Factors regulating arteriolar tone during microvascular growth

Julie Balch Samora
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation
Balch Samora, Julie, "Factors regulating arteriolar tone during microvascular growth" (2007). Graduate Theses, Dissertations, and Problem Reports. 4290.
https://researchrepository.wvu.edu/etd/4290
Factors Regulating Arteriolar Tone during Microvascular Growth

Julie Balch Samora

Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Integrative Physiology

Matthew A. Boegehold, Ph.D., Co-Chairman
Jefferson C. Frisbee, Ph.D., Co-Chairman
Mitchell Finkel, M.D.
Pingnian He, M.D./Ph.D.
Timothy Nurkiewicz, Ph.D.

Department of Physiology
Center for Interdisciplinary Research in Cardiovascular Sciences

Morgantown, West Virginia

2007

Keywords: skeletal muscle microcirculation, endothelium, vascular smooth muscle, postnatal growth, nitric oxide, EDHF, hydrogen peroxide, carbon monoxide, myogenic response
ABSTRACT

Factors Regulating
Arteriolar Tone during Microvascular Growth

Julie Balch Samora

Growth of the arteriolar network is accompanied by progressive changes in pressure and flow, and in the metabolic environment to which the arterioles are exposed. This dissertation was carried out to investigate the extent to which mechanisms involved in local blood flow regulation may also change during this growth. We isolated gracilis muscle arterioles from weanling (age 25-26 days) and juvenile (44-66 days) rats, and studied the responsiveness of these vessels to both myogenic and endothelium-dependent stimuli. Overall arteriolar responses to the endothelium-dependent agonists acetylcholine (ACh), A23187, VEGF and simvastatin were not different between age groups. Responses of juvenile arterioles to ACh and simvastatin were significantly reduced by inhibition of nitric oxide synthase or cyclooxygenase, by the hydrogen peroxide scavenger catalase, and by potassium channel inhibition. Responses of weanling arterioles to ACh and simvastatin were unaffected by these treatments, but significantly reduced by heme oxygenase inhibition. Arteriolar growth during juvenile maturation is accompanied by an increase in myogenic responsiveness, possibly because endothelium-derived PGH₂ or TXA₂ assumes a role in reinforcing myogenic activity over this period. In conclusion, mediators of endothelium-dependent dilation change during growth, with carbon monoxide contributing largely to these responses in young animals, and a combination of nitric oxide, prostanoids and hydrogen peroxide contributing to these responses in older animals. These data suggest that age-dependent differences in the control of vascular tone exist and may have significant implications for the regulation of tissue perfusion.
I would like to dedicate this work to my parents, Pamela and Patrick Balch, who have offered unwavering encouragement and support, instilled in me the self-confidence to fulfill my dreams, and who have stood by my side through every decision, accomplishment, and failure. I love you both so much. Thanks for being the amazing parents you are.
This dissertation will begin with a review of the literature. The following four studies will be reported in manuscript form, followed by a general discussion and conclusion of the findings.
ACKNOWLEDGEMENTS

I would like to thank my two advisors, Dr. Matthew A. Boegehold and Dr. Jefferson C. Frisbee for their support and faith in my abilities. They have been a great team-- two completely different personalities and research interests, but both providing extremely valuable insight and support. Wherever they may have differed in their overall objectives for me, they were always cooperative and accommodating, and had my best interests in mind. Dr. Frisbee- you have an intense ambition and motivation that inspire and amaze me. Dr. Boegehold- I greatly appreciate all of your efforts during these last few months not only working with me to understand some difficult data and helping to get the last few manuscripts into shape, but also in assisting me with the completion of this work. As an aside, I hope I may someday become as skilled in the art of diplomacy as you! Thank you both for taking me under your wings. I have learned a great deal under your mentorship.

I would like to thank my committee, Dr. Mitch Finkel, Dr. Ping He, and Dr. Timothy Nurkiewicz for their guidance and participation in this accomplishment. I appreciate the time they have taken to attend my seminars, offer feedback, sit through meetings and critique this dissertation. In particular, I would like to express my gratitude to Tim for always having his door open to answer any questions or work through any problems I might have. He provided tremendous feedback and useful suggestions with my writing, research ideas, and laboratory techniques. He also was a great source of support. Tim- I have a great deal of respect for your work, and wish you the best in your research career. I know you will continue to be successful!
The Department of Physiology provided a friendly yet erudite environment, both conducive to learning and supportive of students. These attributes, in addition to the well-rounded education I have received, made this a wonderful learning experience. The Center for Interdisciplinary Research in Cardiovascular Sciences has created a research-intense, scholarly atmosphere with remarkable investigators on whom students can rely for information, ideas, and trouble-shooting. This addition to the West Virginia University School of Medicine has been instrumental to the overall research agenda and for providing successful scientists as role models for students.

I would also like to express my gratitude to the MD/PhD program, which not only supported me financially, but also provided an incredible opportunity, for which I will be eternally grateful. I would specifically like to communicate my appreciation to Dr. Charles Craig, who encouraged me to pursue this program; without his sincere and gentle prodding, I would not have come to WVU, nor would I have pursued a PhD. I would also like to thank Dr. Minnear (AKA “Coach”) for his direction and support throughout the program.

Dr. Saba, Associate Vice President for Research and Graduate Studies, has crafted an ambitious vision for research in the Health Sciences Center, which I have no doubt will be fulfilled during his tenure at the West Virginia University School of Medicine. His encouragement of student scholars and financial assistance has been instrumental in attracting and maintaining a high caliber graduate student body.

I would also like to acknowledge the staff members that make the Physiology department, the Graduate Program, and the Cardiovascular center “run.” Imogene Kelley, Tammy McPherson, Mary Copeland, Claire Noel, Penny Phillips, and LeaAnn
Defenbaugh were invaluable in making the entire process run smoothly. I would especially like to thank Vickie White, who is a mother to everyone, who can find anything that might be needed, who can answer any question (or find the person who can), who will help with anything anyone could ever want, who is extremely generous, who voluntarily changes diapers of other people’s children (no, I’m not kidding!) and who is an incredibly good cook! Vickie- thank you for your humor, your understanding, your homemade lunches, your afternoon “pick-me-ups,” and for always taking the time to listen to anyone who might walk through your door.

The associate deans for student services, Dr. Anne Cather and Dr. Norman Ferrari, were incredibly supportive throughout my first two years of medical school and through all four years of this research phase. They have provided guidance, written numerous letters of recommendation for various activities and awards, supported my desire to improve my microsurgical skills, and enthusiastically encouraged me to pursue my dreams. I will continue to rely on them to bestow their wisdom and sound advice as I resume my medical education and continue on into my professional career.

I would also like to thank the members of the lab for making this experience enjoyable! Having wonderful colleagues is truly a blessing. Paul, Kim, Carroll, Milinda, Adam, Phoebe, and Nunzio really made difficult and grueling days bearable (and sometimes even fun!) There were several days when someone had to take either Ethan or Erin off my hands so that I could complete an experiment, attend a meeting, or teach a class. Kim volunteered on a regular basis to bring up animals, watch my babies, or help with experiments. Milinda kept the lab in impeccable order, provided a shoulder to cry on, and often allowed me to “steal” micropipettes when I ran out of mine! Thank you for
all of your smiles, kindness and friendship. I wish you all the best in your future endeavors.

My friends have been very supportive and encouraging and also need to be recognized. Kate Buchanan has been a wonderful, wonderful companion and has always been there for me in good times and in bad. Even if I have not called for months, whenever we do get together or talk on the phone, it’s as though we never missed a beat. Allison Tadros, who has shared in the joy of raising children, the Wades, for their lasting friendship, Ruth Kershner, who continues to inspire, Dr. MacGaffey, my first bassoon teacher, physician-role model, and colleague, Pam Carico, who is a great listener and passionate student advocate, and the Spauldings for their love and understanding. Thank you for everything.

Finally, I would like to thank my family for all of their love, support and acceptance of my chosen path. Without my parents and my husband, this degree could not have been fulfilled. Quincy has humored me throughout this endeavor, has willingly accepted the fact that our home will always be in some state of disarray, has been a wonderful husband and father, and has always supported my career choices. My children, Ethan and Erin, have given meaning to life. Spending quality time with them, witnessing their attainment of milestones, showering them with hugs and kisses, watching them make connections, guiding their development, and seeing their smiles make every day a joy.
TABLE OF CONTENTS

ABSTRACT ... iii
DEDICATION ... iii
PREFACE ... iv
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ... ix
LIST OF FIGURES .. xii
LIST OF TABLES .. xvi
GLOSSARY OF ABBREVIATIONS .. xviii
I. LITERATURE REVIEW ... 1
 1. Introduction ... 1
 2. Mechanisms of Vascular Control ... 2
 A. Endothelium-Dependent Control of Vascular Tone ... 2
 1. General Aspects ... 2
 2. Nitric Oxide ... 5
 3. Endothelium-Derived Arachidonic Acid Products ... 7
 4. Endothelium-Derived Hyperpolarizing Factors ... 8
 5. Experimental Approaches for Studying Endothelium-Dependent Responses 9
 B. Myogenic Control of Vascular Tone ... 11
 1. Historical Background and Definition ... 12
 2. Mechanisms ... 13
 3. Experimental Approaches for Studying Myogenic Activity 16
 C. Potassium Channels and Vascular Tone .. 18
 1. General Aspects ... 18
 2. Pharmacological Approaches for Evaluation of Potassium Channel Activity 19
 3. Reactive Oxygen Species and Vascular Tone ... 20
 A. Background ... 20
 B. Sources of ROS in the Vasculature ... 22
 C. Endogenous Scavenger Systems that Regulate ROS Levels 24
 D. H$_2$O$_2$ as a Second Messenger and Regulator of Vascular Tone 27
 E. Experimental Approaches for Detecting H$_2$O$_2$ In Vivo 30
4. Carbon Monoxide and Vascular Tone ... 32
 A. Background .. 32
 B. Mechanisms by which CO Can Influence Biological Processes 34
 C. Regulation of CO Production ... 37
 D. Experimental Approaches for Studying CO and Determining its In
 Vivo Concentrations ... 38
 E. CO vs. NO: Comparisons and Interactions .. 40
5. Postnatal Growth and Maturation: Effects on the Vasculature 42
 A. Introduction .. 42
 B. Conduit Arteries ... 44
 i. Endothelium-Dependent Control ... 44
 ii. Smooth Muscle Responsiveness to NO 46
 iii. Ion Channel Activity .. 46
 C. Structural Changes during Microvascular Growth............................. 47
 D. Hemodynamic Changes during Microvascular Growth....................... 49
 E. Regulation of Microvascular Tone and Tissue Blood Flow during
 Growth .. 49
 i. Influences on Arteriolar Tone .. 49
 ii. Tissue Blood Flow and Oxygen Delivery 54
6. Conclusion .. 56
7. Dissertation Objectives ... 59

II. STUDY 1: Growth-Dependent Changes in Endothelial Factors Regulating
 Arteriolar Tone .. 61
 Abstract ... 61
 Introduction ... 62
 Materials and Methods .. 64
 Results ... 69
 Discussion ... 83
 References ... 90

III. STUDY 2: Hydrogen Peroxide Emerges as a Regulator of Arteriolar Tone in
 Skeletal Muscle during Juvenile Growth ... 94
 Abstract ... 94
 Introduction ... 95
 Materials and Methods .. 96
 Results ... 102
 Discussion ... 116
 References ... 123

IV. STUDY 3: Growth-Dependent Changes in the Contribution of Carbon Monoxide
 to Arteriolar Function ... 128
 Abstract ... 128
LIST OF FIGURES

Literature Review

Figure 1: Smooth Muscle Pathways for Myogenic Activation.. 15

Study 1

Figure 1: Responses of isolated gracilis muscle arterioles from weanling and juvenile rats to ACh, simvastatin, A23187 and VEGF ... 76

Figure 2: Responses of arterioles from juvenile and weanling rats to ACh, simvastatin, A23187 and VEGF after either L-NAME or indomethacin treatment 77

Figure 3: Effect of endothelial removal on responses of juvenile and weanling arterioles to ACh and simvastatin ... 78

Figure 4: Effect of combined NOS and COX inhibition on responses of juvenile and weanling arterioles to ACh and simvastatin ... 79

Figure 5: Responses of arterioles from weanling and juvenile rats to SNP 80

Figure 6: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after inhibition of cytochrome P-450 epoxygenases with PPOH, alone and in combination with NOS + COX inhibition ... 81
Figure 7: Responses of arterioles to ACh and simvastatin before and after K_{ATP} and K_{Ca} channel inhibition.. 82

Study 2

Figure 1: Responses of gracilis muscle arterioles from juvenile and weanling rats to ACh and simvastatin.. 108

Figure 2: Effect of catalase and tempol, alone and in combination, on responses of juvenile and weanling arterioles to ACh and simvastatin... 109

Figure 3: Effect of ACh, alone or with catalase, on DCF fluorescence intensity......... 110

Figure 4: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$ 111

Figure 5: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$, before and after L-NAME treatment, alone and in combination with catalase 112

Figure 6: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$ before and after inhibition of K_{Ca} channels and K_{ATP} channels... 113

Figure 7: Effect of endothelial removal on responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$ before and after combined treatment with TEA and glibenclamide 114

Figure 8: Schematic diagram illustrating possible elements of the signaling pathways through which H$_2$O$_2$ may elicit either arteriolar constriction or arteriolar dilation 115
Study 3

Figure 1: Responses of gracilis muscle arterioles from juvenile and weanling rats to increasing concentrations of exogenous CO... 141

Figure 2: Responses of arterioles from juvenile rats to exogenous CO alone or in the presence of CrMP, L-NAME, Ibtx/Glib or combined treatments 142

Figure 3: Responses of arterioles from weanling rats to exogenous CO alone or in the presence of CrMP, L-NAME, Ibtx/Glib or combined treatments 143

Figure 4: Effect of endothelial removal on responses of juvenile and weanling arterioles to exogenous CO... 144

Figure 5: Effect of CrMP on responses of juvenile and weanling arterioles to ACh and simvastatin .. 145

Figure 6: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after treatment with CrMP and L-NAME... 146

Figure 7: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after treatment with CrMP and Ibtx/Glib.. 147

Figure 8: Assessment of heme oxygenase (HO)-1 and -2 protein expression by Western blot in weanling and juvenile femoral artery/ gracilis arteriole segments....................... 148
Study 4

Figure 1: Active and passive diameters as a function of intralumenal pressure in juvenile and weanling gracilis muscle arterioles ... 171

Figure 2: Calculated myogenic indices of juvenile and weanling arterioles as a function of absolute intralumenal pressure and as a function of intralumenal pressure normalized to the estimated \textit{in vivo} arteriolar pressure for that age group ... 172

Figure 3: Effect of endothelial removal on steady-state diameters and myogenic indices over entire pressure range for juvenile and weanling arterioles 173

Figure 4: Effect of SQ 29548 treatment on steady-state diameter and myogenic indices over entire pressure range for juvenile and weanling arterioles 174

Figure 5: Steady-state diameters and myogenic indices over entire pressure range before and after treatment with the heme oxygenase inhibitor chromium (III) mesoporphyrin IX chloride (CrMP) for juvenile and weanling arterioles .. 175

General Discussion

Figure 1: Hindlimb blood flow in juvenile and weanling rats .. 195
LIST OF TABLES

Literature Review

Table 1: Various steps and by-products in the reduction of molecular oxygen 23

Table 2: Changes in endothelium-dependent vascular control during postnatal growth: A summary of findings from the literature ... 57

Study 1

Table 1: General characteristics of all rats and vessels used in this study 72

Table 2: Summary of vessel diameters under control conditions and after treatment with glibenclamide and TEA separately and in combination ... 73

Table 3: Responses to the K\textsubscript{ATP} channel opener pinacidil ... 74

Study 2

Table 1: General characteristics of all rats and vessels used for functional studies 105

Table 2: Summary of resting vessel diameters under control conditions and after treatment with catalase and tempol, separately and in combination ... 106
Table 3: Magnitude of arteriolar diameter changes in response to ACh and H₂O₂ before and after treatment with denatured catalase ... 107

Study 3

Table 1: General characteristics of all rats and vessels used for functional studies 139

Table 2: Summary of resting arteriolar diameters under control conditions and after treatment with CrMP or δ-ALA ... 140

Study 4

Table 1: General characteristics of all rats and vessels used in this study............... 170
GLOSSARY OF ABBREVIATIONS

α₂ Alpha-2
AA Arachidonic acid (Arachidonate)
AC Adenylyl cyclase
ACh Acetylcholine
ADP Adenosine diphosphate
δ-ALA δ-Aminolevulinic acid
Ang II Angiotensin II
ANOVA Analysis of variance
ATP Adenosine triphosphate
BK Large-conductance calcium activated potassium channels
Ca²⁺ Calcium
[iCa²⁺]i Intracellular calcium concentration
[Ca²⁺]o Extracellular calcium concentration
CaCl₂ Calcium chloride
CaM Calmodulin
cGMP 3’,5’-cyclic guanosine monophosphate
CO Carbon Monoxide
CO₂ Carbon Dioxide
COX Cyclooxygenase
CP450 Cytochrome P450
CrMP Chromium (III) mesoporphyrin IX chloride
CuZnSOD Copper zinc superoxide dismutase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DCF</td>
<td>2’7’-dichlorofluoroscein</td>
</tr>
<tr>
<td>DCFH-DA</td>
<td>2’7’-dichlorodihydrofluoroscein diacetate</td>
</tr>
<tr>
<td>DiHETE</td>
<td>Dihydroxyeicosatrienoic acid</td>
</tr>
<tr>
<td>D_{max}</td>
<td>Maximum diameter</td>
</tr>
<tr>
<td>D_{SS}</td>
<td>Steady-state diameter</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial cell</td>
</tr>
<tr>
<td>ecSOD</td>
<td>Extracellular superoxide dismutase</td>
</tr>
<tr>
<td>EDCF</td>
<td>Endothelium-derived contracting factor</td>
</tr>
<tr>
<td>EDHF</td>
<td>Endothelium-derived hyperpolarizing factor</td>
</tr>
<tr>
<td>EDRF</td>
<td>Endothelium-derived relaxing factor</td>
</tr>
<tr>
<td>EDTA</td>
<td>Disodium ethylenediamine tetraacetate</td>
</tr>
<tr>
<td>EET</td>
<td>Epoxyeicosatrienoic acid</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase (also NOS3)</td>
</tr>
<tr>
<td>ET</td>
<td>Endothelin</td>
</tr>
<tr>
<td>ETOH</td>
<td>Ethyl alcohol</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>Glib</td>
<td>Glibenclamide</td>
</tr>
<tr>
<td>GSH-PX</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>H_{2}O_{2}</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>H_{4}B</td>
<td>Tetrahydrobiopterin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>20-HETE</td>
<td>20-hydroxyeicosatrienoic acid</td>
</tr>
<tr>
<td>HLL</td>
<td>Heme-L-lysinate</td>
</tr>
<tr>
<td>HO-1</td>
<td>Heme oxygenase 1 (inducible form)</td>
</tr>
<tr>
<td>HO-2</td>
<td>Heme oxygenase 2 (constitutive form)</td>
</tr>
<tr>
<td>HO-3</td>
<td>Heme oxygenase 3 (constitutive form)</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxidase</td>
</tr>
<tr>
<td>Hsp</td>
<td>Heat shock protein</td>
</tr>
<tr>
<td>Ibtx</td>
<td>Iberiotoxin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase (also NOS2)</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IP$_3$</td>
<td>Inositol 1,4,5-trisphosphate</td>
</tr>
<tr>
<td>i.v.</td>
<td>Intravenous</td>
</tr>
<tr>
<td>K$^+$</td>
<td>Potassium</td>
</tr>
<tr>
<td>K$_{Ca}$</td>
<td>Calcium-activated potassium channels</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>K$_{ATP}$</td>
<td>ATP-sensitive potassium channels</td>
</tr>
<tr>
<td>L-NAME</td>
<td>N^ω-nitro-L-arginine methyl ester</td>
</tr>
<tr>
<td>L-NIO</td>
<td>N-iminoethyl-L-ornithine</td>
</tr>
<tr>
<td>L-NMMA</td>
<td>N^G-monomethyl-L-arginine</td>
</tr>
<tr>
<td>LOX</td>
<td>Lipoxygenase</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>Magnesium sulfate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MI</td>
<td>Myogenic index</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeters of mercury</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Mitochondrial manganese superoxide dismutase</td>
</tr>
<tr>
<td>MS</td>
<td>Mechanosensitive</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NaH$_2$PO$_4$</td>
<td>Sodium phosphate monobasic anhydrous</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>Sodium hydrogensulfite</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NE</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>nNOS</td>
<td>Neuronal nitric oxide synthase (also NOS1)</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>NS 1619</td>
<td>1-(2’-hydroxy-5’-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimidazolone</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>Superoxide radical</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>ONOO$^-$</td>
<td>Peroxynitrite</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PGE$_2$</td>
<td>Prostaglandin E$_2$ (Dinoprostone)</td>
</tr>
</tbody>
</table>
PGH₂ Prostaglandin H₂
PGI₂ Prostaglandin I₂ (Prostacyclin)
PI₃K Phosphatidylinositol 3-kinase
PKA Protein kinase A
PKG Protein kinase G
PPOH 6-(2 proparglyoxyxylphenyl) hexanoic acid
PSS Physiological Saline Solution
ROS Reactive oxygen species
Ser Serine
SE Standard error
sGC Soluble guanylyl cyclase
SHR Spontaneously hypertensive rats
Sim Simvastatin
SMC Smooth muscle cell
SNP Sodium nitroprusside
SOD Superoxide dismutase
TEA Tetraethylammonium
TXA₂ Thromboxane A₂
VEGF Vascular endothelial growth factor
VGC Voltage gated calcium channels
VSM Vascular smooth muscle
VSMC Vascular smooth muscle cell
WKY Wistar Kyoto rat
XD Xanthine dehydrogenase
XO Xanthine oxidase
I. LITERATURE REVIEW

1. Introduction

The cardiovascular system is comprised of the heart, blood vessels, and blood. As early as the 2nd Century AD, Greek physician Galen of Pergamum studied this complex circulatory system and proposed that blood was made in the liver, pumped by arterial pulsations, passed from one side of the heart to the other via invisible pores in the dividing membrane, and was delivered to the organs of the body where it was consumed, rather than recycled to the heart. He also strongly argued that the venous and arterial systems were separate. Galen’s teachings remained relatively unchallenged for centuries. It was not until 1628 that English physician William Harvey correctly described how blood was pumped around the body by the heart before returning to be re-circulated in a closed system (Harvey, 1628).

The cardiovascular system is responsible for transporting nutrients, water, electrolytes, hormones and oxygen (O₂) to organs and cells within the body, and eliminating products of metabolism, such as carbon dioxide (CO₂) and ammonia (NH₃). It not only functions as a transport system, but also contributes to homeostasis by maintaining body temperature, regulating body pH, increasing blood flow to meet energy demands, transmitting antibodies and white blood cells to sites of infection, and mediating hemostasis (Sherwood, 2007).

The large elastic and muscular arteries transport blood from the heart to the organs and serve as a pressure reservoir. The muscular arterioles are the major resistance vessels in the vascular tree and determine, by changes in vessel caliber, the amount of
blood that flows to a given tissue (Bevan, 1987; Segal, 2000; Hester & Hammer, 2002). Although multiple factors influence microvascular tone, such as circulating hormones, physical forces, sympathetic input, and local chemical changes, this dissertation will focus on vascular smooth muscle (VSM) and endothelial cell function in skeletal muscle arterioles. The following literature review will highlight the fundamental importance of endothelium-derived autacoids, myogenic activity, reactive oxygen species (ROS), and carbon monoxide (CO) to vascular function. The experimental approaches taken to study each of these areas will also be explored. It will conclude with a discussion on how vascular function changes with postnatal growth and maturation.

2. Mechanisms of Vascular Control

 A. Endothelium-Dependent Control of Vascular Tone

 1. General Aspects

 The vascular endothelium, which lines the lumenal surface of all vessels, lies between the circulating blood and the VSM. Only a few decades ago, the endothelium was considered to have few functional properties. It is now well documented that the endothelium is a regionally specific, multifunctional organ that plays a pivotal role in maintaining cardiovascular homeostasis, and that can also contribute to the pathological mechanisms of numerous cardiovascular diseases (Rubanyi, 1993). The multiple duties performed by the endothelium include endocrine, exocrine, cell adhesion, clotting, growth, remodeling, and transport functions, provision of a physical permeability barrier, mediation of inflammatory responses, modulation of VSM tone, and adaptation to intermittent hypoxia (Lew et al., 1989; Pohl & Busse, 1990; Manukhina et al., 2006;
Pries & Kuebler, 2006; Sherwood, 2007). In 1980, Furchgott and Zawadzki were the first to report their in vitro observations that vasodilation to some agonists is dependent on an intact and healthy endothelium (Furchgott & Zawadzki, 1980). Consequently, endothelial dysfunction can lead to vasospasm, thrombosis, atherosclerosis, restenosis, and an impaired ability to reduce vascular resistance (Rubanyi, 1993; Rongen et al., 1994).

