IN SITU MEASUREMENT OF FATIGUE INDUCED CRACK GROWTH IN INCONEL 718 USING DIRECT CURRENT POTENTIAL DROP METHOD

Joel C. Lindsay
West Virginia University, jclindsay@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd
Part of the Materials Science and Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation
Lindsay, Joel C., "IN SITU MEASUREMENT OF FATIGUE INDUCED CRACK GROWTH IN INCONEL 718 USING DIRECT CURRENT POTENTIAL DROP METHOD" (2019). Graduate Theses, Dissertations, and Problem Reports. 4050.
https://researchrepository.wvu.edu/etd/4050

This Thesis is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Graduate Theses, Dissertations, and Problem Reports by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
IN SITU MEASUREMENT OF FATIGUE INDUCED CRACK GROWTH IN INCONEL 718 USING DIRECT CURRENT POTENTIAL DROP METHOD

Joel C. Lindsay

Thesis submitted
to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Terence Musho, Ph.D., Chair
Stefanos Papanikolaou, Ph.D.
Bruce Kang, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia
2019

Keywords: Fatigue, Crack Growth, Inconel 718, DCPD
Copyright 2019 Joel C. Lindsay
Abstract

IN SITU MEASUREMENT OF FATIGUE INDUCED CRACK GROWTH IN INCONEL 718 USING DIRECT CURRENT POTENTIAL DROP METHOD

Joel C. Lindsay

With recent advances in air breathable engines comes more extreme temperature environments that engine components must tolerate. During the design of these engines, it is necessary to understand how material fatigue failures occur at these new, higher operating temperatures. In providing understanding, the following fundamental study focuses on the statistical nature of crack jumps (changes in crack length over time) during fatigue in a polycrystalline nickel-based superalloy, Inconel 718 (IN718). *In situ* measurement of the crack length at several loading conditions were conducted using a direct current potential drop (DCPD) measurement method. Experimental data was collected at six different fatigue peak loads (R=0.15) for a statistically significant number of trials (n≥17). Calibration curves to relate electrical potential to crack length were derived from FEA and compared to analytical equations. It was determined that the mean normalized change in crack length over subsequent cycles increases with peak load. The standard deviation of the crack lengths remains constant for all loading cases. The signal-to-noise ratio was found to be best at or above a peak load of 1600N (29.65% of YS) for the given sample geometry. Results of the normalized change in crack length for a single case deviated from a Gaussian distribution. However, when all trials were considered at a single load, the distribution of the normalized change in crack length conformed to a Gaussian distribution. This lack of conformity for a single case can be explained by the history dependence of prior crack events on the crack growth for an individual specimen. This temporal information as the crack evolves, which is often overlooked in fatigue experiments, is hypothesized to be well suited for a machine learning approach that can better predict fatigue failures in superalloys.
Table of Contents

Abstract .. ii
List of Tables .. iv
List of Figures .. iv
List of Symbols and Abbreviations ... vi
1. Introduction ... 1
2. Background ... 3
 2.1 Materials .. 3
 2.2 Composition .. 5
 2.3 Material Properties .. 8
 2.4 Fatigue ... 8
 2.5 Microstructure Effects on Fatigue ... 9
 2.6 Crack Measurement ... 10
3. Experimental Method ... 13
 3.1 Test Specimen Design .. 14
 3.2 Machine Setup .. 16
 3.3 Analytical and FEA Comparison .. 16
 3.4 Material Properties ... 18
 3.5 Test Parameters ... 19
 3.6 Data Processing .. 21
4. Results and Discussion: ... 24
 4.1 Test Characteristics ... 24
 4.2 Crack Characteristics .. 25
 4.3 Crack Initiation ... 26
 4.4 SEM Imaging and Analysis .. 27
 4.5 Noise Qualification and Quantification .. 29
5. Conclusion .. 34
 5.1 Future Work .. 34
Bibliography ... 35
Appendix A: Supplementary Plots ... 37
Appendix B: Python Script For Data Processing ... 42
Appendix C: Matlab Script For Data Processing .. 45
Appendix D: Matlab Plotting Script ... 51
List of Tables

Table 1 – IN718 Chemical Composition [5]... 5
Table 2 - Summary of the theoretical and actual min and max loads....................... 21
Table 3 - Testing and data processing characteristics... 22

List of Figures

Figure 1 - Distribution of superalloy components in a gas turbine engine............... 4
Figure 2(A) - Crystal structures of the solid solution phase, γ (FCC) 7
Figure 2(B) - Crystal structure of γ’ (FCC) phase... 7
Figure 2(C) - Crystal structure of γ'' (D0_{22}) phase.. 7
Figure 2(D) - Crystal Structure of δ (D0_{a}) phase ... 7
Figure 3(A) - SEM image of δ, γ', and γ'' phases. .. 10
Figure 4(B) - TEM micrograph of δ and γ'' phases [16, 17].. 10
Figure 5 - Lines of constant electric potential .. 12
Figure 6(A) - Shows the Sunkko 709A spot welding machine 14
Figure 5(B) - An image of the test specimen ... 14
Figure 5(C) - Image of the fatigue testing setup .. 14
Figure 6(A) - Schematic of Fatigue Specimen .. 15
Figure 6(B) - Setup of Fatigue Test ... 15
Figure 7 - H. Johnson Analytical Calibration Curve Compared to FEA Derived Curve 17
Figure 8 - Experimental Stress Strain Curve for Plate Inconel 718.............................. 19
Figure 9 - Loading cycles for three cases (1600N, 1700N, 1800N)......................... 20
Figure 10(A) – Crack length for single runs of each loading procedure 24
Figure 10(B) - Average crack length vs. loading cycle number 24
Figure 11 - Plot of \(\Delta a/\Delta N \) versus the stress intensity factor 25
Figure 12 – Averaged normalized crack growth curves up to a crack length of 0.1mm 26
Figure 13 – Distributions showing the number of cycles needed to reach a crack length of
0.1mm for individual trials .. 27
Figure 14(A) - Crack initiation point ... 28
Figure 14(B) - Zoomed in image along the crack path ... 28
Figure 14(C) - Termination zone of crack .. 28
Figure 15 - Noise plot of a specimen under zero load ... 30
Figure 16(A) - \(F_{\text{max}}=1800N \) plot of crack jump distribution 32
Figure 16(B) - \(F_{\text{max}}=1800N \) plot of crack jump distribution averaged across all 1800N runs 32
Figure 17 - Relative probability distribution of crack jumps 33
Figure 1A (A) - \(F_{\text{max}}=1800N \) plot of crack jump distribution 37
Figure 1A (B) - \(F_{\text{max}}=1800N \) plot of crack jump distribution averaged across all 1800N runs 37
Figure 2A (A) - \(F_{\text{max}}=1700N \) plot of crack jump distribution 38
Figure 2A (B) - \(F_{\text{max}}=1700N \) plot of crack jump distribution averaged across all 1700N runs 38
Figure 3A (A) - \(F_{\text{max}}=1600N \) plot of crack jump distribution 39
Figure 3A (B) - \(F_{\text{max}}=1600N \) plot of crack jump distribution averaged across all 1600N runs 39
Figure 4A - Normalized \(\Delta a/\Delta N \) Noise Plot vs hold Cycle for 1400N 40
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>da</td>
<td>Change in crack length</td>
</tr>
<tr>
<td>dN</td>
<td>Change in cycle</td>
</tr>
<tr>
<td>C</td>
<td>Material constants</td>
</tr>
<tr>
<td>ΔK</td>
<td>Stress intensity range</td>
</tr>
<tr>
<td>m</td>
<td>Material constant</td>
</tr>
<tr>
<td>a</td>
<td>Crack length from edge</td>
</tr>
<tr>
<td>a_0</td>
<td>Initial crack length (10mm)</td>
</tr>
<tr>
<td>$V(a)$</td>
<td>Measured voltage as a function of crack length</td>
</tr>
<tr>
<td>$c(a)$</td>
<td>Coordinate proportionality as a function of crack length</td>
</tr>
<tr>
<td>$u_1(a)$</td>
<td>Elliptical coordinate position of voltage measurement</td>
</tr>
<tr>
<td>$u_0(a)$</td>
<td>Elliptical coordinate position of slot boundary</td>
</tr>
<tr>
<td>x_e</td>
<td>Crack x position in elliptical coordinates</td>
</tr>
<tr>
<td>y_e</td>
<td>Crack y position in elliptical coordinates</td>
</tr>
<tr>
<td>u</td>
<td>Radial distance from centerline in elliptical coordinates</td>
</tr>
<tr>
<td>v</td>
<td>Angle from starting axis in elliptical coordinates</td>
</tr>
<tr>
<td>W</td>
<td>Width of Test Specimen</td>
</tr>
<tr>
<td>π</td>
<td>Mathematical constant</td>
</tr>
</tbody>
</table>
\(y \) Distance from the crack to the measurement probes in the y-direction

\(V_0 \) Initial voltage at a crack length of \(a_0 \)

\(K_I \) Stress intensity at a load of I

\(\sigma \) Uniform stress across the specimen

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN718</td>
<td>Inconel 718</td>
</tr>
<tr>
<td>DCPD</td>
<td>Direct Current Potential Drop</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>MTS</td>
<td>Material Testing Systems</td>
</tr>
<tr>
<td>EDM</td>
<td>Electric Discharge Machined</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>PSB</td>
<td>Persistent Slip Bands</td>
</tr>
</tbody>
</table>
1. Introduction

With the recent move to reduce carbon emissions across many counties and the constant goal of reducing operation cost, gas turbine efficiency can achieve both goals and has been increasing steadily over the past 50 years [1]. One of the methods that have been employed to increase gas turbine efficiency is to have turbines operate at higher temperatures [2]. However, higher temperatures require new materials and alloys, as well as a better understanding of the basic physics that may drive materials informatics [3].

Regarding mechanical response, a better understanding of this physics in various materials has coincided with the development of new predictive models for failure mechanisms. A common superalloy used in the disk of turbines is Inconel 718 (IN718), a nickel-based alloy that is designed to withstand extreme temperatures under high creep load conditions. The main constitutive elements in this type of superalloys are nickel, cobalt, and iron with a precisely prescribed precipitate-hardened microstructure that provides high strength, high operating temperatures, as well as creep and oxidation resistance. The attributes of IN718 come from the combination of its constitutive elements and microstructure but the microstructure is the driving feature that impedes and govern the crack initiation and growth in this material.

However, structural health monitoring has been typically limited in qualitative assessments of isolated microstructural observations. Beyond the study of averages, a fundamental understanding of crack initiation and growth, as well as structural health assessment, requires new approaches that focus on connecting experiments and advanced simulations in the statistical frontier. In this study, the objective is to monitor the dynamics of crack initiation and growth in an IN718 sample under monotonic low-cycle fatigue loading
and use it towards a history-informed, as well as a statistically-informed assessment of structural health. More specifically, the focus in this work is to capture the statistical variation of the magnitude of crack length growth versus cycle number during initiation and growth stages.

In this study, IN718 has been selected as the material of focus; while it is beyond the scope of this document to cover all the common types of superalloys, this material was selected because of its polycrystalline nature and wide application in contemporary turbines [4]. IN718 has a wide range of operating temperatures from -423°F to 1300°F while maintaining strength, along with good mechanical properties of weldability and resistance to cracks commonly caused by welding [5]. The key to IN718’s performance is the complex alloy of 16+ constitutive elements including titanium, cobalt, niobium, etc. and the production process of precipitate hardening the alloy [5]. The important aspect of IN718 is the strengthening phases of the microstructure.

