is closely connected to chemical shrinkage, and it is a consequence of self-desiccation in pores of cement paste in the process of hydrating non-hydrated cement.
2. Chemical shrinkage: it is a consequence of chemical binding (i.e. using of water in concrete in the cement hydration process).
4. Hardened concrete drying shrinkage: when the concrete is exposed to an environment that causes water to evaporate from capillaries.
5. Carbonation shrinkage: carbon dioxide from the environment causes chemical reactions in cement stone.

6. Thermal shrinkage: A result of temperature changes in concrete in the process of hydration.

As the concrete shrinks, tensile stresses will be developed in structure due to restraints from adjacent materials or connected members.

Creep is formally defined as “the time-dependent increase in strain in a solid resulting from force” (ASTM E 6-07 Standard terminology relating to methods of mechanical testing). By this definition, any material will undergo creep at some condition of loading. Concrete can exhibit substantial creep and stress relaxation at early ages. Creep can be defined as the increase in strain under a sustained stress; because this increase can be several times as large as the strain on loading, creep is of considerable importance in structures. “The beneficial role of creep is shown diagrammatically in Figure 1.

Consider a freshly laid concrete slab (a) with given initial length. Under ideal conditions, without any interference from the surrounding environment, unrestrained drying shrinkage will occur, giving the net reduction in length shown in (b). This occurrence is unrealistic in practice because slab movement will invariably be constrained to some degree, if only by the friction of the underlying substrate. Consequently, we suppose the hypothetical case of perfect restraints, which exactly preserves the initial dimensions of the slab. Achieving this situation requires imposing a fictitious load on the concrete to counteract the shrinkage stress (c). However, because of the applied load, the length of the slab will increase due to concrete creep (d). To maintain the condition of perfect, restrain an opposing load is necessary (e), with the net result being a reduction in shrinkage stress experienced by the slab (f)” Lee NP. 2007.
When these stresses exceed the allowable tensile strength of the concrete, cracks will occur. Cracking in concrete members may reduce the load carrying capacity of the structure, because it allows water and other chemicals to go through the cover layer and meet the reinforcements, leading to reinforcement corrosion and rupture in steel reinforced concrete.
Chapter 2 Literature Review

Moisture Distribution at Early-Age

Several references are found in the literature on the investigation of moisture content and its variations with time in concrete. The moisture content in the concrete is a critical factor for the processes in the concrete (e.g., concrete shrinkage and shrinkage-related cracks). As mentioned before concrete shrinks as moisture is lost to the environment or by self-desiccation. The magnitude of shrinkage strain is normally proportional to the amount of moisture lost, (Bissonnette et al. 1999; Baroghel-Bouny et al. 1999; Wittmann et al. 2002; Zhang and Zhang 2006.)

Recently, Zhang et al. 2007 experimentally investigated the development of humidity inside of concrete at an early age by measuring the interior humidity and temperature of concrete immediately after specimen casting until 28 days. The model is built based on the consideration that the moisture variations in early age concrete results from both cement hydration (self-desiccation) and water diffusion from concrete to environment due to low environmental humidity.

The variation law of the interior relative humidity of concrete with age can be described by a water-vapor-saturated stage with 100% relative humidity (Stage I) followed by a stage that relative humidity gradually decreases (Stage II). Shown in Figure 2.
Figure 2 Two stages of humidity development inside of concrete (Jun Zhang; Kun Qi; and Yu Huang, 2009)

With continuous drying and cement hydration, the water content in concrete gradually reduces. When the water content in concrete pores decreases to a critical value, at which the vapor pressure becomes lower than the saturated value, the relative humidity in concrete starts to decrease from 100% value. Starting from this moment where t_c is shown in figure 2, the development of internal humidity goes into stage II, in which the interior humidity decreases with concrete age.

Bazant and Najjar (Bazant and Najjar 1972) developed a nonlinear water diffusion model, which can accurately simulate the moisture transport inside concrete, and their model was improved to treat two parameters, diffusivity, and moisture capacity separately (Xi and Bazant 1994), to consider water-cement ratio, curing time, temperature and cement type.

According to Fick’s second law, the moisture variation with time and position can be expressed as:

$$\frac{\partial (W - W_s)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial (W - W_s)}{\partial x} \right) + 2 \frac{\partial}{\partial y} \left(D \frac{\partial (W - W_s)}{\partial y} \right) + 2 \frac{\partial}{\partial z} \left(D \frac{\partial (W - W_s)}{\partial z} \right) + k \frac{\partial T}{\partial t}$$

Eq. 1 Fick’s second law
Since the relationship between humidity, \(H \), and water content, \(W \), can be related by the well-known desorption or sorption isotherms, the humidity, \(H \), is a linear function of water content, \(W \). Thus, Eq. 1 can be rewritten as:

\[
\frac{\partial (H - H_S)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial (H - H_S)}{\partial x} \right) + 2 \frac{\partial}{\partial y} \left(D \frac{\partial (H - H_S)}{\partial y} \right) + 2 \frac{\partial}{\partial z} \left(D \frac{\partial (H - H_S)}{\partial z} \right) + k \frac{\partial T}{\partial t} \quad \text{Eq. 2}
\]

Where \(H_S \) is the humidity reduction due to cement hydration. \(k \) is the change in \(H \) due to a one-degree change in temperature, \(T \), at constant \(W \) and a fixed degree of cement hydration. \(D \) is the moisture diffusion coefficient. Experimental results have indicated that change in \(H \) due to temperature variation inside concrete is rather small and can be neglected (I. V. AmirkhanovE. Pavlušová, 2008). If one-dimensional water diffusion is considered along the coordinate direction \(x \), the Eq. 2 becomes:

\[
\frac{\partial (H - H_S)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial (H - H_S)}{\partial x} \right) \quad \text{Eq. 3}
\]

The diffusivity coefficient is a key material parameter determining moisture transport speed. Diffusivity is dependent on multiple factors including material properties, pore structure, PCC material constituent (i.e., w/c ratio), and moisture content. The literature review by Banzant and Najjar showed that diffusivity falls in a range of 0.144 cm\(^2\)/day to 1.93 cm\(^2\)/day. Different empirical models were studied in terms of laboratory experimental tests. The first model proposed by Banzant and Najjar.

\[
D(H) = D_r \left[\alpha_0 + \frac{1-\alpha_0}{1+\left(\frac{1-H}{1-H_c}\right)^n} \right] \quad \text{Eq. 4}
\]

Where:

- \(D_r \): maximum diffusivity coefficient,
- \(\alpha_0 \): constant (0.05),
- \(H_c \): moisture at the ultimate degree of hydration, and
- \(n \): integer constant.
Self-Desiccation Model

The reduction of water content due to the chemical reaction between cement and water is called self-desiccation and can be presented as a function of the hydration degree.

A cement hydration degree-based model describing the humidity reduction due to cement hydration was proposed by Oh and Cha (2003). A modified cement hydration degree-based model, which takes the initial liquid-water saturated stage (Stage I) into account, is used to describe the humidity reduction due to cement hydration was proposed by Zhang J, Qi K, Huang Y. (2009).

\[
H_s = \begin{cases}
0 & \text{for } \alpha \leq \alpha_c \\
(1 - H_{s,u}) \left(\frac{\alpha - \alpha_c}{\alpha_u - \alpha_c} \right)^\beta & \text{for } \alpha > \alpha_c
\end{cases}
\]

Eq. 5

Where \(H_{s,u}\) is the relative humidity considering self-desiccation at ultimate degree hydration, which is a function of the water-cement ratio (w/c) and can be determined from experiments. \(\alpha_c\) is a hydration parameter called critical hydration degree at which the humidity inside of concrete starts to decrease from 100% level, which can be calculated by applying the experimental determined critical time \(t_c\) and the parameter \(\beta\) which is a constant.

\(\alpha_u\) is the ultimate degree hydration, which is a function of w/c.
Relative Humidity-Based Degree of Hydration

Under drying condition, the moisture content in concrete may be less than that under sealed state and this moisture reduction reduces the cement hydration degree. The effect of moisture content on cement hydration is taken into consideration in the model. Through isothermal tests and interior humidity measurements, the relationship between cement hydration degree and interior humidity can be obtained. Based on experimental results, the relationship of cement hydration rate and interior relative humidity can be expressed as (Yuan Gao 2012):

\[
\frac{dx}{dt} = k_\alpha (RH)^n + P
\]

Eq. 6

k_α: is a function of the hydration degree, when $RH = 1$, $\alpha = \alpha_c$, we have:

\[
k_\alpha = \alpha_c \cdot \frac{B}{A} \left(\ln \left(\frac{\alpha}{\alpha_c} \right) \right)^{\frac{n+1}{n}} - P
\]

Eq. 7

where α_c is cement hydration degree when the interior humidity starts to decrease from an initial value of 100%.

When $\alpha > \alpha_c$ we obtain the relationship between cement hydration rate and interior relative humidity as:

\[
\frac{dx}{dt} = \left(\alpha_c \cdot \frac{B}{A} \left(\ln \left(\frac{\alpha}{\alpha_c} \right) \right)^{\frac{n+1}{n}} - P \right) (RH)^n + P
\]

Eq. 8

where n and P are constants that can be determined from interior humidity measurements and isothermal tests.

A and B are two empirical constants.
Elastic Modulus-Based Degree of Hydration

Elastic modulus of concrete is also an important parameter for shrinkage calculation. After setting the modulus of concrete starts to grow from zero. Based on the equivalent age, the development of elastic modulus of concrete with age under varied temperature and drying status can be estimated by:

\[
E(\alpha) = 1.05E_{28} \left(\frac{\alpha - \alpha_0}{\alpha_0 - \alpha_0} \right)^b \quad Eq. 9
\]

where \(\alpha_0 \) is the hydration degree at concrete setting and \(b \) is a constant.

Concrete Creep

Creep occurs in concrete under applied loads as a slow increase of inelastic deformations after the instantaneous deformation which happens when the dead load is applied to the concrete member. And it can be defined as the increase in strain under a sustained stress (Lam, 2002). For a long service life of a concrete structure, the increase of inelastic deflection could be several times as the elastic deflection (Nawy, 2009).
Many terms are used to describe the types of the Creep according to (ACI 209, 2008)

- Basic Creep is a time-dependent increase in strain under sustained constant load without any moisture change.
- Creep Coefficient is defined as the ratio of the creep strain to its instantaneous strain.
- Creep is the total load-dependent strain (including both elastic and creep strain) at age t per unit stress produced by the sustained load that has been applying since loading age t_0.

According to (Hassoun 2014) For the same loading duration the creep increase with higher stress level. Creep increase with sustained loading period and higher loading rates. Creep tends to decrease with bigger size concrete specimen. Cement creeps approximately 15 times as much as concrete, not only the amount of cement but the type and fineness of cement could greatly influence the final creep of concrete.

According to (Lam, 2002) Creep increases with increasing w/c ratio as a change in w/c ratio directly impact on changes in cement content and concrete strength. Also, the aggregates act as a restraint to reduce the creep as the potential creep could be reduced by well-graded aggregates.
Double Power Law for Basic Creep of Concrete

Many creep models have been used to find the creep of the concrete such as B3, B4, and the Double Power Law (DPL) model. The Double Power Law was first proposed by Bazant (1975), which is a creep compliance function to express basic creep of concrete. The equation is:

\[J(t, t') = \frac{1}{E_0} + \frac{\varphi_1}{E_0} t'^{-d} (t - t')^p \] \hspace{1cm} \text{Eq. 10}

where:

- \(t \): Concrete age
- \(t' \): Concrete age at loading
- \(J(t, t') \): Compliance function
- \(E_0 \): Asymptotic modulus of elasticity
- \(\varphi_1, d, \) and \(p \): Creep model parameters

The original DPL was found to fit well with early age creep but may overestimate creep strains after long duration (Zdenek P. Bazant and Chern 1985; Atrushi 2003). A modified version by Atrushi that is simpler and more convenient for young concrete was expressed as (Atrushi 2003) MDPL:

\[J(t, t') = \frac{1}{E_{c(t')}} [1 + \varphi_1 (t')^{-d} (t - t')^p] \] \hspace{1cm} \text{Eq. 11}

In equation 11,

- \(E_{c(t')} \) is the modulus of elasticity at the time of loading.

Where \(\varphi_1, d \) and \(p \) are material parameters, which should be determined directly or indirectly from experiments.
For this research, the modified double power law is been used since it can fit the creep all the way up to the cracking, including the non-linear behavior of the concrete before cracking.

B3 Model

Bazant’s B3 model (Bažant 1988) can be used for both Tensile and compressive creep and was developed from compressive creep test data on hardened concrete. since then it has been used for studying the concrete creep behavior widely. A study by østergaard et al. (2001) showed that concrete exhibits high tensile creep strain if loaded at ages less than or equal to 1 day, and a modification to q₂ in B3 model to seize the very early-age high viscoelastic and he improved the B3 model on the early age creep behavior by adjusting the "aging" term, another modification has been made by Wei and Hansen (2013) on the later ages by modifying the "flow" term of B3 model.