The vascular tree consists of arteries, arterioles, capillaries, venules and veins, all of which are lined with a thin layer of smooth, flat endothelial cells. Conduit arteries differ from resistance arteries in size and function, as well as local environment (Agewall et al., 2006). Whereas arteries are thick, highly elastic and have large radii, arterioles are highly muscular, and have well-innervated walls and small radii (Sherwood, 2007). Furthermore, Joannides and colleagues (2006) demonstrated a great heterogeneity of mechanisms and alterations in vasomotor responses between conduit and resistance arteries in various disease states suggesting the presence of different pathophysiological processes and degrees of alteration in endothelial function. Others have established that even though endothelial dysfunction occurs at the level of both conduit and resistance arteries in hypertension and coronary artery disease, the kinetics of these alterations differs (Anderson et al., 1995; Neunteufl et al., 2000; Park et al., 2001). For example, alteration in endothelial function occurs earlier in resistance arteries than in conduit arteries in atherosclerosis (Joannides et al., 2006), and acetylcholine induces less vasodilation in resistance arteries and constriction in conduit arteries in hypertension (Zeiher et al., 1991; Houghton et al., 1998; Belhassen et al., 2001).
One of the ways in which the endothelium regulates cardiovascular homeostasis is through the release of multiple factors that influence permeability and vascular tone (Kubes, 1995). The three main vasodilators which are released by the endothelium are endothelium-derived relaxing factor (EDRF, also known as nitric oxide (NO)) (Furchgott & Vanhoutte, 1989), prostacyclin (PGI₂) (Moncada et al., 1976), and endothelium-derived hyperpolarizing factor (EDHF) (Chen et al., 1988; Feletou & Vanhoutte, 1988). These mediators can function independently or can operate together in a complex, but integrated manner to regulate vascular tone (Villar et al., 2006). For example, PGI₂ can facilitate NO release from endothelial cells (ECs) and NO can activate PGI₂ synthesis (Davidge et al., 1995). However, there is no uniform contribution of these dilators between vascular beds or species. Sometimes the contribution of PGI₂ and EDHF to endothelium-dependent relaxation is only evident after NOS inhibition or in the absence of NO (Feletou & Vanhoutte, 1996; Beverelli et al., 1997; Wu et al., 2001). Although NO appears to be the predominant vasodilator in some conduit vessels (Villar et al., 2006), investigators have demonstrated that as the size of the vessel diminishes, the contribution that EDHF makes to endothelium-dependent dilation increases (Shimokawa et al, 1996).

Several other endothelium-derived vasoactive factors can be released, including adenosine triphosphate (ATP), adenosine diphosphate (ADP), serotonin, substance P, various cytochrome P450 (CYP) metabolites, adenosine, and a host of endothelium-derived contracting factors (EDCFs) that include endothelin (ET) and various arachidonic acid (AA) metabolites such as Prostaglandin H₂ (PGH₂) and thromboxane A₂ (TxA₂) (Furchgott & Zawadzki, 1980; Furchgott & Vanhoutte, 1989; Marshall & Kontos, 1990;
Dai et al., 1992; Huang & Koller, 1997). These multiple endothelium-derived vasoactive factors can be released in response to numerous stimuli, including hemodynamic shear stress, decreases in perivascular PO$_2$, angiotensin II (Ang II), vasopressin, thrombin, cytokines, autonomic and sensory stimulation, hormones, thrombin, temperature changes, vascular endothelial growth factor (VEGF), and increases in metabolic demand (Rubanyi et al., 1986; Pohl & Busse, 1989; Vanhoutte, 1989; La & Reid, 1995).

2. Nitric Oxide

Nitric Oxide (NO), originally named Endothelium-Derived Relaxing Factor (EDRF) before its chemical nature was determined (Furchgott & Zawadzki, 1980), was the first gas to be identified as an endogenously generated cell signaling and effector molecule (Ignarro et al., 1987). NO regulates blood flow, affects glucose uptake into muscle fibers, and inhibits glycolysis, mitochondrial respiration, creatine kinase and muscle contraction (Reid, 1998).

NO is produced by conversion of L-Arginine to L-Citrulline via a five-electron oxidation by the enzyme nitric oxide synthase (NOS) (Palmer et al., 1988). This reaction requires three substrates: L-arginine, O$_2$, and nicotinamide adenine dinucleotide phosphate (NADPH), and four cofactors: tetrahydrobiopterin (H$_4$B), calmodulin (CaM), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) (Sessa et al., 1992; Griffith & Stuehr, 1995).

NO initiates relaxation of the VSM by activating soluble guanylyl cyclase (sGC) (Hobbs, 1997), which causes a rise in cyclic guanosine 3’, 5’-monophosphate (cGMP) (Furchgott et al., 1984). cGMP acts as a second messenger in a variety of physiological
processes, including vasodilation and neuronal signal transduction (Collier & Vallance, 1989). cGMP can activate cGMP-dependent protein kinase G (PKG), phosphorylate heat shock protein (Hsp) 20 (Brophy et al., 2002), and can hyperpolarize the smooth muscle by opening calcium-activated potassium (KCa) channels (Carrier et al., 1997). This in turn leads to inhibition of voltage-gated Ca\(^{2+}\) (VGC) channels and decreased entry of Ca\(^{2+}\) into cells. In smooth muscle, the drop in intracellular calcium [Ca\(^{2+}\)] leads to relaxation (Carvajal et al., 2000).

There are three major isoforms of nitric oxide synthase: NOS1 (neuronal, nNOS), NOS2 (inducible, iNOS), and NOS3 (endothelial, eNOS) (Forstermann et al., 1998). eNOS and nNOS are considered constitutive, meaning they are present and active under normal, steady-state conditions. The NOS enzymes are dimers consisting of two identical myristoylated and palmitoylated subunits; only the dimer is able to bind substrate and cofactor (Fleming & Busse, 1999). The eNOS enzyme is controlled both via transcriptional and post-translational regulation. Post-translational regulation includes Ca\(^{2+}\)/CaM binding, fatty acid modification (myristoylation/palmitoylation), alterations in intracellular translocation, substrate and cofactor bioavailability, dimerization, binding to cofactors, and phosphorylation (Musicki & Burnett, 2006).

There are at least two distinct signaling pathways for eNOS activation in the endothelium: Ca\(^{2+}\)-dependent and Ca\(^{2+}\)-independent activation (Fleming & Busse, 1999; Ungvari et al., 2001; Wyatt et al., 2004). Receptor-dependent agonists such as ACh, adenosine, ATP, and bradykinin (BK) (Busse & Mulsch, 1990; Korenaga et al., 1993; Muller et al., 1999) and receptor-independent agonists such as calcium ionophores (Busse et al., 1993; Huang & Koller, 1996) stimulate eNOS in a Ca\(^{2+}\)-dependent fashion.
Activation of NOS coupled with Ca\(^{2+}\) release is transient and produces NO rapidly (Bredt & Snyder, 1990). Although eNOS is the most sensitive NOS isoform to changes in intracellular Ca\(^{2+}\) levels (Luckhoff et al., 1988), it can also be activated by fluid shear stress without a sustained increase in [Ca\(^{2+}\)]\(_i\) (Ayajiki et al., 1996; Fisslthaler et al., 2000). This Ca\(^{2+}\)-independent pathway involves activation of phosphatidylinositol 3-kinase (PI3K) and serine (Ser) kinases Akt and protein kinase A (PKA), which cause phosphorylation of Ser\(^{1177}\) on eNOS, thereby increasing eNOS activity (Dimmeler et al., 1999).

3. Endothelium-Derived Arachidonic Acid Products

Arachidonic acid, a polyunsaturated essential fatty acid that is cleaved from membrane phospholipids by phospholipases, is metabolized to eicosanoids by the cyclooxygenase (COX), lipoxygenase (LOX), or CYP monooxygenase pathways (Imig, 1999). The COX enzyme catalyzes the rate-limiting step in prostaglandin synthesis by converting AA to into prostaglandin H\(_2\), which can then be further metabolized to PGI\(_2\) or dinoprostone (PGE\(_2\)) (Funk, 2001), both of which can relax VSM by stimulating either guanylyl cyclase (GC) or adenylyl cyclase (AC) (Gryglewski et al., 1988; Waldman & Murad, 1988). PGI\(_2\) elicits its powerful vasodilation by stimulating a cell-surface receptor (IPR) which leads to increasing levels of cyclic adenosine 3’,5’-monophosphate (cAMP) and sequestration of Ca\(^{2+}\) (Vanhoutte & Scott-Burden, 1994; Tanaka et al., 2004). Whereas the primary products of LOX are multiple forms of leukotrienes (LTs) (Funk, 2001), the CYP enzymes form epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DiHETEs), and 19- and 20-hydroxyeicosatetraenoic acids.
(19- and 20-HETE, respectively) from AA (Roman et al., 2000). These metabolites have been shown to play an essential role in regulating vascular function (Campbell & Harder, 1999; Roman et al., 2000). For example, EETs can modulate intracellular Ca\(^{2+}\) levels in endothelial cells resulting in hyperpolarization (Rueben et al., 2004), and 11,12-EET activates protein kinase A (PKA) leading to afferent arteriolar vasodilatation (Imig et al., 1999). Furthermore, whereas EETs dilate vessels by hyperpolarizing VSM cells through the activation of \(K_{Ca}\) channels (Roman et al., 2000), 20-HETE exerts its constrictor effects via \(K_{Ca}\) channel inhibition and subsequent depolarization of the VSM (Zou et al., 1996; Harder et al., 1997). Inhibition of endogenous 20-HETE production prevents the vasoconstrictor response to elevations in local PO\(_2\), suggesting that 20-HETE may serve as a vascular O\(_2\) sensor (Harder et al., 1996; Lombard et al., 1999a). 20-HETE can also mediate myogenic responses, as inhibition of its production in renal and cerebral arterioles reduces pressure-dependent myogenic tone (Harder et al., 1997; Roman et al., 2000).

4. Endothelium-Derived Hyperpolarizing Factors

Not all endothelium-dependent relaxations can be fully explained by the release of either NO or vasodilator prostanoids (Feletou & Vanhoutte, 1996). There are various relaxing factors which are named EDHF because of their role in hyperpolarizing VSM (Bolz, de Wit & Pohl, 1999; Ungvari & Koller, 2001). Although several substances have been proposed, including cyclic AMP, c-type natriuretic peptide (CNP), metabolites of AA by CYP epoxygenase (such as EETs), hydrogen peroxide (H\(_2\)O\(_2\)), and potassium ion (K\(^+\)) (Feletou & Vanhoutte, 1996; Edwards et al., 2000; Matoba et al., 2000; Campbell &
Gauthier, 2002), only a few of these chemical factors have been conclusively determined to be EDHFs. Of the identified EDHFs, the particular molecule(s) that contribute to the regulation of vascular tone can differ depending on vascular bed and species (Feletou & Vanhoutte, 1996).

VSM hyperpolarization can also occur through the electrotonic spread of hyperpolarization from ECs to SMCs (Yamamoto et al., 1998; Emerson & Segal, 2000; Coleman et al., 2001; Sandow et al., 2002), perhaps via myoendothelial gap junctions (Edwards et al., 2000). Electrical coupling between SMCs and ECs was demonstrated in isolated vessels by simultaneously impaling one EC and one SMC with microelectrodes. At rest and after challenge with ACh, membrane potentials were identical, suggesting that electrical signals conducted along the endothelium can be directly communicated to the SMCs (Emerson & Segal, 2000). Still others have proposed that the rise in SMC Ca$^{2+}$ generates a diffusion gradient that drives Ca$^{2+}$ through myoendothelial cell junctions and into the endothelial cells, thereby initiating the synthesis of NO (Dora et al., 1997).

5. Experimental Approaches for Studying Endothelium-Dependent Responses

There are numerous experimental means that have been developed to study endothelium-derived responses. Only those approaches relevant to this dissertation project are highlighted in this section. As mentioned earlier, the release of endothelium-derived vasoactive factors can be induced by numerous exogenously applied substances, including ACh, the calcium ionophore A23187, NE, ET, VEGF, simvastatin, as well as by physical forces, such as shear stress (Vanhoutte, 1989; La & Reid, 1995). ACh
activates eNOS by stimulating endothelial muscarinic receptors coupled to G-proteins, which then form inositol 1,4,5-trisphosphate (IP₃) and diacylglycerol (DAG), leading to an increase in [Ca²⁺]. Ca²⁺ then binds with CaM, promoting NADPH-dependent electron flux (Busse & Mulsch, 1990). The calcium ionophore A-23187 promotes receptor-independent entry of Ca²⁺ into ECs, which activates eNOS, thereby releasing NO to dilate vessels (Huang & Koller, 1996).

Simvastatin and VEGF stimulate NO production independent of Ca²⁺, via activation of the PI₃K/Akt pathway, leading to direct phosphorylation and increased activity of eNOS (Dimmeler et al., 1999; Kureishi et al., 2000; Shiojima & Walsh, 2002). This Ca²⁺-independent signaling pathway for eNOS activation can be inhibited by tyrosine kinase inhibitors such as erbstatin A (Ayajiki et al., 1996), and the Hsp90-binding protein, geldanamycin (Fleming et al., 1997; Ungvari et al., 2001).

NO production from all NOS isoforms can be inhibited in a concentration-dependent manner by substituted L-Arginine analogs, such as N⁵-monomethyl-L-arginine (L-NMMA), N-iminoethyl-L-ornithine (L-NIO), and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) (Rees et al., 1990). As described above, NO is produced by conversion of the required substrate L-Arginine to L-Citrulline via a five-electron oxidation by eNOS (Palmer et al., 1988; Sessa et al., 1992; Griffith & Stuehr, 1995). L-arginine, a positively charged guanidino group-containing basic amino acid at neutral pH which is involved in many physiological processes (Masic, 2006), must compete with the L-Arginine analogs for substrate binding (Moncada et al., 1991). These analogs are reversible, as the inhibition can be overcome by exogenous addition of L-Arginine (Rees et al., 1990). AA epoxygenation reactions can be selectively inhibited by
6-(2 proparglyoxylphenyl) hexanoic acid (PPOH), a synthetic acetylenic fatty acid (Wang et al., 1998; Imig, 1999). PPOH inhibits the reaction of epoxide formation at arachidonate positions 11 and 12 by CYP4A2 and CYP4A3 isozymes, but does not inhibit the omega-hydroxylation reaction of CYP4A1 leading to 20-HETE formation (Wang et al., 1998). To inhibit constrictor prostanoids, the prostaglandin H₂/thromboxane A₂ (PGH₂/TxA₂) receptor antagonist SQ-29548 can be utilized (Cseko, et al., 2004).

The endothelium can also be removed to determine its role in mediating various vascular responses. There are generally four different means of de-endothelialization: mechanical (inserting a wire, hair, or pipette tip into the vascular lumen to abrade the endothelium), physical (infusing distilled water through a vessel), chemical (investigators can use either Triton X-100 or saponin to eliminate endothelial responses) and enzymatic (via trypsin) (Uluoglu & Zengil, 2003). With all of these methods, verification of endothelial elimination, either by functional or histologic assessment, must be performed.

B. Myogenic Control of Vascular Tone

Local regulation of blood flow, as demonstrated by phenomena such as active hyperemia and reactive hyperemia, can occur largely through adjustments in arteriolar tone that do not rely on a functioning endothelium. The myogenic response is an important example of such endothelium-independent behavior.
1. Historical Background and Definition

The myogenic “mechanism” or “response” was first described by Sir William Bayliss in 1902, when he noted that as pressure was raised inside the isolated dog carotid artery, “a powerful contraction took place in which the artery appeared to writhe like a worm…The reaction is…myogenic in nature” (Bayliss, 1902). Other investigators, at the time unable to replicate his findings, shunned his hypothesis, and developed their own explanations for this phenomenon (Hooker, 1911; Anrep, 1912). It was not until 1949 that the myogenic mechanism was accepted when Folkow demonstrated in several vascular beds a sustained vascular tone in the absence of neural input (Folkow, 1949).

The term myogenic response has traditionally referred to an alteration of vascular diameter in response to changes in intralumenal or transmural pressure (Johnson, 1964; D'Angelo & Meininger, 1994). Contraction by VSM occurs when stretch is applied to the muscle, and conversely, relaxation occurs following a reduction in stretch (Johnson, 1980; Su et al., 2003). Myogenic activity contributes to vascular resistance and assists in the maintenance of a relatively constant blood flow and capillary hydrostatic pressure (Davis & Hill, 1999). However, myogenic activity is only operational over a specific pressure range (Johnson, 1980; Falcone et al., 1993), and the magnitude of this activity varies depending on the vascular bed and branch-order of the vessel (Bouskela & Wiederhielm, 1979; Meininger et al., 1987).
2. Mechanisms

The mechanisms by which VSM cells transduce a mechanical change (wall deformation or stretch) into first an electrical signal, then a chemical response, and finally a mechanical outcome (diameter change) are not completely elucidated. However, most investigations converge on similar signaling pathways (See Figure 1 below). An increase in transmural pressure (i.e. a rise in the pressure gradient across the vascular wall) causes the vessel wall to stretch, increasing the activity of stretch-activated ion channels (SAC), also referred to as mechanosensitive (MS) channels, in the VSM membrane (Sachs & Morris, 1998). This increase in MS channel activity leads to a graded membrane depolarization, due to increased movement of sodium (Na\(^+\)) and/or Ca\(^{2+}\) into the cell, and a secondary influx of Ca\(^{2+}\) through VGC channels (Davis et al., 1992).

The myogenic mechanism is dependent in large part on the presence of extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_o\)). For example, stretch-induced tone can be eliminated in resistance arteries in the presence of Ca\(^{2+}\) chelators (Hwa & Bevan, 1986a), or by incubating resistance arteries in a Ca\(^{2+}\)-free solution (Hwa & Bevan, 1986b). Furthermore, myogenic activation of VSM contraction and spontaneous action potentials of small renal arteries at higher transmural pressures can be blocked by Ca\(^{2+}\) channel inhibition with verapamil (Harder et al., 1987). More recently, investigators have demonstrated a significant role for Ca\(^{2+}\) released from intracellular stores in modulating myogenic activity in the microvasculature (Zou et al., 2000; Hill et al., 2001).
The stretch-induced increase in \([\text{Ca}^{2+}]_i\) activates \(\text{Ca}^{2+}/\text{CaM}\) myosin light chain kinase (MLCK), which phosphorylates myosin ATPase, thereby increasing contractile activity (Horowitz et al., 1996). Increases in intralumenal pressure also stimulate membrane bound G proteins leading to the activation of phospholipase C (PLC), and subsequent formation of IP\(_3\) and DAG (Narayanan et al., 1994; Inscho et al., 1998; see Figure 1). Whereas IP\(_3\) leads to release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR), DAG activates the serine/threonine protein kinase C (PKC) (Osol et al., 1991; Narayanan et al., 1994). PKC activity is essential for myogenic Ca\(^{2+}\)-contraction coupling, as PKC inhibition completely abolishes myogenic activity (Wesselman et al., 2001).

Several ancillary mechanisms have been proposed to mediate or sustain myogenic responses. Although K\(^+\) channels do not initiate myogenic activity per se, Ca\(^{2+}\)-sensitive K\(^+\) currents can modulate the intensity of myogenic responses (Brayden & Nelson, 1992; Nelson et al., 1995). Voltage-dependent K\(^+\) (K\(_V\)) and Ca\(^{2+}\)-activated K\(^+\) (K\(_{Ca}\)) channels can both repolarize membranes after VSM stretch (Davis & Hill, 1999). For example, inhibition of K\(_{Ca}\) channels augments myogenic tone in mesenteric arteries (Wesselman et al., 1997). 20-HETE, a metabolite of AA, can sustain or initiate myogenic responses by inhibiting large-conductance K\(_{Ca}\) channels (Zou et al., 1996; Harder et al., 1997). Some investigators maintain that activation of smooth muscle-derived chloride channels (Yamazaki et al., 1998) may also affect myogenic activity (Nelson et al., 1997).

It appears as though initiation of the myogenic response may occur without endothelial input, as evidenced by maintenance of myogenic responsiveness after removal of the endothelium in many vessel types (McCarron et al., 1989; Falcone et al., 1991; Sun et al., 1994; Wallis et al., 1996). However, some studies have demonstrated
Figure 1: Smooth Muscle Pathways for Myogenic Activation

increased myogenic responses with endothelial dysfunction (Huang et al., 1993).

Therefore, the endothelium clearly has the potential to influence the response due to
release of one or more vasoactive factors (see Section 2A above). In fact, endothelium-
derived NO has been shown to antagonize myogenic tone (Kuo et al., 1991; van Breemen
et al., 1997; Nguyen et al., 1999).

Although controversial due to the method of endothelial removal, myogenic
constriction in cat cerebral arteries was found to be completely dependent on the
endothelium, as removal eliminated their ability to respond to changes in transmural
pressure (Harder, 1987). Furthermore, other studies in either carotid (Rubanyi, 1988) or
basilar (Katusic et al., 1987) arteries have also found a role for the endothelium in
pressure-dependent constriction, which may be a characteristic unique to the cerebral
vasculature.

3. Experimental Approaches for Studying Myogenic Activity

Most of the earliest work investigating myogenic reactivity was obtained from in
vivo experiments on whole organs (Bayliss, 1902; Folkow, 1949; Haddy et al., 1957).
However, in such complex integrative settings, flow-dependent mechanisms (Kuo et al.,
1990; Koller & Kaley, 1991) and metabolic responses (Hudlicka & el Khelly, 1985;
Meininger et al., 1987; Segal, 2005) may either enhance or minimize myogenic activity,
thereby complicating interpretation of the results. Another in vivo technique, developed
in the late 1970s, encloses the animal in a pressurized box with the vascular bed to be
studied outside of the box (Bouskela & Wiederhielm, 1979). Pressure within the box is
then either increased or decreased, and these pressure changes are transmitted equally to
both arterial and venous systems, thereby changing intravascular pressure without altering the pressure gradient for flow across the vascular bed of interest. A similar approach places only the tissue to be studied in a pressurized box. These pressurized box techniques are considered to be the best methods in which to study myogenic mechanisms in an in vivo setting.

More recently, in vitro approaches, such as wire-mounted rings/strips and isolated pressurized vessels, have become the principal approaches to study myogenic reactivity. Duling and colleagues (Duling et al., 1981) refined the isolated microvessel technique in the early 1980s, which allowed the myogenic response and its underlying mechanisms to be studied in more detail by eliminating potential metabolic, neural, humoral and endothelial influences. Experiments were first performed in small arteries (Osol & Halpern, 1985), and then in arterioles (Kuo et al., 1988; Jackson & Duling, 1989), where the myogenic response is the most pronounced (Davis, 1993).

In isolated pressurized vessel protocols, segments of the vessel are cannulated (Laher & Bevan, 1993) and outflow occluded, such that changes in intralumenal pressure can be made without changes in flow (Halpern et al., 1984). Alternatively, by connecting pressure and flow servo-control systems into the cannulation system, investigators can independently control both transmural pressure and intralumenal flow, such that constant flow can occur at preset pressure gradients (Laher & Bevan, 1993). These isolated vessels are subjected to a transmural pressure gradient similar to that experienced in the in vivo environment. Wire-mounted vascular strips are placed between two fine wires, one of which is attached to a fixed holder connected to a transducer, with the other attached to a micrometer (Mulvany & Halpern, 1976). The vessel is initially mounted
unstretched, allowed to equilibrate, and then stretched in an isometric fashion (Osol, 1991). Because the vessels are stretched circumferentially, they do not experience changes in transmural pressure (Osol, 1991). Some investigators (Johnson, 1980; Laher & Bevan, 1993) argue that isolated vessel strips or segments, which are isobaric preparations and are subjected to wall stretch in a similar fashion as experienced in vivo, may be the ideal preparations to study myogenic mechanisms.

C. Potassium Channels and Vascular Tone

1. General Aspects

Microvascular SMCs and ECs express several different types of ion channels which can determine and modulate membrane potential (Jackson, 2000, 2005), but for the purposes of this dissertation, the focus will be on K$^+$ channels. There are over 150 K$^+$ channel types, which can respond uniquely to various stimuli (Korn & Trapani, 2005). Whereas microvascular SMCs express inward-rectifier (K$_{IR}$), ATP-sensitive (K$_{ATP}$), voltage-gated (K$_V$) and large conductance Ca$^{2+}$-activated (BK$_{Ca}$) K$^+$ channels, microvascular ECs express K$_{IR}$, K$_{ATP}$, K$_V$, and small (SK$_{Ca}$) and intermediate (IK$_{Ca}$) conductance Ca$^{2+}$-activated K$^+$ channels (Jackson, 2005). However, it has been found that K$_{Ca}$ channels are one of the major ion channels in VSM (Nelson & Quayle, 1995), and that BK$_{Ca}$ channels are present in great quantities in arteriolar endothelial cells (Ungvari et al., 2002).

K$^+$ channels play a pivotal role in controlling smooth muscle electrical and mechanical activities (Tanaka et al., 2004) and are largely responsible for setting the vascular membrane potential (Fallet et al., 2001; Korn & Trapani, 2005). Even a slight
change in the activity of K\(^+\) channels is sufficient to alter membrane potential and tone (Quayle et al., 1993; Nelson & Quayle, 1995). Currents through K\(^+\) channels are always hyperpolarizing (Korn & Trapani, 2005), such that activation of K\(^+\) channels leads to membrane hyperpolarization and relaxation, whereas inhibition leads to depolarization and contraction (Tanaka et al., 2004; Ledoux et al., 2006). As mentioned earlier, K\(^+\) channels are generally thought to serve a negative feedback role in regulating myogenic constrictions (Nelson et al., 1995; Knot & Nelson, 1998), whereas membrane depolarization plays a major role in the response of smooth muscle to stretch (Harder et al., 1987; Knot & Nelson, 1995).

K\(^+\) channels also play an instrumental role in communicating chemical signals generated in the endothelium to the VSM. For example, K\(^+\) channels have been shown to play a role in the mechanisms by which NO, PGI\(_2\), and EDHF exert their effects (Brayden, 2002; Tanaka et al., 2004; Krummen et al., 2005). BK\(_{Ca}\) channels in the VSM can be activated by EETs (Zhang et al., 2001b). Endothelium-derived vasoconstrictors can close smooth muscle K\(_{ATP}\), K\(_V\), and BK\(_{Ca}\) channels through PKC, Rho kinase, or c-Src pathways, thereby leading to depolarization and the vasoconstrictor response (Jackson, 2005).