This study is interested in conducting and analyzing fatigue test data to measure the spread of crack growth events of IN718 at room temperature. For an individual fatigue test, the distribution of crack growth events will be non-Gaussian in shape due to characteristic information from the fatigue process. This non-Gaussian distribution holds information that is lost when the averages are taken over multiple trials.
2. Background

2.1 Materials

Superalloys are a classification of metals that are produced to operate in environments in which standard metals, such as steel alloys, would fail. Superalloys fall into three categories: nickel-based, cobalt-based, and iron-based. These types of alloys are made up of differing elemental compositions which affect the type of microstructure phases that form in the metal, which in turn changes the mechanical properties of the alloy such as operating temperature.

A commonly used superalloy family is the nickel-based superalloy Inconel. Inconel is used in situations that require high mechanical strength at high operating temperatures. Inconel is also produced in several different forms. Controlled cooling and solidification of the alloy produces a metal that is made of a single crystal or grain [6]. This type of Inconel is used for products like turbine blades. Another form of Inconel is a polycrystalline matrix that is made of different microstructural phases with randomly oriented grains and grain boundaries. This form is easier to manufacture and is used in larger components such as turbine housing and turbine disks. The clear distinction as to where nickel-based superalloys are used in gas turbine engines can be seen in Figure 1, illustrating that titanium alloys are used in the cold compressor section of the turbine. While in the section of the turbine beyond the combustor, nickel-based alloys must be used [7].
The material of focus in this research was the polycrystalline IN718 which is an alloy that is used in turbine blade housing for gas turbines because of its resistance to creep and corrosion. IN718 has the other major characteristics of the Inconel family such as a large operating temperature range and high strength, but due to the corrosive environment of gas turbines and extreme thermal cycling, IN718 is one of the most common alloys used [8].
2.2 Composition

Superalloys are made by alloying many different elements. In the case of IN718, 16 main elements make the bulk of the alloy as seen in Table 1 below [5].

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>50-55</td>
</tr>
<tr>
<td>Chromium</td>
<td>17-21</td>
</tr>
<tr>
<td>Iron</td>
<td>22.5-11.1</td>
</tr>
<tr>
<td>Niobium and Tantalum</td>
<td>4.75-5.5</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2.8-3.3</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.65-1.15</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.2-0.8</td>
</tr>
<tr>
<td>Cobalt</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.08</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.35</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.35</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.015</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.015</td>
</tr>
<tr>
<td>Boron</td>
<td>0.006</td>
</tr>
<tr>
<td>Copper</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 1 – IN718 Chemical Composition [5]

With the elements alloyed together, the alloy must be further processed in order to gain the high strength and operating temperatures. The alloy is heat treated following AMS 5596 standards which start with the alloy being heated to a high temperature (roughly 1000°C) and held at that temperature to anneal the metal and reduce any stress concentration from processing [5, 9]. Once the annealing is complete the metal is allowed to air cool and then, to
further change the material properties, the metal can be brought up to a slightly lower temperature such as 950°C for a prescribed amount of time and then slowly brought down in steps, with air cooling in-between, to a lower temperature over the course of several hours [5, 9]. This process, known as aging, is used to induce precipitate hardening of phases that perform functions of increased creep resistance.

For IN718, the manufacturing process causes a number of phases to emerge throughout the material. These phases change the material properties of the metal because of their shape and composition. Of these phases, there are four major ones that were focused on for their effect on crack growth. The solid solution phase, γ can be seen in Figure 2A, this phase forms in the matrix and precipitates the γ′ phase [10]. The γ′ phase which acts as lower temperature strengthening phases between 600-900°C [11] shown in Figure 2B.
The primary strengthening phase γ'' which is a metastable phase made of nickel and niobium in a body-centered tetragonal $L1_2$ ($D0_{22}$) structure as seen in Figure 2C which provides strengthening until relatively higher operating temperatures such as 1000°C. The δ ($D0_a$) phase is similar to the γ'' phase as it is having the same elemental composition, but it does not provide the same strengthening effect. Instead, its unique needle-like shape (phase unit cell can be seen in Figure 2D) is theorized to prohibit large continuous crack jumps. However, the δ phase is more thermodynamically favorable than γ'' so the aging process must be highly controlled to force the formation of γ''.

Figure 2(A) - Crystal structures of the solid solution phase, γ (FCC). Figure 2(B) - Crystal structure of γ' (FCC) phase. Figure 2(C) - Crystal structure of γ'' ($D0_{22}$) phase. Figure 2(D) - Crystal Structure of δ ($D0_a$) phase. With gray-blue atoms being nickel, gray atoms being niobium, and purple atoms being aluminum.
During this non-equilibrium cooling process, the γ'' phase partially orders in disk-shaped precipitates that are coherent with the γ phase. The origin of the ordering lies into the emergence of coherent strains from the lattice distortion of the precipitate formation [12]. The γ' phase also plays an important role as a strengthening phase in IN718, but to a lesser degree than γ'' as the γ'' phase is on the order of four times larger than the γ' phases [13]. The γ' are often found as a fine dispersion of spherical particles, which are also coherent with the γ phase. It is interesting to point out that the coherency of these precipitate phases should potentially be relevant in the origin and magnitude of crack length jumps as fatigue progresses.

2.3 Material Properties

The material properties of Inconel are highly dependent on the manufacturing process that the alloy undergoes. To measure the material properties of the IN718 alloy used in the following experiments several tests were be performed including, a tensile test and an indentation test to measure the hardness. The tensile specimen designs are based on the American Society for Testing and Materials (ASTM) standard specimen (E8/E8M) [14]. The tensile tests make measurements of the strain versus loading to generate the stress-strain curve for the particular material while also measuring the ultimate tensile strength and yield strength. The indentation tests make measurements of the material hardness by pushing a pyramidal indentation head with a known force into the material surface and measuring the materials resistance to plastic deformation.

2.4 Fatigue

Mechanical failure comes in two major forms, first, a component can undergo a load that exceeds the yield stress of that material. This loading is known as monatomic loading and it leads to a cascading and complete failure of the component. The second form of failure is
for components that undergo a cyclical loading that is below the yield stress, this failure is known as fatigue. In the study of crack growth, fatigue failure is the main cause of crack formation and growth in components. As such the design of components that undergo this cyclical loading mostly follows empirical equations and relationships to make approximations on the lifespan of a component based on its material properties. To make better predictions of how materials fail because of fatigue, a deeper understanding of the mechanisms involved is required.

2.5 Microstructure Effects on Fatigue

For a fundamental understanding of what fatigue failure is caused by in cases of ductile metals, the repetitive loading causes a weakening of the material around locations of high-stress concentration. This weakening, in turn, leads to the formation of microcracks. These microcracks will increase in size until it causes a failure in the component. Crack growth falls into three different regimes; crack initiation, Paris’ Law, and exponential crack growth until failure. Crack initiation is the formation of the microcracks through the formation of slip bands and propagation of dislocations which eventually form into a full crack. Once a crack has formed, the crack growth follows the Paris’ Law shown in equation 1, which correlates the crack growth to the stress intensity factor of the fatigue specimen. This relationship is explained more in-depth and can be seen in Figure 10.8 in “Fatigue of Materials” by S. Suresh [15]. The final regime is exponential crack growth until a complete failure of the component.

\[
\frac{da}{dN} = C(\Delta K)^m
\] (1)

The microstructure of IN718 with its various phases including the γ phase with strengthening precipitate phases: γ” and γ’. The solid solution phase and secondary phase γ and
\(\gamma' \) are spherical phases that contribute to the creep resistance slightly. However, the needle-like \(\delta \) phase and the disk-shaped \(\gamma'' \) phase seen in Figure 3a and b [16, 17], is believed to prevent crack growth by staggering the crack “jumps.” This staggering effect is due to crack propagation moving through the nickel matrix until it comes upon a harder phase which forces the crack to move around it. This constant jumping from strengthening phase to strengthening phase forces the crack propagation to take much longer.

Failure of materials due to fatigue show clear evidence from that form of failure. Looking at SEM imaging of specimens that are cracked using cyclical loading tests show striations or “beach marks.” These striations are clear indications of crack growth events as the crack front moves through the microstructure. Measurements of the width of these striations can also give a local measurement of the magnitude of a crack growth event [18].

2.6 Crack Measurement

To make accurate measurements of crack lengths throughout a fatigue test, several different methods have been used in literature. The simplest method is to use a higher resolution optical microscope; however, because the resolution that an optical microscope can reach is limited
by the wavelength of light, this type of approach is limited to submicron [19]. The most common method employed by others is to use an optical microscope in conjunction with another measurement method such as the DCPD method [20]. Other approaches include \textit{in-situ} scanning electron microscopy (SEM) of the crack growth; however, this approach requires special equipment that integrates a field emission gun with a tensile testing apparatus [21]. Digital Image Correlation (DIC) measurement method can also take \textit{in-situ} measurements of crack growth [22, 23] along with the added benefit of being able to measure the strain field of the specimen [24]. With all of these other approaches being taken into consideration, the measurement method selected for this study is the ASTM recommended DCPD method [25] to measure \textit{in-situ} short crack growth in low cycle creep-fatigue.

DCPD is a measurement technique that uses the geometric characteristics of crack growth and the principles of Gauss’s Law to measure the potential drop between two points on a specimen. This measurement technique allows for high precision of cracks that go completely through the material [26]. The precision is a function of the supplied current and the accuracy of the data acquisition card or multimeter that is being used to measure the potential drop.

The DCPD technique is based on Gauss’s Law along with Poisson’s equation which states that with given a current source and therefore a constant electric field, the change in voltage between two points on a sample is proportional to the change in an area that the electric field moves through between those points. This change in the area happens due to the crack front moving across the middle of the sample and decreases the cross-sectional area that current can flow through. The effects of this potential drop can be seen in Figure 4 on the following page as a potential gradient across the sample simulated in ANSYS 19.2.
The measurement of this change in potential can be transformed into the total crack length by using some form of calibration curve or closed-form solutions that take into account the geometric constraints of the specimen.

Development of these calibration curves can be done by computational means such as electrical simulations (e.g., COMSOL, ANSYS, etc.). In this experiment, a parametric study of the sample using ANSYS Workbench was used to simulate the potential difference increase as a crack was “propagated” through the 3D model. This simulation produced a third order polynomial curve that related the potential ratio, $\frac{V}{V_0}$, to the crack length ratio $\frac{a}{a_0}$.

To verify the calibration curve that was produced by ANSYS, the closed-form solution known as the Johnson equation was also used and compared to each sample that was tested.
This equation looks at the position of the potential leads relative to the tip of the propagating crack in elliptical coordinates for M(t) shaped specimens (Equation 2, 3 and 4). Because of our use of the compact tension (C(T)) specimen type, the generalized form of Equation 2, Equation 5 was used. This equation considers more geometric features of the sample such as the vertical distance to the potential probes y, the initial crack length a_0, and the overall width of the sample W.

\[
\frac{V(a)}{V(a_0)} = \frac{c(a)}{c(a_0)} \frac{\sinh u_1(a) + \exp[u_0(a) - u_1(a)] \cosh u_0(a)}{\sinh u_1(a_0) + \exp[u_0(a_0) - u_1(a_0)] \cosh u_0(a_0)}
\]

(2)

\[
x_e = c \cos u \cos v
\]

(3)

\[
y_e = c \sin u \sin v
\]

(4)

\[
\frac{a}{W} = \frac{2}{\pi} \cos^{-1} \left[\frac{\cosh \left(\frac{\pi y}{2W} \right)}{\cosh \left(\frac{V}{V_0} \right) \cosh^{-1} \left(\frac{cosh \left(\frac{\pi y}{2W} \right)}{\cos \left(\frac{\pi a_0}{2W} \right) \cosh \left(\frac{V}{V_0} \right)} \right)} \right]
\]

(5)

3. Experimental Method

The experimental method employed for this study is based on the combination of the DCPD method and fatigue loading of a statistically significant (n≥17) number of IN718 samples in a hydraulic Material Testing Systems (MTS) load frame as seen in Figure 5C. We employ the ASTM compact specimen standard testing procedure with a custom specimen geometry. The test specimens were not run to failure but were stopped prior to the ultimate fracture crack growth point. Samples were initiated with an electric discharge machined (EDM) slot in the absence of a crack initiation procedure to capture the crack initiation event
and the later stages of crack propagation. The EDM slot can be seen in the middle of the specimen in Figure 5B.