The temperature has a big effect on early-age concrete creep behavior, temperature effect can be solved using the equivalent age to consider the temperature proposed by Bažant and Baweja (2000). The B3 model was found to agree better with the experimental data.

The creep compliance function can be expressed by:

\[
J(t, t') = \frac{\varepsilon(t)}{\sigma} = q_1 + q_2 Q(t, t') + q_3 \ln[1 + (t - t')^{0.1}] + q_4 \ln \frac{t'}{t} \tag{Eq. 12}
\]

q₁ is the Instantaneous Compliance,
qu₂ is the Aging Viscoelastic Compliance,
qu₃ Nonaging Aging Compliance,
qu₄ is the Flow Compliance.
The individual terms q₁, q₂, q₃, and q₄ are the empirical material constitutive parameters based on concrete strength and composition.
\[Q(t, t') = Q_f(t')[1 + \left(\frac{Q_f}{Z(t, t')}\right)^r]^{-1/r} \] Eq. 13

\[Q_f(t') = \left[0.086(t')^2 + 1.21(t')^3\right]^{-1} \] Eq. 14

\[Z(t, t') = (t')^{-1/2} \ln[1 + (t - t')^{0.1}] \] Eq. 15

\[r = 1.7 (t')^{0.12} + 8.0 \] Eq. 16

\(t' \): Loading age in days

\(q_1, q_2, q_3, \) and \(q_4 \): Empirical constant

\(t \): Current age in days

Temperature has two different effects on the creep behavior of early-age concrete. From the maturity point of view, higher curing temperature will accelerate the hydration process and increase the concrete maturity, therefore, decrease the creep (Lin and Chen, 2014). However, the creep deformation at early-age increases significantly as the temperature increases. Atrushi (2003) stated that the increasing effect is much greater than the decreasing effect. To account for the effect of the temperature, the equivalent age was used by Bažant and Baweja (2000) and Atrushi (2003) to replace the regular age in the place of the loading age and the loading duration, where he found better agreements between the theoretical and experimental results. The modified B3 model can be expressed as

\[J(t_e, t'_e) = \frac{\varepsilon(t_e)}{\sigma} = q_1 + q_2 \frac{t'_e}{t'_e - q_5} Q(t_e, t'_e) + q_3 \ln[1 + (t_e - t'_e)^{0.1}] + q_4 ln \frac{t_e}{t'_e} \] Eq. 17
Concrete Shrinkage

Many shrinkage models have been developed to predict concrete shrinkage behavior. These models are based on empirical data and predict shrinkage using concrete properties, environmental conditions, and geometry of concrete structures. The model is based on the capillary tension created in the capillary pores of concrete and uses the interior humidity (RH) that can relate to the moisture loss in concrete directly as a driving parameter for shrinkage predictions. This model is powerful because it can be used for shrinkage prediction of concrete whether the shrinkage is caused by self-desiccation or by drying. In addition, because the model can reflect the effect on moisture loss of age and position from one parameter, RH, the model can predict shrinkage strain in concrete structures not only for different time but also for different positions. A similar model was developed and is being used by Japanese researchers.

\[
\varepsilon = \begin{cases}
\eta[1 - \sqrt{1 - (V_{cs} - V_{cs0})}] & \text{for } \text{RH} = 1 \\
\eta[1 - \sqrt{1 - (V_{cs} - V_{cs0})}] + \frac{\text{Sexp}(\text{RH})}{M} \left(\frac{1}{\kappa} - \frac{1}{\mu}\right) \ln(\text{RH}) & \text{for } \text{RH} < 1
\end{cases}
\]

Eq. 18

\[\eta\] is the influencing factor of stiffness.

\[V_{cs}\text{ and } V_{cs0}\] are the chemical shrinkage (in volume) at a given cement hydration degree.

\[M\] is molar weight of water (0.01802 kg/mol).

\[\rho\] is the density of water.

\[R\] is ideal gas constant (8.314 J/mol K).

\[k\] is the bulk modulus of the whole porous body.

\[K = E/3(1 - 2\nu)\]

Eq. 19
\(\nu \): is poison’s ratio.

\(E \): the elastic modulus of the concrete:

\(K_s \): is the bulk modulus of the solid material.

\(v_p \) is the pore structure influencing factor, where:

\[
v_p = 1 - \exp(-k_0\beta r_p) \quad \text{Eq. 20}
\]

\(r_p \): is the radius of the capillary pore.

\(k_0 \): Parameter is obtained by comparing model and experimental results.

\(\beta \) is a parameter reflecting the influence of concrete age.

\[
\beta = \alpha_0 e^{\lambda \alpha} \quad \text{Eq. 21}
\]

Where:

\(\alpha_0 \) and \(\lambda \) are experimentally determined constants.

\(\alpha \): is cement hydration degree.

\(T \): Is the absolute temperature.

\[
S = \frac{p - 0.7(1 - p)\alpha}{p - 0.5(1 - p)\alpha} \quad \text{Eq. 22}
\]

The above equation is called the saturation fraction and can be estimated through Powers’ volumetric models Grzybowski M, Shah SP, 1990, Where:

\[
\rho = \frac{w/c}{w/c + \rho_w/\rho_c} \quad \text{Eq. 23}
\]

\(\rho_w \) and \(\rho_c \) are the density of water and cement respectively.
RH: is relative humidity in the concrete.

The ACI has an empirical equation to calculate the shrinkage of the concrete, but it's biased and overestimates the actual shrinkage in the concrete.

\[
(\varepsilon_{sh})_u = \frac{(\varepsilon_{sh})_t(35+t)}{t} \quad \text{Eq. 24}
\]

Where,

\((\varepsilon_{sh})_u\): Ultimate shrinkage.

\((\varepsilon_{sh})_t\): Shrinkage Measured at time \(t\).

\(t\): Time of shrinkage measurement days of drying.

Prediction of the development of shrinkage by the above equation is subject to considerable variability, but the equation can be used to estimate the ultimate shrinkage of a wide range of moist-cured concretes. One-half of the ultimate shrinkage is expected to occur after 35 days drying. For steam-cured concrete, the value of 35 in the denominator is replaced by 55, and time \(t\) is reckoned from the end of steam curing at 1 to 3 days.

According to J. Zhang*, H. Dongwei* and S. Wei† (2010) a linear relationship between free shrinkage strain and humidity reduction exists:

\[
\varepsilon_w = \varepsilon_0 + k(100 - RH) \quad \text{for } RH < 100\% \quad \text{Eq. 25}
\]

where \(\varepsilon_0\) is the shrinkage occurring during the humidity developed in stage 1, (RH = 100), which should principally be governed by the water-cement ratio (w/c), and \(k\) is the shrinkage strain generated by a one-unit humidity reduction. The relationship of free shrinkage strain and (RH) may be used to calculate the free shrinkage strain field and further to calculate the shrinkage-induced stresses in structures as well. and this relationship has been used in this research.
Restrained Shrinkage Ring Test

We know that during the Restrained Shrinkage Ring experiment (ASTM C1581M – 16) a pressure is created on the inner surface of the steel, see Figure 3.

![Image of decomposing the concrete-steel composite ring](image)

Figure 3 Decomposing of the concrete-steel composite ring (Yuan Gao, Jun Zhang, Po Han 2013)

The interfacial compressive stress generated on the steel ring, caused by autogenous and drying shrinkages of concrete, can be measured experimentally using

\[
q = - \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right] E_2 \varepsilon_0 \]

Eq. 26

The compressive strain \(\varepsilon_0 \) can be measured from experiments, \(E_2 \) is the elastic modulus of the steel ring, \(r_1 \) is the inner radius of the steel ring, \(r_2 \) is the outer radius of the steel ring. Meanwhile, the theoretical value of the interfacial compressive stress is precisely calculated by a model for given autogenous and drying shrinkages of concrete. Based on the stress analysis of the restrained ring.
The derivation of the model is explained step by step in the following pages, where E and μ are the elastic modulus and Poisson’s ratio of the material. a and b are the inner and outer radius of the ring.

The stress-strain relations for radial stress and circumferential stress can be expressed as:

$$\sigma_r = \frac{E}{1-\mu^2}[\epsilon_r + \mu \epsilon_\theta - (1 + \mu)\epsilon_{sh}] \quad Eq. 27$$

$$\sigma_\theta = \frac{E}{1-\mu^2}[\epsilon_\theta + \mu \epsilon_r - (1 + \mu)\epsilon_{sh}] \quad Eq. 28$$

In addition, σ_r and σ_θ satisfy the equation of equilibrium:

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \quad Eq. 29$$

If u is radial displacement, we have:

$$\epsilon_r = \frac{du}{dr}, \quad \epsilon_\theta = \frac{u}{r} \quad Eq. 30$$

Using Eqs. (27), (28) and (30) in Eq. (29), we get:

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} (ru) \right] = (1 + \mu) \frac{d}{dr} \epsilon_{sh} \quad Eq. 31$$

Integrating this equation:

$$u(r) = (1 + \mu) \frac{1}{r} \int_a^r \epsilon_{sh} r dr + \frac{C_1}{2} r + \frac{C_2}{r} \quad Eq. 32$$

where C_1 and C_2 are constants that can be determined by the boundary conditions.

$$\sigma_r = -\frac{E}{r^2} \int_a^r \epsilon_{sh} r dr + \frac{EC_1}{2(1-\mu)} - \frac{EC_2}{1+\mu} \frac{1}{r^2} \quad Eq. 33$$
From the boundary conditions that $\sigma_r = q_1$ at $r = a$ and $\sigma_r = q_2$ at $r = b$, we obtain:

$$C_1 = \frac{2(1-\mu)}{E} \frac{1}{b^2 - a^2} \left(b^2 q_2 - a^2 q_1 + E \int_a^b \varepsilon_{sh} r dr \right)$$

$$C_2 = \frac{1 + \mu}{E} \frac{a^2 b^2}{b^2 - a^2} \left(q_2 - q_1 + \frac{E}{b^2} \int_a^b \varepsilon_{sh} r dr \right)$$

For the concrete ring, we have $q_2 = 0$ and $q_1 = q$. For steel ring, we have $q_2 = q$, $q_1 = 0$ and $\varepsilon_{sh} = 0$. Using above conditions in Eq.35 and noting the displacement (u) at the interface of concrete and steel calculated from concrete and steel rings respectively are equal, we obtain the constants of C_1 and C_2 for concrete and steel rings respectively as:

$$C_{11} = \frac{2(1-\mu_1)}{E_1} \frac{r_2^2 q + E_1 \int_{r_2}^{r_3} \varepsilon_{sh} r dr}{r_3^2 - r_2^2}$$

$$C_{12} = \frac{1 + \mu_1}{E_1} \frac{r_2^2 r_3^2}{r_3^2 - r_2^2} \left(q + \frac{E_1}{r_2^2} \int_{r_2}^{r_3} \varepsilon_{sh} r dr \right)$$

and

$$C_{21} = -\frac{2(1-\mu_2)}{E_2} \frac{r_2^2 q}{r_3^2 - r_1^2}$$

$$C_{22} = -\frac{1 + \mu_2}{E_2} \frac{r_2^2 r_3^2}{r_3^2 - r_1^2} q$$

Then, the interfacial stress q can be expressed as:

$$q = \frac{-2}{r_3^2 - r_2^2} \int_{r_2}^{r_3} \varepsilon_{sh} r dr + \frac{1}{E_1} \frac{(1-\mu_1) r_2^2 + (1+\mu_1) r_1^2}{r_3^2 - r_2^2} + \frac{1}{E_2} \frac{(1-\mu_2) r_1^2 + (1+\mu_2) r_2^2}{r_3^2 - r_1^2}$$

Eq. 36
Creep consideration starts here:

Figure 4 Procedures of creep correction on the effective shrinkage strain. (Yuan Gao, Jun Zhang, Po Han 2013)

Clearly, the interfacial pressure is generated from the volume change of concrete layer and is a function of ε_{sh} as displayed in Eq. 36. Using Eq. 36 in both Eq.33. and Eq. 34, we can obtain the stresses of σ_r and σ_θ in concrete and steel rings respectively as concrete undergoes shrinkage. In the ring test, shrinkage of concrete is restraint by steel ring and tensile stress is created in the concrete ring. Creep of concrete then immediately takes place as concrete ring is loaded in tension. Then part of the shrinkage strain is counteracted by the creep strain, behaving as the shrinkage stress decreasing with age.

Such stress relation also reflects as the reduction of the interfacial stress with age in the ring test. If we define an effective shrinkage strain that been used for generation of shrinkage stress in the concrete ring as ε_{sh-e}, then we have:

$$\varepsilon_{sh-e}(t) = \varepsilon_{sh}(t) - \varepsilon_{\text{creep}}(t, t_0)$$ \hspace{1cm} \text{Eq. 37}
Based on the effective shrinkage, the relaxation parameter can be easily back-calculated by comparing both the theoretical and experiment shrinkage models, as displayed in Figure 4.