2. Pharmacological Approaches for Evaluation of Potassium Channel Activity

Because K\(^+\) channels play such an important physiological role in regulating vascular membrane potential, investigators have used various tools to more fully understand K\(^+\) channel pharmacology, structure, function, and mechanisms of activation.
Patch-clamp techniques are utilized to directly study K⁺ channel activity and its influence on membrane potential in isolated cell membrane patches or single cells in vitro (Gebremedhin et al., 1996; Prior et al., 1998), whereas the development and discovery of pharmacological inhibitors and activators of K⁺ channel activity have made it possible to test various hypotheses related to K⁺ channel activity in vivo, albeit in a less direct fashion. Tetraethylammonium (TEA) can inhibit most K⁺ channels (Korn & Trapani, 2005), but at relatively small concentrations it has been used to specifically block KCa channels (Nelson & Quayle, 1995). Iberiotoxin (Ibtx) and charybdotoxin (two scorpion venom peptides) are used for more specific inhibition of these channels (Galvez et al., 1990; Gribkoff et al., 1997). Scyllatoxin, bicuculline, dequalinium, clotrimazole, and UCL 1685 are inhibitors of various types of SKCa channels (Dunn, 1999; Strobaek et al., 2000; Syme et al., 2000), whereas the antidiabetic sulphonylureas glibenclamide and tolbutamide selectively block KATP channels (Standen et al., 1989; Lombard et al., 1999b; Brayden, 2002). Activators or openers of K⁺ channels include the synthetic BKCa channel opener NS 1619 (1-(2’-hydroxy-5’-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimidazolone) (Olesen et al., 1994; Fallet et al., 2001). Chlorzoxazone, zoxazolamine, and riluzole have been used as SKCa channel stimulators (Syme et al., 2000), whereas pinacidil, cromakalim, and diazoxide are KATP channel openers (Quayle et al., 1997; Brayden, 2002; Mabanta et al., 2006).

3. Reactive Oxygen Species and Vascular Tone

A. Background
ROS are formed via reduction of molecular O₂ during normal metabolic processes. With the generation of superoxide anion (O₂⁻), other reactive intermediates can also be produced either spontaneously or enzymatically. The complete reduction of O₂ to H₂O requires several steps, and in the process can generate numerous byproducts (see Table 1 below). Some of these O₂-derived intermediates are chemically reactive due to unstable electron configurations, and can lead to the formation of other free radicals. These reactive molecules can cause lipid peroxidation, DNA damage and protein degradation, and are commonly implicated in the progression of Alzheimer’s disease, cancer, atherosclerosis, hypertension, and diabetes (Cadenas, 1989; Mullarkey et al., 1990; Nakazono et al., 1991; Munzel et al., 1995; Rajagopalan et al., 1996; Oskarsson & Hofmeyer, 1997).

The protonation of O₂⁻ results in the formation of perhydroxyl radical, which is highly reactive. O₂⁻ can also act as a Bronsted base in aqueous solutions to form a hydroperoxyl radical, thereby forming H₂O₂ in acidic environments. H₂O₂ is also formed when O₂⁻ is dismutated by superoxide dismutase (SOD) at a neutral or acidic pH. Hydroxyl radical (OH⁻), one of the most potent reactive oxidants, can be formed spontaneously by the reduction of H₂O₂, through the interaction of O₂⁻ with H₂O₂, or through the interaction between H₂O₂ and reduced metal ions (e.g. copper, iron). This latter means of OH⁻ production occurs via the Fenton reaction (Aruoma & Halliwell, 1987; Aruoma et al., 1991). O₂⁻ can also react with NO to generate peroxynitrite (ONOO⁻), which can lead to severe tissue injury (Li & Shah, 2004).
B. Sources of ROS in the Vasculature

Endothelial and VSM cells can generate O_2^-, H_2O_2, NO, ONOO$^-$, as well as other radicals (Droge, 2001; Cai et al., 2003; Wassman et al., 2004) via the NOS, COX, LOX, NADPH oxidase, or CYP monooxygenase enzymes (Katusic, 1996; Lassegue & Clempus, 2003; Ardanaz & Pagano, 2006). NADPH oxidases, which are arguably the best studied enzymes of ROS production in the vasculature (Lassegue & Clempus, 2003), serve as a principal source of O_2^- (Rajagopalan et al., 1996; Babior, 1999; Gorlach et al., 2000; Griendling et al., 2000b; Smith et al., 2001). NADPH oxidase is a respiratory burst, multicomponent enzyme that is important in host defense. Most of the components of this enzyme are distributed in VSMCs, ECs, and adventitial fibroblasts (Pagano et al., 1997; Griendling et al., 2000b; Ardanaz & Pagano, 2006). The NADPH oxidase enzyme can be activated by hypoxia-reoxygenation, flow cessation, membrane depolarization, hormones and growth factors (Al-Mehdi et al., 1998; Griendling & Harrison, 1999; Griendling et al., 2000a; Sohn et al., 2003). Endothelial NADPH oxidases continuously generate low levels of O_2^-, most of which is produced intracellularly (Li & Shah, 2004). CYP enzymes responsible for metabolizing AA (specifically CYP2 and CYP4A) are also implicated in ROS production (Fleming, 2001). In the absence of cofactors or substrate, eNOS may become uncoupled and reduce molecular O_2 rather than transfer electrons to L-arginine (Vasquez-Vivar et al., 1998), thereby generating O_2^-. Cardiovascular diseases including hypercholesterolemia, atherosclerosis, hypertension and ischemia/reperfusion injury all demonstrate impaired endothelial function and increased ROS, as eNOS
Table 1: Various steps and by-products in the reduction of molecular oxygen. Bracketed items highlight potential mechanisms of reactions

\[
\begin{align*}
O_2 + e^- & \rightarrow O_2^- + e^- \text{ (superoxide radical)} \\
\text{[lipoxygenase, COX, CP450, XO, NADPH oxidase, uncoupled eNOS, mitochondrial electron transport chain complexes I and III]} \\
O_2 + 2e^- & \rightarrow H_2O_2 \text{ (hydrogen peroxide)} \\
\text{[xanthine oxidase or glucose oxidase]} \\
O_2^- + e^- & \rightarrow H_2O_2 + e^- \text{ (hydrogen peroxide)} \\
\text{[spontaneous or via superoxide dismutase]} \\
O_2^- + H_2O & \rightarrow HO_2^- + OH \text{ (hydroperoxyl radical) in acidic environments} \\
HO_2^- + e^- + H & \rightarrow H_2O_2 \text{ (hydrogen peroxide) in acidic environments} \\
O_2^- + Fe^{3+} & \rightarrow Fe^{2+} + O_2 \\
\text{[via Haber-Weiss reaction]} \\
H_2O_2 + Fe^{2+} & \rightarrow Fe^{3+} + \cdot OH + OH^- \text{ (hydroxyl radical)} \\
\text{[via Fenton reaction]} \\
H_2O_2 + e^- & \rightarrow \cdot OH + OH^- \text{ (hydroxyl radical)} \\
\text{[spontaneous]} \\
H_2O_2 & \rightarrow H_2O + O_2 \\
\text{[spontaneous or via catalase or glutathione peroxidase]}
\end{align*}
\]
uncoupling occurs during such pathologic conditions (Cosentino et al., 1998; Xia et al., 1998).

Xanthine oxidoreductase (XOR), highly expressed on the luminal surface of the endothelium, is a metalloflavoprotein found as one of two functionally distinct forms: the constitutively expressed xanthine dehydrogenase (XD), and xanthine oxidase (XO), which is generated by posttranslational modification of XD (Li & Shah, 2004). Both XD and XO catalyze the oxidation of hypoxanthine and xanthine to urate, but because XO requires the reduction of O₂, it is the enzyme responsible for generating O₂⁻ and H₂O₂ as byproducts (Houston et al., 1999; Harrison, 2002). However, in certain situations, such as ischemia, XD can be converted to XO, thereby generating ROS (Harrison, 2004).

The electron transport chain reactions of the inner mitochondrial membrane generate ROS due to the constant production and escape of electrons (Cadenas & Davies, 2000). ROS production occurs principally at complex I (NADH dehydrogenase) and complex III (ubiquinone-cytochrome bc1). Monoamine oxidase in the outer mitochondrial membrane has been proposed as an additional source of ROS (Chen et al., 2003). Although mitochondria do not normally contribute significantly to total vascular ROS production (Pagano et al., 1995; Pagano et al., 1997), this contribution may be enhanced during pathological conditions, such as hypoxia (Chandel et al., 2000) and diabetes (Nishikawa et al., 2000).

C. Endogenous Scavenger Systems that Regulate ROS Levels

“Aerobic organisms have evolved a multitude of ways to protect themselves from the deleterious aspects of an aerobic existence”

(Pryor et al., 2006)
The effects of ROS are highly dependent on their local concentrations, which in turn are a function of not only the rate of their production, but also their rate of degradation or inactivation. In order to minimize the deleterious effects of ROS, the human body manufactures antioxidant enzymes, proteins, and low molecular weight scavengers (Gutteridge & Halliwell, 1999). Dietarily obtained antioxidants may also reduce oxidative stress, and have been promoted under the assertion that they may reduce rates and/or severity of coronary artery disease, stroke, dementias, and various cancers (Ames et al., 1993), all of which have increased levels of oxidant damage (Finkel & Holbrook, 2000).

Nonenzymatic antioxidant molecules include uric acid, ubiquinone, ascorbic acid (vitamin C), α-tocopherol (vitamin E), and glutathione (GSH) (Suttrop et al., 1986; Harris et al., 1992; Droge, 2001; Dickinson & Forman, 2002). Whereas vitamins C and E are only obtained through the diet, the body can synthesize GSH and ubiquinone de novo (Andree et al., 1999). GSH is the major cellular thiol antioxidant buffer, which serves as a substrate for glutathione peroxidase (gpx1) thereby eliminating lipid hydroperoxides and H$_2$O$_2$ (Dickinson & Forman, 2002). Ubiquinone and vitamin E, both lipid soluble antioxidants found in mitochondrial and other cellular membranes (Andree et al., 1999), aid in the removal of lipophilic radicals (Gutteridge & Halliwell, 1999).

Ceruloplasmin, a copper-containing protein, protects the body from extracellular oxidant stress (Gutteridge & Stocks, 1981).

Antioxidant enzymes include the family of SODs, catalase, the thioredoxin system, gpx1, and heme oxygenases (Suttrop et al., 1986; Yamawaki et al., 2003;
Wassman et al., 2004; Szasz et al., 2007). The SODs convert to O$_2^-$ to H$_2$O$_2$, which is then degraded to water by either catalase or gpx1. There are three main SODs, which are expressed throughout all of the vascular layers (Faraci & Didion, 2004; Szasz et al., 2007). Nonetheless, each SOD has a primary area of localization and distinctive means of regulation. Cytoplasmic CuZnSOD, a homodimer with similar amino acid sequence homology with extracellular SOD (ecSOD), is the predominant SOD isoform in the endothelium (Cai & Harrison, 2000). Its activity and mRNA expression can be increased by shear stress (Tao et al., 2007). Manganese superoxide dismutase (MnSOD) is a nucleus-encoded mitochondrial matrix protein (Bannister et al., 1987) whose expression is induced by VEGF (Abid et al., 2001) and thioredoxin (Wassman et al., 2004). Ang II can increase vascular ecSOD expression, which involves both an increase in ecSOD transcription and stabilization of ecSOD mRNA (Fukai et al., 1999). Although the glycosylated, tetrameric CuZnSOD (ecSOD) protects against extracellular O$_2^-$ (Fridovich, 1995), generally very low levels of SODs or catalase enzymes exist in human extracellular fluid (Gutteridge & Halliwell, 1999).

Gpx1 is found in the plasma, cellular cytosol, and in mitochondria, and uses glutathione to reduce H$_2$O$_2$ and lipid peroxides to their respective alcohols (Ursini et al., 1995). Catalase, a homotetrameric heme-containing enzyme, is found primarily in peroxisomes and catalyzes the conversion of H$_2$O$_2$ to water and O$_2$ (Gutteridge & Halliwell, 1999; Szasz et al., 2007). Whereas gpx1 is thought to be more important as a scavenger of endogenous basal levels of H$_2$O$_2$ (Harlan et al., 1984; Suttrop et al., 1986), catalase is thought to be more important under conditions in which there are large quantities of H$_2$O$_2$ (Suttrop et al., 1986). Thioredoxin reductase with thioredoxin and
NADPH, all of which are expressed in EC and VSM cells (Yamawaki et al., 2003), function together to lower ROS levels. Heme oxygenase, found in endothelial and VSM cells (Christodoulides et al., 1995; Marks et al., 1997; Yet et al., 1997; Motterlini et al., 1998; Sammut et al., 1998; Parfenova et al., 2001), degrades free heme, which can be pro-oxigenic, and generates biliverdin and bilirubin, both of which have antioxidase properties (Perrella & Yet, 2003).

D. H₂O₂ as a Second Messenger and Regulator of Vascular Tone

Although researchers traditionally believed that ROS were simply by-products of normal oxidative metabolism or functioned solely in an antimicrobial capacity, we now know that some ROS can also serve as signaling molecules for a variety of functions, including the regulation of vascular tone. O₂⁻ is a relatively membrane impermeable and unstable radical that is rapidly dismutated to H₂O₂, a more stable and membrane-permeable molecule. Therefore, many biological effects that have been attributed to O₂⁻ may actually be mediated by H₂O₂. Similar to NO, H₂O₂ can freely diffuse between cells, and is capable of traversing a distance equal to several cell diameters before reacting with another molecule or being catabolized (Griendling & Harrison, 1999; Chen et al., 2003).

Several studies support the role of H₂O₂ as a signaling molecule for changes in VSM tone (Burke-Wolin et al., 1991; Yang et al., 1998a; Fujimoto et al., 2001; Yada et al., 2003). Depending on the vascular bed, species, or local concentration, H₂O₂ can elicit either contractile or relaxant responses. H₂O₂ was first proposed as an EDHF by Matoba and colleagues (Matoba et al., 2000), after they found that catalase inhibited
ACh-induced dilation and VSM hyperpolarization in mouse mesenteric arteries. There is also evidence to suggest that H\textsubscript{2}O\textsubscript{2} plays an important role in the autoregulation of coronary blood flow (Yada et al., 2003), and in flow-induced dilation of both human coronary arterioles and human mesenteric arteries (Miura et al., 2003; Mabanta et al., 2006). Others have demonstrated that H\textsubscript{2}O\textsubscript{2} is an EDHF in the BK-induced dilation of pig pial arterioles (Lacza et al., 2002). It appears as though there is a role for H\textsubscript{2}O\textsubscript{2}-induced dilation in pathologic states as well. For example, in spontaneously hypertensive rats (SHR), relaxation of aortas to the calcium ionophore A23187 relies on the presence of H\textsubscript{2}O\textsubscript{2} (Cosentino et al., 1998). In coronary arterioles from patients with coronary artery disease, H\textsubscript{2}O\textsubscript{2} can also contribute to flow-induced dilation (Miura et al., 2003).

H\textsubscript{2}O\textsubscript{2} can elicit vasodilation through both endothelium-dependent and endothelium-independent mechanisms (Zembowicz et al., 1993; Barlow & White, 1998; Yang et al., 1998a; Thengchaisri & Kuo, 2003). H\textsubscript{2}O\textsubscript{2} has also been shown to increase endothelial NOS expression and activity (Cai et al., 2003), and there is extensive evidence from other studies to indicate that NO release is in fact the predominant endothelium-dependent mechanism through which H\textsubscript{2}O\textsubscript{2} induces dilation (Zembowicz et al., 1993; Yang et al., 1998a; Cai et al., 2002; Shimizu et al., 2003; Cseko et al., 2004; Gil-Longo & Gonzalez-Vazquez, 2005). H\textsubscript{2}O\textsubscript{2}-induced dilation in the coronary microcirculation is also mediated, in part, by the release of endothelial PGE\textsubscript{2} and subsequent activation of smooth muscle prostaglandin receptors (Thengchaisri & Kuo, 2003). However, H\textsubscript{2}O\textsubscript{2} can also induce VSM hyperpolarization and relaxation in an endothelium-independent manner via activation of K+ channels (Campbell et al., 1996; Sobey et al., 1997; Miura et al., 1999; Matoba et al., 2000; Thengchaisri & Kuo, 2003).
The main contributing type of K⁺ channel appears to depend on the species and/or vascular bed; in some cases the mediators are Kₐ channels (Campbell et al., 1996; Miura et al., 1999; Iida & Katusic, 2000; Miura et al., 2003; Thengchaisri & Kuo, 2003), and in other cases Kₐ₅ channels (Wei et al., 1996; Filipovic & Reeves, 1997; Lacza et al., 2002).

H₂O₂ has also been found to induce contractile responses. For example, H₂O₂ causes constriction of the aorta, pulmonary artery and superior mesenteric artery of the rat (Jin & Rhoades, 1997; Rodriguez-Martinez et al., 1998; Sotnikova, 1998; Yang et al., 1998b; Pelaez et al., 2000a; Gao & Lee, 2001), pig pulmonary arteries (Pelaez et al., 2000b), and canine basilar arteries (Yang et al., 1999). H₂O₂ can also increase the tone of KCl-preconstricted mouse mesenteric arteries (Lucchesi et al., 2005).

There have been multiple proposed mechanisms of H₂O₂-induced vasoconstriction. For example, in rat gracilis muscle arterioles, removal of the endothelium partly reduces constrictions to lower concentrations of H₂O₂, but these constrictions are completely abolished either by inhibition of prostaglandin synthesis or antagonism of PGH₂/TxA₂ receptors, suggesting that H₂O₂ must elicit its constrictor effect via endothelial and smooth muscle PGH₂/TxA₂ release (Cseko et al., 2004). Consistent with this finding is the observation that H₂O₂ activates cyclooxygenase to produce PGH₂, among other prostaglandins (Hemler et al., 1979). Others have demonstrated that H₂O₂ triggers increases in VSM [Ca²⁺], by direct stimulation of VGC channels, mobilization of intracellular Ca²⁺ from the sarcoplasmic reticulum via ryanodine receptors, inhibition of Ca²⁺ ATPase, or stimulation of IP₃-induced Ca²⁺ release (Grover & Samson, 1988; Grover et al., 1992; Horowitz et al., 1996; Favero et
Increased intracellular Ca2+ allows for activation of myosin light chain kinase (MLCK), and subsequent phosphorylation of 20-kDa myosin light chains (MLC20), thereby leading to constriction (Ardanaz & Pagano, 2006).

E. Experimental Approaches for Detecting H\textsubscript{2}O\textsubscript{2} In Vivo

Although many approaches have been developed to detect and quantify H\textsubscript{2}O\textsubscript{2} concentrations, none are ideal. Fluorescent probes are usually linked to horse radish peroxidase (HRP), such that in the presence of H\textsubscript{2}O\textsubscript{2}, hydrogen donors can be oxidized by HRP, causing a change in fluorescence intensity (Boveris, 1984; Tarpey & Fridovich, 2001). Although some probes, such as scopoletin (7-hydroxy-6-methoxy-coumarin, Boveris et al., 1977), result in decreased intensity in the presence of H\textsubscript{2}O\textsubscript{2}, other previously non-fluorescent probes increase in fluorescence intensity with H\textsubscript{2}O\textsubscript{2} contact; these types of probes include 2′,7′ dichlorodihydrofluorescein diacetate (DCFH-DA, Miura et al., 2003; Silveira et al., 2003), p-hydroxyphenylacetate (Hyslop & Sklar, 1984), homovanillic acid (3-methoxy-4-hydroxyphenylacetic acid, Ruch et al., 1983), and N-acetyl-3,7-dihydroxyphenoxazine (Cohen et al., 1996). Spectrophotometric assays including tetramethylbenzidine (Staniek & Nohl, 1999) and phenol red (Pick & Keisari, 1980) are other options which also work via H\textsubscript{2}O\textsubscript{2}-induced oxidation. There are many drawbacks to using assays which depend on oxidation reactions, as cellular peroxidases, peroxynitrite, hypochlorous acid, and even NO can also oxidize the target compound, leading to inaccurate estimations of H\textsubscript{2}O\textsubscript{2} concentration (Tarpey & Fridovich, 2001; Silveira et al., 2003). Nanoelectrodes, which allow for amperometric detection of H\textsubscript{2}O\textsubscript{2}
at concentrations as low as 10^{-7} M, function via Prussian Blue (PB), which is the most effective electrocatalyst for H_2O_2 reduction (Vreeke et al., 1994; Karyakin et al., 2004; Ricci & Palleschi, 2005). Although nanoelectrodes allow for more quantitative and sensitive measurements of H_2O_2 concentrations, their in vivo use is limited by sensor selectivity (ascorbate can also react with PB) and instability (Karyakin et al., 2004).

In addition to the methodological limitations, in vivo concentrations of H_2O_2 have been difficult to measure due to the complex H_2O_2 catalytic and degradation processes that occur and because of the contribution from intricate scavenger systems. H_2O_2 can readily react with heme proteins and protein sulphydryl groups (van der Vliet et al., 1994; Halliwell et al., 2000). Both nonenzymatic antioxidant molecules, including uric acid, Vitamin C, Vitamin A, and glutathione (Droge, 2001; Dickinson & Forman, 2002), and enzymatic systems, including SODs, catalase, the thioredoxin system, glutathione peroxidases, and heme oxygenases (Cai & Harrison, 2000; Faraci & Didion, 2004; Szasz et al., 2007) also affect relative H_2O_2 concentrations.

Nonetheless, various investigators have attempted to quantify H_2O_2 production in the vasculature. Cosentino and colleagues (1998) used electrochemical sensors to detect H_2O_2 concentrations in aortas from Wistar Kyoto (WKY) rats and SHRs. When pretreated with SOD and stimulated with the calcium ionophore A23187, these concentrations reached ~10 nmol/L in WKYs and ~60 nmol/L in SHRs. Others have measured the extracellular H_2O_2 concentration surrounding stimulated human neutrophils (Test & Weiss, 1984). When neutrophils were stimulated with the croton oil derivative PMA, H_2O_2 levels reached ~60 μM. H_2O_2 levels as high as ~9 μM/L were detected in blood from patients with a history of myocardial infarction drawn after exercise (Dekkur
et al., 1998). In genetic hypertensive patients, plasma H₂O₂ levels were measured via electrode and found to be ~3 μM/L (Lacy et al., 1998).

4. Carbon Monoxide and Vascular Tone

A. Background

Since the 19th century, it has been known that the blood contains CO (Grehant, 1894; Coburn et al., 1963). In 1949, Torgny Sjöstrand demonstrated that CO is produced in man, finding higher CO concentrations in expired air than in inspired air (Sjostrand, 1949). CO, a simple diatomic, colorless gas at room temperature and pressure (Pryor et al., 2006), has primarily been considered a toxic molecule, capable of displacing O₂ from hemoglobin and causing tissue hypoxia (Weaver, 1999) as well as cardiovascular and neurological damage (Penney, 1990). In fact, as little as 0.4% of CO in the air can cause death in less than one hour (Otterbein & Choi, 2000).

CO is generated mainly through the catabolism of the ubiquitous metalloporphyrin ferric heme (FeIII) by heme oxygenase (HO) enzymes. However, minor sources of CO production include auto-oxidation of phenols, flavenoids, and halomethanes, photo-oxidation of organic compounds, and lipid peroxidation of membrane lipids (Rodgers et al., 1994; Archakov et al., 2002).

HO is the only known enzyme that generates three reaction products (Ryter & Otterbein, 2004): heme is oxidatively cleaved to produce CO, biliverdin-IXα, and ferrous iron (FeII) in equimolar quantities (Yoshida & Kikuchi, 1978). The HO system was originally thought to only regulate cellular heme homeostasis, with its products
considered waste materials (Maines, 1997). However, biliverdin has been demonstrated to have antioxidant activities and iron prooxidant capabilities (Ryter & Tyrrell, 2000), and CO has been found to play a role as a second messenger in various biological systems (Marks et al., 1991).

Three HO isoforms have been characterized: HO-1 (also referred to as heat shock protein 32), HO-2, and HO-3 (McCoubrey et al., 1997; Naik et al., 2003). Whereas HO-1 was identified in the early 1970s (Maines & Kappas, 1974; Yoshida et al., 1974), HO-2 was not identified until the mid-1980s (Maines et al., 1986; Trakshel et al., 1986), and HO-3, still not fully characterized, was first identified in the late 1990’s (McCoubrey et al., 1997). HO-1, the inducible form of heme oxygenase, can be stimulated by many different factors and conditions, including hypoxia, hypertension, endotoxic shock, and shear stress (Johnson et al., 1996; Wagner et al., 1997; Yet et al., 1997; Jernigan et al., 2001). HO-2 is constitutively expressed in most tissues and is generally not inducible (Maines, 1997). HO-3 is also expressed constitutively, but its heme degrading activity is low (McCoubrey et al., 1997).

Both HO-1 and HO-2 have been demonstrated in endothelial cells (Marks et al., 1997; Yet et al., 1997; Sammut et al., 1998; Parfenova et al., 2001) and VSM cells (Christodoulides et al., 1995; Yet et al., 1997; Motterlini et al., 1998). HO-1 can be readily induced in the heart and blood vessels, but HO-2 is the predominant enzyme expressed under normal conditions in the cardiovascular system (Ewing et al., 1994).