![Image of test specimen with EDM slot](image)

Figure 5(B) - An image of the test specimen which shows the two current leads after spot welding, the two pin holes for mounting and loading, the EDM cut along the middle of the specimen and the two potential measurement leads which are spot welded on the other side of the specimen.

3.1 Test Specimen Design

Following the ASTM compact specimen [25] design specification, a custom test specimen was designed based on a plainly strained IN718 material. The design is a 76.2mm x 36.63mm simple rectangle of cold-rolled annealed plate Inconel 718 with two holes for
mounting the specimen. A schematic of the design is illustrated in Figure 6A. Along with the two mounting holes, a small 10mm slit was cut using EDM with a width of 0.16mm. The EDM cut serves the purpose of acting as an initial crack in the material. The tip of this initial crack is rounded with a radius equivalent to the EDM wire or 0.08mm. In providing electrical continuity without introducing secondary materials nickel-chromium wires with a diameter of 0.4mm were spot-welded to the samples using the Sunkko 709A (Figure 5A). Care was taken to spot-weld the wires in the same position on either side of the EDM cut. The wires closest to the EDM cut serve as the voltage probes. A larger gauge nickel-chromium wire with a diameter of 1.0mm was spot welded across the full specimen as current leads 16mm above and below the EDM cut. This wire placement provides a uniform potential across the specimen. This is analogous to the original DCPD experiment set up by H. Johnson who used copper clamps [27]. The current was held constant with a DC current power supply at 10A.
3.2 Machine Setup

The fatigue crack-growth testing was done on an MTS 810 hydraulic load frame. A custom fixture was machined to mount the specimen into the testing machine and allow both tension and compression of the sample (see Figure 6B). To ensure that the sample was positioned vertically, a 3D printed shim was designed. Rolled pins were used to connect the fixture with the specimen. Data from the experimental devices were collected using the MTS Flextest 40 digital controller, with the sampling rate set to 512Hz which can be seen to the right of the MTS 810 machine in Figure 5C. The potential was measured using the strain gauge amplifier built into the Flextest hardware. Data was exported as CSV files with the number of cycles, loading, and voltage measured across the slot.

3.3 Analytical and FEA Comparison

To utilize the voltages taken from the DCPD measurement it is necessary to relate the voltage to a crack length. The relationship between the voltage and crack length is known as a crack length calibration curve. In this study, the two equations that were employed and compared was an analytical equation derived by H. Johnson shown in Equation 5 while the second equation was derived using finite element analysis (FEA). The modern approach was to use FEA to derive the calibration curve as it improves the sensitivity at longer crack lengths [27, 28, 29]. Equation 6 was the derived polynomial that describes calibration curved based on the FEA results.

\[
\frac{a}{a_0} = 0.0102 \left(\frac{V}{V_0} \right)^3 - 0.1787 \left(\frac{V}{V_0} \right)^2 + 1.1917 \left(\frac{V}{V_0} \right) - 0.02 \quad (6)
\]

In Equation 2, 5, and 6, \(a_0\) is the initial crack length (10mm) created by the EDM cut, \(a\) is the total crack length, \(W\) is the specimen width, \(y\) is the plate thickness, \(V_0\) is the initial
voltage before crack propagation, and V is the measured voltage throughout the experiment. The results of both of these calibration curves are plotted in Figure 7.

![Figure 7 - H. Johnson Analytical Calibration Curve Compared to FEA Derived Curve which shows good agreement between analytical and simulation. This comparison is also confirmed in the research by Tarnowski, K. M., et al [4].](image)

There is high accuracy at short crack lengths (the length scale that this study covers) and good agreement between the analytical and FEA calibration curves. Other studies [28] have elaborated that FEA calibration has less error than the analytical calibration curve at longer crack lengths. For the remainder of this study, the FEA derived calibration curve was the equation used to calculate the crack length and growth.

Because the stress intensity factor is also a function of the geometry, it is necessary to account for the sample geometry when predicting the stress intensity factor. Several closed formed expressions use empirical geometry correction factors. In this study, an empirical
expression for an edge crack under uniaxial stress [30] was considered. The corresponding stress intensity was calculated using the following expression,

$$K_I = \sigma \sqrt{\pi a} \left[8.574 - 10.365 \left(\frac{a}{W}\right) + 5.499 \left(\frac{a}{W}\right)^2 \right],$$

where σ is the uniform stress state and the rightmost polynomial is a geometrical factor.

3.4 Material Properties

To determine the mechanical properties of the samples, ASTM standard tensile samples were cut out and tested in a tensile machine [14]. The tensile specimen was cut using a plasma cutter. The resulting stress-strain curve can be seen in Figure 8 on the following page. This test gave the Inconel sheet an ultimate tensile strength of 779 MPa at 21% elongation and yield strength of 450 MPa with a modulus of elasticity of 185.4 GPa. Hardness testing was also done with a hardness testing machine which gave a Rockwell-C hardness of 21.1. This hardness value corresponds to an ultimate tensile strength of 770 MPa. The tensile test and hardness values measured show good agreement with the ultimate tensile strength of cold-rolled and annealed plate IN718 (786 MPa).
3.5 Test Parameters

The specimens were placed in the hydraulic testing machine using pin joints as shown in Figure 6B. Because of the small thickness of the specimen, small 3D printed shims were used to align the sample and mitigate tear-out. Because the study was interested in the crack initiation, the specimens did not undergo a crack initiation procedure. In other studies, this is typically done to speed up the initiation of the crack by running at higher stress intensity without a hold cycle to initiate the crack. In this study after the sample was loaded in the machine, data acquisition began with a loading cycle that was made up of two parts, 10 fast oscillations for 30 seconds at a given peak load and that cycled with a ratio between the max and min of R=0.05. Following the oscillation, a 100-second hold with loading at the peak load was carried out. For this study, the main peak loads were selected as 1600N, 1700N, or 1800N.
while another testing was done at 1400N, 1200N, and 1000N. The loading as a percentage of the yield stress is 18.33%, 21.99%, 25.66%, 29.32%, 31.16%, and 32.99% for 1000N, 1200N, 1400N, 1600N, 1700N, and 1800N respectfully. The representative loading cycles as a function of time can be seen in Figure 9.

![Figure 9 - Loading cycles for three cases (1600N, 1700N, 1800N) made up of 10 oscillations between F_{max} and 5% F_{max} over 30 seconds, and a 100 second hold at F_{max} to facilitate crack growth.](image)

It should be pointed out that although the target loading ratio (R=0.05) was specified, there is a slight difference between the true min-max range for the oscillations as shown in Table 2. The actual ratio for all the cases was roughly R=15%. This was due to a limitation of the control software and inertia of the machine to precisely achieve both the theoretical min and max values.
3.6 Data Processing

Data acquisition was conducted at a high sampling rate of 512Hz (~2ms/sample) to capture the crack jumps that occur at small length scales and short durations. The data collected was post-processed using a mixture of Python and Matlab. To correlate the measured potentials to crack lengths the aforementioned calibration curves were employed along with the stress intensity factor relationship, see the previous section for details. For the 1800N peak load case n=17, for 1700N n=18 and for 1600N n= 22. Additional tests were conducted with three tests for 1400N, and one test for 1200N and 1000N. The data was post-processed by examining the 100-second hold cycles and computing the difference between the crack length over subsequent hold cycles. The difference in crack length between subsequent hold cycles is considered a jump of the crack. For this study, the exact time of occurrence during the hold cycle was not of interest but rather just the quantity and statistics of jumps between subsequent steps. That being said, information about the exact time to the nearest +/-1ms during the hold cycle is available but beyond the scope of the current work.

Table 2 - Summary of the theoretical and actual min and max loads specified for fatigue cycles. The actual ratio realized by the experiment was R=15%.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000N</td>
<td>50</td>
<td>1000</td>
<td>0.05</td>
<td>125</td>
<td>940</td>
</tr>
<tr>
<td>1200N</td>
<td>60</td>
<td>1200</td>
<td>0.05</td>
<td>125</td>
<td>1115</td>
</tr>
<tr>
<td>1400N</td>
<td>70</td>
<td>1400</td>
<td>0.05</td>
<td>180</td>
<td>1310</td>
</tr>
<tr>
<td>1600N</td>
<td>85</td>
<td>1600</td>
<td>0.05</td>
<td>210</td>
<td>1430</td>
</tr>
<tr>
<td>1700N</td>
<td>90</td>
<td>1700</td>
<td>0.05</td>
<td>230</td>
<td>1570</td>
</tr>
<tr>
<td>1800N</td>
<td>95</td>
<td>1800</td>
<td>0.05</td>
<td>250</td>
<td>1630</td>
</tr>
</tbody>
</table>
An aspect inherent to this DCPC experimental measurement method is the incorporation of electrical noise in the measurement. This electrical noise is a product of the environment and was minimized by using condition DC power supplies. It is important to point out that the electrical noise in the experiment is random noise. By plotting a histogram of the noise, it was found that the electrical noise was indeed random and follows a Gaussian distribution. This is an important claim because the non-random noise in the DCPD measurement signal is, therefore, a result of some attribute in the system, more specifically, the crack.

For processing and plotting, the data was managed in three different parts, Python for reducing the amount of data to be parsed, Matlab to do mathematical operations and organization of the data, and then Matlab again to display the data in a logical manner. The data was collected from the testing apparatus as a .dat file and organized by the test number, starting date of the test, and the max loading.

<table>
<thead>
<tr>
<th>Loading Cases</th>
<th>Number of Cycles</th>
<th>Test Duration (hrs)</th>
<th>Raw File Size (GB)</th>
<th>Reduced File Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800N</td>
<td>153</td>
<td>5.65</td>
<td>0.51</td>
<td>7.47</td>
</tr>
<tr>
<td>1700N</td>
<td>193</td>
<td>7.13</td>
<td>0.64</td>
<td>9.43</td>
</tr>
<tr>
<td>1600N</td>
<td>412</td>
<td>15.22</td>
<td>1.36</td>
<td>20.1</td>
</tr>
<tr>
<td>1400N</td>
<td>1000</td>
<td>36.94</td>
<td>3.26</td>
<td>49.8</td>
</tr>
<tr>
<td>1200N</td>
<td>3000</td>
<td>110.83</td>
<td>9.90</td>
<td>149</td>
</tr>
<tr>
<td>1000N</td>
<td>5000</td>
<td>184.72</td>
<td>16.56</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 3 - Testing and data processing characteristics including the number of loading cycles that a sample undergoes for a single experiment, the time the test takes, and the size of the data file that records the crack growth, time, and loading.
Because of the run times of the fatigue tests and the high sampling rate, the data files for an individual test could be within a range of less than one gigabyte or up to 16 gigabytes depending on a given test. To process the data, each .dat file was loaded into Python and split into arrays for time, force, and the voltage across the notch. The voltage array then got converted using the calibration curve that we derived. However, because of the file size, this could have lead to multiple arrays each with millions of elements that were then being put through mathematical operations. To minimize the memory utilized in processing the data, a chain of logic statements was used to determine the end of the oscillation loading and to pick out only the 100-second hold section. This 100-second section was collected, manipulated, and then outputted as a small text file so that the script run time was proportional to the number of cycles that need to be processed and not by the total number of lines within the file.