Note that \(t \) and \(t_0 \) are loading end and load start time, respectively. \(\varepsilon_{\text{creep}} \) is the creep strain after loading period of \((t - t_0)\). The creep strain may relate with the effective shrinkage strain by creep coefficient factor \(\varphi \) as:

\[
\varphi(t, t_0) = \frac{\varepsilon_{\text{creep}}(t_0)}{\varepsilon_{\text{sh-e}}(t, t_0)} \quad \text{Eq. 38}
\]

The equation is a function of load time and loading period also and can be simulated by:

\[
\varphi(t, t_0) = \varphi_1 t_0^d (t - t_0)^p \quad \text{Eq. 39}
\]

Where \(\varphi_1, d \) and \(p \) are material parameters, which should be determined directly or indirectly from experiments.

Many numbers of references can be found in the literature regarding the magnitude of creep relaxation parameters. Through analyzing these references, it is suggested that the range of \(\varphi_1, p \) and \(d \) are normally within 0.13–3.7, 0.10–0.90 and 0.05–0.6 for various concrete types and loading conditions.

\[
\varepsilon_{\text{sh-e}}(t) = \varepsilon_{\text{sh}}(t) \left[1 - \frac{\varphi(t, t_0)}{1 + \varphi(t, t_0)} \right] \quad \text{Eq. 40}
\]

After taking the creep of concrete into account, we obtain the interfacial pressure stress:

\[
q = \frac{2\pi}{r_1^2 - r_2^2} \left[1 - \frac{\varphi(t, t_0)}{1 + \varphi(t, t_0)} \right] \int_{r_2}^{r_1} \varepsilon_{\text{sh}} r \, dr \quad \text{Eq. 41}
\]
The above discussion may well suit for the situation where the strain or deformation is fixed. However, shrinkage of concrete is normally growth with age from the initial value of zero in early age concrete. To deal with the stress relaxation under varied restrained strain, a method used for the prediction of stress relaxation under varied loading stress was used in the present paper Zhu BF, 1999. The effective strain at the time \(t_1 \) can then be given by:

\[
\varepsilon_{sh-e}(t, t_1) = \varepsilon_{sh-e}(t_0) + \sum_{i=1}^{n} \Delta \varepsilon_{sh-e}(t_i) \left[1 - \frac{\varphi(t, t_1)}{1 + \varphi(t, t_0)} \right]
\]

\[\text{Eq. 42}\]

The interfacial pressure stress after considering creep relaxation for varied loading history presented as:

\[
q = -\frac{2}{\pi E_1} \sum_{i=1}^{n} \left[\frac{1}{1+\mu_1} \right] \int_{r_2}^{r_3} \Delta \varepsilon_{sh}rdr
\]

\[
\text{Eq. 43}
\]

It should be noted that the time \(t \) in the above equations should be transferred into the corresponded equivalent time if varied temperature history is experienced which is the case in this research. Comparing Eq.43 with Eq. 26 the relaxation parameters of concrete in tension then can be calculated. The comparison between calculated and tested interfacial compressive stresses is carried out within the stress calculation.

\(E_1 \) and \(\mu_1 \) are the elastic modulus and Poisson’s ratio of the concrete.

\(E_2 \) and \(\mu_2 \) are the elastic modulus and Poisson’s ratio of the steel.

\(r_1 \) is the inner radius of the steel ring, \(r_2 \) is the outer radius of the steel ring/inner radius of the concrete ring, \(r_3 \) is the outer radius of the concrete ring.
Factors Affect the Concrete Shrinkage

As far as shrinkage of the hydrated cement paste itself is concerned, shrinkage increases with higher water/cement ratio (w/c) because the latter determines the amount of evaporable water in the cement paste and the rate at which water can move towards the surface of the specimen. Brooks demonstrated that shrinkage of hydrated cement paste is directly proportional to the w/c ratio between the values of about 0.4 and 0.7. At higher w/c ratios, the additional water is removed upon drying without resulting in shrinkage (J. Brooks 1989), shown in Table 1.

<table>
<thead>
<tr>
<th>Aggregate/cement ratio</th>
<th>Shrinkage after six months (10^4) for w/c ratio of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>550</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 1 Water/Cement and Aggregate/Cement ratio effects on the concrete shrinkage (J. J. Brooks 1989)

The second factor which affects the shrinkage is both the aggregate content and the w/c ratio as shown in Figure 5. One of the most important factors to reduce shrinkage in the concrete is to increase the aggregate content in the concrete mix. It’s interesting to notice that using lower w/c ratio for the same amount of the aggregate will also reduce the shrinkage of the concrete.
At a constant w/c ratio, shrinkage increases with an increase in the cement content because increasing cement content results in a larger volume of hydrated cement paste which is able to shrink. However, at a given workability, which means an approximately constant water content, shrinkage is unaffected by an increase in the cement content, or may even decrease, because the w/c ratio is reduced, and the concrete is, therefore, better able to resist shrinkage as shown in Figure 6.
Air Content

If the air content is less than 8%, there is no significant effect on the magnitude of drying shrinkage (Davis and Troxell 1954).

Fly Ash

ACI Committee 232 (2005) on the use of fly ash in concrete reported that shrinkage may be increased slightly with the addition of fly ash with a constant water content. This finding is attributed to the increased paste volume in a concrete mix. Meanwhile, if the water content is reduced, shrinkage should be about comparable to concrete without fly ash.

Slag

Cement ACI Committee 233 (2000) on the use of slag cement in concrete and mortars reported that shrinkage is reduced when lower paste contents are used with slag mixes. The committee stated that published data on the effects of slag on shrinkage indicated conflicting results, and, overall, drying shrinkage was comparable in Portland cement concrete and concrete mixtures containing slag cement.
Summary of Influence Factors on Concrete Shrinkage

<table>
<thead>
<tr>
<th>Category</th>
<th>Factors</th>
<th>Quantity</th>
<th>Paste Quality</th>
<th>Other Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Concrete composition</td>
<td>Higher volume-to surface area ratio decreases shrinkage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>Wind</td>
<td>Similar to temperature effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Higher temperature accelerates moisture loss leading to higher shrinkage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Higher Relative Humidity leads to lower shrinkage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curing</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paste Content</td>
<td>Water/Cement ratio</td>
<td>Concrete shrinkage increases with water/cement ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air content</td>
<td>Air content</td>
<td>No significant effect on the magnitude of drying shrinkage if it is less than 8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admixtures</td>
<td>Admixtures</td>
<td>May increase concrete shrinkage with a given w/cm ratio and cement content, dependant on admixture type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ternary mixtures</td>
<td>Ternary mixtures</td>
<td>Normally, adverse effects can be diminished (e.g., PC+fly ash cement siliceous lime or even)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early curing retardants</td>
<td>Early curing retardants</td>
<td>Reduce shrinkage of PC concrete and Have a lower water/cement ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlling results</td>
<td>Controlling results depend on w/cm, curing period, and paste cement content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly ash</td>
<td>Fly ash</td>
<td>Classes F, P, and possibly decreases shrinkage; Class C fly ash increases shrinkage with cement replacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superplasticizer</td>
<td>Superplasticizers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Higher sulfate and gypsum content may reduce shrinkage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of Influence Factors on Concrete Shrinkage (Peter Taylor and Xuhao Wang, 2014)
Mix Design and Concrete Casting

The ASTM standard for making and curing concrete test specimens in the laboratory was followed to develop each of the different concrete batches and form the appropriate specimens for each (ASTM C192/C 192M, 2006). A standard laboratory drum mixer with a capacity of 3 ft3 was used in accordance with ASTM for all samples. The materials used in each of the castings were ordered from Central Supply Company, a local concrete production company in the Morgantown, WV. These materials consisted of cement, sand and large aggregate.

After the concrete was produced in the drum mixer air content, slump, and water/cement (w/c) ratio for each concrete batch were determined. The concrete was placed into the respective molds/forms with appropriate rodding and consolidating techniques outline by ASTM (ASTM C192/C 192M, 2006). After the molds were filled, damp burlap was placed over the top of each of the specimens for a 24-hour period.

24 hours after castings, each of the concrete specimens was removed from their respective molds and placed into curing tanks filled with water and a lime additive. The temperature of the curing tanks was monitored with temperature loggers to ensure that the temperature was a constant 72°F for each of the samples.
OPC 1

The first concrete batch that was cast was an Ordinary Portland Cement (OPC) concrete batch, cast on April 12, 2018, at approximately 5:00 P.M. A total of 2.5ft3 were produced during this casting. The specimens that were formed are as follows:

- 7 – 4” x 8” Cylinders
- 6 – 3” x 3” x 12” Rectangular Steel Mold Prims

The 4” x 8” cylinders were used to measure the compressive strengths. The rectangular prisms were used for the shrinkage under three different drying conditions: fully wrapped, half-wrapped, and no wrap.

OPC 2

The Second concrete batch that was cast was an Ordinary Portland Cement (OPC) concrete batch, cast on June 6, 2018, at approximately 9:30 A.M. A total of 4 yd3 was produced during this casting. The specimens that were formed are as follows:

- 24 – 4” x 8” Cylinders
- 26 – 6” x 12” Cylinders
- 6 – 3” x 3” x 12” Rectangular Steel Mold Prims

Both 4” x 8” and 6” x 12” cylinders were used to measure the compressive and tensile strengths. The rectangular prisms were used for the shrinkage under three different drying conditions: fully wrapped, half-wrapped, and no wrap.
OPC 3

The third concrete batch that was cast was the Ordinary Portland Cement (OPC) concrete batch, cast on July 12, 2018, at approximately 11:30 A.M. The specimens that were formed are as follows:

- 24 – 4” x 8” Cylinders
- 26 – 6” x 12” Cylinders
- 6 – 3” x 3” x 12” Rectangular Steel Mold Prims

Both 4” x 8” and 6” x 12” cylinders were used to measure the compressive and tensile strengths. The rectangular prisms were used for the shrinkage under three different drying conditions: fully wrapped, half-wrapped, and no wrap.

Slump test and air content test were measured for each concrete mix. The water to cement ratio was also measured to confirm that it was the same as the design. After all, materials were thoroughly mixed in the drum. Mixes are shown in Table 3.

<table>
<thead>
<tr>
<th>Mix Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Cement</td>
</tr>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>Water</td>
</tr>
</tbody>
</table>

Table 3 Mix Designs for Concrete Mixtures per yd3
Slump Test

The concrete slump test measures the consistency of fresh concrete before it sets. It is performed to check the workability of freshly made concrete, and therefore the ease with which concrete flows. It can also be used as an indicator of an improperly mixed batch. The test is popular due to the simplicity of apparatus use and procedure.

For each of the concrete batches, the ASTM Standard for Slump Test was followed (ASTM C143, 2010). The freshly mixed concrete is compacted into the standard slump cone. The cone is then removed slowly (5-7 seconds should elapse) and the difference in height is immediately measured to determine the slump value.

![Figure 7 Standard Slump Cone Mold (ASTM C143, 2010).](image)

The Slump values for each of the three applicable concrete batches can be seen in Table 4 Mechanical Properties of the Mixes. The common range for slump measurement is anywhere from 2 in. to 7 in., with the lower end of the range resulting in less workability, and the higher range resulting in greater workability.
Air Content Test (Pressure Method)

The purpose of the air content test is to determine the percentage of air that is contained in the freshly mixed concrete, excluding any air that may exist inside voids of aggregate. The measured air content can be a factor of consolidation techniques, exposure, uniformity of air bubbles, amongst other variables (ASTM C231, 2003). Air content is important as it can be directly related to the strength and freeze-thaw durability of the concrete. Typically, concrete with lower air content results in a higher strength concrete, and vice-versa.

There are two types of air content apparatuses commonly used to determine air content in freshly mixed concrete: Type A and Type B meters. For this research project, a Type B Meter was used. A schematic of this apparatus can be seen in Figure 8 below, and the actual apparatus used in each of the castings can be seen in Figure 8.

![Type B Air Content Apparatus](image)

Figure 8 Type B Air Content Apparatus (ASTM C231, 2003).

The air content apparatus was calibrated appropriately according to the ASTM C231 Standards (ASTM C231, 2003). The freshly mixed concrete was then placed into the apparatus bowl, rodded, and finished accordingly. The air content for each of the different concrete batches can be seen in Table 4 Mechanical Properties of the Mixes.
Water Cement Ratio (Microwave Method)

The water-cement (w/c) ratio has a significant effect on the strength and permeability of the concrete. The microwave method can be used to obtain w/c ratio results within hours, rather than waiting days for the strength results. Monitoring the test results may provide an early flag of potentially low-strength concrete, allowing the contractor to adjust operations sooner than conventional strength testing might indicate.