HO-1 and HO-2 are very different enzymes, coming from different gene products and sharing little similarity in amino acid composition, structure, or gene organization (Muller et al., 1987; Cruse & Maines, 1988; Keyse & Tyrrell, 1989). They also differ
with regard to cell type, tissue distribution, and regulation. However, they are similar in their mechanism of heme catalysis, substrate specificity, and cofactor requirements (Maines et al., 1986; Trakshel et al., 1986).

B. Mechanisms by which CO Can Influence Biological Processes

Because CO can bind to heme moieties, it can either increase or decrease the activity of many enzymes that contain a heme group (Roberts et al., 2004). For example, CO has been shown to interact with hemoglobin, myoglobin, catalase, cytochrome c oxidase, NADPH oxidase, soluble guanylyl cyclase, NOS, and CYP enzymes (Stone & Marletta, 1994; Maines, 1997; Ryter et al., 2002; Ryter & Otterbein, 2004; Ishikawa et al., 2005; Kim et al., 2006; Pryor et al., 2006). However, outcomes differ depending on the specific interaction.

Although CO has both vasodilatory and vasoconstrictor properties, it is generally considered to be a vasodilator molecule (Johnson et al., 1999). CO relaxes rabbit (Furchgott & Jothianandan, 1991) and rat (Lin & McGrath, 1988) aorta, dog coronary arteries (Furchgott & Jothianandan, 1991), rabbit pulmonary arteries (Steinhorn et al., 1994), rat tail arteries (Wang et al., 1997a), rat afferent arterioles (Thorup et al., 1999) and pial arterioles of newborn pigs (Leffler et al., 1999).

Low levels of CO can induce release of NO from a large intracellular pool (Thorup et al., 1999) and can directly activate sGC (Furchgott & Jothianandan, 1991; Schmidt, 1992), thereby causing vasorelaxation. CO generated by HO activity in the cardiovascular system appears to increase tissue cGMP levels (Ewing et al., 1994).
Although sGC is involved in CO vasodilation in rabbit aorta, as seen by increases in tissue cGMP levels (Furchgott & Jothianandan, 1991; Hussain et al., 1997), inhibitors of sGC only partially reduce the relaxant effects of CO in either rat tail artery (Wang et al., 1997a) or lamb ductus arteriosus (Coceani et al., 1996).

Others have demonstrated that CO plays no role in activating GC in rat aortic and pulmonary artery SMCs (Morita et al., 1995). Some of the cGMP-independent dilations are attributed to mechanisms involving CYP enzymes (Coceani et al., 1994) and KCa channels (Wang et al., 1997b; Leffler et al., 1999; Zhang et al., 2001a; Jaggar et al., 2002). Coceani and colleagues (1994) found that CO relaxes lamb ductus arteriosus via inhibition of a cytochrome P450-based mono-oxygenase reaction controlling the formation of ET (Coceani et al., 1994). CO elicits smooth muscle hyperpolarization by activating large-conductance KCa channels (Xi et al., 2004), or increasing the Ca\(^{2+}\) sensitivity of these channels (Jaggar et al., 2002; Xi et al., 2004). More specifically, CO increases the open state probability of KCa channels via modification of a histidine residue on the external membrane side of these channels (Wang & Wu, 1997). Furthermore, CO-induced dilation of newborn porcine pial arterioles is blocked by COX and NOS (Leffler et al., 2001), suggesting that perhaps COX-derived prostaglandins and NO play a role in CO-mediated dilation of these vessels.

The relaxing action of CO in some arteries has been found to be endothelium independent (Lin & McGrath, 1988; Furchgott & Jothianandan, 1991; Hussain et al., 1997). In small rat mesenteric arteries, whereas exogenously applied CO resulted in dilation in the absence of an intact endothelium, endothelial removal eliminated the vasodilator response to endogenously produced CO (Naik et al., 2003). These results
suggest that although the endothelium may be responsible for CO production, CO-mediated vasodilation occurs via actions on the VSM in a similar fashion to NO.

Although several studies have documented the ability of CO to inhibit NO synthesis by blocking NOS (White & Marletta, 1992; Pufahl & Marletta, 1993; Matsuoka et al., 1994), fewer studies have demonstrated a constrictor role for CO. However, CO was shown to induce concentration-dependent vasoconstriction in the intact vascular bed of the rat hindlimb (Marks et al., 2003). Induction of HO-1 has been shown to attenuate muscarinic agonist-induced NO release (Thorup et al., 1999) and vasorelaxation (Kaide et al., 2002) in isolated renal arteries. Both exogenously applied and endogenously formed CO induce constriction of rat gracilis muscle arterioles pretreated with phenylephrine (Johnson & Johnson, 2003). This latter study suggests that CO might exert its vasoconstrictor properties by inhibiting NOS, because L-arginine treatment abolished CO-induced vasoconstriction (Johnson & Johnson, 2003).

In some pathological states, HO expression and CO formation are increased, possibly leading to increased inhibition of NOS (see Section 4E below). Salt-induced hypertension in Dahl salt-sensitive rats (DS) is accompanied by increased production of endogenous CO, and aortic and arteriolar HO-1 protein levels (Johnson et al., 2003). As early as 1984, investigators found that CO enhances the development of salt-induced hypertension in DS rats, although they were unable at that time to elucidate the underlying mechanism (Shiotsuka et al., 1984). In support of an inhibition of NOS by CO during salt-induced hypertension is the observation that NOS inhibition with L-NAME has no effect on arteriolar tone in hypertensive DS rats, even though it causes arteriolar constriction in normotensive DS rats (Boegehold, 1992). This is consistent
with the possibility that increased CO production in these pathologic conditions may be responsible for NOS inhibition. Further supporting this theory is the finding that skeletal muscle arterioles from Dahl-Rapp salt-sensitive hypertensive rats do not demonstrate endothelium-dependent dilation, but these responses can be completely restored by in vitro treatment with a HO inhibitor (Johnson et al., 2003). Finally, in transgenic mice that overexpress VSM HO-1, vasodilatory responses to NO are suppressed, primarily by impairing activation of sGC, leading to elevation of arterial pressure (Imai et al., 2001).

Still others have found no role for CO-mediated vascular responses. CO at concentrations ranging from 10^{-6} to 3×10^{-4} mol/L does not appear to have a significant effect on tone in rabbit or dog cerebral arteries (Brian et al., 1994). Other investigators found that the diameters of isolated, pressurized and perfused rat middle cerebral arteries were not altered by 10^{-6} to 10^{-4} M CO (Andresen et al., 2006). Although CO regulates vascular tone in many tissues, perhaps it is not an important mediator of vascular function in the adult cerebral circulation, even though it may influence vascular responses in cerebral vessels from young animals (Leffler et al., 1999).

C. Regulation of CO Production

As the information in Section 4A clearly indicates, there is not a sole regulator of HO activity and subsequent CO production in vivo (Cary & Marletta, 2001). However, HO levels are developmentally regulated, at least in the central nervous system. Whereas the Purkinje neurons of the cerebellum demonstrate intense HO-2 immunoreactivity in adult rats, this is not seen in two-week-old rats (Maines et al., 1996). Steroids appear to play a major role in regulating HO-2, as corticosterone treatment in postnatal rats results
in enhanced gene transcription in the promoter region of HO-2, in increased HO-2 transcription, and in elevated levels of HO activity and protein (Maines et al., 1996; Maines, 1997).

Regulation of CO production by cerebral microvessels can include stimulation of HO-2 catalytic activity by tyrosine phosphorylation (Leffler et al., 2003). In neurons, HO-2 activity is stimulated by casein kinase 2 (CK2)-catalyzed phosphorylation of serine-79 (Boehning et al., 2003). Nonetheless, one definite prerequisite for HO activity is the presence of sufficient substrate, in the form of heme or the heme precursor aminolevulinate (Leffler et al., 2003).

D. Experimental Approaches for Studying CO and Determining its In Vivo Concentrations

Although there are multiple ways to detect CO, including infrared absorption, calorimetry, electrochemical methods based on selective membranes, gas chromatography, and radioisotope counting (Morimoto et al., 2001), in vivo measurements are difficult. Nonetheless, tissue contents of CO are reported to be 1-50 pmol/mg fresh weight (Vreman et al., 2000), which others have calculated to be approximately 1-50 μmol/l (10^{-6} – 5×10^{-5} M) (Johnson & Johnson, 2003).

Different experimental methods have been used to stimulate endogenous production of CO. The rate-limiting step in heme synthesis is the production in mitochondria of δ-aminolevulinic acid (δ-ALA) from succinyl coA and glycine, a reaction that is catalyzed by the tightly regulated enzyme δ-ALA synthase (Kikuchi & Hayashi, 1981; May et al., 1990). Whereas heme-L-lysinate (HLL), another HO
substrate, is utilized in some experiments, δ-ALA is the preferred choice in others because HLL contains iron and may lead to iron loading and detrimental effects on tissues (Johnson & Johnson, 2003). However, the dose-dependent vasodilator response of HLL is mediated by a product of the HO reaction (Naik et al., 2003).

Different metalloporphyrins are used to inhibit HO activity, including zinc protoporphyrin IX (ZnPPIX), tin protoporphyrin IX, chromium mesoporphyrin IX (CrMP) (Vreman et al., 1993), zinc deuteroporphyrin IX 2,4-bis-ethylene glycol (ZnBG) (Chernick et al., 1989), and zinc N-methylprotoporphyrin IX (ZnPP) (De Matteis et al., 1985). The potency of metalloporphyrins in inhibiting HO is affected by the metal cation associated with the porphyrin ring and by different ring substituents (Vreman et al., 1993), and therefore some chemicals appear to be better suited for experimentation purposes than others. Investigators have demonstrated some nonspecific effects of the metalloporphyrin HO inhibitors (Luo & Vincent, 1994; Appleton et al., 1999). For example, metalloporphyrins have been suggested to either inhibit (Luo & Vincent, 1994) or activate (Chakder et al., 1996) NOS, or to inhibit sGC (Grundemar & Ny, 1997). All of these reasons may help to explain the variability of vascular responses observed after HO inhibition (see below).

Some have found no effect of HO inhibition on rat tail artery (Wang et al., 1997a), aorta (Kozma et al., 1999) or femoral artery (Kozma et al., 1999) diameters. Others have found that HO inhibition increases hindlimb resistance in animals pretreated with L-NAME, but not in those unexposed to L-NAME (Johnson et al., 2002). Others have demonstrated that CrMP promotes constriction of gracilis muscle arterioles in the
presence of L-NAME (Kozma et al., 1997; Kozma et al., 1999), whereas CrMP has been found to dilate newborn pig pial arterioles (Leffler et al., 1999).

Systemic administration of ZnPPIX increases renal vascular resistance, but does not change mean arterial pressure in Sprague-Dawley rats subjected to chronic hypoxia (Jernigan et al., 2001). ZnPPIX does not affect either renal vascular resistance or mean arterial pressure in control rats (Jernigan et al., 2001). In contrast, ZnPPIX administration leads to sustained increases in arterial pressure, vasoconstriction and elevated total peripheral resistance in Sprague-Dawley rats (Johnson et al., 1995). These inconsistent findings may be due to the relative concentrations of ZnPPIX, as Johnson’s group utilized 45 μmol/kg, whereas Jernigan’s group utilized 11 μmol/kg. At higher concentrations, ZnPPIX can inhibit sGC and NOS (in addition to HO), which may account for the observed increases in mean arterial pressure and total peripheral resistance (Appleton et al., 1999). Others have found that increased HO activity induced by tin chloride treatment is associated with a lowering of blood pressures of spontaneously hypertensive rats (Sacerdoti et al., 1989).

E. CO vs. NO: Comparisons and Interactions

NO and CO are both simple gases with similar water solubilities that are produced endogenously by enzymatic means (Pryor et al., 2006). They are equally capable of forming complexes with most hemoproteins at the heme iron center, and they can act as heme ligands (Maines, 1997). Both can activate sGC, induce vasorelaxation, and stimulate K⁺ channel activity (Rees et al., 1989; Furchgott & Jothianandan, 1991;
NO and CO can also inhibit platelet aggregation (Brune & Ullrich, 1987; Hobbs & Moncada, 2003). The enzymatic regulators of these gaseous products, HO and NOS, can be either constitutively expressed or induced. The inducible forms of the enzymes (HO-1 and NOS2/iNOS) both involve gene activation and de novo enzyme protein synthesis (Maines, 1997). Furthermore, NOS2 can be induced by many of the same stimuli that induce HO-1, including cytokines, ROS, and endotoxins (Nathan, 1992; North et al., 1996). Both inducible enzymes are stimulated in highly inflammatory processes (Ignarro, 1993; Willis et al., 1996).

NO, a free radical having a half-life on the order of seconds, is much more labile and unstable than the nonradical CO (Moncada & Higgs, 1995; Cary & Marletta, 2001). Although NO can bind both ferric and ferrous heme, CO can only bind ferrous heme (Pryor et al., 2006). Whereas both NO and CO activate sGC, NO is five times more capable of activating sGC (Stone & Marletta, 1994; Kharitonov et al., 1995). However, some investigators have observed relative relaxation potencies of CO to NO to vary from 1:1000 for rabbit aorta to 1:1 in canine circumflex coronary arteries (Furchgott & Jothianandan, 1991). Whereas constitutive NOS is relatively absent from VSM, constitutive HO is abundant in these cells (Johnson et al., 1999).

Interestingly, the NO and CO pathways exhibit complex patterns of interaction. For example, NO has been found to either inhibit HO activity (Willis et al., 1995; Ding et al., 1999) or enhance it (Motterlini et al., 1996; Leffler et al., 2005). Exogenously administered or endogenously produced NO can selectively induce HO-1 gene expression and CO release in VSM cells (Durante et al., 1997). NO can also cause the release of
free heme from heme proteins (Lipton et al., 1993), which may well lead to increased CO production through increased substrate availability. Maines (Maines, 1997) proposes that the ability of NO to affect HO activity may be accounted for by the free radical nature of NO, such that it may bind to heme, thereby inhibiting or inducing HO activity.

CO can hamper nitric oxide synthesis via eNOS, nNOS and iNOS inhibition (McMillan et al., 1992; White & Marletta, 1992; Matsuoka et al., 1994; Fan et al., 1997; Thorup et al., 1999; Ishikawa et al., 2005) as well as increase NO production via NOS activation (Lim et al., 2005). This duality is also evident in the observation that CO can influence NO release in a biphasic manner; at high CO levels (10μm), NO release from isolated perfused rat afferent arterioles is suppressed, whereas with lower levels (0.01-0.1 μm), NO release is maximal (Thorup et al., 1999). At concentrations of 1-10μm, CO can induce oxidative stress, resulting in the production of peroxynitrite, which further limits the availability of NO (Thom et al., 1997). Furthermore, repeated exposure to brief pulses of CO results in a decreased NO release (Thorup et al., 1999), which may occur by depletion of intracellular pools of heme-bound NO.

5. Postnatal Growth and Maturation: Effects on the Vasculature

A. Introduction

The vascular dysfunction associated with some cardiovascular diseases can begin to develop well before adulthood (Bohlen & Lobach, 1978; Zweifach et al., 1981; Prewitt et al., 1982; Bohlen, 1987; Kunert et al., 2001), so that changes linked to the pathological process become superimposed on the changes in vascular function that normally occur.
with juvenile growth. Therefore, to more clearly elucidate the mechanisms of progressive vascular dysfunction under such circumstances, it is necessary to gain a deeper understanding of those changes in vascular function that accompany normal growth.

Early studies in this area were focused almost exclusively on conduit arteries, which differ from resistance vessels in size, function, and local environment. Although these earlier studies have provided valuable information with regards to the elastic muscular transport arteries which serve as a pressure reservoir, these data cannot be generalized to the microcirculation. More information is gradually becoming available on such growth-related changes at the microvascular level.

The rapid postnatal enlargement of organs is accompanied by extensive growth of their arteriolar, capillary and venular networks (Sarelius et al., 1981; Unthank & Bohlen, 1988; Wang & Prewitt, 1991; Linderman & Boegehold, 1996) and increases in microvascular wall mass (Bohlen & Lobach, 1978; Wang & Prewitt, 1991). These structural changes are accompanied by a progressive increase in microvascular pressure and volume flow (Zweifach et al., 1981; Wang & Prewitt, 1991; Linderman & Boegehold, 1998, 1999). Not surprisingly, studies across different species also suggest that the mechanisms responsible for controlling arteriolar resistance and blood flow are not fixed at birth, but instead undergo marked changes during subsequent microvascular growth. The intent of this section is to summarize the current state of knowledge on growth-related changes in the function of both conduit arteries and resistance vessels, and the impact of these latter changes on the regulation of blood flow.
B. Conduit Arteries

i. Endothelium-Dependent Control

Studies on conduit arteries have demonstrated changes in endothelium-dependent control with postnatal growth, although there are inconsistent findings. For example, endothelium-dependent dilator responses to histamine are similar in large mesenteric arteries from 2- and 8-week-old rats, but then decline to smaller responses in arteries from 13-week-old rats (Moritoki et al., 1986). In contrast, the endothelium-dependent relaxation of porcine pulmonary arteries to ACh, BK and the calcium ionophore A23187 progressively increases from 3 to 30 days of age (Zellers & Vanhoutte, 1991).

Activation of endothelial alpha-2 (α2) receptors does not produce NO in porcine pulmonary arteries at birth or 3 days of age, but does at 10 days of age, and α2-stimulated NO release is fully developed by 10 weeks (Wilson et al., 1993). ACh elicits larger increases in cGMP formation and greater endothelium-dependent relaxations in pulmonary artery rings from adult sheep than in those from newborn sheep (Kolber et al., 2000), and at least part of this difference may be due to increased expression of sGC in these vessels in the first 2 weeks after birth (Moreno et al, 2005). In contrast, pulmonary artery rings from 2-day-old sheep are more responsive to ACh and BK than those from 1-month old sheep, and an L-arginine analog can reduce these relaxations in 2-day-old vessels but not in 1-month-old vessels, suggesting that these agonists stimulate greater NO release in the younger vessels (O'Donnell et al., 1996).

In the rat, endothelial P2-purinergic receptors coupled to the L-arginine/NO pathway are nonfunctional in the aorta at 4-6 weeks of age, but become fully functional by 13 weeks of age (Koga et al., 1992). Over this same time period, there is also a
progressive decrease in aortic relaxation to ACh due to the offsetting actions of an
endothelium-derived vasoconstrictor prostanoid (Koga et al., 1989). L-NMMA has no
effect on the dilation of porcine femoral arteries to ACh at birth, but it significantly
reduces these responses at 7-10 days of age (Stoen et al., 1997). Although LNA reduces
ACh-induced relaxation of renal arteries in both newborn and adult guinea pigs, this
effect is greater in adults (Thompson & Weiner, 1996).

Fluid shear stress induces a graded release of NO that is significantly greater in
carotid arteries from adult sheep than those from term fetal lambs, due to the significantly
greater ability of fluid shear stress to activate eNOS in adult than in fetal arteries (White
et al., 2005). This group also reported that stimulation of NO release by the receptor-
independent endothelial activator A23187 was significantly greater in adult than in fetal
arteries. When NO release (induced from either fluid shear stress or A23187) was
normalized to eNOS abundance between groups, eNOS-specific activity was also
significantly greater in adult than in fetal arteries. In contrast, however, stimulation with
the receptor-dependent endothelial activator ADP resulted in no difference between fetal
and adult arteries in both overall NO release and eNOS-specific activity (White et al.,
2005). The authors propose that “fractional” activation of eNOS in response to ADP may
be upregulated in fetal compared with adult arteries, which could compensate for the
attenuated eNOS activity, thereby maintaining endothelium-dependent responses in
arteries from fetal lambs.

Some investigators have looked at NOS protein and expression in various beds
with growth. Although age-related differences in NO release in lamb/sheep carotid
arteries have been found, no age-related differences in eNOS protein or mRNA levels
were observed (White et al., 2005). However, other investigators have detected a greater nNOS mRNA in immature compared with mature kidneys in pigs (Solhaug et al., 2000).

ii. Smooth Muscle Responsiveness to NO

Smooth muscle responsiveness to NO can also change with postnatal growth. Although femoral arterial rings from newborn and 7-10 day old piglets can relax completely to the NO donor sodium nitroprusside (SNP), the 7-day-old group is more sensitive to SNP than the newborn (Stoen et al., 1997). Similarly, pulmonary artery rings from 10 day old piglets are significantly more responsive to exogenous NO than those from newborn or 3-day-old animals (Wilson et al., 1993). Sensitivity to SNP also increases with age in guinea pig renal arteries (Thompson & Weiner, 1996). In contrast, relaxation to SNP is significantly less in pulmonary artery rings from 1 month old lambs than those from 2 day old lambs (O'Donnell et al., 1996). Similarly, maximum efficacy for relaxation to other NO donors (S-nitroso-N-acetyl-penicillamine and nitroglycerin) decreases with maturation (from 3-7 day old to adult) in sheep basilar and carotid arteries (Pearce et al., 1994). Still others have found no change with growth, as demonstrated by no difference in sensitivity to SNP among porcine pulmonary artery rings from 3-, 10-, and 30-day-old animals (Zellers & Vanhoutte, 1991).

iii. Ion Channel Activity

The activity of various types of plasma membrane K⁺ channels, and the effect of this activity on membrane potential and vascular tone, may also change during juvenile growth. Many studies have found that K⁺ channel density, mRNA expression, and
sensitivity increase with age. Whole-cell patch-clamp recordings in type I carotid body cells indicate that K^+ current density increases with postnatal age in the rat, such that between 4 and 10 days, there is an enhanced activation of K_{Ca} channels and an increased hypoxic sensitivity to K^+ currents (Hatton et al., 1997). In ovine middle cerebral arteries, dilator responses to the K_{ATP} channel agonist lemakalim are enhanced by maturation, with the $-\log ED_{50}$ values for dilation 29 to 43 times greater in adult than in newborn arteries (Pearce & Elliott, 1994). Voltage-gated K^+ channel protein and mRNA expression in ovine pulmonary arteries also increases with age (Cornfield et al., 2000), as does K_{ATP} channel density in rat neuronal tissue (Miller et al., 1991).

Some investigators have found a change in the relative importance of different K^+ channels with maturation. The predominant K^+ channel that regulates resting membrane potential in the ovine pulmonary circulation changes after birth from a K_{Ca} to a K_V channel (Reeve et al., 1998). Maturation also modulates the contribution of K_V, K_{Ca}, and K_{ATP} channels to basal and/or serotonin (5HT)-induced cerebrovascular tone in ovine middle cerebral arteries, with K_V and K_{Ca} channel currents also more responsive to stretch in adult than in fetal arteries (Teng et al., 2002).

C. Structural Changes during Microvascular Growth

An understanding of microvascular network structure is important for assessing the ultimate functional impact of any growth-related changes in microvascular tone or its regulation. Anatomical modifications of the vasculature can be dramatic during postnatal growth. For example, the hypertrophic growth of skeletal muscle fibers during juvenile
maturation is accompanied by growth of the vasculature (Enesco & Puddy, 1964; Sillau & Banchero, 1977; Ripoll et al., 1979; Aquin et al., 1980). However, Wang and Prewitt (1991) reported that large and small arteriolar density actually decreases from 35 days of age to 132 days of age in the cremaster muscle of Wistar rats, suggesting that the rate of tissue growth is greater than the rate of network growth. These investigators determined that this arteriolar development primarily consists of increases in length, diameter and wall mass of pre-existing vessels, rather than new vessel growth. Similar findings were observed in the rat spinotrapezius muscle, where network growth during maturation (from 3-4 weeks, to 7-8 weeks, to 11-12 weeks) occurs by elongation of pre-existing vessels with angiogenesis only occurring in the distal segments of transverse arteriolar trees (Linderman & Boegehold, 1996). In this latter study, morphometric analysis revealed that there was no significant change in the total number of arcade arteriole segments per network even though the muscle dramatically grew during this time.

Not only are there pronounced reductions in arteriolar density during maturation, but capillary density has also been found to progressively decline. This has been observed in hamster cremaster muscle (Sarelius et al., 1981), and rat soleus (Sillau & Banchero, 1977), tibialis anterior, and gastrocnemius muscles (Sillau & Banchero, 1977; Ripoll et al., 1979). In growing guinea pig soleus and gastrocnemius muscles, capillary density decreases with increased fiber cross-sectional area, but the absolute number of capillaries around the fiber increases, as does myoglobin concentration (Aquin et al., 1980). These increases may at least partially compensate for the lower capillary density to assure adequate O₂ delivery in tissue beds of older animals (Aquin et al., 1980).
Muscle fiber type may affect capillary density, and therefore alterations in fiber type might be an important influence to consider when analyzing the vascular changes that occur during postnatal growth. Changes in fiber type have, in fact, been demonstrated with maturation; in rat tibialis anterior muscle, red fibers increase, but in rat soleus muscle, the percentage of red fibers decreases. These increases or decreases in red fibers affects the capillary to fiber (C: F) ratio, with more red fibers leading to higher C: F ratio and fewer red fibers leading to decreased C: F ratios (Sillau & Banchero, 1977).

D. Hemodynamic Changes during Microvascular Growth

During arteriolar network growth in skeletal muscle, there is a progressive increase in microvascular pressure (Zweifach et al., 1981; Wang & Prewitt, 1991; Linderman & Boegehold, 1998, 1999). In our laboratory, we utilized in vivo microscopy to study proximal arterioles in the spinotrapezius muscle of rats 4-5 wks, 7-8 wks, and 11-12 wks of age. As animals matured, resting diameter and volume flows increased, but resting wall shear rate decreased due to a proportionately greater increase in arteriolar diameters than in blood flow velocity (Linderman & Boegehold, 1998, 1999).