Once the full file was segmented into each of the holding cycles, Matlab was used to load in each holding cycle text file. The mean and variance of each holding cycle were calculated and used to calculate the overall average over all samples that share the same max loading. The individual and average crack length for a given max loading was shown in Figure 10A and B on the following page with the number of samples considered in the average shown in the legend. With the crack length for each holding cycle known, the change in crack lengths was easily calculated and then used to calculate the stress intensity in the sample from the measured loading.
4. Results and Discussion:

4.1 Test Characteristics

Following the experimental procedure outlined above, the average crack length for each subsequent holding cycle was calculated. It should be clarified for the discussion that the terms crack and crack length refer to the crack originating at the end of 10mm EDM cut. Figure 10A is a semi-log plot that illustrates the crack length as a function of cycle number for a one run of each loading procedure. Figure 10B is the averaged crack lengths for the loading procedures that had more than one test. All tests were stopped prior to Region III. Figure 11 illustrates crack growth through Region II. The values in the key of Figure 11 correspond to the peak loading values, which can be related to the initial stress intensity. As expected, as the peak load increased the stress intensity increased and the rate of crack propagation also increased. It should be noted, in Figure 10A and B, that the samples were not crack initiated.
other than the EDM cut, and it takes an increasing amount of run time or cycles depending on the loading to initiate the crack. This was seen as a translation of the curves in the x-axis of Figure 11 and an associated delay in lift-off from the x-intercept. To provide some context to the wall time required for all the cases, the 1800N case took approximately 6.5 hours to reach a crack.

![Figure 11 - Plot of Δa/ΔN versus the stress intensity factor difference for multiple loading cycles. The data from all experimental datasets demonstrate Paris’ Law regime with a slope of m=4.5x10^-5 mm/MPa√m.](image)

4.2 Crack Characteristics

Taking the information from Figure 11 and casting the data in the form of rate of crack length versus stress intensity, it is possible to determine which regime of fracture the crack was predominantly undergoing. All samples tested appear to spend the majority of the experiment time in Region II, the Paris Law region [31], while the test was stopped prior to Region III [32]. Figure 11 illustrates the linear nature of the Paris Law for all samples [15] with the
corresponding slope labeled on the figure. Less time was spent in Region I due to the design of the specimen and the position of the load line relative to the EDM cut.

4.3 Crack Initiation

The mechanics of crack initiation is still an area of active research. To help understand these mechanisms, a crack initiation crack length value of 0.1mm was chosen and used to evaluate the number of loading cycles required to reach the end of the crack initiation. With this number of cycles known, plots and histograms of the crack growth during the crack initiation phase can be seen in Figure 12 below. Which shows that for a given loading procedure, when averaged across all trials, the crack initiation follows a Gaussian distribution a mean crack growth that increases with F_{max}.

![Figure 12 – Averaged normalized crack growth curves up to a crack length of 0.1mm as defined by the plot in Figure 10(B). The histogram shows the probability distribution of crack growth events prior to the end of the crack initiation ($a > 0.1 \text{mm}$).](image)

For the plots in Figure 13, the average of all the trials for the given loading procedures was used. To further understand what the statistical variation across individual trials was, each trial was evaluated to look at the variation of number of loading cycles required to reach the crack
initiation limit of 0.1mm. The histogram below shows that for higher loading, the number of loading cycles required had a smaller spread. This can be seen for the 1800N cases with roughly 45% of all trials reaching 0.1mm between 28 and 32 cycles. While for the 1600N case, the crack initiation point ranges from 12 to 205 cycles with only a small peak of 14% at 70 cycles.

![Histogram showing the number of cycles needed to reach a crack length of 0.1mm for individual trials. This histogram shows three peaks for each of the loading procedure while showing that for lower loading the crack initiation is more widely dispersed and random.]

4.4 SEM Imaging and Analysis

SEM images were taken of the samples after the fatigue tests were completed. Figure 14 is a collection of images from a single specimen with a peak load of 1800N. Figure 14A illustrates that the crack had initiated at the back of the notch that was created by the EDM cut. This was the expected and desirable position of the crack and confirms that the samples are being loaded symmetrically. Figure 14B is an image of the crack at the mid-section of the crack. Looking at the crack surface striations or beach lines are present, which is synonymous with fatigue [18]. Further examination of the striations reveals that the 1μm+/−0.05μm, which
was on the order of the Δa measured using the DCPC reported in Figure 11. Figure 14B also depicts that the fracture surface was not smooth, which is representative of a more ductile fracture as opposed to a brittle fracture.

Figure 14C was an SEM image at the crack termination prior to Region III for an 1800N case. The extent of crack at stoppage was approximately 0.7mm. In Figure 14C persistent slip bands (PSB) are evident near the crack tip, which is directed away from the crack tip. Typically, during crack initiation, the crack will run along with the plane of the PSB and during crack propagation the PSBs position ahead of the crack in the plastic zone. It can be seen from Figure 14C that the PSB are ahead of the crack tip and therefore it can be visually confirmed
by the relative orientation of the PSB that the crack was beyond the initiation phase when the loading is stopped. More interesting was the extent of the plastic zone on either side of the crack extends approximately 8μm to either side. Further investigation of the band’s width reveals that they are on the order of 0.5μm, which is similar in magnitude to the beach marks found in Figure 14B. It is not obvious how these PSB influence the electric field around the tip, which is an area of future investigation

4.5 Noise Qualification and Quantification

A critical aspect of this study was to qualify and quantify the noise of the crack during fatigue. As mentioned previously, random electrical noise was present from the DCPD method and it is the non-random noise that is of interest. It was expected for a truly random event such as electrical fluctuations from the DCPD method that the distribution should follow a Gaussian distribution that is centered about a zero mean provided the systematic bias has been removed through calibration. This was confirmed by running a zero load test and creating Figure 15 which illustrates a standard Gaussian distribution.
With this information, the standard deviation of the noise was used to calculate upper and lower bounds for the $\Delta a/\Delta N$ curves shown in figure 15. These error bars showed that the noise in the 1800N case was roughly seven times smaller than the noise in 1000N case. This leads one to believe that below a certain loading threshold, the signal to noise ratio becomes too much and starts to bury the signal change from the crack growth.

To account for the increase in stress intensity as the crack length increases it was necessary to normalize the change in crack length by the stress intensity for each case. Figure 15 is a plot of the resulting normalized crack length as both a function of the cycle and in a histogram to show the spread of the crack growth. Figure 16A shows the change in crack length versus loading cycle for a single run, while Figure 16B shows the average across all the samples that were run with a max loading of 1800N. The rightmost graphs of Figure 16A and Figure 16B is a plot of the normalized crack length growth as a function of the cycle with
shaded regions to show the first standard deviation of the electrical noise. A reference Gaussian
distribution was added to each histogram using the mean and standard deviation of the
righthand plots. This was to show the agreement of the histograms to a Gaussian distribution
while also showing the change in the magnitude of the mean with different loading cases.

Figure 16A shows that for a single case, the crack growth seems to follow a different
distribution than a Gaussian distribution. While in Figure 16B, the averaged crack growth
values showed good agreement with a Gaussian distribution. This difference between single
cases and the averages is due to transient independent crack growth events that are not shared
by multiple tests. These independent events contain information about how the microstructure
reacts to the crack growth that is normally lost when looking at the averaged trends of multiple
tests. Because these independent events correspond to reactions of the microstructure to the
growth of the crack, a machine learning technique would be able to characterize them and use
them to predict fatigue failure.
Figure 17 is a plot of the relative probability distribution \(v_i = c_i/N \), where \(v_i \) is bin value, \(c_i \) is the count, and \(N \) is the total number of elements) with data taken from the leftmost subfigures of Figure 16 in addition to additional loading cases. Figure 17 further illustrates the trend that for increased loading there is increased magnitude in the crack jumps. Moreover, Figure 15 provides not only a relative reference to other loadings but also to zero. Comparing the range to each of the other distributions, as the loading increases the range distribution decreases.
Additionally, as the peak loading decreases below 1600N there is an appreciable number of negative length crack jumps. While these negative crack lengths can be reasoned by the crack closure this most likely not the case because the minimum loads are never zero and therefore the crack should not close. The most reasonable explanation of the negative values is that at lower loading the noise associated with the electrical measurement is dominating and the distribution is becoming Gaussian. Another way to explain this is in terms of the signal-to-noise ratio and the fact that the ratio is decreasing for decreasing load.

Capturing the statistical variation of the crack jumps for different loading cycle provides a basis of data to be used in more complex simulations. More specifically the rightmost graphs of Figure 16 show a large quantity of data down to the millisecond that is not trivial by plotting the data from the perspective of a probability distribution. However, what
the probability distribution of Figure 16A conveys is that there is noise that is statistically non-random that can be trained by data mining techniques.

5. Conclusion

This study focused on conducting a DCPD measurement on IN718 samples at several peak loads. The crack growth was shown to have an increasing trend even after being normalized with respect to the increasing stress intensity factor. This gave the first bit of information that the crack growth is affected by some other factor that changes with consistent loading. When looking at the change in crack growth plots in Figure 16A and B, there is evidence of transient information contained in single runs that is lost after averaging multiple trials. These independent crack growth events provide information on the effect of microstructure on crack growth. With a machine learning algorithm that can characterize these independent events, fatigue failure predictions would be more precise and would be able to make estimations of where a component is in the fatiguing process.

5.1 Future Work

This research is the initial step toward creating more accurate models for fatigue failure. The next step is to create and implement the machine learning algorithm to start testing its capabilities. Beyond that, more in-depth SEM imaging is planned to corroborate predictions of the machine learning algorithm to microstructure events. Finally, doing fatigue testing with IN718 in environments more akin to the standard operating environments (high temperature and oxygen enriched).
Bibliography

Appendix A: Supplementary Plots

The following plots are crack growth events and distributions for 1800N, 1400N, 1200N, and 1000N cases. These plots are analogous to the plots in Figure 14 and show that as you decrease the peak loading, the crack growth data starts to get buried in the electrical noise. The right-hand plots each have a shaded region that shows the standard deviation of the electrical noise added onto the signal. The left-hand plots show a gray region that is a reference Gaussian distribution centered at zero.

Figure 1A (A) - $F_{\text{max}}=1800N$ plot of crack jump distribution for a single sample. Figure 1A (B) - $F_{\text{max}}=1800N$ plot of crack jump distribution averaged across all 1800N runs. The rightmost figures are a plot of the normalized crack jumps over subsequent hold cycles and the leftmost figures are a histogram of the crack jumps.
Figure 2A (A) - \(F_{\text{max}} = 1700N \) plot of crack jump distribution for a single sample. Figure 2A (B) - \(F_{\text{max}} = 1700N \) plot of crack jump distribution averaged across all 1700N runs. The rightmost figures are a plot of the normalized crack jumps over subsequent hold cycles and the leftmost figures are a histogram of the crack jumps.
Figure 3A (A) - $F_{max} = 1600N$ plot of crack jump distribution for a single sample. Figure 3A (B) - $F_{max} = 1600N$ plot of crack jump distribution averaged across all 1600N runs. The rightmost figures are a plot of the normalized crack jumps over subsequent hold cycles and the leftmost figures are a histogram of the crack jumps.
Figure 4A - Normalized $\Delta a/\Delta N$ Noise Plot vs hold Cycle for 1400N Loading and Histogram Spread of Crack Growth Events.