Concrete strength varies inversely with the amount of water in the mixture. In simplest terms, for a given cement content, less water leads to higher strength. Other factors such as consolidation, curing, aggregate quality, air content, and aggregate shape affect strength as well. For a given mixture with a constant amount of cement, the w/c ratio has the greatest impact on strength.
The total water in a concrete mixture comes from the following sources:

- Moisture absorbed in the aggregate.
- Free water on the aggregate.
- Water added in the batching process.

The mass of water removed from a fresh mixture by drying in a microwave can be used to calculate the w/c ratio of the mixture. This test is described in AASHTO T 318, and the total water content of the concrete sample can be expressed as a percentage:

Total water content \(\% (W) = \frac{\text{wet sample mass} - \text{dry sample mass}}{\text{wet sample mass}} \).

![Figure 9 Water Cement ratio (Microwave method)](image)

Mix Properties are shown in Table 4

<table>
<thead>
<tr>
<th>Concrete Type</th>
<th>Slump Measurements</th>
<th>Air Content (%)</th>
<th>Measured (W/C) Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC 1</td>
<td>7.87</td>
<td>5.5</td>
<td>0.49</td>
</tr>
<tr>
<td>OPC 2</td>
<td>5.75</td>
<td>6.4</td>
<td>0.5</td>
</tr>
<tr>
<td>OPC 3</td>
<td>5</td>
<td>7.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 4 Mechanical Properties of the Mixes
For this research study, concrete specimens from each concrete batch were tested under several different ASTM experimental procedures at different ages. The concrete specimens were tested at 0.5, 1, 3, 7, 14, and 28 days for the following:

1- Setting Time
2- Hydration degree
3- Elastic modulus
4- Compressive Strength
5- Tensile Strength
6- Relative Humidity Analysis
7- Shrinkage Analysis
8- Ring Test
9- Interfacial Compressive Stress Analysis

Each of the concrete specimens remained in the same curing tank at a constant temperature of 73 °F during the entire 28-day span when they were not undergoing testing.
Setting Time Test

Setting of concrete is identified as the transition of fresh concrete from the liquid phase to the solid phase. It is important to identify this phase change to plan transporting and placing of concrete. According to ASTM C 403, initial setting time is identified based on the penetration resistance measured on mortar sieved from a concrete mixture and it is defined as the time taken to achieve a penetration resistance of 500 psi.

A mortar sample was cast separately by using the mix design ratio. Tow cylinders with dimensions of 6 in. in height and 6 in. in diameter were filled with sieved mortar mix, then the containers with mortar were left for several minutes in an inclined position and bleed water accumulated at the surface of each specimen was removed using napkins. A needle of appropriate size was then inserted into the mortar, depending on the degree of the setting of the mortar. At the start, a needle with the largest diameter was used and subsequently needles of smaller diameters were used with the stiffening of mortar. The test started 3 – 4 hr. after mixing with subsequent tests made at 1/2- to 1-hr Intervals. Penetration needles with the following bearing areas (in²): 1.00, 0.50, 0.25, 0.05, 0.025, were used.

Figure 10 Setting Time Test
The penetration resistance was calculated by dividing the force by the penetration area.

The initial and the final setting time can be calculated by solving the fitting equation, at 500 and 4000 psi respectively as shown in Table 5. The penetration resistant is shown in Figure 11.

![Setting Time Graph](image)

Figure 11 Setting Time Test results

<table>
<thead>
<tr>
<th></th>
<th>Required (P)</th>
<th>Time (min)</th>
<th>Time (hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Setting</td>
<td>500</td>
<td>251.21</td>
<td>4.19</td>
</tr>
<tr>
<td>Final Setting</td>
<td>4000</td>
<td>352.15</td>
<td>5.87</td>
</tr>
</tbody>
</table>

Table 5 Setting Time Test results
Degree of Hydration

The hydration degree is defined as the extent of the reactions between the cementitious materials and the water and is the ratio between the quantity of the hydrated cementitious material and the original quantity of the cementitious material. The chemical reaction between the cement particle and the water occurs over time, as a result, the hydration degree is a function of time and can change from 0% to 100% once the reaction is complete. However, in reality, the cement does not reach full hydration, so 100% may never occur.

It’s important to consider the curing temperature effects on the hydration process, where the higher temperature curing the faster chemical reaction which causes the higher degree of hydration in terms of actual time compared to the lower temperature curing. The maturity method can be applied on the calculation of concrete degree of hydration which makes the degree of hydration a function of equivalent age (\(t_e \)) (Freiesleben and Pedersen 1993, Yikicci and Chen, 2015).

An indirect method was used to estimate the hydration degree based on the heat development that occurs during the hydration, by measuring the adiabatic temperature rise of concrete at a different time, the cement hydration degree is estimated by:

\[
\alpha(t) = \frac{H(t)}{H_T} \quad Eq. 44
\]

\(\alpha(t) \): Degree of hydration at time \(t \).

\(H(t) \): The cumulative heat of hydration released at time \(t \), (J/m\(^3\)).

\(H_T \): The ultimate heat of hydration of the concrete (J/m\(^3\)).
Once the released heat is measured the degree of hydration can be represented by the exponential formulation and it has been shown accurately represent the s-shape of the hydration development (Lin and Chen, 2015)

$$\alpha(t_e) = \alpha_u \exp \left(- \frac{t}{\tau} \right) \quad \text{Eq. 45}$$

Where: ζ and β are two empirical constants which can be determined by fitting isothermal experimental results.

α_u is the ultimate degree of hydration and is a function of water to cement ratio.

Numerous tests that were used to determine the ultimate degree of hydration were performed by Mills, 1966. He measured the amount of chemically bound water after hydration is complete. He found a numerical equation can be used to find the ultimate degree of hydration based on the water/cement ratio given below:

$$\alpha_u = \frac{1.031 \cdot w/c}{0.194 + w/c} \quad \text{Eq. 46}$$

1- OPC Mixes

<table>
<thead>
<tr>
<th>Degree of hydration parameters</th>
<th>τ</th>
<th>13.715</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.832</td>
<td></td>
</tr>
<tr>
<td>α_u</td>
<td>0.738</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12 Relationship of cement hydration degree and age.
Elastic Modulus Testing

For each of the concrete batches, two 6” x 12” cylindrical concrete specimens were tested at 1, 3, 7, 14, and 28 days using the “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression” (ASTM C469, 2002). Results are shown in Figure 13 and Figure 14, Tests results are shown in Table 6 and Table 7.

1. OPC 2

![Elastic Modulus Graph]

Figure 13 Elastic modulus-based degree of hydration model VS actual experiment results OPC 2

<table>
<thead>
<tr>
<th>Time (Day)</th>
<th>Elastic Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>18.98</td>
</tr>
<tr>
<td>1.125</td>
<td>20.88</td>
</tr>
<tr>
<td>3</td>
<td>24.73</td>
</tr>
<tr>
<td>7</td>
<td>25.94</td>
</tr>
<tr>
<td>14</td>
<td>27.07</td>
</tr>
<tr>
<td>28</td>
<td>28.32</td>
</tr>
</tbody>
</table>

Table 6 Elastic modulus measurements for Concrete Batches OPC 2

<table>
<thead>
<tr>
<th>Young Modulus model parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E (28) GPA</td>
<td>28</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
</tr>
</tbody>
</table>
2. OPC 3

Figure 14 Elastic modulus-based degree of hydration model VS actual experiment results OPC 3

<table>
<thead>
<tr>
<th>Time (Day)</th>
<th>Elastic Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.167</td>
<td>21.15</td>
</tr>
<tr>
<td>2.92</td>
<td>23</td>
</tr>
<tr>
<td>7.2</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>25.87</td>
</tr>
<tr>
<td>28</td>
<td>27.12</td>
</tr>
</tbody>
</table>

Table 7 Elastic modulus measurements for Concrete Batches OPC 3

<table>
<thead>
<tr>
<th>Young Modulus model parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E (28) GPA</td>
<td>26</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Compressive Strength Testing

For each concrete batch, at least two 4” x 8” cylindrical specimens were tested at each of the above-mentioned days for compressive strength at the Concrete Materials Laboratory at West Virginia University. The ASTM Standard for Compressive Strength of Cylindrical Concrete Specimens (ASTM C39) was followed for each testing (ASTM C39, 2003). Each specimen was loaded under a Uni-axial load under a constant loading rate until failure. Results are shown in Figure 15, Figure 16 and Figure 17. And Table 8 Table 9 and Table 10.

1- OPC 1

![Figure 15 Compressive Strength development curves for concrete cylinders OPC 1](image-url)
Table 8 Compressive Strength measurements for Concrete Batches OPC 1

<table>
<thead>
<tr>
<th>Time (Day)</th>
<th>Compressive Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>819.65</td>
</tr>
<tr>
<td>1</td>
<td>2084.93</td>
</tr>
<tr>
<td>3</td>
<td>3103.52</td>
</tr>
<tr>
<td>7</td>
<td>3947.1</td>
</tr>
<tr>
<td>14.</td>
<td>4854.23</td>
</tr>
<tr>
<td>27.92</td>
<td>5172.54</td>
</tr>
</tbody>
</table>

Table 9 Compressive Strength measurements for Concrete Batches OPC 2

<table>
<thead>
<tr>
<th>Test Day</th>
<th>OPC2 (6x12)</th>
<th>OPC2 (4x8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1404.1</td>
<td>1332.92</td>
</tr>
<tr>
<td>1</td>
<td>2287.12</td>
<td>2303.78</td>
</tr>
<tr>
<td>3</td>
<td>3059.31</td>
<td>3411.22</td>
</tr>
<tr>
<td>7</td>
<td>3725.4</td>
<td>4138.03</td>
</tr>
<tr>
<td>14</td>
<td>4173.39</td>
<td>4496.13</td>
</tr>
<tr>
<td>28</td>
<td>4532.97</td>
<td>4986.85</td>
</tr>
</tbody>
</table>

Figure 16 Compressive Strength development curves for concrete cylinders OPC 2
3- OPC 3

Figure 17 Compressive Strength development curves for concrete cylinders OPC 3

<table>
<thead>
<tr>
<th>Test Day</th>
<th>OPC3 (6x12)</th>
<th>OPC3 (4x8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1497.24</td>
<td>1472.18</td>
</tr>
<tr>
<td>1</td>
<td>1927.54</td>
<td>2108.8</td>
</tr>
<tr>
<td>3</td>
<td>2695.85</td>
<td>3010.68</td>
</tr>
<tr>
<td>7</td>
<td>3389.41</td>
<td>3573</td>
</tr>
<tr>
<td>14</td>
<td>3772.56</td>
<td>4031.93</td>
</tr>
<tr>
<td>28</td>
<td>3987.71</td>
<td>4416.55</td>
</tr>
</tbody>
</table>

Table 10 Compressive Strength measurements for Concrete Batches OPC 3
Tensile Strength Test

The tensile strength of concrete is one of the basic and important properties. Splitting tensile strength test on concrete cylinder is a method to determine the tensile strength of concrete.

The concrete is very weak in tension due to its brittle nature and is not expected to resist the direct tension. The concrete develops cracks when subjected to tensile forces. Thus, it is necessary to determine the tensile strength of concrete to determine the load at which the concrete members may crack.

Two 4”x 8” and 6”x 12” cylindrical specimens were tested at each of the above-mentioned days for tensile strength at the Concrete Materials Laboratory at West Virginia University. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Results are shown in Figure 18, Figure 19, Table 11 and Table 12 Calculate the splitting tensile strength of the specimen as follows:

\[T = \frac{2P}{\pi ld} \quad Eq. 47 \]

\(P \): applied load

\(D \): diameter of the specimen

\(L \): length of the specimen
1- OPC 2

Figure 18 Tensile Strength development curves for concrete cylinders OPC 2

<table>
<thead>
<tr>
<th>Test Day</th>
<th>OPC2 (6x12)</th>
<th>OPC2 (4x8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>233.7</td>
<td>231.07</td>
</tr>
<tr>
<td>1</td>
<td>301.51</td>
<td>297.62</td>
</tr>
<tr>
<td>3</td>
<td>409.06</td>
<td>395.5</td>
</tr>
<tr>
<td>7</td>
<td>453.3</td>
<td>492.29</td>
</tr>
<tr>
<td>14</td>
<td>496.07</td>
<td>528.5</td>
</tr>
<tr>
<td>28</td>
<td>497.8</td>
<td>539.44</td>
</tr>
</tbody>
</table>

Table 11 Tensile Strength measurements for Concrete Batches OPC 2
2- OPC 3

Figure 19 Tensile Strength development curves for concrete cylinders OPC 3

<table>
<thead>
<tr>
<th>Test Day</th>
<th>OPC (6x12)</th>
<th>OPC (4x8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>211.91</td>
<td>216.05</td>
</tr>
<tr>
<td>1</td>
<td>252</td>
<td>277.19</td>
</tr>
<tr>
<td>3</td>
<td>343.07</td>
<td>363.87</td>
</tr>
<tr>
<td>7</td>
<td>378.94</td>
<td>409.72</td>
</tr>
<tr>
<td>14</td>
<td>403.5</td>
<td>440.77</td>
</tr>
<tr>
<td>28</td>
<td>426.67</td>
<td>461.85</td>
</tr>
</tbody>
</table>

Table 12 Tensile Strength measurements for Concrete Batches OPC 3
Shrinkage Test

Six square prism specimens with dimensions of 3 x 3 x 12 in. (76 x 76 x 305 mm) were used in the free shrinkage test in accordance with ASTM C157 Method. Figure 21 shows the shrinkage test specimens. Steel end plates with a hole at their centers were used to hold the contact points in place at each end of the specimen. The length change is measured with a device called a comparator. It’s an LVDT on a stand.