E. Regulation of Microvascular Tone and Tissue Blood Flow during Growth

i. Influences on Arteriolar Tone
In growing skeletal muscle, resting arteriolar tone has been found to either progressively increase (Proctor et al., 1981; Linderman & Boegehold, 1998), or remain relatively constant (Wang & Prewitt, 1991; Linderman & Boegehold, 1999). Even in cases where there is no change in overall resting tone with growth, there is some evidence to indicate that the relative importance of the different mechanisms contributing to that tone (e.g., influences from endothelium-derived vasoactive factors and smooth muscle myogenic activity) may vary greatly over this period. Our laboratory previously found that L-NMMA treatment reduces arteriolar diameters in the spinotrapezius muscle of more juvenile rats, but not younger rats (Linderman & Boegehold, 1998; Linderman & Boegehold, 1999; Nurkiewicz & Boegehold, 2004), whereas meclofenamate reduces resting arteriolar diameters in rats of all ages (Linderman & Boegehold, 1998). These findings suggest that continuously-released NO and vasodilator prostanoids exert a moderating influence on arteriolar tone in the juvenile spinotrapezius muscle, whereas prostanoids, but not NO, exert such an influence in the younger animals. Similarly, NOS inhibition with L-NAME has no effect on the diameter of pial arterioles in newborn pigs (Zuckerman et al., 1996; Willis & Leffler, 2001), but it reduces the diameter of these arterioles in juvenile pigs (Willis & Leffler, 2001). L-NAME significantly constricts cerebral resistance arteries from adult mice, but not those from neonatal mice (Geary et al., 2003). In contrast, inhibition of NOS increases renal vascular resistance in conscious lambs, but this effect is greatest at 1 week of age and then progressively declines at 3 and 6 weeks of age (Sener & Smith, 2001). These heterogeneous observations suggest that synthesis of and responses to various endothelium-derived mediators can change with
age, and that these changes in vascular tone regulation may not be consistent among different vascular beds or species.

As in larger vessels, postnatal growth of the microvasculature can be accompanied by significant changes in the endothelium-dependent mechanisms that mediate acute changes in vascular tone. For example, the effectiveness of the endothelium-dependent dilators ACh or histamine in reducing mesenteric vascular resistance in the rat increases from ages 3 weeks to 3 months (Fleisch & Spaethe, 1981). Similarly, DeMey and Gray reported a progressive increase in the responsiveness of isolated rat mesenteric resistance arteries to ACh or histamine during the first two weeks of life. Furthermore, these investigators found that BK constricted resistance arteries from rats less than 4 weeks of age, but elicited an endothelium-dependent dilation of those from older rats. In the microcirculation of the rat sciatic nerve, ACh induces a non-NO, non-prostanoid-dependent vasodilatation which is larger in 1-2 week old rats than in 18-20 week old rats (Thomsen et al., 2002).

In pial arterioles of juvenile pigs, ACh induces an early prostanoid-associated constriction followed by a NO-associated dilation, whereas in pial arterioles of newborn pigs, ACh induces only a brief prostanoid-associated vasoconstriction (Zuckerman et al., 1996). Although the dilation of these vessels to BK relies on the COX and NOS systems in both juvenile and newborn pigs, the juvenile vessels are more dependent on NO, whereas the newborn vessels are more dependent on prostanoids (Willis & Leffler, 2001). Such a finding could reflect age-related differences in COX or NOS expression, or in the activity of these enzymes. Using cultured microvascular ECs from newborn and adult pig cortex, Parfenova et al. (2000) found no differences in COX expression or activity
between these groups, but did find higher NOS expression and activity in adult cells than in newborn cells. Cerebrovascular dilations to hypercapnia and histamine are also prostanoid dependent in the newborn pig, with NO assuming an increasing role in these responses during subsequent growth (Willis & Leffler, 1999).

Linderman and Boegehold (1999) found no age-related differences in overall arteriolar responsiveness to locally applied ACh in the spinotrapezius muscle of rats 4-5 wks, 7-8 wks, and 11-12 wks of age. However, they did report that the L-NMMA-sensitive portion of the ACh response was smaller in mature rats than in weanling rats. Although elevation of flow-related shear stress resulted in arteriolar dilation in juvenile rats, it had no effect in the weanling rats. In a subsequent study (Nurkiewicz & Boegehold, 2004), arterioles from weanling and juvenile rats exhibited identical dilator responses to the Ca$^{2+}$ ionophore A23187, and these responses were equally sensitive to L-NMMA in both age groups. However, the Ca$^{2+}$-independent agonists VEGF and simvastatin elicited dose-dependent, L-NMMA sensitive, arteriolar dilations in juveniles, but no or only minimal responses in the weanling group. These findings suggest that Ca$^{2+}$-dependent signaling pathways for NO release do not change with rapid arteriolar network growth during juvenile maturation, whereas Ca$^{2+}$-independent NO release is absent in the weanling endothelium but these pathways become functional during maturation.

Numerous studies indicate that the intrinsic responsiveness of arteriolar smooth muscle to NO does not change during microvascular growth, either in skeletal muscle (Li & Joshua, 1993; Linderman & Boegehold, 1999) or other vascular beds (Fleisch & Spaethe, 1981; Willis & Leffler, 1999). This suggests that age-related changes in the
contribution of NO to the regulation of arteriolar diameter are primarily attributable to functional changes in endothelial cells rather than VSM cells.

The myogenic response contributes largely to the establishment of basal vascular tone, and to autoregulation of blood flow and capillary hydrostatic pressure (Davis & Hill, 1999; see Section 2B above). Although resting tone is due in part to myogenic activity, diameter changes in response to an abrupt increase or decrease in transmural pressure more clearly define myogenic responsiveness (Su et al., 2003). As some studies suggest that endothelium-dependent control may not be fully developed in early stages of postnatal growth, perhaps myogenic activity might be enhanced during this time period. Some authors have found that there is an increased intensity of the myogenic response in 1-day old piglet mesenteric resistance arteries when compared to 10-day old vessels (Su et al., 2003). Pressure-induced myogenic tone is regulated similarly in neonatal and adult mouse cerebral arteries, but recent work by Geary and colleagues (2003) indicates that the modulation of this activity by endothelial vasoactive factors is age dependent. In that study, whereas L-NAME treatment significantly reduced arterial diameters at all pressures (ranging from 20 to 80 mmHg) in adults, it had no effect on neonatal arteries at any pressure. Furthermore, although indomethacin treatment had no effect on either adult or neonatal arteries alone, subsequent addition of L-NAME significantly enhanced arterial tone over the entire pressure range in both groups. In arteries pre-treated with L-NAME, subsequent addition of indomethacin enhanced tone to an even greater extent at all pressures in adult arteries, but had no further effect in the neonatal arteries. Finally, during combined NOS/COX inhibition, intrinsic tone was significantly greater in
neonatal than adult arteries, but when the endothelium was removed, tone was similar in neonatal and adult arteries at all pressures (Geary et al., 2003).

ii. Tissue Blood Flow and Oxygen Delivery

Various factors that influence tissue O$_2$ delivery and consumption have been found to change with growth and development. For example, capillary hematocrit (Sarelius et al., 1981) and skeletal muscle oxidative metabolism (Hudlicka, 1985) decrease with maturation. Capillary red cell content (number per unit length) and maximal red cell flux also decrease with age (Berg & Sarelius, 1996). It appears that young animals have superior arteriolar sensitivity to O$_2$ and are able to maintain tissue PO$_2$ during muscle contraction more precisely than older animals (Proctor et al., 1981). Whereas resting tissue PO$_2$ over a wide range of superfusate PO$_2$ levels is not different in the cremaster muscle from hamsters aged 32, 60 and 80 days, increased metabolic demand, via muscle stimulation, causes tissue PO$_2$ to decrease significantly in adult animals, but not in the immature or intermediate groups. For any given increase in tissue PO$_2$, the arteriolar constriction is also age dependent, with the oldest animals demonstrating the smallest response (Proctor et al., 1981).

Metabolic requirements are constantly changing throughout postnatal growth, and skeletal muscle blood flow is distributed according to metabolic demand (Hudlicka, 1969). We and others have found an increase in total network blood flow in rat spinotrapezius muscle (Linderman & Boegehold, 1999) and rat cremaster muscle (Wang & Prewitt, 1991). However, as the muscle mass increases dramatically during this period of growth, blood flow per gram of tissue actually decreases, which is consistent with
numerous studies documenting a progressive decrease in total skeletal muscle blood flow during maturation (Hudlicka, 1985). With postnatal growth, animals also experience increases in cardiac output (Teitel & Rudolph, 1985), myoglobin content (Aquín et al., 1980), and body temperature (Mueggler et al., 1979), and overall decreases in arteriolar wall shear stress (Linderman & Boegehold, 1999). Furthermore, fetal hemoglobin is gradually replaced by adult hemoglobin (Teitel & Rudolph, 1985), such that decreases in total hemoglobin O₂ affinity also occur (Lister et al., 1979).

Whereas some suggest that younger animals may have a superior blood flow regulatory capability (Proctor et al., 1981), Berg and Sarelius (1996) have argued that despite all of the changes in RBC flow variables which occur with maturation, the capacity for networks to deliver O₂ remains constant; even with variability in network flow parameters during maturation, mean capillary wall PO₂ remains within a narrow range both at rest and with maximal dilation. These investigators attribute this to the more extensive recruitment of capillary networks (Berg & Sarelius, 1995), and the higher capacity of recruited networks to deliver O₂ in adults compared to younger animals.

It is important to keep in mind that the vascular network is not static. During development the vasculature can accommodate increased metabolic demands or decreased O₂ supply via a number of methods. For example, changes in the activity of oxidative enzymes, or volume density of mitochondria may allow the network to adapt (Hoppeler et al., 1981; Hudlicka, 1985). Perhaps local hypoxia might trigger an induction of capillary growth (Adair et al., 1990), thereby allowing adaptation to metabolic needs. Others have suggested flow-induced shear stress or local changes in
growth factors as being possible stimuli for network development (Wang & Prewitt, 1991; Dawson & Hudlicka, 1993).

6. Conclusion

This literature review highlights the challenges associated with interpreting findings from different vascular beds and species, and synthesizing such heterogeneous findings into a cogent understanding of how vascular function may change with postnatal growth. Much of the literature is focused on the pulmonary vasculature, which is substantially different from that of other vascular beds. The fetal pulmonary vasculature is a high-tone, low flow system, which changes quickly at birth to accommodate an 8-10-fold increase in blood flow and an increase in intravascular pressure (Dawes et al., 1953; Cassin et al., 1964). Given all these differences among species, vessel sizes, and preparations, caution must be taken when synthesizing a coherent analysis of postnatal vascular changes. However, Table 2 summarizes some of the general trends that have been observed with growth and development in the larger and smaller vessels.

Investigators have studied mechanisms regulating arteriolar tone across a wide variety of tissues and organs, and much has been learned about these complex mechanisms. However, there is much less known about how these mechanisms may change during postnatal growth and maturation. A thorough understanding of the normal changes in endothelial/ smooth muscle signaling pathways and vascular mechanics during postnatal growth may lead to a better understanding of the pathophysiological changes that can also occur over this time in some disease states.
Table 2: Changes in endothelium-dependent vascular control during postnatal growth: A summary of findings from the literature

<table>
<thead>
<tr>
<th>Animal</th>
<th>Tissue</th>
<th>Stimulus</th>
<th>Change in Vascular Response $(↑, ↓, ↔)$</th>
<th>Ages Studied</th>
<th>Investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (Sprague-Dawley)</td>
<td>Mesenteric artery</td>
<td>ACh, histamine</td>
<td>$↑$ with age</td>
<td>3 wks, 3 mo, 6 mo</td>
<td>Fleisch & Spaethe, 1981</td>
</tr>
<tr>
<td>Rat (Wistar-Kyoto)</td>
<td>Mesenteric artery</td>
<td>ACh, histamine</td>
<td>$↑$ during 1st 2 wks, but are then maintained throughout adult life</td>
<td>4, 7, 14, 28, 80, 280 days</td>
<td>DeMey & Gray, 1985</td>
</tr>
<tr>
<td>Rat (Wistar-Kyoto)</td>
<td>Mesenteric artery</td>
<td>BK</td>
<td>Constriction until 4 wks, then relaxation</td>
<td>4, 7, 14, 28, 80, 280 days</td>
<td>DeMey & Gray, 1985</td>
</tr>
<tr>
<td>Rat (Wistar)</td>
<td>Mesenteric artery</td>
<td>histamine</td>
<td>$↓$ with age</td>
<td>2-8 weeks, 13 wks, 56 wks</td>
<td>Moritoki et al., 1986</td>
</tr>
<tr>
<td>Pig</td>
<td>Pulmonary artery</td>
<td>ACh, BK, A23187</td>
<td>$↑$ with age</td>
<td>3, 10, 30 days</td>
<td>Zellers & Vanhoutte, 1991</td>
</tr>
<tr>
<td>Sheep</td>
<td>Pulmonary artery</td>
<td>ACh</td>
<td>$↑$ with age</td>
<td>fetal, newborn, adult</td>
<td>Kolber et al., 2000</td>
</tr>
<tr>
<td>Sheep</td>
<td>Pulmonary artery</td>
<td>A23187</td>
<td>$↑$ with age</td>
<td>Fetal, 4 wks</td>
<td>Mata-Greenwood et al., 2006</td>
</tr>
<tr>
<td>Sheep</td>
<td>Pulmonary artery</td>
<td>ACh, BK</td>
<td>$↓$ with age</td>
<td>2 d, 1 mo</td>
<td>O'Donnell et al., 1996</td>
</tr>
<tr>
<td>Rat (Wistar-Kyoto)</td>
<td>Aorta</td>
<td>ACh</td>
<td>$↓$ with age</td>
<td>4-6 wks, 3-6 mo, 12-25 mo</td>
<td>Koga et al., 1989</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Animal</th>
<th>Tissue</th>
<th>Stimulus</th>
<th>Change in Vascular Response (↑, ↓, ↔)</th>
<th>Ages Studied</th>
<th>Investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (Wistar-Kyoto)</td>
<td>Aorta</td>
<td>ATP</td>
<td>Endothelium-independent relaxation (4-6 wks) to endothelium-dependent relaxation (13-14 wks)</td>
<td>4-6, 9-10, 13-14 wks</td>
<td>Koga et al., 1992</td>
</tr>
<tr>
<td>Dog</td>
<td>Aorta</td>
<td>ACh</td>
<td>↓ with age</td>
<td>fetal, newborn, adult</td>
<td>Torok & Gerova, 1996</td>
</tr>
<tr>
<td>Pig</td>
<td>Pial arteriole</td>
<td>ACh, BK</td>
<td>Newborn relies on prostaglandins, juvenile relies more on NO</td>
<td>Newborn, 3-4 mo</td>
<td>Zuckerman et al., 1996; Willis & Leffler, 2001</td>
</tr>
<tr>
<td>Rat (Sprague-Dawley)</td>
<td>Spinotrapezius muscle</td>
<td>ACh:</td>
<td>No difference in response, although L-NMMA-sensitive part of this response was smaller in mature rats</td>
<td>4-5, 7-8, 11-12 wks</td>
<td>Linderman & Boegehold, 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased shear stress:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No response in weanlings, but dilation in juveniles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat (Sprague-Dawley)</td>
<td>Spinotrapezius muscle</td>
<td>A23187:</td>
<td>No difference in responses</td>
<td>4-5 wks, 7-8 wks</td>
<td>Nurkiewicz & Boegehold, 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VEGF/Simvastatin: No response in weanlings, but dose-dependent responses in juveniles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Dissertation Objectives

Because there are few studies that have investigated how postnatal growth affects microvascular function, we undertook these experiments, in part, to help fill a critical gap in the literature. Specifically, we wanted to gain further insight into growth-related changes in the control of skeletal muscle arterioles.

A clearer understanding of how the endothelium and smooth muscle work together to translate biochemical signals into vascular responses during blood vessel growth may ultimately lead to the identification of new therapeutic targets for the endothelial dysfunction associated with cardiovascular diseases that can begin to develop well before adulthood.

The specific aims of each study within this project are listed below.

Study 1

We undertook this study to more completely understand how growth affects endothelium-dependent control of skeletal muscle arterioles. This was the first step toward a greater appreciation of how microvascular function is altered during postnatal development, and was the springboard for all subsequent studies.

Study 2

Because H$_2$O$_2$ can serve as an important endothelium-derived vasoactive factor in the cerebral microcirculation of newborn pigs, we undertook this study to determine if H$_2$O$_2$ also mediates endothelium-dependent dilation in skeletal muscle arterioles of young
rats. A second aim of this study was to determine if there are any age-related differences in the mechanism by which H$_2$O$_2$ can influence arteriolar smooth muscle tone.

Study 3

Because CO has been identified as an important vasoactive factor in the cerebral microcirculation of newborn pigs, we undertook this study to determine if CO could be playing a similar role in the endothelium-dependent dilation of skeletal muscle arterioles from young rats. A second aim of this study was to determine if there the mechanism by which CO influences arteriolar tone undergoes a change during rapid juvenile growth.

Study 4

We previously found that gracilis muscle arterioles from weanling rats develop a significantly higher level of resting tone than arterioles from juvenile rats, suggesting that arteriolar smooth muscle responsiveness to myogenic stimuli may be greater in the younger rats. We therefore undertook this study to more rigorously investigate potential alterations in myogenic activity that may occur during microvascular network maturation in skeletal muscle arterioles.
II. STUDY 1: Growth-Dependent Changes in Endothelial Factors Regulating Arteriolar Tone

Used with permission from The American Physiological Society (granted May 30, 2007)

Abstract

Previous studies from this laboratory suggest that during maturation, rapid microvascular growth is accompanied by changes in the mechanisms responsible for regulation of tissue blood flow. To further define these changes, we studied isolated gracilis muscle arterioles from weanling (~25 days) and juvenile (~44 days) Sprague-Dawley rats to test the hypothesis that endothelial mechanisms for the control of arteriolar tone are altered with growth. Responses to the endothelium-dependent dilator acetylcholine (ACh) were greater in weanling arterioles (WA) than in juvenile arterioles (JA), whereas there were no consistent differences between age groups in arteriolar responses to other endothelium-dependent agonists (A23187, VEGF and simvastatin). Inhibition of nitric oxide synthase (NOS) with L-NAME attenuated ACh-induced dilation in JA, but not in WA. In JA, combined inhibition of NOS and cyclooxygenase (with indomethacin) reduced the dilator responses to ACh and simvastatin by ~90% and ~70%, respectively, but had no effect in WA. Cytochrome P450 epoxygenase inhibition (with PPOH) had no effect on responses to ACh or simvastatin in either age group. Inhibition of Ca\(^{2+}\)-activated or ATP-dependent potassium channels (with TEA or glibenclamide, respectively) reduced these arteriolar responses in JA but not WA. These findings suggest that in fully grown microvascular networks, endothelium-dependent arteriolar dilation is mediated by the combined release of endothelial nitric oxide and vasodilator.
prostanoids, and in part through activation of K_{Ca} and K_{ATP} channels. However, during earlier microvascular growth, this dilation is mediated by other factors yet to be identified. This may have significant implications for the regulation of tissue perfusion during microvascular development.

Introduction

There is mounting evidence to suggest that postnatal growth of the microvasculature is accompanied by progressive changes in a number of factors that can influence arteriolar tone and blood flow (Zellers & Vanhoutte, 1991; Olesen et al., 1994; Linderman & Boegehold, 1996, 1999; Nurkiewicz & Boegehold, 2004). During this rapid growth phase, the overall impact of any phenotypic changes in the endothelium or vascular smooth muscle could also be amplified or otherwise modulated by concomitant changes in arteriolar wall structure and/or local hemodynamic forces (Zweifach et al., 1981; Wang & Prewitt, 1991; Linderman & Boegehold, 1999). Profound growth-related changes also occur at the capillary level. For example, in growing skeletal muscle, there is an increase in total tissue blood flow and in the absolute number of capillaries (Aquin et al., 1980; Wang & Prewitt, 1991), but a decrease in capillary density, capillary hematocrit, and individual capillary blood flow (Sarelius et al., 1981). Some of these changes may be necessary for the microvasculature to continually adapt to the changing metabolic demands associated with rapid tissue growth (Berg & Sarelius, 1996).

Growth-related changes in endothelial function were first documented in conduit arteries. Koga and colleagues reported that in rat aorta, endothelial P$_2$ purinergic receptors coupled to the L-arginine/nitric oxide (NO) pathway are nonfunctional at 4-6 weeks of age, but become fully functional by 13 weeks (Koga et al., 1992). This same
group also found that rat aorta undergoes a progressive decline in its overall responsiveness to acetylcholine (ACh) from approximately 4 weeks to 4 months of age (Koga et al., 1989). Not surprisingly, such changes in responsiveness can begin soon after birth. For example, the endothelium-dependent relaxation of small porcine pulmonary arteries to ACh and BK increases from 3 to 10 days of age (Zellers & Vanhoutte, 1991). In some cases, these changes may also be biphasic; BK causes endothelium-dependent contraction of small rat mesenteric arteries until 4 weeks of age, but endothelium-dependent relaxation of these vessels in older animals (DeMey & Gray, 1985).

Less is known about growth-related changes in endothelial function at the microvascular level. Willis and Leffler (2001) have reported that although pial arterioles in newborn and juvenile pigs show similar responsiveness to BK, the predominant mediators of this dilation are endothelium-derived prostanoids in newborns and endothelium-derived NO in juveniles. Previous studies in our laboratory demonstrated that although arteriolar responsiveness to ACh in rat spinotrapezius muscle is similar at 4 and 8 weeks of age, these responses are more sensitive to L-NMMA in the 4 week-old animals, suggesting a greater contribution of NO to the overall dilation (Linderman & Boegehold, 1999). We have also reported that vascular endothelial growth factor (VEGF) and simvastatin elicit a dose-dependent dilation of these arterioles at 8 weeks of age, but not at 4 weeks of age (Nurkiewicz & Boegehold, 2004). These two agonists stimulate endothelial NO release via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, leading to direct phosphorylation and increased activity of eNOS at low cytoplasmic Ca$^{2+}$ levels (Kureishi et al., 2000). Therefore, Ca$^{2+}$-independent
signaling pathways for endothelial NO release may not yet be functional in arterioles of the younger animals.

We undertook the current study to gain further insight into these growth-related changes in the endothelium-dependent control of skeletal muscle arterioles. In this study, arterioles were isolated and studied in vitro to eliminate the possibility of any indirect and potentially complicating effects on arteriolar behavior due to circulating or tissue-derived factors. A clearer understanding of how the endothelium translates biochemical signals into vascular responses during blood vessel growth may ultimately lead to the identification of new therapeutic targets for the endothelial dysfunction associated with cardiovascular diseases that can begin to develop well before adulthood.

Materials and Methods

Animals: All surgical and experimental procedures were approved by the West Virginia University Animal Care and Use Committee. Experiments were performed on isolated gracilis muscle arterioles from male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) of two age groups: 3-4 weeks (“weanlings”) and 6-7 weeks (“juveniles”).

Rats were anesthetized by intraperitoneal injection of sodium pentobarbital (50 mg/kg body weight), with supplemental anesthetic (10% of original dose) administered if needed. The right carotid artery was cannulated with polyethylene tubing (PE-10 for weanlings, PE-50 for juveniles) for measurement of mean arterial pressure, which was assessed before removal of gracilis arteriole.
Preparation of Isolated Vessels: An arteriolar branch of the femoral artery supplying the gracilis muscle was removed, handling only the surrounding connective tissue to minimize vessel stretching or damage. The rat was then sacrificed immediately following vessel removal by intracardiac injection of sodium pentobarbital. The vessel was then placed in warmed physiological salt solution (PSS) equilibrated with 21% O₂, 5% CO₂, and 74% N₂ and having the following composition (mM): 119 NaCl, 4.7 KCl, 1.17 MgSO₄, 1.6 CaCl₂, 1.18 NaH₂PO₄, 24 NaHCO₃, 0.026 EDTA, and 5.5 glucose. After isolation, each vessel was prepared for *in vitro* video microscopy as previously described (Fredricks et al., 1994a). Briefly, the vessel was mounted in a heated (37º C) chamber that allowed its lumen and exterior surface to be perfused and superfused, respectively, with PSS from separate reservoirs. The vessel was cannulated at both ends with glass micropipettes (50- and 70-µm tip diameters for weanling and juvenile vessels, respectively) and secured to the inflow and outflow pipettes using 9-0 nylon suture. Any side branches were ligated with a single strand teased from 6-0 silk suture. The inflow pipette was connected to a reservoir perfusion system for control of intralumenal pressure and flow. The vessel was then extended to its *in situ* length and equilibrated at 80% of the animal’s mean arterial pressure to approximate its *in vivo* perfusion pressure (DeLano et al., 1991).

Vessel diameter was measured using an onscreen video micrometer. Any vessel that did not demonstrate endothelial viability, as judged by responsiveness to 10⁻⁷ M ACh, was not used in the study. Diameter measurements were made under static, zero-flow conditions after a 30-minute equilibration period with continuous perfusion. Resting vascular tone was calculated as \((\Delta D/D_{\text{max}})\cdot 100\), where \(\Delta D\) is the diameter.
increase from rest in response to Ca2+-free PSS (30-40 minute equilibration with Ca2+-free bath solution and no lumenal flow), and \(D_{\text{max}}\) is the maximum diameter measured under these conditions.