Figure 5A - Normalized $\Delta a/\Delta N$ Noise Plot vs hold Cycle for 1200N Loading and Histogram Spread of Crack Growth Events.
Figure 6A - Normalized $\Delta a/\Delta N$ Noise Plot vs hold Cycle for 1000N Loading and Histogram Spread of Crack Growth Events.
Appendix B: Python Script For Data Processing

```python
from scipy import *
import pylab as plt
import glob, sys, os
import os.path
import numpy as np
#np.set_printoptions(threshold=np.nan)
#from sklearn import decomposition
#from mpl_toolkits.mplot3d import Axes3D
import deepcopy

dir0=os.getcwd()  #Set file path of python script
NumCycles=2  #int(sys.argv[1])  #User input for number of cycles to run
inc=100  #int(sys.argv[2])  #Interval of lines to skip per data point
dirs=glob.glob(dir0+'/Specimens/thin_s*')  #Pick out the samples to evaluate
fig=plt.figure()
ax=fig.add_subplot(211)  #Force vs time plot
ax.set_title('Fatigue Loading')
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Force (N)')
ax2 = plt.subplot(212)  #Crack length vs time plot
ax2.set_xlabel('Time (seconds)')
ax2.set_ylabel('Crack Length (mm)')
ft = 1  #int(sys.argv[2])  #Total Number of samples plotted
fn = 0  #int(sys.argv[3])  #Sample to start on
fx = 0  #samples to skip
plt_excep = True  #Change this to skip the repetitive plots of loading cycle
hold_fs=[]  #Creating empty arrays
crack_john_ls=[];crack_FEA_ls=[]  #Creating empty arrays
s_john_ave_world=[];s_FEA_ave_world=[]  #Creating empty arrays
a_john_max=[];a_FEA_max=[];a_final=[]  #Creating empty arrays
v_max=[]  #Creating empty arrays
c0 = 0  #Plot Color counter
c = ['b', 'g', 'r', 'c', 'm', 'y', 'k']  #Plot Colors
f_1000 = 0;f_1400 = 0;f_1200 = 0;f_1600 = 0;f_1700 = 0;f_1800 = 0
for dir1 in dirs[:::1]:  #Main loop to process the TST1F files
    if '1000N' in dir1:
        F_max = 1000
        F_c = 5000
        f_1000 = f_1000 + 1
        V0 = 7.85
    if '1200N' in dir1:
        F_max = 1200
        F_c = 2573
        f_1200 = f_1200 + 1
        V0 = 9.2
    if '1400N' in dir1:
        F_max = 1400
        F_c = 1000
        f_1400 = f_1400 + 1
        V0 = 8.05
```

42
if '1600N' in dir1: #Check to see what load cycle the input is
 F_max = 1600 #Set the max force for that loading cycle
 F_c = 412 #Set the max number of cycles for that loading cycle
 f_1600 = f_1600+1 #Counts the number of that loading cycle that has been processed
 V0 = 8

if '1700N' in dir1:
 F_max = 1700
 F_c = 193
 f_1700 = f_1700+1
 V0 = 11.52

if '1800N' in dir1:
 F_max = 1800
 F_c = 153
 f_1800 = f_1800+1
 V0 = 11.48

if fx < fn: #Check to skip files: see line 26
 fx = fx+1 #File counter
 print 'file skipped'; (fx, dir1) #Print the number of files skipped and their directory
 continue #Restart loop

 """if ('t104' in dir1) or ('t19' in dir1) or ('t18' in dir1) or ('t43' in dir1): #Debug
 continue #Restart loop"

 print 'file', (fx+1, dir1) #Print current file number and its directory

if "specimen" not in dir1: #Debug: solves descrepecies between folder naming
 label0 = dir1.split('thin_sample_')[1]
else:
 folder_name = dir0="/Cycle_data/%s/"% (label0)
 if os.path.isdir(folder_name) == False:
 os.makedirs(folder_name)

 hold_rise = False
 rise = False
 hold_start=False #Switch for monitoring the number of hold cycles passed
 hold_end = False
 hold_t=[];hold_f=[];strains=[];hold_s=[];s_john_ave=[];
 s_FEA_ave=[];s_john_var=[];s_FEA_var=[];force_plot=[];time_plot=[] #Creating empty arrays
 os.chdir(dir1)

 if os.path.isfile("TST1F.dat"): #Checks if directory contains TST1F.dat file
 with open("TST1F.dat") as fo: #Opens file
 file_line = 0
 for _ in range(5):
 next(fo)

 for l in fo:
 if file_line % 50 == 0 or file_line == 0:
 time, segment, force, displacement, strain=map(float,l.split()) #Splits data
 force_plot.append(force)
 time_plot.append(time)

 if data_line <= 10:
 strains.append(strain)

 if data_line > 0:
 slope=(force-force_l)/(time-time_l)

 if hold_rise == False and hold_start == False and hold_end == False:
 if force>F_max/2:
rise = True
if rise == True:
 if force<F_max/2:
 osc += 1
 rise = False
 if osc > 9 and force>F_max/2:
 hold_rise = True
 if hold_rise == True:
 if abs(slope) <200:
 hold_start = True
 hold_rise = False
if hold_start == True:
 hold_f.append(force)
 hold_t.append(time)
 hold_s.append(strain)
if abs(slope) >200:
 Vi = np.mean(strains)
 V_V0 = (np.abs(hold_s-Vi)+V0)
 sy = 0.1;Siz=27.4;u1=np.cos(np.pi*sy/(2*sW));q2 =np.cos(np.pi*10/(2*sW));
 q3 = 2*np.pi;q4 = np.arccosh(q1/q2);q5 = np.cosh(V_V0*q4)
 q6 = np.arccos(q1/q5);a_sW = q3*q6
 hold_s_John = (a_sW*sW)-10
 hold_s_FEA=10*(0.0102*pow(V_V0,3)-0.1787*pow(V_V0,2)+1.1917*V_V0-0.02)-10
 ax.plot(hold_t,hold_f,
 '.--',alpha=0.8,color='r')
 ax2.plot(hold_t,hold_s_John,
 '.--',alpha=0.2,color='lightblue')
 ax2.plot(hold_t,hold_s_FEA,
 '.--',alpha=0.2,color='lightsalmon')
 header1="time(sec)\tforce(N)\tcrack length Johnson(mm)\tcrack length FEA(mm)"
 hold_data = transpose((hold_t,hold_f,hold_s_John,hold_s_FEA))
 out_name = dir0+"/Cycle_data/%s_cycle_%04d" % (label0, int('0000')+n+1)
 np.savetxt(out_name,hold_data,delimiter='t',header=header1)
 os.chdir(dir0)
 hold_start = False
 hold_end = False
 hold_t=[];hold_f=[];hold_s=[]
 force_l = force
 time_l = time
 file_line += 1
 data_line += 1
else:
 file_line += 1
next(fo)
if n==NumCycles:
 break
if (f_1600 == 1) or (f_1700 == 1) or (f_1800 == 1) or (plt_excep == True):
 ax.plot(time_plot,force_plot,
 '.--',alpha=0.2,color='%s' % c[co])
fo.close() #Close TST1F.dat file
plt.show()
if fx == ft+fn-1:
 break
Appendix C: Matlab Script For Data Processing

1. ```%% Initiation```
2. ```clear,clc```
3. ```%Joel Lindsay```
4. ```home_dir = pwd; %Gets starting directory```
5. ```cd .. %Goes to parent directory```
6. ```dir0 = strcat(pwd,'Cycle_data'); %string for path of Cycle_data folder```
7. ```cd(home_dir) %Goes back to home directory```
8. ```dirs = dir(dir0); %get path to Cycle_data folder```
9. ```R1 = 1; %starting Row```
10. ```C1 = 0; %Starting Column```
11. ```ff = [153,193,412,1000,3000,5000]; %Number of hold cycles for 1600,1700,1800 cases```
12. ```f = 1; %Starting file```
13. ```og_dirs = dirs;```
14. ```%% 1800N Case Loop```
15. ```fl = ff(1,1); %Set Number of cycles```
16. ```aver = [];```
17. ```vari = [];```
18. ```for i = 3:length(dirs) %read Lines from 3 to end```
19. ```cycle = 1; %Set first cycle```
20. ```f_dir = strcat(dir0, dirs(i).name); %Get first file directory```
21. ```files = dir(f_dir);```
22. ```numfiles = length(files); %Get number of files```
23. ```if numfiles == fl+2 %Logic check to make sure the test has the right number of cycles```
24. ```for j=3:numfiles %iterate through the cycles```
25. ```fs_1800{f,1} = f_dir; %Saves corresponding file```
26. ```x = dlmread(strcat(f_dir,'\',files(j).name),','R1,C1); %Read the data for each cycle```
27. ```aver(cycle,:) = mean(x); %Calculate average of cycle```
28. ```vari(cycle,:) = std(x); %Calculate standard deviation of cycle```
29. ```cycle = cycle+1; %Iterate to next cycle```
30. ```end```
31. ```Set_a_1800(:,:,f) = aver; %Combine all averages into a 3D matrix```
32. ```Set_v_1800(:,:,f) = vari; %combine all standard deviations into a 3D matrix```
33. ```da_1800(:,1,f) = diff(Set_a_1800(:,4,f)); %calculate the difference between holding cycle averages for FEA```
34. ```%da_1800(:,2,f) = diff(Set_a_1800(:,4,f)); %For FEA```
35. ```clear_dir(f) = i;```
36. ```else```
37. ```continue```
38. ```end```
39. ```f = f+1; %iterate test```
40. ```end```
41. ```world_ave_1800 = mean(Set_a_1800(:,2:4,:),3);```
42. ```world_ave_1800 = world_ave_1800-world_ave_1800(1,3);```
43. ```world_ave_1800 = world_ave_1800-world_ave_1800(1,3);```
44. ```error_ave_1800 = var(Set_a_1800(:,2:4,:),0,3);```
45. ```world_var_1800 = mean(Set_v_1800(:,2:4,:),3);```
46. ```error_var_1800 = var(Set_v_1800(:,2:4,:),0,3);```
47. ```world_da_1800 = mean(da_1800(:,1,:),3);```
dirs(clear_dir) = [];

cycles_1800 = linspace(1,fl,fl);
dis_cycles_1800 = 1:10:fl;

fl = ff(1,2);
f = 1;
aver = [];

for i = 3:length(dirs)

cycle = 1;

f_dir = strcat(dir0,'\',dirs([i]).name);

files = dir(f_dir);

numfiles = length(files);

if numfiles == fl+2

for j=3:numfiles

fs_1700{f,1} = f_dir;

x = dlmread(strcat(f_dir,'\',files([j]).name),',',R1,C1);

aver(cycle,:) = mean(x);

vari(cycle,:) = std(x);

cycle = cycle+1;

Set_a_1700(:,:,f) = aver;

Set_v_1700(:,:,f) = vari;

da_1700(:,1,f) = diff(Set_a_1700(:,4,f));