![Figure 20 comparator to measure the length change](image)

The Length Comparator, with Invar Bar and Digital Indicator, is used for measuring length changes in specimens cast with special gage studs in the ends to fit the bottom and top anvils of the Comparator. The sensitivity of the indicator is 0.0001 in (0.002 mm) divisions measures specimen length. The comparator is shown in Figure 20.
Three different types of drying were performed on the specimens as follow:

1. Fully wrapped
2. Half-wrapped
3. No wrap

Full-wrap specimens were used to determine the concrete autogenous shrinkage due to the hydration only.

Half-wrap specimens were used to simulate the shrinkage in the concrete ring since the concrete rings have a 1.5-inch thickness and the shrinkage prisms also have 1.5-inch drying thickness.

No wrap specimens were used to measure the drying shrinkage of the concrete. Following the ASTM procedure

![Figure 21 Shrinkage specimens (2) No-Wrap (3) Half-Wrapped](image)
Experiments Results

1- OPC 1

Figure 22 Average Shrinkage (micro-strain) Experiments OPC 1

2- OPC 2

Figure 23 Average Shrinkage (micro-strain) Experiments OPC 2
3- OPC 3

The results are shown in Figure 22, Figure 23 and Figure 24 indicate that the higher the environment temperature, the higher concrete shrinkage will occur; the environmental temperature and humidity influence will be discussed in the following section.

For the fully wrap case in OPC 1 very high autogenous shrinkage which is not reasonable; the specimens must have not been fully wrapped correctly, and the concrete was undergoing drying shrinkage. The testing preparation was improved after the OPC 1 test; to ensure fully wrapped not only plastic wrap was used in OPC 2 and OPC 3, but also tape was used to ensure that no moisture loss can happen. Figures 25-26 represent all mixes together for No-Wrap and Half-Wrap.
Figure 25 Average No-Wrap Shrinkage (micro-strain) Experiments

Figure 26 Average Half-Wrap Shrinkage (micro-strain) Experiments
Ambient Temperature and Humidity

The rings and the shrinkage specimens were tested in a laboratory room where variations of the environmental temperatures and air humidity were observed during testing, therefore there are different drying behavior. Although the same mix design was used, different drying behavior was observed due to the fact that the saturation pressure of the water is a function of the temperature and the relative humidity.

To further investigate the phenomenon, the partial vapor pressure was calculated and also the saturation pressure of the water. The difference between the partial vapor pressure and the saturation pressure of the water can explain the speed of the drying process.

The measured relative humidity explains how close the air to the saturation

\[\text{RH} = \frac{P_i}{P_{sat}} \times 100 \% \text{ Eq. 48} \]

Where

- \(P_i \): is the partial vapor pressure
- \(P_{sat} \): the saturation pressure of the water

The saturation pressure of the water is a function of the humidity and the temperature and can be calculated using the empirical equation or given tables. The empirical equations given below give a good approximation to the saturation water vapor pressure in Pascal at temperatures within the limits of the earth's climate. (Tetens, O., 1930):

\[P_{sat} = 610.78 \times \exp \left(\frac{T}{T + 238.3} \right) \times 17.2694 \text{ Eq. 49} \]
Where:

T: is the temperature in °C.

The Absolute humidity which is (g water/g dry) which is a gram of water over a gram of dry air at a given temperature and humidity.

\[
\text{Absolute humidity} = \frac{p_i \times M_{(h2o)}}{(P-p_i) \times M_{(dry \ air)}} \quad \text{Eq. 50}
\]

Where:

\(p_i\): is the partial vapor pressure.

\(P = \): One atmosphere of pressure at sea level is equivalent to 1 Barr or 760 mmHg pressure.

\(M_{(h2o)}\) is the molecular weight of the water 18 gr/mol.

\(M_{(dry \ air)}\) is the molecular weight of the average dry air 29 gr/mol.

In order to find the relationship between the shrinkage factor and the environmental effect, the slope value of the integration of the difference between the difference between the partial vapor pressure and the saturation pressure of the water was calculated from the accumulated integration shown in Figure 31 which again indicates the speed of the drying process under different environment situation.

As shown OPC 3 will dry faster due to the fact of higher difference between the partial vapor pressure and the saturation pressure of the water and that can be verified from the experiments. Although OPC 1, OPC 2 were tested in a different environment (Temperature and humidity) but as shown the drying process was close.

It should be noted that the drying for OPC 2 was started after 30 hours of the casting, and the drying for OPC 1 and OPC 3 was started after 24 hours of the casting.
1- OPC 1

Figure 27 Ambient temperature and humidity for OPC 1

2- OPC 2

Figure 28 Ambient temperature and humidity for OPC 2
3- OPC 3

Figure 29 Ambient temperature and humidity for OPC 3

Figure 30 The difference between the partial and the saturation pressure
As shown in figure 31, the integration of the difference between the partial and the saturation pressure can be fitted by a line, and the slope of that line indicates the drying speed of the specimen.

For OPC 1 the slope is 14.269.

For OPC 2 the slope is 16.44.

For OPC 3 the slope is 23.302.
Internal Humidity-Temperature Sensor and Measurement System

The Humidity-Temperature Sensor and Measurement System was designed at the University of Illinois at Urbana-Champaign (UIUC) and utilizes small, inexpensive digital RH-temperature sensors manufactured by Sensirion (part # SHT21). Figure 32 provides an overview of the internal RH measurement system.

A humidity-temperature sensor, Sensirion SHT21, was used to monitor the internal relative humidity (RH) and the temperature inside the concrete. The sensor has a RH operating range of 0% to 100% RH with a maximum accuracy of ±2% RH between 10% and 90% RH, and a temperature operating range of -40 °F to 257 °F (-40 °C to 125 °C) with a maximum accuracy of ±0.54 °F (±0.3 °C) at 77 °F (25 °C). The sensor has four connector pins designated for the SCK (clock), voltage supply, ground, and serial data.

One could solder directly to the sensor tabs, but the connector allows the easy replacement of any sensors that have been damaged and prevents damage to the sensor during the soldering process. A 4-pin connector was used (JST EH/XH 2.54 MM 4 Pin connector).
The RH and temperature data were digitally transmitted from the sensor to a small microcontroller, BasicX-24, and then collected by a personal computer (PC) through a PC COM port shown in Figure 33.

![Figure 33 Data collector box.](image)

The microcontroller can accommodate simultaneous monitoring of up to 15 sensors. Meanwhile, a data acquisition software developed by (Grasley and Lange 2004) was installed in the PC for the control of the data collection and the sensor (Choi, 2012). A data collecting interval of 30 seconds was adopted in this monitoring. The sensors were placed inside a plastic ¾ in end tube cab, as shown in Figure 34. A hole was made from the top for the wires and a plastic tube was used to protect the wires.
A waterproof, breathable and durable Gore-Tex fabric was used to cover the end tube, since it can repel liquid water while allowing water vapor to pass through, and is designed to be a lightweight, waterproof fabric for all-weather use. As shown in Figure 35.

To monitor and simulate the humidity inside of the concrete ring, for each experiment three sensors were used and placed at different depths ½, 1, and 1½ in from the drying surface.
A mold with dimensions of 6x6x12 in was sealed all the way but one side assuming that the moisture movement inside the concrete ring is from the inside to the outside and only in one direction. Another mold with the same dimensions was made but sealed entirely to measure the moisture loss due to the hydration only.

Figure 36 Designed box to measure the humidity at different depth

The collected data from both boxes is shown in Figure 37 and Figure 38, the sensors responded to the humidity change after placing the concrete inside the boxes but went over 100%.

Figure 37 Humidity measurements at a different depth from the uncovered box OPC 1
Figure 38 Humidity measurements at a different depth from the sealed box OPC 1

Unfortunately, the results were not usable due to a few possible reasons:

1 – The sensors were placed inside the box before casting, some water may have gotten into the tube-end while filling the box with concrete, and this possibility can explain the high humidity during the test.

2 – The cement particles blocked the pores in the Gore-Tex from exchanging the humidity after casting.

3 - Using the humidity sensor SHT21 instead of SHT71. The original program was written for the SHT7X sensors.

Few suggestions to avoid this problem in the future:

1 - The sensors should be inserted after the setting time of the concrete where less water existed and the humidity still close to 100%

2 – Measure the humidity by drilling holes on the concrete surface after one day and get readings every day.
3 – Using better design by measuring the humidity directly without using the Gore-Tex.

As mention earlier, the moisture loss in the concrete is related directly to the drying shrinkage. To find the humidity inside the concrete, the experiment described is a good approach to measure the humidity.

Unfortunately, the theoretical analysis of the humidity distribution in the concrete has not been verified with the experiments described earlier. Instead, Finite Element analysis (Abaqus) was used, assuming that the behavior of the moisture movement inside the concrete is the exact same as the temperature change under specific boundary conditions.

As mention before the half-wrapped specimens were made to simulate the shrinkage of the concrete ring. Therefore, to find the best fit shrinkage models the humidity should be known. Two different FEM models using ABAQUS were generated to find the humidity inside the shrinkage specimens.
Restrained Shrinkage Ring Test

ASTM C1581M – 16 “Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage” was used to measure the strain.

Some of the test specifications are Steel ring—Structural steel pipe with a wall thickness of 0.50 ± 0.05 in., an outside diameter of 13.0 ± 0.12 in. and a height of 6.0 ± 0.25 in. Strain gages—As a minimum, use two electrical resistance strain gauges to monitor the strain development in moisture analysis for 1-D the steel ring, in this study four electrical resistance strain gauges to monitor the strain development in each steel ring.

![Diagram of the ring specimen](image)

Figure 39 Geometry of the ring specimen. (Yuan Gao, Jun Zhang, Po Han 2013)

A sudden decrease in compressive strain in the strain gages indicates cracking of the concrete because the maximum tensile stress was higher than the tensile strength of the concrete. It’s very important to record ambient temperature and relative humidity of the environment during the test since it affects the shrinkage of the concrete directly. If varied temperature history
is experienced during the test, before using the data, it must be adjusted as Temperature Compensation. To do so, the Linear Elastic Solution of the cylinder stress-strain relationship can be used. For the thick wall cylinder, the stresses are giving by:

\[
\sigma_r = \frac{r_o^2 P_i - r_i^2 P_o}{(r_o^2 - r_i^2)} - \frac{(P_i - P_o) r_i^2 r_o^2}{(r_o^2 - r_i^2) r^2} \\
\sigma_\theta = \frac{r_o^2 P_i - r_i^2 P_o}{(r_o^2 - r_i^2)} + \frac{(P_i - P_o) r_i^2 r_o^2}{(r_o^2 - r_i^2) r^2}
\]

Eq. 51

For a cylinder subjected to External Pressure only \((P_i = 0)\):

\[
\sigma_\theta = \frac{-P_o r_o^2}{r_o^2 - r_i^2} \left[1 + \frac{r_i^2}{r^2} \right] \\
\sigma_r = \frac{-P_o r_o^2}{r_o^2 - r_i^2} \left[1 - \frac{r_i^2}{r^2} \right]
\]

Eq. 52

At inside surface \((r = r_i)\):

\[
\sigma_\theta = \frac{-2 P_o r_o^2}{r_o^2 - r_i^2} \\
\sigma_r = 0
\]

Eq. 53

On the other hand

For a cylinder subjected to internal Pressure only \((P_o = 0)\):

\[
\sigma_\theta = \frac{P_i r_i^2}{r_o^2 - r_i^2} \left[1 - \frac{r_o^2}{r^2} \right] \\
\sigma_r = \frac{P_i r_i^2}{r_o^2 - r_i^2} \left[1 + \frac{r_o^2}{r^2} \right]
\]

Eq. 54

At inside surface \((r = r_i)\):

\[
\sigma_\theta = P_i \left[\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \right] \\
\sigma_r = -P_i
\]

Eq. 55
The stress-strain relationship is given by:

\[
\varepsilon_\theta = \frac{\mu}{r} = \frac{1}{E} (\sigma_\theta - \sigma_r) \quad \varepsilon_r = \frac{d\mu}{dr} = \frac{1}{E} (\sigma_r - \nu \sigma_\theta) \quad \text{Eq. 56}
\]

Solving for \(\varepsilon_\theta\) at \(r_i\):

\[
\varepsilon_\theta = \frac{p}{E} \times \left(\frac{r o^2 + r i^2}{r o^2 - r i^2}\right) + \frac{v p}{E} \quad \text{Eq. 57}
\]

If

\[
\varepsilon_\theta = \Delta \alpha \times \Delta T = (\alpha_S - \alpha_C) \times \Delta T \quad \text{Eq. 58}
\]

Then:

\[
(\alpha_S - \alpha_C) \times \Delta T = \frac{p}{E} \times \left(\frac{r i^2 + r o^2}{r o^2 - r i^2}\right) + \frac{v p}{E} \quad \text{Eq. 59}
\]

Solving for \(P\):

\[
p = \frac{(\alpha_S - \alpha_C) \times \Delta T \times E_C}{\left(\frac{r i^2 + r o^2}{r o^2 - r i^2}\right) + v} \quad \text{Eq. 60}
\]

Then:

\[
\varepsilon_\theta = \frac{2 \times r o^2 \times E_C \times (\alpha_S - \alpha_C) \times \Delta T}{(r o^2 - r i^2) \times \left(\frac{r o^2 + r i^2}{r o^2 - r i^2}\right) + v} \quad \text{Eq. 61}
\]

\(\alpha_C\) : is the thermal expansion coefficient of the concrete.