Agonists: All agonists were dissolved in PSS unless otherwise noted. ACh (Sigma Chemical, St. Louis, MO), at bath concentrations of \(10^{-5}\), \(10^{-6}\), or \(10^{-7}\) M, and the Ca2+-ionophore A23187 (Sigma) at a bath concentration of \(10^{-9}\) M, were used to assess arteriolar capacity for Ca2+-dependent endothelial NO formation (Ungvari et al., 2001). To produce the desired concentration, 1 milligram A23187 was first dissolved in 50 µl of dimethylsulfoxide (DMSO) and then diluted with Dulbecco’s phosphate-buffered saline (PBS) before addition to the bath.

VEGF (BD Biosciences, Lexington, KY) and simvastatin (Merck Research Laboratories, Rathway, NJ) were used to assess arteriolar capacity for Ca2+-independent endothelial NO formation (Nurkiewicz & Boegehold, 2004). VEGF was dissolved in PBS at a concentration of 5 µg/ml and added directly to the bath. Simvastatin was activated by alkaline lysis (5.25 ml of 0.1 N NaOH per 140 mg, dissolved in 3.5 ml of ETOH) at 50ºC for 2 h. The resulting solution was then diluted to a volume of 35 ml with PBS, and neutralized to pH 7.4 with HCl. One-ml aliquots of this solution were then serially diluted with PBS, producing a final bath concentration of \(10^{-4}\), \(10^{-5}\), \(10^{-6}\), or \(10^{-7}\) M.

To assess intrinsic vascular smooth muscle responsiveness to NO, the endothelium-independent vasodilator sodium nitroprusside (SNP, Sigma) was used at bath concentrations of \(10^{-5}\) M and \(10^{-7}\) M.
Endothelial Denudation: To determine the role of the endothelium in mediating arteriolar responses to ACh and simvastatin, the endothelium was removed by mechanical abrasion (Uluoglu & Zengil, 2003). The pipette tips on both sides of the vessel were gently advanced through the vessel lumen at least three times to ensure elimination of the endothelium. In order to ensure that the endothelial denudation did not adversely affect underlying arteriolar smooth muscle, vasoconstrictor responses to 10^{-5} M phenylephrine and vasodilator responses to 10^{-5} M SNP were assessed before and after the denudation procedure, and only those vessels with unchanged responses to both agonists were included in this study.

Inhibition of NOS, Cyclooxygenase, and Cytochrome P450 Enzymes: To determine the contribution of endothelial NO production to arteriolar dilation, the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) was added to the bath at a concentration of 10^{-4} M (Frisbee et al., 2001). To assess the contribution of vasodilator prostanoids, the cyclooxygenase inhibitor indomethacin was added to the bath at a concentration of 10^{-6} M (Fredricks et al., 1994a). To assess the specific contribution of cytochrome P450 (CP450) epoxygenase-derived metabolites of arachidonic acid, the selective suicide substrate inhibitor 6-(2-propargyloxyphenyl) hexanoic acid (MS-PPOH) was added to the bath at a concentration of 10^{-5} M (Wang et al., 1998). All inhibitors were purchased from Sigma.

Inhibition of Potassium Channels: Since endothelium-derived hyperpolarizing factors (EDHFs) modulate arteriolar tone through activation of potassium channels (Welsh & Segal, 2000; Coleman et al., 2001), the contribution of EDHFs to arteriolar dilation was assessed by using tetraethylammonium (TEA) (Fredricks et al., 1994b;
Lombard et al., 1999; Fallet et al., 2001), or the antidiabetic sulphonylurea, glibenclamide (Lombard et al., 1999). We used a 10⁻³ M bath concentration of TEA to selectively block Ca²⁺-activated K⁺ (K_{Ca}) channels (Nelson & Quayle, 1995), and 10⁻⁶ M glibenclamide to selectively block K_{ATP} channels (Standen et al., 1989).

To independently assess the effectiveness of these inhibitors in blocking potassium channels, we used 1-(2’-hydroxy-5’-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimidazolone (NS 1619), a synthetic BK_{Ca} channel opener, (Fallet et al., 2001) (Olesen et al., 1994), and pinacidil, a nonspecific K_{ATP} channel opener (24). NS 1619 was dissolved in ETOH to a produce a 69 mM stock solution, which was then diluted to a 30 µM bath concentration with PSS (Olesen et al., 1994; Fallet et al., 2001). A 10⁻² M stock solution of pinacidil (in 100% DMSO) was diluted with PSS to produce a final bath concentration of 10⁻⁵ M (Mabanta et al., 2006). At their final bath concentrations, neither the ETOH vehicle nor the DMSO vehicle had any effect on resting arteriolar diameters, indicating that they were not intrinsically vasoactive. After the response to either potassium channel opener was assessed under control conditions, the response was re-assessed after treatment of the vessel with TEA and glibenclamide separately and then in combination.

Data and Statistical Analyses: To account for age-related differences in resting and passive arteriolar diameters (see Table 1), dilator responses were expressed as percent of maximum dilation ([diameter change/(D_{max} – control diameter)] x 100).

All data are presented as mean ± SE. For all analyses, a probability value of p < 0.05 was considered to be statistically significant. Dilation in response to Ca²⁺-free PSS is expressed as percent increase from control diameter. Differences between the means
of individual experimental groups were determined by ANOVA/Newman-Keuls test, or by an unpaired Student’s t-test when two means were compared.

Results

General characteristics of all rats from which vessels were removed are reported in Table 1. Age, body weight, and mean arterial pressure were significantly greater in juvenile rats than in weanling rats. Table 1 also summarizes the general characteristics of all vessels studied. Resting and passive diameters of arterioles from juvenile rats were significantly greater than those of arterioles from weanling rats, whereas the level of spontaneous tone that developed with vessel pressurization was significantly less in juvenile arterioles than in weanling arterioles.

All agonists dilated both weanling and juvenile arterioles, with a slightly smaller dilation to ACh seen in juvenile arterioles (Figure 1). However, there were no consistent differences between age groups in the magnitude of dilation to the other agonists, except for a moderately smaller response of juvenile arterioles to 10^{-7} M simvastatin (Figure 1). Neither L-NAME nor indomethacin treatment, alone or in combination, changed the resting diameters of either juvenile or weanling arterioles (data not shown). For juvenile arterioles, the mean response to a concentration of each agonist that initially caused close to half-maximal dilation was reduced by 60-90% in the presence of L-NAME (Figure 2, top panel). Indomethacin significantly reduced only those responses to A23187 and simvastatin (by 90% and 63%, respectively). In contrast, the responses of weanling arterioles to each of these agonists were unaffected by L-NAME or indomethacin (bottom panel).
The remainder of this study was focused exclusively on arteriolar responses to ACh and simvastatin. As shown in Figure 3, removal of the endothelium completely abolishes the arteriolar dilation to each agonist in both age groups, verifying that these responses are endothelium-dependent. Simultaneous exposure to L-NAME and indomethacin reduced the mean dilator responses of endothelium-intact juvenile arterioles to ACh and simvastatin by ~90% and ~70%, respectively (Figure 4, top panel), but had no effect on the responses of weanling arterioles to these agonists (bottom panel). In contrast, juvenile and weanling arterioles exhibited similar responses to two different concentrations of SNP (Figure 5).

PPOH had no effect on the resting diameters of either juvenile or weanling arterioles (data not shown), and PPOH by itself had no effect on the responses of juvenile or weanling arterioles to either ACh or simvastatin (Figure 6). Furthermore, whereas juvenile arteriolar responses to ACh and simvastatin were greatly reduced by PPOH + L-NAME + indomethacin, the magnitude of this effect was similar to that of L-NAME + indomethacin without PPOH (Figure 4, top panel). The combination of PPOH, L-NAME and indomethacin had no effect on the responses of weanling arterioles to ACh or simvastatin (Figure 6, bottom panel).

Glibenclamide had no effect on the resting diameters of either weanling or juvenile arterioles, whereas 1 mM TEA reduced the resting diameters of both juvenile and weanling arterioles by approximately the same amount (10-12%) (Table 2). The combination of glibenclamide + TEA significantly reduced the resting diameters of both juvenile and weanling arterioles by approximately the same amount as TEA alone. Glibenclamide alone had no significant effect on the dilation of juvenile arterioles to
ACh, but reduced the dilation of these vessels to simvastatin (Figure 7, left). In contrast, TEA alone markedly reduced the responses of these vessels to both agonists (Figure 7, center). Consistent with glibenclamide’s lack of effect on ACh responses, glibenclamide and TEA in combination reduced these responses by the same magnitude as TEA alone (Figure 7, right). Glibenclamide + TEA also abolished juvenile arteriolar responses to simvastatin. Neither glibenclamide nor TEA, alone or in combination, reduced the dilation of weanling arterioles to either agonist (Figure 7, bottom panels). Responses of weanling arterioles to ACh also remained unchanged when bath TEA concentration was increased to 5 mM, although responses to 10^{-5} M simvastatin were reduced (by 44.5 ± 0.4%) under these conditions (data not shown).

Treatment with glibenclamide significantly attenuated responses to the K_{ATP} channel opener pinacidil in both weanling and juvenile arterioles (Table 3). Although treatment with 1mM TEA also attenuated the pinacidil responses of weanling arterioles, it had no effect on these responses in juvenile arterioles. Treatment with both glibenclamide and TEA attenuated pinacidil responses in both groups. Treatment with glibenclamide had no effect on arteriolar responses to the BK_{Ca} channel opener NS 1619 in either group, whereas TEA abolished these responses in both groups (Table 4). As expected, the effect of glibenclamide + TEA on NS 1619-induced dilation (complete abolition) was the same as that of TEA alone in both groups.
Table 1: General characteristics of all rats and vessels used in this study

<table>
<thead>
<tr>
<th>Animal Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>68</td>
<td>52</td>
</tr>
<tr>
<td>Age (days)</td>
<td>25.3 ± 0.3</td>
<td>42.0 ± 0.7 *</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>63.1 ± 1.3</td>
<td>181.4 ± 2.9 *</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>82.3 ± 0.9</td>
<td>100.2 ± 1.4 *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>68</td>
<td>52</td>
</tr>
<tr>
<td>Resting Diameter (µm)</td>
<td>44.1 ± 1.5</td>
<td>61.6 ± 2.1 *</td>
</tr>
<tr>
<td>Passive Diameter (µm)</td>
<td>67.8 ± 1.9</td>
<td>85.6 ± 2.2 *</td>
</tr>
<tr>
<td>Resting Vascular Tone (%)</td>
<td>34.5 ± 1.6</td>
<td>28.0 ± 1.5 *</td>
</tr>
</tbody>
</table>

Values are given as means ± SE. * P<0.05 vs. weanling group.
Table 2: Summary of vessel diameters under control conditions and after treatment with glibenclamide and TEA separately and in combination

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weanlings</td>
<td>39.8±4.0</td>
<td>39.6±3.8</td>
<td>42.3±2.5</td>
<td>38.3±2.6*</td>
</tr>
<tr>
<td>Juveniles</td>
<td>55.3±3.7</td>
<td>55.2±3.9</td>
<td>56.7±3.7</td>
<td>49.8±4.5*</td>
</tr>
</tbody>
</table>

Values are given as means ± SE. * P<0.05 vs. Control.
Table 3: Responses to the K\textsubscript{ATP} channel opener pinacidil

<table>
<thead>
<tr>
<th></th>
<th>Pinacidil [n=5-6]</th>
<th>Pinacidil + Glib [n=4]</th>
<th>Pinacidil + TEA [n=5-6]</th>
<th>Pinacidil + Glib/TEA [n=5-6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weanlings</td>
<td>56.7±9.3</td>
<td>50.2±6.6</td>
<td>43.6±3.5</td>
<td>56.7±9.3</td>
</tr>
<tr>
<td></td>
<td>9.4±3.0*</td>
<td>24.7±7.1*</td>
<td>33.7±6.0</td>
<td>13.0±5.0*</td>
</tr>
<tr>
<td>Juveniles</td>
<td>56.7±5.4</td>
<td>43.6±3.5</td>
<td>56.7±5.4</td>
<td>11.5±1.1*</td>
</tr>
<tr>
<td></td>
<td>14.7±4.5*</td>
<td>33.7±6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responses of arterioles (in % maximum dilation) from weanling and juvenile rats to pinacidil (10-5 M) before and after inhibition of K\textsubscript{ATP} channels with 10-6 M glibenclamide (Glib) or inhibition of K\textsubscript{Ca} channels with 1 mM TEA, separately and in combination. Values are given as means ± SE. * P<0.05 vs. preceding response to pinacidil.
Table 4: Responses to the BK$_{Ca}$ channel opener NS 1619

<table>
<thead>
<tr>
<th></th>
<th>NS 1619</th>
<th>NS 1619 +</th>
<th>NS 1619</th>
<th>NS 1619</th>
<th>NS 1619</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weanlings</td>
<td>30.6±4.4</td>
<td>32.6±6.9</td>
<td>58.0±22.1</td>
<td>3.7±6.4*</td>
<td>30.6±4.4</td>
</tr>
<tr>
<td></td>
<td>3.7±6.4*</td>
<td></td>
<td></td>
<td></td>
<td>-1.5±2.6*</td>
</tr>
<tr>
<td>Juveniles</td>
<td>31.3±2.6</td>
<td>31.9±2.8</td>
<td>32.5±11.5</td>
<td>-15.0±4.7*</td>
<td>31.3±2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9±1.9*</td>
</tr>
</tbody>
</table>

Responses of arterioles (in % maximum dilation) from weanling and juvenile rats to NS 1619 (30 µM) before and after inhibition of K$_{ATP}$ channels with 10$^{-6}$ M glibenclamide (Glib) or inhibition of K$_{Ca}$ channels with 1 mM TEA, separately and in combination. Values are given as means ± SE. * P<0.05 vs. preceding response to NS 1619.
Figure 1: Responses of isolated gracilis muscle arterioles from weanling and juvenile rats to ACh, simvastatin, A23187 and VEGF

n = number of vessels. Values are given as means ± SE. *p<0.05 vs. Weanlings at same agonist concentration.
Figure 2: Responses of arterioles from juvenile and weanling rats to ACh, simvastatin, A23187 and VEGF after either L-NAME or indomethacin treatment.

Data are presented under control conditions and following inhibition of NOS with L-NAME (10^{-4} M) and cyclooxygenase with indomethacin (10^{-6} M). n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 3: Effect of endothelial removal on responses of juvenile and weanling arterioles to ACh and simvastatin

n=number of vessels. Values are given as means ± SE. * p<0.05 vs. vessel with intact endothelium.
Figure 4: Effect of combined NOS and COX inhibition on responses of juvenile and weanling arterioles to ACh and simvastatin

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 5: Responses of arterioles from weanling and juvenile rats to SNP

n = number of vessels. Values are given as means ± SE.
Figure 6: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after inhibition of cytochrome P-450 epoxygenases with PPOH, alone and in combination with NOS + COX inhibition.

![Graph showing dilation responses to ACh and simvastatin in juvenile and weanling rats.](image)

$n =$ number of vessels. Values are given as means ± SE. * $p<0.05$ vs. Control.
Figure 7: Responses of arterioles to ACh and simvastatin before and after K_{ATP} and K_{Ca} channel inhibition

Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after inhibition of K_{ATP} channels with glibenclamide (left panels), inhibition of K_{Ca} channels with 1 mM TEA (center panels), and combined inhibition of K_{ATP} and K_{Ca} channels (right panels). n = number of vessels. Values are given as means ± SE. * p<0.05 vs. control.
Discussion

Growth-related changes in the responsiveness of conduit arteries to endothelium-dependent agonists have been well documented (DeMey & Gray, 1985; Koga et al., 1989; Zellers & Vanhoutte, 1991; Koga et al., 1992). Some investigators have reported varying degrees of such changes in endothelial function in the microcirculation (Nelson & Quayle, 1995; Linderman & Boegehold, 1999; Willis & Leffler, 2001), and the present study was designed to obtain further information on the endothelial factors that could control arteriolar tone at two different stages of juvenile growth. Our findings indicate that for juvenile arterioles, endothelium-dependent dilations to the agonists we used are mediated largely by NO, with vasodilator prostanoids also making an important contribution to these responses in some cases. However, metabolites of CP450 epoxygenase do not appear to contribute to any of the responses we investigated, although the clear role of potassium channels in these responses is consistent with the possibility that another type of EDHF is involved. In contrast, the endothelium-dependent dilation of weanling arterioles does not appear to rely on endothelial NO, prostanoids, CP450 epoxygenase products or any other EDHF.

BK-induced dilation of newborn porcine pial arterioles relies on prostaglandins, but becomes more reliant on NO release during juvenile growth (Willis & Leffler, 2001). Consistent with these observations, cyclooxygenase expression and activity is similar in newborn and adult porcine cerebral microvessels, whereas the adult microvessels have significantly higher NOS expression and activity (Parfenova et al., 2000). From our current observations, it appears that NO, and in some cases cyclooxygenase products, contributes to the endothelium-dependent dilation of gracilis muscle arterioles from
juvenile, but not weanling rats (Figures 2 and 4). The absence of a role for NO in the endothelium-dependent dilation of weanling arterioles could theoretically be due to a lack of NO production, an accelerated breakdown of NO, or a reduced responsiveness of vascular smooth muscle to NO. The latter possibility appears unlikely, in light of the similar responsiveness to SNP in both age groups (Figure 5). This has been a consistent finding in other studies as well (Koga et al., 1989; Zellers & Vanhoutte, 1991; Linderman & Boegehold, 1999; Nurkiewicz & Boegehold, 2004).

In adult animals, there is convincing evidence that endothelium-derived hyperpolarizing factors (EDHF) can contribute to endothelium-dependent arteriolar dilation (Rubanyi, 1993; Mombouli et al., 1996; Shimokawa et al., 1996). EDHF also appears to be an important mediator of vasodilation in the neonatal cerebral microcirculation (Lacza et al., 2002). Although there is no single EDHF, metabolites of arachidonic acid by cytochrome P450 epoxygenase appear to play this role in rat cremaster muscle arterioles (McSherry et al., 2006). To assess the potential role of CP450 4A-derived epoxyeicosatrienoic acids in the dilator responses we studied, the vessels were exposed to PPOH, a selective inhibitor of arachidonate epoxygenation reactions catalyzed by CP450 enzymes. PPOH had no effect on responses to ACh or simvastatin in either juvenile or weanling arterioles (Figure 6). In juvenile arterioles, the reduction of ACh- and simvastatin-induced dilation by L-NAME + indomethacin + PPOH was not different from that caused by L-NAME + indomethacin without PPOH (Figure 4). In weanling arterioles, addition of PPOH + L-NAME + indomethacin did not reduce responses to either ACh or simvastatin. Collectively, these observations indicate that CP450 epoxygenase metabolites do not contribute to the endothelium-dependent
dilation of gracilis muscle arterioles from juvenile or weanling rats, which is consistent with previous findings in gracilis muscle arterioles of older (12 week-old) rats (Ungvari & Koller, 2001).

It is possible that an EDHF derived from some other enzymatic pathway could have contributed to endothelium-dependent dilation in either or both of the age groups we studied. EDHFs generally exert their effects through activation of vascular smooth muscle K⁺ channels (Welsh & Segal, 2000; Coleman et al., 2001). Although some studies indicate that EDHFs only activate KCa channels (Ungvari & Koller, 2001), others have documented that KATP channels can also be activated by EDHFs (Brayden, 1990; Feletou & Vanhoutte, 1996). Therefore, we chose to target both of these channel types as potential mediators of dilation. The KATP channel inhibitor glibenclamide completely abolished simvastatin responses in juvenile arterioles, but had no effect on these responses in weanling arterioles, and had no effect on ACh responses in either juvenile or weanling arterioles (Figure 7). Although inhibition of KCa channels with 1mM TEA significantly reduced responses to both acetylcholine and simvastatin in juvenile arterioles (by 72-79%), it had no effect on these dilations in weanling arterioles. Inhibition of both KATP and KCa channels reduced responses to ACh by 60% - 70% and completely abolished responses to simvastatin in juvenile arterioles, but had no effect on the responses of weanling arterioles. We also used a high dose of TEA (5 mM) to block all KCa channels as well as other potential potassium channels in the weanling arterioles (Korn & Trapani, 2005), but only achieved a slight attenuation of the response to 10⁻⁵ M simvastatin (data not shown). Therefore, although juvenile arterioles apparently rely on
an EDHF to mediate dilations, we were not able to detect a contribution of EDHF to weanling arteriole dilations from our use of these potassium channel antagonists.

The K_{ATP} channel opener pinacidil dilated arterioles from rats of both age groups (Table 3), indicating the presence of recruitable K_{ATP} channels that are capable of modulating vascular smooth muscle tone. However, glibenclamide, at a concentration that inhibits most of this K_{ATP} channel activity, has no effect on the resting tone of arterioles from either group (Table 2). This suggests that if there is some level of K_{ATP} channel activity in these arterioles under our steady-state conditions, it is not sufficient to modulate smooth muscle contractile activity. In contrast, TEA, at a concentration that blocks the effect of a BK_{Ca} channel opener on arteriolar tone (Table 4), reduces the resting diameter of arterioles from both age groups by approximately the same amount (Table 2). This suggests that under resting conditions, there is ongoing arteriolar BK_{Ca} channel activity that is high enough to influence smooth muscle contractile activity, and that the magnitude of this effect does not appreciably change during rapid juvenile growth. This apparent influence of BK_{Ca} channel activity on gracilis muscle arteriolar tone is consistent with previous findings for this vessel (Ungvari & Koller, 2001), but these observations do not extend to arterioles in all skeletal muscles. Other investigators have found that smooth muscle K_{Ca} channel activity is “silent” in arterioles under resting conditions in both hamster and rat cremaster muscle (Jackson, 2005). Our interpretations based on the effects of TEA should be made with some caution; although TEA at a concentration of 1 mM will preferentially block K_{Ca} channels, the relatively broad specificity of this compound allows it to antagonize other types of potassium channels under some conditions (Fatherazi & Cook, 1991). This may have occurred to some
extent in the current study, as evidenced from our finding that 1 mM TEA did have some effect on the response of weanling arterioles to the K_{ATP} channel opener pinacidil (Table 3).

Consistent with the apparently similar influence of BK_{Ca} channels on resting tone in both age groups, the selective BK_{Ca} channel opener NS 1619 was as effective in dilating weanling arterioles as in dilating juvenile arterioles, with these responses being completely abolished by 1mM TEA in both age groups (Table 4). This is not consistent with previous reports that there are changes in K_{Ca} channel activity and density with maturation and growth. Teng et al (Teng et al., 2002) found that stretch-induced activation of K_{Ca} channels exert a greater effect on resting vascular tone in cerebral arteries from adult sheep than in those from fetal sheep. Other investigators, using whole-cell patch-clamp recordings, determined that carotid body K_{Ca} channel expression increases with postnatal age in the rat (Hatton et al., 1997). It is not clear why these differences exist, but perhaps some of the discrepancy can be explained by the use of different preparations and vessel size.

Direct microvascular pressure measurements indicate that in situ, lumenal pressure in the vessels we studied is equal to approximately 80% of mean arterial pressure (DeLano et al., 1991). When equilibrated at this pressure in vitro, arterioles from weanling rats develop a significantly higher level of resting tone than arterioles from juvenile rats (Table 1), suggesting that arteriolar smooth muscle responsiveness to myogenic stimuli could be greater in the younger rats. However, a rigorous assessment of this possibility, which would require a determination of the different levels of myogenic tone developed over a wide range of intravascular pressures in each age group,
is beyond the scope of this study. Nevertheless, it may be germane to point out that over
a wide range of lumenal pressures, the spontaneous tone developed by isolated small
cerebral arteries from newborn mice is far greater than that developed by the same
arteries from 6-8 week-old mice (Geary et al., 2003). However, this is apparently not due
to a greater myogenic responsiveness of smooth muscle in the younger vessels, but rather
to less moderation of this myogenic tone by endothelial factors in these vessels. It is
possible that such a differential effect of the endothelium could also account for the
difference in tone between the two age groups studied here, but this seems unlikely
because we found no evidence for any endothelial modulation of resting tone, even in
mature vessels (i.e., no effect of L-NAME, indomethacin or PPOH on resting arteriolar
diameters).

Using an in vivo exteriorized spinotrapezius muscle preparation, our laboratory
previously found that Ca2+-independent signaling pathways for endothelial NO release do
not appear to be operational in arterioles of weanling rats (Nurkiewicz & Boegehold,
2004). However, in the current study on isolated gracilis muscle arterioles, we found no
systemic age-related differences in responsiveness to agonists that promote either Ca2+-
dependent NO release (acetylcholine, A23187) or Ca2+-independent NO release
(simvastatin, VEGF), with the exception of the slightly smaller dilation of juvenile
arterioles to one concentration of acetylcholine (Figure 1). This discrepancy may be due
to the inherent heterogeneity between vascular beds.

As can be seen from Table 1, the period from 25 to 42 days of age is one of rapid
juvenile growth in the rat, characterized by almost a 3-fold increase in body mass. The
phases of human growth that correspond to these ages are somewhat imprecise because
they depend to some extent on the variables that are being compared. For example, if a comparison is made on the basis of projected weight gain, then our 25-day old and 42-day old rats, with average weights that are respectively 11% and 33% of an expected 550 g adult weight (from comparing Table 1 with Harlan Sprague Dawley growth tables), would roughly correspond to boys at the ages of 2 and 8 years (from CDC growth charts). However, if the comparison is made on the basis of current age relative to an average life expectancy of 728 days for the rat (Harlan Sprague Dawley) vs. 71.5 years for U.S. males (CDC), then these ages in the rat would roughly correspond to boys at 2 and 4 years of age. Finally, if the comparison is made on the basis of current age in relation to mean age of sexual maturity (57 days for rats; 13 years for human males), these ages in the rat would roughly correspond to boys at 6 and 10 years of age.