%da_1700(:,2,f) = diff(Set_a_1700(:,4,f));

clear_dir(f) = i;

else

continue

end

Set_a_1700(:,;,f) = aver;

Set_v_1700(:,;,f) = vari;

da_1700(:,1,:,f) = diff(Set_a_1700(:,4,:,f));

%da_1700(:,2,:,f) = diff(Set_a_1700(:,4,:,f));

clear_dir(f) = i;

end

end

world_ave_1700 = mean(Set_a_1700(:,2:4,:),3);

world_ave_1700 = world_ave_1700-world_ave_1700(1,3);

error_ave_1700 = var(Set_a_1700(:,2:4,:),0,3);

world_var_1700 = mean(Set_v_1700(:,2:4,:),3);

error_var_1700 = var(Set_v_1700(:,2:4,:),0,3);

world_da_1700 = mean(da_1700(:,1,:),3);

\%

dirs(clear_dir) = [];

cycles_1700 = linspace(1,fl,fl);
dis_cycles_1700 = 1:10:fl;

fl = ff(1,3);
f = 1;
aver = [];

for i = 3:length(dirs)

cycle = 1;

f_dir = strcat(dir0,'\',dirs([i]).name);

files = dir(f_dir);

numfiles = length(files);

if numfiles == fl+2

for j=3:numfiles
fs_1600{f,1} = f_dir;
x = dlmread(strcat(f_dir,'\',files([j]).name),\',',R1,C1);
aver(cycle,:) = mean(x);
vari(cycle,:) = std(x);
cycle = cycle+1;
end
Set_a_1600(:,f,:) = aver;
Set_v_1600(:,f,:) = vari;
da_1600(:,1,f) = diff(Set_a_1600(:,4,f));
%da_1600(:,2,f) = diff(Set_a_1600(:,4,f)); %Reads FEA calibration
clear_dir(f) = i;
else
continue
end
f = f+1;
end

world_ave_1600 = mean(Set_a_1600(:,2:4,:),3);
world_ave_1600 = world_ave_1600 - world_ave_1600(1,3);
error_ave_1600 = var(Set_a_1600(:,2:4,:),0,3);
world_var_1600 = mean(Set_v_1600(:,2:4,:),3);
error_var_1600 = var(Set_v_1600(:,2:4,:),0,3);
world_da_1600 = mean(da_1600(:,1,:),3);

dirs(clear_dir) = [];
cycles_1600 = linspace(1,fl,fl);
dis_cycles_1600 = 1:10:fl;

%% 1400N
fl = ff(1,4); %Set Number of cycles
f = 1;
aver = [];
vari = [];
for i = 3:length(dirs) %read Lines from 3 to end
 f_dir = strcat(dir0,'\',dirs([i]).name); %Get first file directory
 files = dir(f_dir);
 numfiles = length(files); %Get number of files
 if numfiles == fl+2 %Logic check to make sure the test has the right number of cycles
 for j=3:numfiles %iterate through the cycles
 fs_1400{f,1} = f_dir; %Saves corresponding file
 x = dlmread(strcat(f_dir,'\',files([j]).name),\',',R1,C1); %Read the data for each cycle
 aver(cycle,:) = mean(x); %Calculate average of cycle
 vari(cycle,:) = std(x); %Calculate standard deviation of cycle
 cycle = cycle+1; %Iterate to next cycle
 end
 Set_a_1400(:,f,:) = aver; %Combine all averages into a 3D matrix
 Set_v_1400(:,f,:) = vari; %combine all standard deviations into a 3D matrix
 da_1400(:,1,f) = diff(Set_a_1400(:,4,f)); %calculate the difference between holding cycle averages for Johnson
 %da_1200(:,2,f) = diff(Set_a_1200(:,4,f)); %For FEA
 clear_dir(f) = i;
 else
 continue
 end
f = f+1; %iterate test
end
163. world_ave_1400 = mean(Set_a_1400(:,2:4,:),3);
164. world_ave_1400 = world_ave_1400-world_ave_1400(1,3);
165. error_ave_1400 = var(Set_a_1400(:,2:4,:),0,3);
166. world_var_1400 = mean(Set_v_1400(:,2:4,:),3);
167. error_var_1400 = var(Set_v_1400(:,2:4,:),0,3);
168. world_da_1400 = mean(da_1400(:,1,:),3);
169.
170. dirs(clear_dir(1,f-1)) = [];
171. cycles_1400 = linspace(1,fl,fl);
172. dis_cycles_1400 = 1:20:fl;
173.
174. \text{%% 1200N}
175. fl = ff(1,5); %Set Number of cycles
176. f = 1;
177. aver = [];
178. vari = [];
179. for i = 3:length(dirs) %read Lines from 3 to end
180. cycle = 1; %Set first cycle
181. f_dir = strcat(dir0,’\',dirs([i]).name); %Get first file directory
182. files = dir(f_dir);
183. numfiles = length(files); %Get number of files
184. if numfiles == fl+2 %Logic check to make sure the test has the right number of cycles
185. for j=3:numfiles %iterate through the cycles
186. x = dlmread(strcat(f_dir,’\',files([j]).name),’t’,R1,C1); %Read the data for each cycle
187. aver(cycle,:) = mean(x); %Calculate average of cycle
188. vari(cycle,:) = std(x); %Calculate standard deviation of cycle
189. cycle = cycle+1; %Iterate to next cycle
190. end
191. Set_a_1200(:,:,f) = aver; %Combine all averages into a 3D matrix
192. Set_v_1200(:,:,f) = vari; %combine all standard deviations into a 3D matrix
193. da_1200(:,1,f) = diff(Set_a_1200(:,4,f)); %calculate the difference between holding cycle averages for Johnson
194. %da_1200(:,2,f) = diff(Set_a_1200(:,4,f)); %For FEA
195. clear_dir(f) = i;
196. else
197. continue
198. end
199. f = f+1; %iterate test
200. end
201.
202. world_ave_1200 = mean(Set_a_1200(:,2:4,:),3);
203. world_ave_1200 = world_ave_1200-world_ave_1200(1,3);
204. error_ave_1200 = var(Set_a_1200(:,2:4,:),0,3);
205. world_var_1200 = mean(Set_v_1200(:,2:4,:),3);
206. error_var_1200 = var(Set_v_1200(:,2:4,:),0,3);
207. world_da_1200 = mean(da_1200(:,1,:),3);
208.
209. \text{%% 1000N}
210. fl = ff(1,6); %Set Number of cycles
211. f = 1;
212. aver = [];
213.
214. dirs(clear_dir(1,f-1)) = [];
215. cycles_1200 = linspace(1,fl,fl);
216. dis_cycles_1200 = 1:50:fl;
217.
218.
for i = 3:length(dirs) %read Lines from 3 to end
 cycle = 1; %Set first cycle
 f_dir = strcat(dir0,'\',dirs(i).name); % Get first file directory
 files = dir(f_dir);
 numfiles = length(files); %Get number of files
 if numfiles == fl+2 %Logic check to make sure the test has the right number of cycles
 for j=3:numfiles %iterate through the cycles
 fs_1000{f,1} = f_dir; %Saves corresponding file
 x = dlmread(strcat(f_dir,'\',files(j).name),'t',R1,C1); %Read the data for each cycle
 aver(cycle,:) = mean(x); %Calculate average of cycle
 vari(cycle,:) = std(x); %Calculate standard deviation of cycle
 cycle = cycle+1; %Iterate to next cycle
 end
 Set_a_1000(:,:,f) = aver; %Combine all averages into a 3D matrix
 Set_v_1000(:,:,f) = vari; %combine all standard deviations into a 3D matrix
 da_1000(:,1,f) = diff(Set_a_1000(:,4,f)); %calculate the difference between holding cycle averages for Johnson
 da_1200(:,2,f) = diff(Set_a_1200(:,4,f)); %For FEA
 clear_dir(f) = i;
 else
 continue
 end
 end
 world_ave_1000 = mean(Set_a_1000(:,2:4,:),3); %Combine all averages into a 3D matrix
 world_ave_1000 = world_ave_1000-world_ave_1000(1,3); %Calculate the difference between holding cycle averages for Johnson
 error_ave_1000 = var(Set_a_1000(:,2:4,:),0,3); %Calculate standard deviation of cycle
 world_var_1000 = mean(Set_v_1000(:,2:4,:),3); %Calculate average of cycle
 error_var_1000 = var(Set_v_1000(:,2:4,:),0,3); %Calculate standard deviation of cycle
 world_da_1000 = mean(da_1000(:,1,:),3); %Calculate average of difference
 a_1000 = Set_a_1000(:,3,:)*10^-3; %Crack length from load line to tip in m
 a_1000_ave = mean(a_1000,3); %Crack length average across all samples in m
 a_1200 = Set_a_1200(:,3,:)*10^-3;
 a_1200_ave = mean(a_1200,3); %Crack length from load line to tip in m
 a_1400 = Set_a_1400(:,3,:)*10^-3;
 a_1400_ave = mean(a_1400,3); %Crack length average across all samples in m
 a_1600 = Set_a_1600(:,3,:)*10^-3;
 a_1600_ave = mean(a_1600,3); %Crack length from load line to tip in m
 a_1700 = Set_a_1700(:,3,:)*10^-3;
 a_1700_ave = mean(a_1700,3); %Crack length average across all samples in m
 a_1800 = Set_a_1800(:,3,:)*10^-3;
 a_1800_ave = mean(a_1800,3); %Crack length from load line to tip in m
 a0 = 10*10^-3; %Length of initial crack in m
 w = 34.25*10^-3; %Width of sample in m
 h = 76.2*10^-3; %Height of sample in m
 t = 0.5*10^-3; %Thickness of sample in m
50

P_max_1000 = Set_a_1000(:,2,:);

P_max_1000 = 255;

P_min_1000 = 255;

K_I_max_1000 = (P_max_1000./(t.*(w)))*10^-6.*sqrt(pi().*a_1000).*(8.574-10.365*(a_1000/w)+5.499*(a_1000/w).^2);

K_I_min_1000 = (P_min_1000./(t.*(w)))*10^-6.*sqrt(pi().*a_1000).*(8.574-10.365*(a_1000/w)+5.499*(a_1000/w).^2);

dK_I_1000 = K_I_max_1000-K_I_min_1000;

dK_I_ave_1000 = mean(dK_I_1000,3);

P_max_1200 = Set_a_1200(:,2,:);

P_max_1200 = 180;

P_min_1200 = 180;

K_I_max_1200 = (P_max_1200./(t.*(w)))*10^-6.*sqrt(pi().*a_1200).*(8.574-10.365*(a_1200/w)+5.499*(a_1200/w).^2);

K_I_min_1200 = (P_min_1200./(t.*(w)))*10^-6.*sqrt(pi().*a_1200).*(8.574-10.365*(a_1200/w)+5.499*(a_1200/w).^2);

dK_I_1200 = K_I_max_1200-K_I_min_1200;

dK_I_ave_1200 = mean(dK_I_1200,3);

P_max_1400 = Set_a_1400(:,2,:);

P_max_1400 = 195;

P_min_1400 = 195;

K_I_max_1400 = (P_max_1400./(t.*(w)))*10^-6.*sqrt(pi().*a_1400).*(8.574-10.365*(a_1400/w)+5.499*(a_1400/w).^2);

K_I_min_1400 = (P_min_1400./(t.*(w)))*10^-6.*sqrt(pi().*a_1400).*(8.574-10.365*(a_1400/w)+5.499*(a_1400/w).^2);

dK_I_1400 = K_I_max_1400-K_I_min_1400;

dK_I_ave_1400 = mean(dK_I_1400,3);