\(\alpha_S\) : is the thermal expansion coefficient of the steel.

The strain change due to temperature change can be calculated and then Temperature Compensation can be applied.
Figure 40 Ring specimens

The following experimental results in Figure 41 through Figure 46 represent the raw strain data obtained from the ring experiment on the inner steel ring and the next figure represent the average corrected strain by temperature compensation.
Experiments results:

1- OPC 1

Figure 41 Steel Strain from the ring experiment OPC 1

Figure 42 Average Steel Strain OPC 1
2- OPC 2

Figure 43 Steel Strain from the ring experiment OPC 2

Figure 44 Average Steel Strain OPC 2
3- OPC 3

Figure 45 Steel Strain from the ring experiment OPC 3

Figure 46 Average Steel Strain OPC 3
For OPC 1, only one ring specimen was used. For OPC 2, and 3 two-ring specimens were used, and both rings behaved the same way. As the environment temperature was increased for OPC 2 and even higher for OPC 3 the measured strain increased faster in both cases, indicates that the higher the environment temperature the faster the Interfacial Compressive Stress generated, and the higher the measured strain.

![Figure 47 Cracked Ring (OPC 2)](image_url)
Direct Tensile Test (Dog-Bone)

In this research, three 3-foot dog-bone specimens with a 4”x4” center cross-section were designed to be used for tensile modulus and tensile creep testing as shown in Figure 48. A vibrating wire strain gauge embedded at the center to record the internal strain of the specimens. All the specimens were painted one day after unmolding and being wrapped using plastic wrap. One of them was used to measure the free shrinkage of the specimens, while the others were used direct tensile creep testing. For the tensile creep testing, the specimen was loaded 300 lbs. at 1 day and 12.75 days. The dog-bone specimen deformation after loading at one day was used later to verify the creep parameters obtained for the Mat-Lab model. The creep results will be discussed later in this research.

Figure 48 Schematic of the dog bone specimen
Chapter 4 Analysis and Interpretation of Results

Humidity Analysis

Simulating Half-Wrapped Specimens

The first model simulates the half-wrapped Shrinkage specimens using the ABAQUS thermal analysis since both humidity and temperature are diffusion equations. A 3x3 rectangular prism with predefined Temperature of 1000 °F, only 2 surfaces allowed for exchanging temperature with the ambient. 6 x 1.5 (h/2) slab with a predefined temperature of 10000 °F with only 1 surface allowed for exchanging temperature with the ambient. As shown in Figure 49.

Figure 49 Simulating the half-wrapped shrinkage
The result shows that the temperature change at the center of the prism is exact same of the temperature change at the bottom of the 1-D Slab with a height equal to half of the height of the prism. In this case 3”x 3” prism drying from two surfaces (half-wrapped shrinkage specimens) can be calculated as 1-D slab moisture humidity with a thickness of 1.5” which is exactly the case of the concrete ring. As shown in Figure 49.

Simulating No-Wrapped Specimens

The second model is to simulate the No-Wrapped Shrinkage specimens.

![Figure 50 Simulating the drying shrinkage](image)
3”x3” rectangular prism with predefined Temperature of 10000, all surfaces could exchange temperature with the ambient. 6”x 0.75” (h/4) Slab with a predefined temperature of 10000 °F with only one surface allowed for exchanging temperature with the ambient.

The result shows that the temperature change at the center of the prism is exact same of the temperature change at the bottom of the 1-D Slab with height of equal to (¼) of the height of the prism, in this case 3”x 3” prism drying from all surfaces (No-wrap shrinkage specimens) can be calculated as 1-D slab moisture humidity with thickness of 0.75” which is exactly the case of the No-wrap shrinkage specimens.

Moisture Transport Model

A Portland Cement Concrete Pavement (PCCP) moisture model by (Qinwu Xu, J. Mauricio Ruiz, George K. Chang, Robert O. Rasmussen, and Dan K. Rozycki, 2009) is used for the prediction of the moisture transportation. This model predicts PCCP moisture transport and moisture loss to the environment due to drying and self-desiccation.

According to Fick’s second law, the reduced moisture variation with time and position 1-D can be expressed as:

$$\frac{\partial H}{\partial t} = \frac{\partial}{\partial x} \left(D(H) \frac{\partial H}{\partial x} \right)$$
Eq. 62

The solution for the partial differential equation (PDE) using the Crank-Nicolson method is as follows:

$$\frac{H_{i+1}^{n+1} - H_i^n}{\Delta t} = \frac{1}{2} \left[D_{i+1/2} \frac{H_{i+1}^{n+1} - H_i^{n+1} + H_i^n - H_{i+1}^n}{\Delta h^2} - D_{i-1/2} \frac{H_i^{n+1} - H_{i-1}^{n+1} + H_i^n - H_{i-1}^n}{\Delta h^2} \right]$$
Eq. 63
H_{in} is the relative humidity at the (i_{th}) time step and (n_{th}) depth step. Δt and Δh are time step length and depth step length. In this study, the time step is (1 hr.) increment and a total of 100 depth steps was used in the finite difference calculation. D is the diffusivity and it is a function of the relative humidity and given in Eq. 4.

For solving the PDE using Crank-Nicolson method which is an implicit method, boundary conditions have to be applied, the surface on the concrete is the first boundary condition as the moisture may be lost or gained at the slab surface because of a moisture unbalance between the slab and ambient air, which is affected by multiple factors including curing conditions, environmental temperature, wind speed, and air properties such as vapor pressure. To maintain the moisture emission balance at the slab surface, a surface factor f (moisture emissivity) is used to correlate this relationship as follows:

$$D \frac{\partial H}{\partial x} = f (H_{en} - H_{sur}) \quad \text{Eq. 64}$$

Where:

$f =$ surface factor of emissivity (10–6 m/h),

$H_{en} =$ relative humidity of ambient.

$H_{sur} =$ moisture content at concrete surface.

The surface factor of emissivity is expressed as a function of the water/cement ratio by Akita et al. in the following equation:

$$f = \frac{50}{w/c + 10} + 2.5 \quad \text{Eq. 65}$$
The solution of the relative humidity at the concrete surface becomes:

\[\left(\frac{f \Delta h}{D_0} + 1 \right) H_0^{n+1} - H_1^{n+1} = f \frac{\Delta h}{D_0} \ast H_{en} \text{ Eq. 66} \]

On the other hand, there is no moisture loss at the inner surface of the concrete since it is attached to the steel ring, then second the boundary condition can be expressed as follows:

\[D \frac{\partial H}{\partial x} = 0 \text{ Eq. 67} \]

The moisture transport model is coded in MATLAB and can solve the moisture distribution for 1-D concrete slab exposed to the environment drying from the top surface at different depth and different ages.

In the MATLAB code, the critical degree of hydration assumed to be 0.4, and the moisture at the ultimate degree of hydration was calculated based on the water/cement ratio as 0.7781, Beta with a value of 2.5, was used. For the diffusivity calculation \(D_r = 0.0195 \text{ cm}^2/\text{h} \), and \(n = 6 \).

The humidity model was verified by comparing its results to other researchers results because the relative humidity inside the concrete was not measured successfully during the experiments. The first comparison was from the original researchers who developed the model by solving the theoretical solution of the moisture development inside the concrete, using their parameters in the model, and assuming parameters for the hydration degree since it was not given.
As shown in figure 51 the model can well follow the shape and predict the moisture loss development inside the concrete for different mix designs.

![Figure 51 Comparison between the coded model result and other researches results](image)

To further verify the accuracy and the validation of the humidity model, a second comparison was made between the theoretical solution of the moisture development inside the concrete and experimental data obtained by (Zhang 2010). Zhang experimentally measured the relative humidity inside the concrete using a humidity sensor located at the centroid of a prism with a dimension of 100x100x400 mm, which means at a depth of 50 mm (1.9685 in) from the drying surface. Zhang used two concrete mixes, C30, and C80.

The theoretical solution of the moisture development inside the concrete is shown in figure 53, it should be noted that the theoretical value of the moisture was solved using parameters provided by Zhang for each mix design.

Comparing both figures 52 and 53, the theoretical solution can well predict the moisture development inside the concrete.

77
Figure 52 The development of interior humidity with time in (a) C30 and (b) C80 concrete.

(a) C30 concrete with relative humidity decreasing over time.
(b) C80 concrete with relative humidity decreasing over time.

Figure 53 The development of interior humidity with time in (a) C30 and (b) C80 concrete using the theoretical solution of the moisture development inside the concrete.

No-Wrap case:

Using the thickness of 0.75” in the analysis to find the moisture loss. In this case, the inner surface which is the bottom of the slab is equal to the center of the no wrap shrinkage specimen.

Half-Wrapped case:

Using the thickness of 1.5” in the analysis to find the moisture loss. In this case, the inner surface which is the bottom of the slab is equal to the center of the half-wrapped shrinkage specimen which is exactly the case of the concrete ring.
Fully-Wrapped case:

Using the thickness of 1.5” in the analysis to find the moisture loss due to the self-desiccation only. In this case, both the inner surface and the outer surface must have the same moisture loss and it’s equal to the center of the fully-wrapped shrinkage specimens.

Moisture Distribution

Since the moisture model does the calculation based on time and location, the humidity distribution can be calculated versus depth for a different time. Drying due the self-desiccation (hydration), is different for each mix because of the difference of the degree of hydration curve since they have been cured in the different environment temperature. Figure 54, Figure 55 and Figure 56 represent the relative humidity distribution for the normal temperature of (73 °F) which is the OPC 1 and similarly the distribution of the moisture can be solved for each case.

OPC 1

No Wrap

![Moisture Content](image)

Figure 54 Moisture at the inner and the outer surface no-wrap (OPC 1, 73 °F)
Half-Wrapped

Figure 55 Moisture at the inner and the outer surface half-wrapped (OPC 1, 73 °F)

Figure 56 Moisture distribution at different age half-wrapped along the depth of the ring (OPC 1, 73 °F)
In order to consider the effect of the change in the ambient temperature and the humidity, an improvement for the existing theoretical solution of the moisture content inside the concrete was made. As seen previously, different shrinkage behavior was observed under different ambient temperature and humidity which means the partial and saturation pressure under different ambient temperature and humidity should be considered. Since, the drying speed of the concrete is directly related and controlled by the difference between the partial and the saturation pressure then, the moisture content inside of the concrete is also directly related and controlled by the difference between the partial and the saturation pressure since the moisture content and the shrinkage are directly related by a linear relationship in Eq 25.

Considering the OPC 1 as the ideal case, where the difference between the partial and the saturation pressure was minimum. The effect of the partial and the saturation pressure on OPC 2 can be considered by multiplying the moisture loss by the percentage of the slops.

For example, the slop percentage of OPC 2 is 16.44 divided by 14.269 which is equal to 1.15. Which means that the moisture loss for OPC 2 at a given time should be increased by 15%. And this increase in the moisture loss is a result of the change ambient temperature and the humidity as result is the change of the partial and the saturation pressure. in order to make it clear here is an example using the slop percentage method for OPC 2 case.

At a given time, t =28 days, the moisture content without considering the partial and the saturation pressure is 78% as shown in figure 57 which means that the moisture loss is equal to 100 – 78 = 22%. Now considering the effect of the partial and the saturation pressure, the corrected moisture loss is equal to 22 x 1.15 = 25.3% and the moisture content now equal to 74.7% instead of 77%.
Figure 57 the moisture content without and with considering the partial and the saturation pressure for (OPC 2)

It should be noted that this method was valid in this research and the correction of the moisture content was considered for both cases OPC 2 and OPC 3 but has not been verified yet, more research needs to be done in order to verify and finalize the slop percentage method.
Shrinkage Modeling

The linear relationship between free shrinkage, strain, and humidity reduction described earlier was used to model the shrinkage.

\[\varepsilon_w = \varepsilon_0 + k(100 - \text{RH}) \quad \text{for } \text{RH} < 100\% \quad Eq. 68 \]

Where \(\varepsilon_0 \) is the shrinkage occurring during the humidity developing stage 1 when (RH = 100\%), which should principally be governed by w/c, and \(k \) is the shrinkage strain generated by a one-unit humidity reduction. The shrinkage factor \(k \) was determined by plotting the humidity analysis versus the experiment results at the same time for each measurement, then modify \(k \) until getting the best fit between both the experiments and the fitting model.