In conclusion, at any given time, the tone of skeletal muscle arterioles does not reflect a single mechanism, but rather an integrated effect of multiple mechanisms that, to some extent, may compensate for one another should one pathway be abolished. Endothelium-dependent arteriolar dilation in juvenile rats appears to be mediated by the combined release of endothelial nitric oxide and vasodilator prostanoids, with a non-CP450-derived hyperpolarizing factor possibly also contributing to the dilation. However, during earlier microvascular growth, this dilation is mediated by other factors yet to be identified.
References

Coleman HA, Tare M & Parkington HC. (2001). EDHF is not K⁺ but may be due to spread of current from the endothelium in guinea pig arterioles. *The American journal of physiology* 280, H2478-2483.

Teng GQ, Nauli SM, Brayden JE & Pearce WJ. (2002). Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. *Brain research* 133, 81-91.

III. STUDY 2: Hydrogen Peroxide Emerges as a Regulator of Arteriolar Tone in Skeletal Muscle during Juvenile Growth

Used with permission from The Microcirculatory Society (granted June 12, 2007)

Abstract

Endothelium-dependent dilation of skeletal muscle arterioles is mediated by factors that are yet to be identified in young rats, and partly mediated by at least one unidentified hyperpolarizing factor in older juvenile rats. We assessed the possible contribution of hydrogen peroxide (H$_2$O$_2$) to this arteriolar dilation at both of these growth stages. Gracilis muscle arterioles were isolated from rats at ages 24-26 days (weanlings) and 46-48 days (juveniles). Simvastatin and ACh induced endothelium-dependent dilations that were attenuated by catalase in juvenile, but not weanling, arterioles. Juvenile, but not weanling, arterioles also displayed catalase-sensitive 2′,7′ dichlorofluorescein fluorescence that was increased by ACh. In juvenile arterioles, exogenous H$_2$O$_2$ induced constriction at low concentrations and dilation at higher concentrations. In weanling arterioles, H$_2$O$_2$ induced only constriction or had no effect. Responses to low and high concentrations of H$_2$O$_2$ were attenuated by NOS inhibition in juvenile, but not weanling, arterioles, but equally attenuated by endothelial removal in both groups. In intact weanling and juvenile arterioles, the K$^+$ channel inhibitors TEA and glibenclamide abolished constrictions to lower levels of H$_2$O$_2$ and unmasked constrictor responses to higher levels of H$_2$O$_2$. These findings suggest that endogenous H$_2$O$_2$ contributes to endothelium-dependent arteriolar dilation in juvenile rats but not in
younger rats, and that this H$_2$O$_2$ acts in juvenile rats partly by stimulating endothelial NO release and activating K$^+$ channels.

Introduction

Although increased levels of hydrogen peroxide (H$_2$O$_2$) are sometimes responsible for the vascular dysfunction associated with certain disease states (Lum & Roebuck, 2001; Cai, 2005), H$_2$O$_2$ at lower concentrations has also been recognized as an important signaling molecule that can mediate normal vascular function (Kunsch & Medford, 1999; Chen *et al*., 2003). For example, endothelium-derived H$_2$O$_2$ has been identified as one of the factors that mediate arteriolar dilation to some agonists in the cerebral (Sobey *et al*., 1997), mesenteric (Matoba *et al*., 2000) and coronary (Matoba *et al*., 2003, Oltman *et al*., 2003) vascular beds, and there is mounting evidence for a true physiological role of arteriolar H$_2$O$_2$ in local coronary blood flow regulation (Miura *et al*., 2003; Yada *et al*., 2003; Koller & Bagi, 2004). Our laboratory has recently reported that endogenous H$_2$O$_2$ can also contribute to the arteriolar dilation and hyperemia that accompanies skeletal muscle contraction (Marvar & Boegehold, 2006). However, in that study we were not able to determine the extent to which this H$_2$O$_2$ originates from the arteriolar wall versus the surrounding muscle fibers. In fact, there is little information on whether arterioles in skeletal muscle are intrinsically capable of releasing vasoactive amounts of H$_2$O$_2$ in response to any stimulus.

Other studies from our laboratory have documented that postnatal growth of the microvasculature in skeletal muscle is accompanied by progressive changes in a number of factors that can influence arteriolar tone and blood flow (Linderman & Boegehold,
1996; Linderman & Boegehold, 1999; Lum & Roebuck, 2001; Balch Samora et al., 2007). For example, skeletal muscle arterioles from young rats exhibit endothelium-dependent dilation, but these responses are not mediated by either nitric oxide (NO) or cyclooxygenase metabolites, as they are in arterioles from mature rats (Balch Samora et al., 2007). The endothelial factors that mediate this dilation in young arterioles have not been identified, but because H2O2 can serve as an important endothelium-derived vasoactive factor in the cerebral microcirculation of newborn pigs (Lacza et al., 2002), we undertook the current study to determine if H2O2 also mediates endothelium-dependent dilation in skeletal muscle arterioles of young rats. Arterioles from the gracilis muscle of rapidly-growing rats at two different ages were isolated and studied in vitro. A second aim of this study was to determine if there are any age-related differences in the mechanism by which H2O2 can influence arteriolar smooth muscle tone.

Materials and Methods

Animals: All surgical and experimental procedures were approved by the West Virginia University Animal Care and Use Committee. Experiments were performed on gracilis muscle arterioles isolated from male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) at 3-4 weeks of age (“weanlings”) or 6-7 weeks of age (“juveniles”).

Rats were anesthetized by intraperitoneal injection of sodium pentobarbital (50 mg/kg body weight), with supplemental anesthetic (10% of original dose) administered if needed. The right carotid artery was cannulated with polyethylene tubing (PE-10 for
weanlings, PE-50 for juveniles) to measure mean arterial pressure before removal of the gracilis arteriole.

Preparation of Isolated Vessels: An arteriolar branch of the femoral artery supplying the gracilis muscle was removed, handling only the surrounding connective tissue to minimize vessel stretching or damage. The rat was sacrificed by intracardiac injection of sodium pentobarbital immediately after vessel removal. The vessel was placed in warmed physiological salt solution (PSS) equilibrated with 21% O₂, 5% CO₂, and 74% N₂, and having the following composition (mM): 119 NaCl, 4.7 KCl, 1.17 MgSO₄, 1.6 CaCl₂, 1.18 NaH₂PO₄, 24 NaHCO₃, 0.026 EDTA, and 5.5 glucose. After isolation, each vessel was prepared for in vitro video microscopy as previously described (Fredricks, Liu & Lombard, 1994). Briefly, the vessel was mounted in a heated (37º C) chamber that allowed for its lumen and exterior surface to be perfused and superfused, respectively, with PSS from separate reservoirs. The vessel was cannulated at both ends with glass micropipettes (50- and 70-µm tip diameters for weanling and juvenile vessels, respectively) and secured to the inflow and outflow pipettes using 9-0 nylon suture. Any side branches were ligated with a single strand teased from 6-0 silk suture. The inflow pipette was connected to a reservoir perfusion system for control of intralumenal pressure and flow. The vessel was then extended to its in situ length and equilibrated at 80% of the animal’s mean arterial pressure to approximate its normal in vivo perfusion pressure (DeLano et al., 1991).

Vessel diameter was measured using an onscreen video micrometer. Any vessel that did not demonstrate endothelial viability, as judged by at least a 10% dilation in response to 10-7 M acetylcholine (ACh, Sigma Chemical, St. Louis, MO), was not used.
in the study. Using this criterion, approximately 1 in 10 vessels from each age group were discarded. In such cases, we then isolated and studied the identical arteriole from the animal’s contralateral gracilis muscle. As a result, we were able to obtain a viable arteriole from each animal. Diameter measurements were made under static, zero-flow conditions after a 30-minute equilibration period with continuous perfusion. Resting vascular tone was calculated as \(\frac{\Delta D}{D_{\text{max}}} \times 100 \), where \(\Delta D \) is the diameter increase from rest in response to Ca\(^{2+}\)-free PSS (30-40 minute equilibration with Ca\(^{2+}\)-free bath solution and no lumenal flow), and \(D_{\text{max}} \) is the maximum diameter measured under these conditions.

Agonists: ACh, at bath concentrations of 10\(^{-5}\) or 10\(^{-7}\) M, was used to assess arteriolar capacity for Ca\(^{2+}\)-dependent endothelial NO formation (Ungvari et al., 2001). Simvastatin (Merck Research Laboratories, Rathway, NJ) was used to assess arteriolar capacity for Ca\(^{2+}\)-independent endothelial NO formation (Nurkiewicz & Boegehold, 2004). Simvastatin was activated by alkaline lysis (5.25 ml of 0.1 N NaOH per 140 mg, dissolved in 3.5 ml of ETOH) at 50ºC for 2 h. The resulting solution was then diluted to a volume of 35 ml with PBS, and neutralized to pH 7.4 with HCl. One-ml aliquots of this solution were then serially diluted with PBS, producing a final bath concentration of 10\(^{-5}\) or 10\(^{-7}\) M. The two concentrations of each agonist were applied in random order, separated by a washout period to allow the vessel to regain resting tone.

For exogenous H\(_2\)O\(_2\) application, a 3% H\(_2\)O\(_2\) aqueous solution was diluted with PSS to concentrations of 1\times10\(^{-6}\), 5\times10\(^{-6}\), 1\times10\(^{-5}\), 5\times10\(^{-5}\), and 1\times10\(^{-4}\) M, and these increasing concentrations were sequentially added to the bath. After each application, the
H$_2$O$_2$ was washed out of the chamber with PSS, and the vessel was allowed to return to its control diameter before the next H$_2$O$_2$ application.

Assessment of Arteriolar H$_2$O$_2$ Production: 2',7' dichlorodihydrofluorescein diacetate (DCFH-DA) was used to detect intracellular H$_2$O$_2$ production (Miura et al., 2003; Silveira et al., 2003) in arterioles at rest or during exposure to 10$^{-5}$ M ACh, either with or without catalase (Sigma, 80 U/ml, from bovine liver) present in the bath. To ensure maximal scavenging of H$_2$O$_2$, this concentration of catalase was higher than the concentration we have previously found to scavenge all H$_2$O$_2$ formed during arteriolar superoxide (O$_2^-$) generation in vivo (Lenda et al., 2000).

Non-fluorescent DCFH-DA freely enters the cell, where it is de-acetated to DCFH and then oxidized by H$_2$O$_2$ to form fluorescent 2',7' dichlorofluorescein (DCF) (Tarpey & Fridovich, 2001). Under some conditions, DCFH can also be oxidized in vivo by cellular peroxidases, peroxynitrite, or even hypochlorous acid (Tarpey & Fridovich, 2001; Silveira et al., 2003). Therefore, we considered only the portion of DCF fluorescence that could be reduced by catalase as an indicator of H$_2$O$_2$ activity.

After the arteriole was isolated, cannulated and allowed to develop spontaneous tone at 80% of mean arterial pressure, 5x10$^{-5}$ M DCFH-DA was added to the vessel bath under one of the conditions described above. After 20 minutes of exposure to DCFH-DA, the arteriole was quickly removed from the glass micropipettes and transferred to the stage of a fluorescence microscope coupled to a high-sensitivity black and white CCD video camera (Dage-MTI, Michigan City, IN), and then epi-illuminated for 1 second using a mercury lamp and the appropriate excitation and emission filters for detection of DCF fluorescence (460-490 nm excitation, 515-550 nm barrier). In all cases, an
instantaneous image of the vessel was obtained immediately upon opening of the illumination diaphragm, with identical illumination settings and optical parameters used for each vessel. Metamorph software (v. 6.01, Universal Imaging, Downingtown PA) was used to acquire, digitize and store images for subsequent analysis (Zhu et al., 2004). Average fluorescence intensity was determined for the entire vessel wall (V) as well as for the background (B) of each vessel. Fluorescence intensity, based on the standard 0-255 gray scale (Klabunde & Anderson, 2002), was quantified using the following equation:

\[\%I_{MAX} = \frac{V - B}{255 - B} \]

where \(\%I_{MAX} \) is percent of maximum fluorescence intensity, V is the intensity of the vessel wall, and B is the background.

Scavengers and Inhibitors: To assess the role of reactive oxygen species in vessel responses, vessels were pretreated with catalase (see above) or the membrane-permeable superoxide dismutase (SOD) mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol) (Thiemermann, 2003) (Sigma, 10^-4 M), alone or in combination. These agents were added to the bath for 30 minutes before vessels were challenged with agonists. As a control for active catalase, the effects of denatured catalase on arteriolar responses to ACh and H2O2 were also assessed. For denaturization, catalase was boiled for 10 minutes. To determine the contribution of endothelial NO production to vessel responses, the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) was added to the bath at a concentration of 10^-4 M for 20 minutes before agonist challenge (Frisbee et al., 2001).
Since many endothelium-derived relaxing factors reduce arteriolar tone at least in part through activation of smooth muscle potassium (K⁺) channels (Welsh & Segal, 2000; Coleman et al., 2001; Ungvari et al., 2002), the contribution of these channels to arteriolar dilation was assessed by using tetraethylammonium (TEA, Sigma) (Fredricks et al., 1994; Lombard et al., 1999; Fallet et al., 2001), and the antidiabetic sulphonylurea, glibenclamide (Sigma) (Lombard et al., 1999), in both intact and endothelium-denuded vessels (see below). We used a 10⁻³ M bath concentration of TEA to selectively block Ca²⁺-activated K⁺ (K⁺Ca) channels (Nelson & Quayle, 1995), and 10⁻⁶ M glibenclamide to selectively block K⁺ATP channels (Standen et al., 1989).

Endothelial Denudation: To determine the role of the endothelium in mediating arteriolar responses to exogenous H₂O₂, the endothelium was removed in some experiments by mechanical abrasion (Uluoglu & Zengil, 2003). The pipette tip at each end of the vessel was gently advanced through the vessel lumen at least three times to ensure elimination of the endothelium. We have previously verified that this method successfully denudes the endothelium of gracilis muscle arterioles without affecting the underlying smooth muscle (Balch Samora, 2007).

All data are presented as mean ± SE. For all analyses, a probability value of p < 0.05 was considered to be statistically significant. Dilation in response to Ca²⁺-free PSS is expressed as percent increase from control diameter. Differences between the means of individual experimental groups were determined by ANOVA/Newman-Keuls test, or by an unpaired Student’s t-test when two independent means were compared.
Results

General characteristics of all rats from which vessels were removed for functional studies are reported in Table 1. Age, body weight, and mean arterial pressure were significantly greater in juvenile rats than in weanling rats. Table 1 also summarizes the general characteristics of all arterioles utilized for functional studies. Resting and passive diameters of the arterioles from juvenile rats were significantly greater than those of the arterioles from weanling rats, whereas there was no difference between groups in the level of spontaneous tone (resting vascular tone) that developed with vessel pressurization.

There were no differences between age groups in overall arteriolar responsiveness to ACh or simvastatin (Figure 1). Treatment with catalase, tempol, or catalase + tempol had no effect on the resting diameter of either weanling or juvenile arterioles (Table 2). However, catalase dramatically reduced responses to ACh and simvastatin in juvenile arterioles, but not in weanling arterioles (Figure 2, left panels). Denatured catalase had no effect on responses to ACh in either group (Table 3), verifying that the effects of catalase on juvenile arterioles were specifically due to the enzymatic activity of the molecule. Tempol by itself was without effect on responses to ACh or simvastatin in either group. In the juvenile arterioles, combined treatment with both catalase and tempol reduced ACh and simvastatin responses to levels that were not different from those with catalase treatment alone (top right panel). In weanling arterioles, catalase + tempol had no effect on responses to either agonist (bottom right panel).

A total of 26 juvenile arterioles and 22 weanling arterioles were examined after DCFH-DA exposure for determination of relative H$_2$O$_2$ levels. Compared to their respective control levels, 10$^{-5}$ M ACh significantly increased DCF fluorescence in juvenile
arterioles (from 29 ± 4 to 44 ± 4% of maximum intensity), but not in weanling arterioles (Figure 3). Catalase reduced DCF fluorescence under control conditions as well as during ACh exposure in juvenile arterioles, but had no significant effect in weanling arterioles.

Application of exogenous H₂O₂ at concentrations ranging between 1x10⁻⁶ and 1x10⁻⁴ M elicited concentration-dependent responses from juvenile arterioles, with the lower concentrations causing constriction and the higher concentrations causing dilation (Figure 4). In 44% of these vessels, the dilation to higher concentrations of H₂O₂ was preceded by a transient constriction. Weanling arterioles also constricted in response to H₂O₂ at the lower concentrations, and these constrictions were significantly greater than those of the juvenile arterioles. However, whereas juvenile arterioles clearly dilated in response to higher concentrations of H₂O₂, weanling vessels did not.

Treatment with L-NAME had no significant effect on the resting diameters of either juvenile arterioles (51.3 ± 4.4 μm before vs. 48.1 ± 5.7 μm after L-NAME) or weanling arterioles (41.8 ± 3.4 μm vs. 39.3 ± 2.8 μm). However, L-NAME significantly attenuated the constriction of juvenile arterioles to H₂O₂ at the lowest concentration (10⁻⁶ M), and reduced the dilations of these vessels in response to higher concentrations of H₂O₂ (Figure 5, top panel). In contrast, L-NAME had no significant effect on weanling arteriolar responses to H₂O₂ at any concentration (bottom panel). Subsequent addition of catalase to the bath completely abolished the residual L-NAME-insensitive dilation of juvenile arterioles (top panel), and abolished the constriction to 1x10⁻⁶ M and 5x10⁻⁶ M H₂O₂ in weanling arterioles (bottom panel).

Treatment with TEA + glibenclamide significantly reduced the resting diameters of juvenile arterioles (50.9 ± 4.7 μm before vs. 35.9 ± 3.3 μm after treatment) and weanling
arterioles (35.9 ± 3.3 μm vs. 29.7 ± 1.5 μm). When expressed as percent reduction from control diameter, the magnitude of this effect was similar in the two groups (25-29%). For juvenile arterioles, TEA + glibenclamide abolished constrictor responses to 1x10^-6 and 5x10^-6 M H2O2, and converted the dilator responses to higher concentrations of H2O2 into constrictor responses (Figure 6, top panel). For weanling arterioles, TEA + glibenclamide converted the constrictor responses to lower concentrations of H2O2 into dilator responses but led to constrictor responses to H2O2 at higher concentrations (Figure 6, bottom panel). Both weanling and juvenile arterioles constricted to the two higher doses of H2O2 when pretreated with TEA + glibenclamide, with the constriction of weanling arterioles being significantly greater than that of juvenile arterioles.

Endothelial removal tended to reduce the resting diameters of juvenile arterioles (53.7 ± 2.3 μm before vs. 47.3 ± 4.2 μm after de-endothelialization) and weanling arterioles (35.9 ± 2.7 μm vs. 29.1 ± 1.8 μm), but these reductions did not reach statistical significance. However, removal of the endothelium significantly reduced the constrictor responses to 1x10^-6 M and 5x10^-6 M H2O2 in both juvenile and weanling arterioles, as well as constrictor responses to 1x10^-5 M H2O2 in weanling arterioles (Figure 7). The dilation of juvenile arterioles to the higher concentrations of H2O2 (5x10^-5, 1x10^-4 M) was also significantly attenuated by endothelial removal. Treatment of the de-endothelialized vessels with TEA + glibenclamide further reduced the dilator responses to H2O2 in juvenile arterioles, but had no further effect on the constrictor responses in either group.
Table 1: General characteristics of all rats and vessels used for functional studies

<table>
<thead>
<tr>
<th>Animal Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Age (days)</td>
<td>25.2 ± 0.3</td>
<td>46.3 ± 0.8*</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>57.6 ± 1.2</td>
<td>170.4 ± 3.3*</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>79.5 ± 1.9</td>
<td>96.4 ± 2.1*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Resting Diameter (µm)</td>
<td>39.1 ± 1.4</td>
<td>55.9 ± 2.0*</td>
</tr>
<tr>
<td>Passive Diameter (µm)</td>
<td>58.2 ± 1.8</td>
<td>82.6 ± 1.7*</td>
</tr>
<tr>
<td>Resting Vascular Tone (%)</td>
<td>32.2 ± 2.0</td>
<td>32.3 ± 1.9</td>
</tr>
</tbody>
</table>

MAP = mean arterial pressure. Values are given as means ± SE. * P<0.05 vs. weanling group.
Table 2: Summary of resting vessel diameters under control conditions and after treatment with catalase and tempol, separately and in combination

<table>
<thead>
<tr>
<th>Arteriolar Diameter (µm)</th>
<th>Control</th>
<th>Catalase (80 U/ml)</th>
<th>Tempol (10⁻⁴ M)</th>
<th>Control</th>
<th>Catalase + Tempol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weanlings</td>
<td>45.4 ± 3.9</td>
<td>42.7 ± 4.5</td>
<td>45.4 ± 3.9</td>
<td>42.9 ± 4.6</td>
<td>43.2 ± 2.6</td>
</tr>
<tr>
<td>Juveniles</td>
<td>64.0 ± 4.0</td>
<td>62.4 ± 4.8</td>
<td>64.0 ± 4.0</td>
<td>58.2 ± 4.5</td>
<td>63.8 ± 3.8</td>
</tr>
</tbody>
</table>

Values are given as means ± SE.
Table 3: Magnitude of arteriolar diameter changes in response to ACh and H$_2$O$_2$ before and after treatment with denatured catalase

<table>
<thead>
<tr>
<th></th>
<th>Weanlings (n=3)</th>
<th>Juveniles (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Inactivated</td>
</tr>
<tr>
<td>10^{-5} M ACh</td>
<td>32.3 ± 3.6</td>
<td>41.2 ± 7.9</td>
</tr>
<tr>
<td>10^{-6} M H$_2$O$_2$</td>
<td>-22.5 ± 10.4</td>
<td>-22.4 ± 9.4</td>
</tr>
<tr>
<td>10^{-5} M H$_2$O$_2$</td>
<td>-22.4 ± 9.4</td>
<td>-26.6 ± 11.1</td>
</tr>
<tr>
<td>10^{-4} M H$_2$O$_2$</td>
<td>-7.2 ± 3.9</td>
<td>-3.0 ± 3.0</td>
</tr>
</tbody>
</table>

Values are given as means (% maximum dilation) ± SE. n = number of vessels.
Figure 1: Responses of gracilis muscle arterioles from juvenile and weanling rats to ACh and simvastatin

n = number of vessels. Values are given as means ± SE.
Figure 2: Effect of catalase and tempol, alone and in combination, on responses of juvenile and weanling arterioles to ACh and simvastatin

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 3: Effect of ACh, alone or with catalase, on DCF fluorescence intensity

Representative microscopic images showing DCF fluorescence in arterioles exposed to DCFH-DA. Left: juvenile vessels. Right: weanling vessels. Bottom panel: Effect of 10^{-5} M ACh, alone or with catalase, on mean DCF fluorescence intensity in weanling and juvenile arterioles. * p<0.05 vs. Control in same age group. † p<0.05 vs. ACh in same age group. ‡ p<0.05 vs. Control in juvenile arterioles.
Figure 4: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. juvenile arterioles.
Figure 5: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$, before and after L-NAME treatment, alone and in combination with catalase.

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 6: Responses of juvenile and weanling arterioles to exogenous H$_2$O$_2$ before and after inhibition of K$_{Ca}$ channels and K$_{ATP}$ channels

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 7: Effect of endothelial removal on responses of juvenile and weanling arterioles to exogenous H_2O_2 before and after combined treatment with TEA and glibenclamide

$n=$number of vessels. Values are given as means ± SE. * $p<0.05$ vs. Control.
Figure 8: Schematic diagram illustrating possible elements of the signaling pathways through which H$_2$O$_2$ may elicit either arteriolar constriction or arteriolar dilation.

Discussion

Growth-related changes in microvascular endothelial function have been reported by our laboratory and others (Linderman & Boegehold, 1999; Willis & Leffler, 2001; Nurkiewicz & Boegehold, 2004; Balch Samora, 2007). In a recent study (Balch Samora, 2007), we found that skeletal muscle arterioles from mature rats exhibit endothelium-dependent dilations to ACh and simvastatin that are due in part to endothelial NO release, with vasodilator prostanoids and at least one unidentified endothelium-derived hyperpolarizing factor (EDHF) also contributing to these responses in some cases. However, in that study, we also found that the endothelium-dependent dilation of arterioles from younger (weanling) rats is not mediated by any of these factors. Since H$_2$O$_2$ can mediate endothelium-dependent dilation in the cerebral circulation of newborn pigs (Lacza et al., 2002), we undertook the current study in part to determine if H$_2$O$_2$ could be playing an analogous role in the skeletal muscle circulation of weanling rats.

Contribution of H$_2$O$_2$ to endothelium-dependent responses of juvenile arterioles

Exogenous catalase greatly reduced the dilation of juvenile arterioles to both ACh and simvastatin (Figure 2). Furthermore, we found a large, catalase-sensitive component of DCF fluorescence in these vessels at rest (approximately 50% of total fluorescence) that was further increased (to approximately 63% of total fluorescence) when the vessels were challenged with ACh (Figure 3, bottom panel). These findings indicate that endogenous H$_2$O$_2$ contributes to, rather than opposes, the dilation of these vessels to ACh and simvastatin, and suggests that these agonists stimulate a relatively large increase in H$_2$O$_2$ within the arteriolar wall. Furthermore, our recent finding that endothelial removal
completely abolishes both ACh- and simvastatin-induced dilation of these arterioles (Balch Samora, 2007) indicates that this H$_2$O$_2$ is endothelial in origin.