P_max_1600 = Set_a_1600(:,2,:);

P_max_1600 = 207.8;

P_min_1600 = 207.8;

K_I_max_1600 = (P_max_1600./(t.*(w)))*10^-6.*sqrt(pi().*a_1600).*(8.574-10.365*(a_1600/w)+5.499*(a_1600/w).^2);

K_I_min_1600 = (P_min_1600./(t.*(w)))*10^-6.*sqrt(pi().*a_1600).*(8.574-10.365*(a_1600/w)+5.499*(a_1600/w).^2);

dK_I_1600 = K_I_max_1600-K_I_min_1600;

dK_I_ave_1600 = mean(dK_I_1600,3);

P_max_1700 = Set_a_1700(:,2,:);

P_max_1700 = 227.8;

P_min_1700 = 227.8;

K_I_max_1700 = (P_max_1700./(t.*(w)))*10^-6.*sqrt(pi().*a_1700).*(8.574-10.365*(a_1700/w)+5.499*(a_1700/w).^2);

K_I_min_1700 = (P_min_1700./(t.*(w)))*10^-6.*sqrt(pi().*a_1700).*(8.574-10.365*(a_1700/w)+5.499*(a_1700/w).^2);

dK_I_1700 = K_I_max_1700-K_I_min_1700;

dK_I_ave_1700 = mean(dK_I_1700,3);

P_max_1800 = Set_a_1800(:,2,:);

P_max_1800 = 253.26;

P_min_1800 = 253.26;

K_I_max_1800 = (P_max_1800./(t.*(w)))*10^-6.*sqrt(pi().*a_1800).*(8.574-10.365*(a_1800/w)+5.499*(a_1800/w).^2);

K_I_min_1800 = (P_min_1800./(t.*(w)))*10^-6.*sqrt(pi().*a_1800).*(8.574-10.365*(a_1800/w)+5.499*(a_1800/w).^2);

dK_I_1800 = K_I_max_1800-K_I_min_1800;

dK_I_ave_1800 = mean(dK_I_1800,3);

%% Saving Data

cd 'Matlab Variables'

save('Data_Collect.mat')

cd ..
Appendix D: Matlab Plotting Script

1. \%
2. File Initialization
3. clc, close all
4. cd 'Matlab Variables' \n5. load('Data_Collect.mat')
6. cd ..
7. a_1000(2012) = [];
8. dK_I_1000(2012) = [];
9. \%
10. bins = 20;
11. num_1000 = size(cycles_1000,2);
12. num_1200 = size(cycles_1200,2);
13. num_1400 = size(cycles_1400,2);
14. num_1600 = size(cycles_1600,2);
15. num_1700 = size(cycles_1700,2);
16. num_1800 = size(cycles_1800,2);
17. \%
18. xy1 = linspace(-0.08,0.08,1000);
19. xy2 = linspace(-0.02,0.02,1000);
20. samp_num = [size(dK_I_1000,3), size(dK_I_1200,3), size(dK_I_1400,3), size(dK_I_1600,3), size(dK_I_1700,3), size(dK_I_1800,3)];
21. samp_num_str = {num2str(size(dK_I_1000,3)), num2str(size(dK_I_1200,3)), num2str(size(dK_I_1400,3)), num2str(size(dK_I_1600,3)), num2str(size(dK_I_1700,3)), num2str(size(dK_I_1800,3))};
22. \%
23. Average Crack Length vs Cycle Plot
24. figure('units','normalized','outerposition',[0.25,0.25,0.5,0.75]);
25. hold on; semilogx(dis_cycles_1000,world_ave_1000(dis_cycles_1000,3),'LineWidth',1.5,'color','magenta')
26. hold on; semilogx(dis_cycles_1200,world_ave_1200(dis_cycles_1200,3),'LineWidth',1.5,'color','black')
27. hold on; semilogx(dis_cycles_1400,world_ave_1400(dis_cycles_1400,3),'LineWidth',1.5,'color','cyan')
28. hold on; semilogx(dis_cycles_1600,world_ave_1600(dis_cycles_1600,3),'LineWidth',1.5,'color','green')
29. hold on; semilogx(dis_cycles_1700,world_ave_1700(dis_cycles_1700,3),'LineWidth',1.5,'color','red')
30. hold on; semilogx(dis_cycles_1800,world_ave_1800(dis_cycles_1800,3),'LineWidth',1,'color','blue')
31. \%
32. legen = {'F_{max} = 1000N, n=' num2str(size(dK_I_1000,3)), 'F_{max} = 1200N, n=' num2str(size(dK_I_1200,3)), 'F_{max} = 1400N, n=' num2str(size(dK_I_1400,3)), 'F_{max} = 1600N, n=' num2str(size(dK_I_1600,3)), 'F_{max} = 1700N, n=' num2str(size(dK_I_1700,3)), 'F_{max} = 1800N, n=' num2str(size(dK_I_1800,3))};
33. legen = strcat(legen,samp_num_str);
34. \%
35. grid on
36. axis([0, 4500, 0, 2]);
37. legend(legen,'Location','northwest')
38. pbaspect([1 1 1])
39. box(gca,'on')
40. xlabel('Loading Cycle','FontSize',18,'FontWeight','bold')
41. ylabel('Crack Length [mm]','FontSize',18,'FontWeight','bold')
42. legend('Location','northwest')
43. set(gca,'LineWidth',3)
44. set(gca,'FontSize',18)
45. set(leg,'FontSize',14)
50. set(gca,'fontname','Times New Roman')
51. cd Figures\;saveas(gcf,'Fig4','epsc');saveas(gcf,'Fig4','tiffn');cd ..
52.
53. \%% Non-Dimensionlized Histogram plot
54. 55. t1 = world_da_1600./(((16.7.*(a_1600_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1600_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1600_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1600_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1600_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2))));
56. t2 = world_da_1700./(((16.7.*(a_1700_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1700_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1700_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1700_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1700_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2))));
57. t3 = world_da_1800./(((16.7.*(a_1800_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1800_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1800_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1800_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1800_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2))));
58. t4 = world_da_1400./(((16.7.*(a_1400_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1400_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1400_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1400_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1400_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2))));
59. t5 = world_da_1200./(((16.7.*(a_1200_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1200_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1200_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1200_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1200_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2))));
60. t6 = world_da_1000./(((16.7.*(a_1000_ave(2:end)/0.03463).^(1/2) -
 104.7.*(a_1000_ave(2:end)/0.03463).^(3/2)+369.9.*(a_1000_ave(2:end)/0.03463).^(5/2) -
 573.8.*(a_1000_ave(2:end)/0.03463).^(7/2)+360.5.*(a_1000_ave(2:end)/0.03463).^(9/2)))...
/(16.7*(0.01/0.03463)^(1/2) -
104.7*(0.01/0.03463)^(3/2)+369.9*(0.01/0.03463)^(5/2) -
573.8*(0.01/0.03463)^(7/2)+360.5*(0.01/0.03463)^(9/2)))));
61.
62. t1 = movmean(t1,10);
63. t2 = movmean(t2,10);
64. t3 = movmean(t3,10);
65. t4 = movmean(t4,10);
66. t5 = movmean(t5,10);
67. t6 = movmean(t6,10);
68. stand_t1 = std(t1);
69. stand_t2 = std(t2);
70. stand_t3 = std(t3);
71. stand_t4 = std(t4);
72. stand_t5 = std(t5);
73. stand_t6 = std(t6);
74. c = [0.75, 0.75, 0.75];
75.
76. \%% 1600N
77. figure('units','normalized','outerposition',[0.2541666666666,0.367592592592593,0.591666666666667,0.58]);
78. hold on; subplot(1,3,2:3); plot(t1,'LineWidth',1,'color','green');errorbar at 5% VL, width calculated using a t distributiongrid on
79. grid on; grid minor; set(gca,'YMinorTick','on');
80. xlabel('Loading Cycle','FontSize',18,'FontWeight','bold');
81. \%% Sets name, font size, and makes the font bold
82.
83.
ylim([-0.2*max(t1), max(t1)+0.1*max(t1)]); % xlim([-1.05, 420]);
y1 = ylim;

leg=legend('F_{max} = 1600N');
legend('Location','southeast')

box(gca,'on') % Turns outside border on
set(gca, 'LineWidth',3) % Creates a thick outside border
set(gca, 'FontSize',18) % Sets Axis Font Size for number, can't make to big
set(gca, 'FontSize',14) % Sets Legend Font Size
set(gca, 'fontname','Times New Roman')
pbaspect([1 0.75 1])

xy2 = linspace(-max(t1),max(t1),1000);
subplot(1,3,1);

pdf1 = normpdf(xy2,0,stand_t1);
hold on; patch(pdf1/3,xy2,c);

h1 = histogram(t1,bins,'Orientation','horizontal');
h1(1).FaceColor = 'g';
grid on; grid minor; set(gca, 'YminorTick','on')

set(get(get(h1,'Annotation'), 'LegendInformation'), 'IconDisplayStyle','off');

h = gca;

xl = xlim;
set(h,'XDir','reverse');
xlabel('Count','FontSize',18,'FontWeight','bold') % Sets name, font size, and makes the font bold
ylabel('
\Delta a/\Delta N (K_{0}/K(a)) [mm/cycle]','FontSize',18,'FontWeight','bold') % Sets name, font size, and makes the font bold

h.YLim = yl; h.XLim = [-1.5 xl(2)+10];

leg=legend('Normal Dist.');
legend('Location','southwest')

box(gca,'on') % Turns outside border on
set(gca, 'LineWidth',3) % Creates a thick outside border
set(gca, 'FontSize',18) % Sets Axis Font Size for number, can't make to big
set(leg, 'FontSize',14) % Sets Legend Font Size
set(gca, 'fontname','Times New Roman')
pbaspect([1.5 2.6 1])

cd Figures\;saveas(gcf,'Fig7','epsc');saveas(gcf,'Fig7','tiffn');cd ..

115.

116. %1700N

117. figure('units','normalized','outerposition',[0.254166666666667,0.367592592592593,0.591666666666667,0.58]);

118. hold on; subplot(1,3,2:3); plot(t2,'LineWidth',1,'color','red') % errorbar at 5% VL, width calculated using a t distribution

119. grid on; grid minor; set(gca, 'YminorTick','on')

120. xlabel('Loading Cycle','FontSize',18,'FontWeight','bold') % Sets name, font size, and makes the font bold

121. ylim([-0.2*max(t2), max(t2)+0.1*max(t2)]); % xlim([-1.05, 200]);

122. y1 = ylim;

123. leg=legend('F_{max} = 1700N');

124. legend('Location','southwest')

125. box(gca,'on') % Turns outside border on

126. set(gca, 'LineWidth',3) % Creates a thick outside border

127. set(gca, 'FontSize',18) % Sets Axis Font Size for number, can't make to big

128. set(leg, 'FontSize',14) % Sets Legend Font Size

129. set(gca, 'fontname','Times New Roman')

130. pbaspect([1 0.75 1])

131.