1- OPC 1

![Figure 58 The linear relationship between the shrinkage and RH% OPC 1](image)
2- OPC 2

![Shrinkage Model](image)

Figure 59 The linear relationship between the shrinkage and RH% OPC 2

3- OPC 3

![Shrinkage Model](image)

Figure 60 The linear relationship between the shrinkage and RH% OPC 3
As previously mentioned, the higher the environment temperature the higher the shrinkage in the concrete, and the faster the hydration process of the concrete. The shrinkage factor is a material property and supposed to be the same for each mix design, a unique value each mix design to be determined, the shrinkage factor of the OPC mixes used in this study is (16 micro-strain). Again, k is the shrinkage strain generated by a one-unit humidity reduction which means if the concrete’s relative humidity changed by 1%, the shrinkage increases by 16 micro-strain. As shown in Figure 58, Figure 59 and Figure 60, the shrinkage factor of 16 micro-strain can fit the experiment perfectly.

Shrinkage Distributions

After the determination of the shrinkage factor of the concrete mix, the shrinkage analysis can be performed using Eq. 68. Where the relative humidity RH was calculated previously, and k was determined, shrinkage distribution analysis in the concrete under different wrapping conditions can be calculated for each concrete mix.
1- OPC 1

No Wrap

Figure 61 Shrinkage (micro-strain) at the inner and the outer surface No Wrap OPC 1

Figure 62 Shrinkage (micro-strain) distribution at different age No Wrap OPC 1
Figure 63 Shrinkage (micro-strain) at the inner and the outer surface half-Wrap OPC 1

Figure 64 Shrinkage (micro-strain) distribution at different age half-Wrap OPC 1
2- OPC 2

No Wrap

Figure 65 Shrinkage (micro-strain) at the inner and the outer surface No Wrap OPC 2

Figure 66 Shrinkage (micro-strain) distribution at different age No Wrap OPC 2
Figure 67 Shrinkage (micro-strain) at the inner and the outer surface half-Wrap OPC 2

Figure 68 Shrinkage (micro-strain) distribution at different age half-Wrap OPC 2
3- OPC 3

No Wrap

Figure 69 Shrinkage (micro-strain) at the inner and the outer surface No Wrap OPC 3

Figure 70 Shrinkage (micro-strain) distribution at different age No Wrap OPC 3
Half Wrapped

Figure 71 Shrinkage (micro-strain) at the inner and the outer surface half-Wrap OPC 3

Figure 72 Shrinkage (micro-strain) distribution at different age half-Wrap OPC 3
The shrinkage distribution along the depth for each mix design at different ages is shown in the previous Figure 61 through Figure 72. The distribution of the non-uniform shrinkage exists in both cases half-wrapped and no-wrap analysis—which is a very important concept since more stresses are developed at the surface. Thus, the non-uniform shrinkage causes a non-uniform stress along the depth.

At the outer surface, the concrete is shrinking more than the inner surface and that is a result of the outer surface being directly exposed to the environment. Additionally, specimens with no wrap will shrink more than the ones with half-wrap, which has been verified by the shrinkage experiments later in this research.

Using the humidity model, it is possible to solve for the shrinkage under different environmental temperature using the equivalent age of the concrete for each case. Using the humidity model, it is also possible to solve for the shrinkage at different times of the exposed, and it’s shown in Figure 61 through Figure 72. This model can capture the time when the concrete undergoes drying shrinkage; for OPC 2 the dry shrinkage starts at 30 hrs. after casting, and for both OPC 1, OPC 3 the dry shrinkage starts at 24 hrs.
Shrinkage Model Vs Shrinkage Experiments

1- OPC 1

No Wrap

![No-Wrapped Graph](image1)

Figure 73 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 1

Half Wrapped

![Half-Wrapped Graph](image2)

Figure 74 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 1
2- OPC 2

No Wrap

![Graph showing Shrinkage (micro-strain) for OPC 2 with No Wrap comparison to model prediction.](image)

Figure 75 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 2

Half Wrapped

![Graph showing Shrinkage (micro-strain) for OPC 2 with Half Wrapped comparison to model prediction.](image)

Figure 76 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 2
3- OPC 3

No Wrap

Figure 77 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 3

Half Wrapped

Figure 78 Shrinkage (micro-strain) Model prediction vs Shrinkage experiment OPC 3
As shown in Figure 73 through Figure 78. The proposed shrinkage model can well predict the development of the shrinkage for both cases half-wrapped and no-wrap, and the results can be used as load induced tensile stresses in FEM.

Tensile Creep Analysis

Interfacial Compressive Stress Analysis

The interfacial compressive stress generated on the steel ring, caused by autogenous and drying shrinkages of concrete, is calculated using the strain gauges measured during the restrained shrinkage ring testing. Meanwhile, the theoretical value of the interfacial compressive stress is calculated by a model for given autogenous and drying shrinkages of concrete. The expected tensile creep of the concrete at early age can then be determined with the condition that the difference between calculated and tested interfacial compressive stresses is accepted.

As derived previously:

The theoretical value of the interfacial compressive stress without Creep is shown as:

\[
q = \frac{-2}{r_2^3 - r_1^3} \int_{r_1}^{r_2} \varepsilon_{sh} r dr
\]

Eq. 69

And the theoretical value of the interfacial compressive stress with Creep is shown as

\[
q = \frac{-2}{r_2^3 - r_1^3} \sum_{i=1}^{n} \left[1 - \frac{\Phi(T_i)}{\Phi(t)} \right] \int_{r_1}^{r_2} \Delta \varepsilon_{sh_i} r dr
\]

Eq. 70

The above equations have been formulated using Mat-Lab, to solve for the best-fit parameters between q obtained experimentally and q from the theoretical solution both with and without creep.
1- OPC 1

Figure 79 Development of interfacial compressive stress vs. time with and without creep OPC 1

2- OPC 2

Figure 80 Development of interfacial compressive stress vs. time with and without creep OPC 2
The comparison between model predicted and experimental measured interfacial compressive stress q in terms of stress versus age diagrams of OPC concrete rings are presented in Figure 79, Figure 80 and Figure 81.

From the results, first, we can observe that the model can well capture the development of interfacial compressive stress generated from shrinkage of concrete. Second, as creep of concrete is not taken into consideration, the calculated value of q is much greater than the measured value for the same age. This indicates that the creep resulted from stress relaxation must be considered in the stress calculation. Third, after creep correction, the calculated interfacial stress can well follow the measured value. This means the creep correction factor in the form of Eq. 40, which was originally proposed by Bazant and Panula, can well be used for concrete under varied tensile stress state. Meanwhile, the stress relaxation parameters may be
independent of loading ages, which should be more interesting in shrinkage stress calculation of concrete at early age.

The creep compliance is plotted versus different loading days, although the same parameters obtain the difference between the three mixes is due to the elastic modulus since for high-temperature environment the development of the elastic modulus is faster than normal environment temperature. The creep compliance was plotted again for the normal time and it’s shown in Figure 82, Figure 83 and Figure 84 and was compared to the direct tensile creep test Dog-Bone specimens.

1- **OPC 1**

![Double Power Load graph]

Figure 82 MDBL at different loading age OPC 1
2- OPC 2

![Double Power Load](image)

Figure 83 MDBL at different loading age OPC 2

3- OPC 3

![Double Power Load](image)

Figure 84 MDBL at different loading age OPC 3
<table>
<thead>
<tr>
<th>Concrete Mix</th>
<th>φ₁</th>
<th>d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC 1</td>
<td>0.33</td>
<td>0.1</td>
<td>0.59</td>
</tr>
<tr>
<td>OPC 2</td>
<td>0.35</td>
<td>0.12</td>
<td>0.59</td>
</tr>
<tr>
<td>OPC 3</td>
<td>0.33</td>
<td>0.1</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table 13 MDBL model parameters

To further verify the obtained creep parameters from the interfacial compressive stress calculation, the results were compared to the direct tensile creep test using Dog-Bone specimens with different loading ages.

At the very early age, the predictions were slightly lower than the experiments, but the elastic strain was correctly predicted. At the later age, the predictions matched perfectly with the experiments.

Figure 85 comparison between the Dog-bone and MDBL
The obtained MDBL parameters can predict the tensile creep of the concrete well as shown in Figure 85 for the loading at one-day and Figure 86 for the loading at 12.65 days for (OPC 1). This means that the obtained parameters can be used in FEM to further verify the tensile creep and the MDBL model.

It should be noted that MDBL parameters obtained assuming that the tensile creep along the depth of the concrete ring is constant by using the averaged shrinkage distribution.
Strength Analysis

Effect of size of test specimen on the compressive and tensile strength of concrete.

For both compressive and tensile strength, using (4”x8”) cylinders instead of (6”x12”) results in higher strength.

![Compressive Strength Graph]

Figure 87 The relationship between using 4”x8” and 6”x12” cylinders for measuring the compressive strength

\[f_{c'}(6''x12'') = 0.921 \times f_{c'}(4''x8'') \text{ Eq. 71} \]

As shown in Figure 87 and Figure 88 For compressive strength the difference can be around 8%, and for tensile strength, the difference can be around 6% to 7%.
The relationship between using 4''x8'' and 6''x12'' cylinders for measuring the Tensile Strength

\[f_t (6''x12'') = 0.9421 x f_t (4''x8''). \text{ Eq. 72} \]

The above equations for both compressive and tensile strength can be very useful and can make an impact on deciding the volume of concrete that is needed to obtain their compressive and tensile strength tests.
Air Content Effects

Although the air content effects on the compressive strength are not the main purpose of this research, it’s interesting to show the results obtained from testing the three OPC mixes since each of the mixes has different air percentages. The effects of 1% change in the air content can exceed the expectation. The results agree with many references in the literature that for a specific mix the higher the air content the lower the compressive strength of that mix.

Figure 89 Compressive Strength development curves for concrete cylinders 4”x8” for three different mixes

The results are shown in Figure 89 that the increase of the air content by 1% can produce up to 10% reduction in the compressive strength.
Figure 90 the relationship that represents the effect of the air content on the compressive strength at different ages

Figure 91 Tensile Strength development curves for concrete cylinders 4”x8” for different mixes
The test results show in Figure 91 and Figure 92 that the increase of the air content by 1.1% can produce up to 13% reduction in the tensile strength. The close relationship between the density and the air void volume in the concrete can explain the reduction of the compressive strength. However, more research and tests are needed to verify this result.
Finite Element Model

The Finite Element Model (FEM) was developed using ABAQUS to simulate the restrained shrinkage ring test. The shrinkage and creep models were verified using the FEM supported by a user-defined subroutine to simulate the shrinkage and creep behavior in the concrete and to predict the critical time when the concrete is at risk of crack by comparing the steel strain obtained from the experiment and the steel strain solved in the FEM.

The model has 33630 nodes and 17010 elements using 3-D 8-node linear element (C3D8R) with 0.3-inch element size.

In order to have more accuracy, the model was designed with 5 layers of concrete each with 0.3 in thickness and 1 layer of steel with 0.5 in thickness. The drying shrinkage was
calculated again in the subroutine for each layer, so each layer of the concrete has a different inelastic strain (shrinkage) which is the input as the load induce tensile stresses the drying in the model is in two directions only (r and θ). Figure 94 represents the developed strain for the OPC 1 case. And similarly, for OPC 2 and OPC 3, with different magnitude.

For the following figures:

R1: Represents the inner surface of the steel ring where the strain gages are attached.

R2: Represents the outer surface of the steel ring and the inner surface on the concrete where the concrete and the steel are bonded together.

R3: Represents the outer surface of the concrete ring where the concrete is exposed to the environment.

The change in concrete properties and viscoelastic behavior was simulated using a user subroutine "USDFLD" at every time increment. For each element, the program first calculates the equivalent age (t_e) and degree of hydration (α) based on the temperature. The modified Double Power Law (MDPL) model was used to describe the tensile creep behavior.

The creep stress loading magnitude changes because of temperature variation. Load decomposition and superposition rules were used to calculate the overall creep coefficient. The effective modulus was then used to incorporate both elastic and viscoelastic deformations due to the creep behavior. At each time-step, the induced shrinkage stress was computed for each element, based on the shrinkage strain, current elastic modulus, and overall creep coefficient.

Finally, the equivalent age, degree of hydration and stresses in principle directions for each element were stored for the next time-step.

Poisson's ratio and coefficient of thermal expansion (CTE) of concrete were assumed constants, 0.2 and 4.73 micro-strains per °F respectively. Poisson's ratio and coefficient of
thermal expansion (CTE) of steel were assumed constants, 0.3 and 7.2 micro-strains per °F respectively. The friction interaction between the concrete ring and the steel was ignored.

The current FEM model assumes a creep model that is linear to the applied stresses. The nonlinear creep behavior due to high stress/strength ratio is not considered in the current model.

Modified Double Power Law

Steel Strain

To further verify the developed tensile creep model, the developed MDBL was used in the FEM to calculate the steel strain during the concrete ring test.

1- **OPC 1**

![Steel Strain Graph](image)

Figure 94 Comparison the strain between FEM and Ring test result OPC 1
2- OPC 2

Figure 95 Comparison the strain between FEM and Ring test result OPC 2

3- OPC 3

Figure 96 Comparison the strain between FEM and Ring test result OPC 3
As shown in Figure 94, Figure 95 and Figure 96 by comparing both the experimentally measured steel strain and the strain solved by the FEM for all OPC mixes, the developed FEM can well predict the steel strain which indicates that the tensile creep parameters obtain previously are correct and have been verified.

Stress Analysis

After verifying the FEM, a stress analysis can be performed to predict the critical time when the concrete is at risk of cracking and to determine the stress distribution along the depth along the concrete ring. When these stresses exceed the allowable tensile strength of the concrete which was measured experimentally, cracks occur in the concrete.

As shown in Figure 97, Figure 98 and Figure 99 the FEM can well predict the critical time of cracking in the concrete. As the stress with the predicted creep at R3 exceed the tensile strength of the concrete the crack occurred and induced a sudden decrease in the measured steel strain.

The ring stress was calculated using the Linear Elastic Solution of the cylinder stress-strain relationship, so it is only an approximation just to locate the time of cracking.

Since the ring experiment data was collected one-day after casting, the calculated stress was still missing from the development of the stress during the first 24 hours. The advantage of using the FEM was that it allowed us to calculate the stress development starting from the casting time. As well as for the strain case.
1- OPC 1

Figure 97 Comparison the stress between FEM and Tensile strength experiments result in OPC 1

2- OPC 2

Figure 98 Comparison the stress between FEM and Tensile strength experiments result in OPC 2
3- OPC 3

Figure 99 Comparison the stress between FEM and Tensile strength experiments result in OPC 3
B3 Model

In order to further verify the MDBL tensile creep model, the B3 model was used to calculate the strain and compare it with the ring experiments. The B3 parameters q1,q2,q3,q4,q5 has been determined by curve fitting the determined creep compliance of the MDBL model as shown in figure 100. And the parameters are shown in Table 14.

Figure 100, Fitted B3 Model using the original MDBL

<table>
<thead>
<tr>
<th></th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
<th>q4</th>
<th>q5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.2</td>
<td>15</td>
<td>12</td>
<td>26</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 14 B3 model parameters

q1 = instantaneous compliance
q2 = aging viscoelastic compliance
q3 = non-aging viscoelastic compliance
q4 = flow compliance parameter
Steel Strain

1- OPC 1

Figure 101 Comparison the strain between FEM and Ring test result OPC 1 using B3 Model

2- OPC 2

Figure 102 Comparison the strain between FEM and Ring test result OPC 2 using B3 Model
3- OPC 3

Figure 103 Comparison the strain between FEM and Ring test result OPC 3 using B3 Model

Stress Analysis

1- OPC 1

Figure 104 Comparison the stress between FEM and Tensile strength experiments result in OPC 1 using the B3 model
2- OPC 2

Figure 105 Comparison the stress between FEM and Tensile strength experiments result in OPC 2 using the B3 model

3- OPC 3

Figure 106 Comparison the stress between FEM and Tensile strength experiments result in OPC 3 using the B3 model
Comparing both MDBL and B3 a small difference in the strain and that’s due to the User-defined subroutine, where MDBL is a stress-based model and B3 model is a strain-based model. Also, the curve fit may not be exact since each model behaves differently at later ages.

Figure 107 Stress distribution along the ring specimens Hossain, A.B.; Weiss (2006)

The non-uniform shrinkage and uniform shrinkage have a different effect on the stress development as shown in Figure 107, (a) when the concrete ring drying from the top and the bottom, the maximum stress occurs at the inner surface of the concrete ring with uniform shrinkage. On the other hand, (b) for the non-uniform shrinkage case, the maximum stress occurs at the outer surface of the concrete ring which is the drying condition of the ring in this study. This can also be verified by the FEM results in Figure 108 for OPC 2, and similarly for OPC 1 and OPC 3.
Before the drying starts, the maximum stress occurs at the inner surface of the concrete, when the drying starts the maximum stress occurs at the inner surface of the concrete. The non-uniform shrinkage is very important in shrinkage related stress or cracking analysis.
As mention based on the FEM analysis, the crack of the concrete ring will be at the outer surface. We observed the crack location as shown in Figure 109, and as expected it did start at the outer surface of the concrete and then continued along the depth.

Using the stress analysis results, using the MDBL, the circumferential stress at the outer surface of the concrete ring are listed in the table below all values in (MPa):

<table>
<thead>
<tr>
<th>Concrete Type</th>
<th>Tensile Stress at 2 days</th>
<th>Tensile Stress at 8 days</th>
<th>Tensile Strength at 8 days</th>
<th>Experiments</th>
<th>Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC 1</td>
<td>1.21</td>
<td>2.67</td>
<td>3.26</td>
<td>No Crack</td>
<td>No Crack</td>
</tr>
<tr>
<td>OPC 2</td>
<td>1.48</td>
<td>2.94</td>
<td>3.26</td>
<td>Crack</td>
<td>No Crack</td>
</tr>
<tr>
<td>OPC 3</td>
<td>1.86</td>
<td>2.96</td>
<td>2.77</td>
<td>Crack</td>
<td>Crack</td>
</tr>
</tbody>
</table>

Table 15 Comparison between the predicted and the actual cracks

As shown in Table 15, the prediction of cracks was correct for both OPC 1 and OPC 3. However, for OPC 2, the prediction indicates that no crack will occur. Looking closer to OPC 2 case, first, the average ambient temperature of (78 °F) was used in the FEM analysis. Using the actual environmental temperature indicates that slightly higher circumferential stresses induced in the concrete ring but still no cracks are yet to happen. In the FEM analysis the Ring thickness is exactly 1.5 in, but in the actual ring experiment, the thickness of the ring might not be exactly 1.5 in at the crack location.

If the critical zone of cracking defined as (+/- 0.25 MPa) of the tensile strength of concrete, then the circumferential stress results indicates that OPC 2 reach the critical zone and the crack of the concrete ring is expected. the circumferential stress using actual environment temperature is shown in Figure 110:
Figure 110 Comparison the stress between FEM and Tensile strength experiments result OPC 2 considering the actual environment temperature
Summary of Procedures

A summary of the procedures is presented as a flow chart showing the steps in this research from the beginning all the way to the end.

1. The first step starts with the concrete casting by choosing a concrete mix design.
2. Important Tests: Restrained Shrinkage Ring Test, and Shrinkage experiments (Half-wrapped), and other tests to find the mechanical properties of the concrete such as Hydration Degree, the Elastic Modulus, and Tensile Strength.
3. Next step is to find the moisture distribution inside the concrete. Theoretically and experimentally based on the proposed models.
4. From both the Shrinkage experiments and humidity analysis the shrinkage factor of concrete can be determined.
5. Calculate the interfacial compressive stress generated on the steel ring using the strain gauges measured during the restrained shrinkage ring testing.
6. Calculating the theoretical value of the interfacial compressive stress generated on the steel ring by a giving model without considering the creep.
7. Find the tensile creep parameters by minimizing the difference between the theoretical value considering the creep, and the calculated value of the interfacial compressive stress from the ring Test. (Mat-Lab code recommended)
8. Verify the predicted tensile creep comparing it with a direct tensile creep test (Dog-Bone).
9. FEM can be used to verify the predicted tensile creep and stress analysis can be performed to predict the critical time when the concrete is at risk of cracking.
Concrete Casting

Ring Test

Hydration Degree

Shrinkage Experiment

Moisture Analysis

Shrinkage Factor

Experimental Interfacial Compressive Stress

Theoretical Interfacial Compressive Stress

MDPL Parameters (Using MATLAB)

FEM Analysis Using ABAQUS

Compare Steel Strain

Stress Analysis

Verify Tensile Creep

Determine the Critical Time

Figure 111 Summary of the procedures
Chapter 5 Conclusions and Recommendations

Restrained shrinkage ring test is used to determine the tensile creep of the concrete at early-age. The concrete–steel interfacial compressive stress caused by the shrinkage of concrete is obtained through the Ring test. On the other hand, the theoretical value of the interfacial compressive stress at a given age is calculated by linear elastic analysis. The modified double power law (MDBL) was used to simulate the viscoelastic performance of concrete under tension. By minimizing the difference between the calculated and the tested interfacial compressive stress, the parameters for the tensile creep model for the concrete mix were generated.

Finite Element Model (FEM) simulation was performed using ABAQUS as a new method in order to analyze the shrinkage and creep behavior in the concrete under the Restrained Shrinkage Ring Test. The calculated humidity was used as an input in the FEM to calculate the shrinkage in concrete for a 5-layer concrete ring model through a user-defined subroutine. Concrete tensile creep was also calculated from the subroutine using the shrinkage induced stress. The predicted creep behavior was verified successfully by comparing the steel strain obtained from the experiment with what was solved using FEM. Furthermore, a stress analysis was performed to predict the critical time when the concrete is at risk of cracking in the concrete ring. It is noted that the current FEM model assumes a creep model that is linear to the applied stresses. The nonlinear creep behavior due to high stress/strength ratio is not considered in the current model. Poisson's ratio and coefficient of thermal expansion (CTE) of concrete were assumed constants, 0.2 and 4.73 micro-strains per ºF, respectively.

Using the restrained shrinkage ring test, creep relaxation parameters were obtained for the same mix concrete under different environment temperatures and humidity, thus, can be used
to predict the concrete behavior under variable ambient environment. In this research, the
temperatures range was between (70 – 95 °F) and the ambient relative humidity was between
(30 - 80 %). The validation of this method under freezing temperature was not studied, further
investigation to be done in the future.

The developed method in this research can also be used for the development of tensile
creep models for concrete with other mix design and used for creep analysis of concrete at early-
age. The determined tensile creep, as a result, can be a useful tool in the prediction of shrinkage
induced stress, and further, be used for cracking control of concrete structures at early age.

A relationship between both 4” x 8” and 6” x 12” cylinders was established. One of the
benefits of this relationship can be saving materials and providing more specimens for “In Lab”
casting because the drum mixer, which is only 3 ft³, offers a limited volume. Using 4”x8” for
both compressive and tensile strength is much more efficient.

For compressive strength

\[f_{c'}(6''x12'') = 0.921 \times f_{c'}(4''x8'') \quad \text{Eq. 73} \]

For tensile strength

\[f_t (6''x12'') = 0.9421 \times f_t (4''x8''). \quad \text{Eq. 74} \]

The developed equations above can only be used for similar OPC mixes with
water/cement ratio of 0.49, and the accuracy of the above equations is 99.4 % for the
compressive strength and 98.8% for the tensile strength of concrete.

The increase in air content can affect and decrease all the proportions of concrete by
variable values. As previously seen, a relationship between the compressive strength and the air
content was established. The higher the air content in the concrete the lower the compressive strength. However, the result shows that the increase of the air content by 1.1% can produce up to 10% reduction in the compressive strength, but these results don’t agree with the literature and other research projects. The 10% reduction can be a result of many other factors- not only the air content itself.

Based on the literature the average reduction due to 1% air is only about 150 – 200 psi. More research is needed, and more experimental data needs to be collected before setting a model to predict the effects of the air content.
Recommendations for Future Study

For this research study, only three OPC concrete mixes were tested. Additional concrete mixes, such as replacing part of the cement with slag or fly-ash, where adding them can change concrete behaviors such as heat, degree of hydration, strength, and shrinkage, should be studied to acquire more accurate results and to validate the use of this method to determine the tensile creep for any kind of concrete.

During this study, the average environment humidity was used to find the moisture distribution inside the concrete. The actual and the change of environment humidity effects can be further studied to improve the existing model.

Additionally, the modified double power law MDBL was used. However, by using different creep models such as B3 and B4 and following the same procedure in this research, can be applied to verify the results to find the best model.

Additionally, during this study, only one type of ring was used with a thickness of 1.5 in, different concrete thicknesses can be used in order to find the effect of the ring thickness on the concrete behavior.

Also, fully-wrapped rings can be used to find the tensile creep of the concrete where only the autogenous shrinkage occurred; in that case, the shrinkage would only be due the self-desiccation, and chemical shrinkage.
References

5- Lee NP. 2007. ‘Creep and Shrinkage of Inorganic Polymer Concrete’. BRANZ Study Report SR 175. BRANZ Ltd, Judgeford, New Zealand

17- Neville, Adam M. Properties of concrete / A.M. Neville. -- 5th ed. 2011