132. xy2 = linspace(-max(t2),max(t2),1000);

133. subplot(1,3,1);

134. pdf2 = normpdf(xy2,0,stand_t2);

135. hold on; patch(pdf2/10,xy2,c);

136. h2 = histogram(t2,bins, 'Orientation','horizontal');
137. h2(1).FaceColor = 'r';
138. grid on; grid minor; set(gca, 'YminorTick', 'on')
139. xl = xlim;
140. set(get(get(h2, 'Annotation'), 'LegendInformation'), 'IconDisplayStyle', 'off');
141. h = gca;
142. xl = xlim;
143. set(gca, 'XDir', 'reverse');
144. xlabel('Count', 'FontSize', 18, 'FontWeight', 'bold') %Sets name, font size, and makes the font bold
145. ylabel('\Delta a/\Delta N(K_0/K(a)) [mm/cycle]', 'FontSize', 18, 'FontWeight', 'bold') %Sets name, font size, and makes the font bold
146. h.YLim = yl; h.XLim = [-1.05 xl(2)+10];
147. leg = legend('Normal Dist.');
148. legend('Location', 'southwest')
149. box(gca, 'on') %Turns outside border on
150. set(gca, 'LineWidth', 3) %Creates a thick outside border
151. set(leg, 'FontSize', 14) %Sets Legend Font Size
152. set(gca, 'fontname', 'Times New Roman')
153. pbaspect([1.5 2.6 1])
154. cd Figures\; saveas(gcf, 'Fig9', 'epsc'); saveas(gcf, 'Fig9', 'tiff'); cd ..
155. 1800N
156. 157. figure('units', 'normalized', 'outerposition', [0.254166666666667, 0.367592592592593, 0.591666666666667, 0.58]);
158. hold on; subplot(1,3,2:3); plot(t3, 'LineWidth', 1, 'color', 'blue') %errorbar at 5% VL, width calculated using a t distribution
159. grid on; grid minor; set(gca, 'YminorTick', 'on')
160. xlabel('Loading Cycle', 'FontSize', 18, 'FontWeight', 'bold') %Sets name, font size, and makes the font bold
161. ylim([-0.2*max(t3), max(t3)+0.1*max(t3)]);
162. yl = ylim;
163. leg = legend('F_{max} = 1800N');
164. legend('Location', 'southeast')
165. box(gca, 'on') %Turns outside border on
166. set(gca, 'LineWidth', 3) %Creates a thick outside border
167. set(leg, 'FontSize', 14) %Sets Legend Font Size
168. set(gca, 'fontname', 'Times New Roman')
169. pbaspect([1 0.75 1])
170. xy2 = linspace(-max(t3), max(t3), 1000);
171. subplot(1,3,1);
172. pdf3 = normpdf(xy2, 0, stand_t3);
173. hold on; patch(pdf3/10, xy2, c);
174. h3 = histogram(t3, bins, 'Orientation', 'horizontal');
175. h3(1).FaceColor = 'b';
176. grid on; grid minor; set(gca, 'YminorTick', 'on')
177. box(gca, 'on') %Turns outside border on
178. set(gca, 'LineWidth', 3) %Creates a thick outside border
179. set(leg, 'FontSize', 14) %Sets Legend Font Size
180. set(gca, 'fontname', 'Times New Roman')
181. pbaspect([1 0.75 1])
182. xy2 = linspace(-max(t3), max(t3), 1000);
183. subplot(1,3,1);
184. pdf3 = normpdf(xy2, 0, stand_t3);
185. hold on; patch(pdf3/10, xy2, c);
186. h3 = histogram(t3, bins, 'Orientation', 'horizontal');
187. h3(1).FaceColor = 'b';
188. grid on; grid minor; set(gca, 'YminorTick', 'on')
189. box(gca, 'on') %Turns outside border on
190. set(gca, 'LineWidth', 3) %Creates a thick outside border
191. set(gca, 'FontSize', 18) %Sets Axis Font Size for number, can't make to big
192. set(leg, 'FontSize', 14) %Sets Legend Font Size
set(leg,'FontSize',14)
%Sets Legend Font Size
set(gca,'fontname','Times New Roman')
pbsaspect([1 0.75 1])

xy2 = linspace(-max(t5),max(t5),1000);

pdf1 = normpdf(xy2,0,stand_t4);
hold on; patch(pdf1*5,xy2,c);
h5 = histogram(t5,bins,'Orientation','horizontal');
h5(1).FaceColor = 'black';
grid on; grid minor; set(gca,'YminorTick','on');
set(get(get(h5,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
h = gca;
xl = xlim;
set(h,'XDir','reverse');
xlabel('Count','FontSize',18,'FontWeight','bold')

h.YLim = yl; h.XLim = [-1.5 xl(2)+10];
leg=legend('Normal Dist.');

box(gca,'on')
%Turns outside border on
set(gca,'LineWidth',3)
%Creates a thick outside border
set(gca,'FontSize',18)
%Sets Axis Font Size for number, can't make to big
set(leg,'FontSize',14)
%Sets Legend Font Size
set(gca,'fontname','Times New Roman')
pbsaspect([1.5 2.6 1])

cd Figures; saveas(gcf,'Fig12','epsc'); saveas(gcf,'Fig12','tiffn'); cd ..

figure('units','normalized','outerposition',[0.254166666666667 0.367592592592593 0.591666666666667 0.58]);
hold on; subplot(1,3,2:3); plot(t6,'LineWidth',1,'color','magenta')
grid on; grid minor; set(gca,'YminorTick','on')
%ylim([-0.1, 0.1]); xlim([-0.5, 4500]);
yl = ylim;

leg=legend('F_{max} = 1000N');
legend('Location','southeast')

box(gca,'on')
%Turns outside border on
set(gca,'LineWidth',3)
%Creates a thick outside border
set(gca,'FontSize',18)
%Sets Axis Font Size for number, can't make to big
set(leg,'FontSize',14)
%Sets Legend Font Size
set(gca,'fontname','Times New Roman')
pbsaspect([1 0.75 1])

xy2 = linspace(-max(t6),max(t6),1000);

pdf1 = normpdf(xy2,0,stand_t5);
hold on; patch(pdf1,xy2,c);
h6 = histogram(t6,bins,'Orientation','horizontal');
h6(1).FaceColor = 'magenta';
grid on; grid minor; set(gca,'YminorTick','on')
set(get(get(h6,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
h = gca;
xl = xlim;

xlabels('Count','FontSize',18,'FontWeight','bold')
%Sets name, font size, and makes the font bold

%1000N

ylim([-0.1, 0.1]); xlim([-0.5, 4500]);
yl = ylim;
305. ylabel('
Deltaa/\Delta N(K_{0}/K(a)) [mm/cycle]', 'FontSize', 18, 'FontWeight', 'bold') %Sets name, font size, and makes the font bold
306. h.YLim = y1; h.XLim = [-1.5 xl(2)+10];
307. legend('Location','southwest')
308. box(gca,'on') %Turns outside border on
309. set(gca,'LineWidth',3) %Creates a thick outside border
310. set(gca,'FontSize',18) %Sets Axis Font Size for number, can't make to big
311. set(leg,'FontSize','Times New Roman')
312. pbaspect([1 2 1])
313. cd Figures\;saveas(gcf,'Fig13','.eps');saveas(gcf,'Fig13','.tiff');cd ..
314. % Combined Histogram plot
315. figure('units','normalized','outerposition',[0.25,0.1,0.6,0.9]);
316. bin_size = range(t3)/15;
317. bin_c = round([range(t1)/bin_size range(t2)/bin_size range(t3)/bin_size range(t4)/bin_size range(t5)/bin_size range(t6)/bin_size]);
318. histogram(t6.bin_c(6), 'Normalization','probability', 'FaceColor','magenta', 'EdgeColor','magenta', 'FaceAlpha',0.5);hold on;
319. histogram(t5.bin_c(5), 'Normalization','probability', 'FaceColor','blue', 'EdgeColor','blue', 'FaceAlpha',0.5);hold on;
320. histogram(t4.bin_c(4), 'Normalization','probability', 'FaceColor','black', 'EdgeColor','black', 'FaceAlpha',0.5);hold on;
321. histogram(t3.bin_c(3), 'Normalization','probability', 'FaceColor','green', 'EdgeColor','green', 'FaceAlpha',0.5);hold on;
322. histogram(t2.bin_c(2), 'Normalization','probability', 'FaceColor','red', 'EdgeColor','red', 'FaceAlpha',0.5);hold on;
323. histogram(t1.bin_c(1), 'Normalization','probability', 'FaceColor','blue', 'EdgeColor','blue', 'FaceAlpha',0.5);hold on;
324. pbaspect([1 1 1])
325. set(gca,'fontname','Times New Roman')
326. cd Figures\;saveas(gcf,'Fig13','.eps');saveas(gcf,'Fig13','.tiff');cd ..
327. % da/dn scatter plot
328. grid on
329. xlabel('
Deltaa/\Delta N(K_{0}/K(a)) [mm/cycle]', 'FontSize', 18, 'FontWeight', 'bold')
330. ylabel('Probability', 'FontSize', 18, 'FontWeight', 'bold')
331. legend(legen,'FontSize','Times New Roman')
332. box(gca,'on')
333. %set(gca,'YScale','log')
334. set(gca,'LineWidth',3) %Creates a thick outside border
335. set(gca,'FontSize',18) %Sets Axis Font Size for number, can't make to big
336. set(gca,'fontname','Times New Roman')
337. cd Figures\;saveas(gcf,'Fig13','.eps');saveas(gcf,'Fig13','.tiff');cd ..
338. % For all samples
339. if i <= samp_num(1)
340. hold on;y1 = scatter(dK_1_1000(:,:,i),a_1000(:,:,i), 'magenta', 'filled');
341. end;
342. if i <= samp_num(2)
343. hold on;y2 = scatter(dK_1_1200(:,:,i),a_1200(:,:,i), 'black', 'filled');
344. end;
345. if i <= samp_num(3)
346. hold on;y3 = scatter(dK_1_1400(:,:,i),a_1400(:,:,i), 'cyan', 'filled');
347. end;
348. if i <= samp_num(4)
349. hold on;y4 = scatter(dK_1_1600(:,:,i),a_1600(:,:,i), 'green', 'filled');
350. end;
351. if i <= samp_num(5)
352. hold on;y5 = scatter(dK_1_1700(:,:,i),a_1700(:,:,i), 'red', 'filled');
353. end;
354. if i <= samp_num(6)
355. hold on;y6 = scatter(dK_1_1800(:,:,i),a_1800(:,:,i), 'blue', 'filled');
356. end
357. end
358. triang_x = [20 30];
359. triang_y = interp1(dK_1_1800(:,:,1), a_1800(:,:,1), triang_x);
360. slope = diff(triang_y)/diff(triang_x);
loglog(triang_x([1,2,2]),triang_y([1,1,2]),'k','LineWidth',4)

txt = 'm';

text(mean(triang_x),(triang_y(1)-0.15*triang_y(1)),txt,'FontSize',18,'FontWeight','bold')

grid on

xlabel(\Delta K [MPa·surdm],'FontSize',26,'FontWeight','bold')

ylabel(\Delta a/\Delta N [mm/cycle],'FontSize',26,'FontWeight','bold')

xlim([2 80]);

leg=legend('F_{max} = 1000N','F_{max} = 1200N','F_{max} = 1400N','F_{max} = 1600N','F_{max} = 1700N','F_{max} = 1800N');

legend('Location','northwest')

pbaspect([1 1 1])

box(gca,'on')

set(gca,'LineWidth',4)

set(gca,'FontSize',26)

set(leg,'FontSize',22)

set(gca,'fontname','Times New Roman')

set(gca,'XScale','log')

set(gca,'YScale','log')

cd Figures\Figures;saveas(gcf,'Fig5','eps');saveas(gcf,'Fig5','tiffn');cd ..