The O$_2^-$ from which this H$_2$O$_2$ is formed could be generated during electron transport within the mitochondria, or from the intracellular activity of various enzymes, including membrane-bound NADPH oxidase, xanthine oxidase, cyclooxygenase, cytochrome P450 monooxygenase or nitric oxide synthase (Cai & Harrison, 2000). Mitochondrial and cytosolic SODs would quickly convert this O$_2^-$ to H$_2$O$_2$, which can diffuse across the plasma membrane and into the extracellular space (Cai & Harrison, 2000; Abid et al., 2001). It is also possible that some H$_2$O$_2$ may be generated extracellularly from O$_2^-$ formed by xanthine oxidase (Li et al., 2001; Seshiah et al., 2002; Coyle et al., 2006). Because it is uncharged, relatively stable and freely diffusible, extracellular H$_2$O$_2$ could diffuse to nearby cells and exert its effect (Griendling & Harrison, 1999; Chen et al., 2003).

Because any agonist-induced increase in H$_2$O$_2$ production must first involve increased O$_2^-$ formation, we initially expected that in the presence of the SOD mimetic tempol, ACh or simvastatin application would trigger a greater amount of H$_2$O$_2$ production and therefore a larger dilation. However, we did not find this to be the case (Figure 2, top panel), which suggests that the intrinsic SOD capacity of these vessels may be high enough to dismutate all of the additional O$_2^-$ that is formed in response to these agonists, such that treatment with tempol would have no additional effect.

The responses of juvenile arterioles to exogenously applied H$_2$O$_2$ were complex, with lower concentrations of H$_2$O$_2$ eliciting constriction and higher concentrations of H$_2$O$_2$ eliciting dilation (Figure 4). The constrictor responses were reduced by both NOS
inhibition (Figure 5, top panel) and endothelial removal (Figure 7, top panel), and completely abolished by inhibition of K\(^+\) channels (Figure 6, top panel). H\(_2\)O\(_2\) can stimulate O\(_2^-\) formation in ECs (Coyle \textit{et al.}, 2006), and O\(_2^-\) readily interacts with endothelial NO to produce peroxynitrite (ONOO\(^-\)), which increases the tone of gracilis muscle arterioles by inhibition of K\(_{Ca}\) channel activity (Frisbee \textit{et al.}, 2002). Our findings are therefore consistent with a role for ONOO\(^-\) as a mediator of these constrictions. However, such a mechanism would be difficult to reconcile with our speculation that SOD activity is normally high in these vessels. Although high SOD activity could explain why tempol does not increase arteriolar responses to ACh or simvastatin, it would reduce the likelihood of there being excess O\(_2^-\) available to interact with NO during exposure to H\(_2\)O\(_2\) at low concentrations. It is possible that the amount of O\(_2^-\) generated during H\(_2\)O\(_2\) application is greater than that generated during ACh or simvastatin application, since H\(_2\)O\(_2\) can activate NAD(P)H oxidase in both endothelium and vascular smooth muscle to produce O\(_2^-\) in a feed-forward mechanism (Li \textit{et al.}, 2001; Seshiah \textit{et al.}, 2002; Coyle \textit{et al.}, 2006). In our juvenile arterioles, 10-6 M H\(_2\)O\(_2\) may therefore increase O\(_2^-\) production to the point that it supersedes the system’s capacity for dismutation of this O\(_2^-\). With the resulting accumulation of O\(_2^-\), there could be significant ONOO\(^-\) formation if local NO levels are sufficiently high. In contrast, neither ACh nor simvastatin, at the concentrations we used, may have triggered a large enough increase in H\(_2\)O\(_2\) to stimulate this accelerated O\(_2^-\) production.

Cseko \textit{et al.} (2004) found that although H\(_2\)O\(_2\)-induced constriction of gracilis muscle arterioles could be completely abolished by the prostaglandin H\(_2\)/thromboxane A\(_2\) (PGH\(_2\)/TxA\(_2\)) receptor antagonist SQ-29548, this H\(_2\)O\(_2\)-induced constriction was only
reduced (not abolished) by endothelial removal. This suggests that H2O2 increases arteriolar tone via the release of constrictor prostanoids from both the endothelium and vascular smooth muscle. The possibility that ONOO− may mediate juvenile arteriolar constriction to 10−6 M H2O2 in our current study does not necessarily conflict with these earlier findings. Cseko and colleagues did not study the effect of SQ-29548 on responses to H2O2 at concentrations less than 3 x 10−5 M, which is 300 times the concentration at which we suggest that H2O2 may lead to ONOO− formation. At 5x10−6 M H2O2, which is closer to the minimum concentration used by Cseko et al., and at still higher concentrations that actually overlap those used by Cseko et al., we found no evidence that would suggest a role for ONOO− in the constriction, raising the possibility that PGH2/TxA2 could be mediating the constriction at these concentrations of H2O2 in our study as well.

The dilation of juvenile arterioles to higher concentrations of H2O2 was also reduced following endothelial removal (Figure 7), implying an important role for endothelium-derived mediators in these responses as well. Endothelial removal has also been shown to reduce H2O2-induced dilation in mouse coronary arterioles (Thengchaisri & Kuo, 2003). However, these findings contrast with a report by Miura et al. that endothelial denudation does not affect H2O2-induced dilation of human coronary arterioles (Miura et al., 2003). Although this may reflect species-specific differences, it could also be due to different study conditions. The coronary arterioles studied by Miura et al. were obtained from patients with various diseases (e.g., coronary artery disease, diabetes mellitus, hypertension), and therefore could have displayed some degree of EC dysfunction, including impairment of NO bioavailability, oxidative stress, and even EC
injury and apoptosis (Simionescu, 2007). It is possible that the mechanism by which H\textsubscript{2}O\textsubscript{2} influences vascular tone may be altered under pathologic conditions.

As shown in the top panel of Figure 5, inhibition of NOS in intact juvenile arterioles reduced the magnitude of H\textsubscript{2}O\textsubscript{2}-induced dilation to a level similar to that achieved by de-endothelialization, which implicates endothelium-derived NO as a major contributor to this response. We also found that blockade of K\textsubscript{Ca} and K\textsubscript{ATP} channels completely abolished the residual endothelium-\textit{independent} portion of this dilation (Figure 7, top panel), suggesting that there is also a direct relaxing effect of H\textsubscript{2}O\textsubscript{2} on vascular smooth muscle in these vessels due to K+ channel activation. This is consistent with previous studies demonstrating that H\textsubscript{2}O\textsubscript{2} can induce smooth muscle hyperpolarization and vasodilation by opening K+ channels, although the main contributing channel type (i.e., K\textsubscript{Ca} vs. K\textsubscript{ATP} channels) can vary with the species or vascular bed studied (Campbell \textit{et al.}, 1996; Filipovic & Reeves, 1997; Miura \textit{et al.}, 1999; Iida & Katusic, 2000; Matoba \textit{et al.}, 2000).

Figure 8 summarizes the signaling events that our current findings suggest could be involved in the H\textsubscript{2}O\textsubscript{2}-induced constriction or dilation of rat gracilis muscle arterioles. Further studies will be necessary to critically test each of these hypothesized pathways, and to identify other cellular and biochemical events that contribute to these responses.

\textbf{Absence of H\textsubscript{2}O\textsubscript{2} in weanling arterioles}

In contrast to our findings in juvenile arterioles, catalase had no effect on the responses of weanling arterioles to ACh or simvastatin (Figure 2, bottom panel), or on DCF fluorescence in these vessels either at rest or during ACh exposure (Figure 3,
Therefore, H$_2$O$_2$ apparently does not contribute to the endothelium-dependent dilation of weanling arterioles to these agonists. In further support of this conclusion, exogenous H$_2$O$_2$ did not induce dilation of weanling arterioles, even at concentrations that are clearly above maximum endogenous H$_2$O$_2$ levels (Figure 4) (Cosentino et al., 1998).

L-NAME had no effect on H$_2$O$_2$-induced constriction of weanling arterioles (Figure 5, bottom panel), which is not surprising in light of earlier findings that these vessels may produce little or no NO (2). Therefore, the mechanism underlying this constriction must be different from that in juvenile arterioles (see above). In the presence of K$^+$ channel inhibitors, weanling arterioles became responsive to higher concentrations of H$_2$O$_2$, showing pronounced constriction (Figure 6, bottom panel). This suggests that a constrictor mechanism not involving K$^+$ channel inhibition is usually masked by an offsetting K$^+$ channel-dependent hyperpolarization of vascular smooth muscle. Curiously, blocking the two main types of K$^+$ channels in the weanling arterioles converted the constrictions to lower concentrations of H$_2$O$_2$ into dilations. The mechanism of this effect is not clear and will require further study.

Overall, our findings suggest that an intact endothelium is required for the full expression of both constrictor and dilator responses to H$_2$O$_2$ in vessels from both age groups. In contrast to our findings in intact weanling arterioles, application of K$^+$ channel blockers to endothelium-denuded weanling arterioles caused no further reduction in responses to H$_2$O$_2$ (Figure 7), implying that endothelium-derived K$^+$ channels are predominantly involved in mediating H$_2$O$_2$ responses in the younger animals.
In conclusion, H_2O_2 apparently contributes to the endothelium-dependent dilation of skeletal muscle arterioles from juvenile rats, but not those from weanling rats. A sizable fraction of the response to H_2O_2 appears to be endothelium-dependent in both weanling and juvenile arterioles, but smooth-muscle derived K^+ channels also contribute to this response in juvenile vessels. Whereas NO plays an important role in contributing to the juvenile arteriolar response to H_2O_2, it is not involved in weanling arteriolar response to H_2O_2.
References

Coleman HA, Tare M, & Parkington HC. (2001). EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. *Am J Physiol Heart Circ Physiol* 280: H2478-2483.

Oltman CL, Kane NL, Miller FJ, Jr., Spector AA, Weintraub NL, & Dellsperger KC.

IV. STUDY 3: Growth-Dependent Changes in the Contribution of Carbon Monoxide to Arteriolar Function

Abstract

Endothelium-dependent dilation of skeletal muscle arterioles is mediated by factors that are yet to be identified in very young rats. We assessed the possible contribution of carbon monoxide (CO) to arteriolar dilation at two growth stages. Gracilis muscle arterioles were isolated from rats at ages 24-26 days (weanlings) and 46-48 days (juveniles). Exogenously applied CO (10^{-6} – 10^{-4} M) in the presence or absence of chromium mesoporphyrin (CrMP) constricted arterioles from both groups. Inhibition of nitric oxide synthase (NOS) with L-NAME or endothelial removal attenuated CO-induced constriction of juvenile arterioles, but these treatments had no effect on the weanling arterioles. Inhibition of K^+ channels with iberiotoxin + glibenclamide abolished the constriction of weanling arterioles, but had no effect on juvenile arterioles. CrMP had no effect on resting tone in either group, whereas the heme precursor δ-aminolevulinic acid (δ-ALA) constricted juvenile arterioles but had no effect on weanling arterioles. CrMP abolished endothelium-dependent dilations of juvenile arterioles to simvastatin and significantly reduced ACh- and simvastatin- induced dilations of weanling arterioles. The expression of heme oxygenase isoforms HO-1 and HO-2 was similar in weanling and juvenile arterioles. These findings suggest that relatively high concentrations of CO can constrict arterioles in both groups, with the primary mechanism being inhibition of endothelium-derived NO in juvenile arterioles but inhibition of K^+ channels in weanling
arterioles. Endogenous CO produced at lower concentrations may mediate endothelium-dependent dilation in both age groups.

Introduction

Studies from our laboratory have documented that postnatal growth of the microvasculature is accompanied by progressive changes in a number of factors that can influence arteriolar tone and blood flow (Linderman & Boegehold, 1996, 1999; Balch Samora *et al.*, 2007a; Balch Samora *et al.*, 2007b). For example, skeletal muscle arterioles from young rats exhibit fully-developed endothelium-dependent dilation, but these responses are not mediated by nitric oxide (NO), cyclooxygenase metabolites, or hydrogen peroxide (H$_2$O$_2$), as they are in arterioles from more mature rats (Balch Samora *et al.*, 2007a; Balch Samora *et al.*, 2007b). The chemical mediator(s) of arteriolar endothelium-dependent dilation in these younger animals have not yet been identified.

Carbon monoxide (CO), a signaling molecule that can be important for the regulation of vascular tone and blood flow under some conditions (Gonzales & Walker, 2002; Fiumana *et al.*, 2003; Kanu *et al.*, 2006), is produced via metabolism of heme by heme oxygenase (HO), with biliverdin and free iron also being generated in the process (Maines, 1997). Two of this enzyme’s three known isoforms, HO-1 and HO-2, have been found in endothelial (Marks *et al.*, 1997; Parfenova *et al.*, 2001) and vascular smooth muscle (Christodoulides *et al.*, 1995; Yet *et al.*, 1997) cells. HO-1 is an inducible isoform; its expression can be dramatically increased by numerous stimuli including hypoxia, hypertension, endotoxic shock, and shear stress (Ewing *et al.*, 1994; Yet *et al.*, 1997). In contrast, HO-2 is constitutively expressed and therefore presumably
responsible for moment-to-moment changes in vascular CO production (Ding et al., 1999).

Carbon monoxide is generally considered to be a vasodilator molecule (Johnson et al., 1999); among other vessel types, CO has been found to relax rabbit and rat aorta (Lin & McGrath, 1988; Furchgott & Jothianand, 1991), dog coronary arteries (Furchgott & Jothianand, 1991), rabbit pulmonary arteries (Steinhorn et al., 1994), rat afferent arterioles (Thorup et al., 1999) and pial arterioles in newborn pigs (Leffler et al., 1999). However, CO can also reduce NO synthesis by inhibiting NOS (White & Marletta, 1992; Pufahl & Marletta, 1993; Matsuoka et al., 1994), and at least one study has demonstrated a constrictor role for CO in vivo (Marks et al., 2003). The effect of CO on arteriolar tone in skeletal muscle is variable. Some investigators have found CO-dependent dilation of gracilis muscle arterioles (Kozma et al., 1997), whereas others have found that both exogenously applied and endogenously formed CO elicits a constriction of these arterioles after pretreatment with phenylephrine (Johnson & Johnson, 2003). Such discrepancies may be due in part to differences in the concentration of CO reached at or within the vessel wall. For example, at high CO levels, NO release from rat afferent arterioles is suppressed, whereas at low CO levels, NO release from these vessels is maximal (Thorup et al., 1999).

Because CO has been identified as an important vasoactive factor in the cerebral microcirculation of newborn pigs (Leffler et al., 1999), we undertook the current study to determine if CO could be playing a similar role as a mediator of endothelium-dependent dilation in skeletal muscle arterioles of young rats. A second aim of this study was to
determine if there is a change in the mechanism(s) by which CO influences arteriolar tone during rapid juvenile growth.

Materials and Methods

Animals: All surgical and experimental procedures were approved by the West Virginia University Animal Care and Use Committee. Experiments were performed on isolated gracilis muscle arterioles from male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) of two age groups: 3-4 weeks (“weanlings”) and 6-7 weeks (“juveniles”).

Rats were anesthetized by intraperitoneal injection of sodium pentobarbital (50 mg/kg body weight), with supplemental anesthetic (10% of original dose) administered if needed. The right carotid artery was cannulated with polyethylene tubing for measurement of mean arterial pressure, which was assessed immediately before removal of the gracilis arteriole.

Preparation of Isolated Vessels: An arteriolar branch of the femoral artery supplying the gracilis muscle was removed, handling only the surrounding connective tissue to minimize vessel stretching or damage. The rat was sacrificed immediately after vessel removal by intracardiac injection of sodium pentobarbital. The excised vessel was placed in warmed physiological salt solution (PSS) equilibrated with 21% O₂, 5% CO₂, and 74% N₂, and having the following composition (mM): 119 NaCl, 4.7 KCl, 1.17 MgSO₄, 1.6 CaCl₂, 1.18 NaH₂PO₄, 24 NaHCO₃, 0.026 EDTA, and 5.5 glucose. After isolation, each vessel was prepared for in vitro video microscopy as previously described (Fredricks *et al.*, 1994). Briefly, the vessel was mounted in a heated (37° C) chamber that
allowed for its lumen and exterior surface to be perfused and superfused, respectively, with PSS from separate reservoirs. The vessel was cannulated at both ends with glass micropipettes (50- and 70-µm tip diameters for weanling and juvenile vessels, respectively) and secured to the inflow and outflow pipettes using 9-0 nylon suture. Any side branches were ligated with a single strand teased from 6-0 silk suture. The inflow pipette was connected to a reservoir perfusion system for control of intralumenal pressure and flow. The vessel was then extended to its in situ length and equilibrated at 80% of the animal’s mean arterial pressure to approximate its normal in vivo perfusion pressure (DeLano et al., 1991). Vessel diameter was measured using an onscreen video micrometer. Any vessel that did not demonstrate endothelial viability, as judged by pronounced dilation to 10^{-7} M acetylcholine (ACh, Sigma Chemical, St. Louis, MO), was not used in this study. Changes in vessel diameter to all agonists and inhibitors (see below) were made under static, zero-flow conditions after a 30-minute equilibration period with continuous perfusion. Resting vascular tone under zero-flow conditions was calculated as $(\Delta D/D_{\text{max}}) \times 100$, where ΔD is the diameter increase from rest in response to Ca$^{2+}$-free PSS (30-40 minute equilibration with Ca$^{2+}$-free bath solution), and D_{max} is the maximum diameter measured under these conditions. **Agonists:** Endothelium-dependent dilation was elicited by application of ACh or simvastatin (Merck Research Laboratories, Rathway, NJ) at bath concentrations of 10^{-5} or 10^{-7} M (Balch Samora et al., 2007a; Balch Samora et al., 2007b). Simvastatin was first activated by alkaline lysis (5.25 ml of 0.1 N NaOH per 140 mg, dissolved in 3.5 ml of ETOH) at 50°C for 2 h. The resulting solution was then diluted to a volume of 35 ml
with PBS, and neutralized to pH 7.4 with HCl. One-ml aliquots of this solution were then serially diluted with PBS for addition to the vessel bath.

Carbon monoxide-saturated solution (C.P. Grade 99.5%, Airgas Mid America) was prepared as described by Johnson and Johnson (2003). Briefly, ice-cold distilled H₂O was vigorously bubbled with CO through a glass gas diffuser for 30 minutes to prepare a 10⁻² M solution. Increasing volumes of this solution were incrementally added to the vessel bath to produce final CO concentrations of 10⁻⁶, 10⁻⁵, or 10⁻⁴ M. After each application, the vessel was allowed to return to its control diameter before the next CO application. Control experiments were performed using ice cold H₂O bubbled with N₂ (Airgas Mid America). To stimulate endogenous CO production through HO activity, the heme precursor δ-aminolevulinic acid (δ-ALA, Frontier Scientific, Logan, UT) was added to the bath at a concentration of 10⁻⁶ M (Andresen et al., 2006).

Inhibitors: Some vessels were pretreated with chromium (III) mesoporphyrin IX chloride (CrMP, Frontier Scientific), a photostable competitive inhibitor of HO (Vreman et al., 1993). Although there are many commercially-made metalloporphyrins that inhibit HO, CrMP was chosen because it is the most selective inhibitor of HO activity (Appleton et al., 1999). A 10⁻² M stock solution of CrMP in 0.1 N NaOH was diluted in the bath to produce a final concentration of 10⁻⁵ M (Andresen et al., 2006). During exogenous CO application, endogenous CO production was also inhibited with CrMP to more directly assess intrinsic vascular responsiveness to CO.

To evaluate possible interactions of exogenous or endogenous CO with the NO system, the NOS inhibitor N⁶-nitro-L-arginine methyl ester (L-NAME, Sigma) was added to the bath at a concentration of 10⁻⁴ M (Frisbee et al., 2001), alone or in the
presence of CrMP. Both CrMP and L-NAME were administered for 20 minutes before vessels were challenged with agonists.

The contribution of potassium (K+) channels to arteriolar responses was assessed by using iberiotoxin (Ibtx, Sigma) (Nelson & Quayle, 1995), and the antidiabetic sulphonylurea, glibenclamide (Glib, Sigma) (Lombard et al., 1999). We used a 10^{-7} M bath concentration of Ibtx to selectively block Ca^{2+}-activated K+ (K_{Ca}) channels (Nelson & Quayle, 1995; Frisbee et al., 2001), and 10^{-6} M glibenclamide to selectively block ATP-sensitive K+ (K_{ATP}) channels (Standen et al., 1989).

Endothelial Denudation: To determine the role of the endothelium in mediating arteriolar responses to exogenous CO, the endothelium was removed in some experiments by mechanical abrasion (Uluoglu & Zengil, 2003). The pipette tip at each end of the vessel was gently advanced and then retracted through the vessel lumen three times to ensure elimination of the endothelium. We have previously verified that this method successfully denudes the endothelium of gracilis muscle arterioles without affecting the underlying smooth muscle (Balch Samora et al., 2007a). To verify that smooth muscle function was intact following denudation in the current experiments, vasoconstrictor responses to 10^{-5} M phenylephrine (Sigma) and vasodilator responses to 10^{-5} M sodium nitroprusside (SNP, Sigma) were assessed before and after the denudation procedure. Only those vessels with unchanged responses to both agonists were included in the final data set.

HO-1 and HO-2 protein measurements: Femoral and gracilis artery/arteriole segments were harvested from weanling and juvenile rats, snap frozen in liquid N₂, and stored at -80°C until analysis. Protein expression was determined by Western blotting, as
described by Liu et al (Liu et al., 2002). Briefly, tissue samples were thawed at room
temperature and lysed in Price Laemmli buffer (Laemmli, 1970), boiled and then
sonicated. Twenty µg of the extracted protein was separated by SDS-PAGE and
electrophoretically transferred to nitrocellulose membranes. The membranes were
incubated for 1 h in PBS containing Tween 20 (0.05%) and nonfat milk (5%). Blots were
incubated with either rabbit anti-HO-1 or anti-HO-2 polyclonal antibody (1:5000
dilution) for 1 h. Membranes were then incubated for 1 h with horseradish peroxidase-
conjugated goat anti-rabbit antibody (1:5,000 dilution). Blots were developed by ECL
and relative protein levels were quantified by scanning densitometry. β-actin levels were
also assessed to verify equal protein loading among lanes.

Statistics: All data are presented as mean ± SE. For all analyses, a probability
value of p < 0.05 was considered to be statistically significant. Dilation in response to
Ca^{2+}-free PSS is expressed as percent increase from control diameter. Differences among
the means of individual experimental groups were determined by ANOVA/Newman-
Keuls test, or by an unpaired Student’s t-test when two independent means were
compared.

Results

General characteristics of all rats from which vessels were removed for functional
studies are reported in Table 1. Age, body weight, and mean arterial pressure were
significantly greater in juvenile rats than in weanling rats. Table 1 also summarizes the
general characteristics of all arterioles utilized for functional studies. Resting and passive
diameters of arterioles from juvenile rats were significantly greater than those of
arterioles from weanling rats. However, the level of spontaneous tone that developed with vessel pressurization was modestly but significantly greater in the weanling arterioles.

CrMP had no effect on resting arteriolar diameters for either age group (Table 2). δ-ALA significantly reduced the resting diameter of juvenile arterioles (by 25 ± 1%), but not weanling arterioles. Exogenous CO caused significant arteriolar constriction in both groups, with weanling arterioles constricting significantly more than juvenile arterioles in response to 10^{-6} M and 10^{-5} M CO (Figure 1). The vehicle alone (equilibrated with N$_2$) had no effect in either group (data not presented). CrMP was without effect on these responses to exogenous CO in either group, indicating that alterations in endogenous CO production were not influencing arteriolar behavior under these conditions (data not shown).

L-NAME treatment reduced the resting diameter of both juvenile arterioles (from 55 ± 5 to 40 ± 5 μm, a 27% average diameter reduction) and weanling arterioles (from 35 ± 4 to 25 ± 3 μm, a 29% average diameter reduction). In contrast, L-NAME had no effect on resting diameters in either group if CrMP was present (44 ± 6 μm before vs. 44 ± 4 μm after L-NAME in juveniles and 30 ± 3 μm before vs. 37 ± 4 μm after L-NAME in weanlings). However, L-NAME abolished the constrictor responses of juvenile arterioles to exogenous CO whether or not CrMP was present (Figure 2, top panels). L-NAME had no effect on weanling arteriole responses to CO at any concentration (Figure 3, top left panel), although it tended to reduce these responses to CO in the presence of CrMP (significantly at 10^{-6} M CO) (Figure 3, top right panel).

Treatment with Ibtx + Glib reduced the resting diameters of both juvenile arterioles (from 51 ± 6 to 35 ± 4 μm, a 31% average diameter reduction) and weanling
arterioles (from 43 ± 2 to 29 ± 3 μm, a 33% average diameter reduction). CrMP did not
modify the effect of Ibtx + Glib on the tone of juvenile arterioles, but completely
abolished this effect on the tone of weanling arterioles (data not shown). For juvenile
arterioles, Ibtx + Glib had no effect on CO-induced constriction, whether or not CrMP
was present (Figure 2, bottom panels). However, for weanling arterioles, Ibtx + Glib
abolished the constrictor responses to exogenous CO at all concentrations, whether or not
CrMP was present (Figure 3, bottom panels).

Endothelial removal tended to reduce the resting diameters of both juvenile
arterioles (55 ± 2 μm before vs. 49 ± 2 μm after de-endothelialization) and weanling
arterioles (26 ± 3 μm vs. 20 ± 2 μm), but these reductions did not reach statistical
significance. Endothelial removal had no effect on CO-induced constriction of weanling
arterioles, but significantly reduced these responses in juvenile arterioles (Figure 4).

Although treatment with CrMP did not affect the dilation of juvenile arterioles to
ACh, it abolished the dilation of these vessels to simvastatin (Figure 5, top panel).
However, CrMP treatment reduced the dilation of weanling arterioles to both ACh and
simvastatin (bottom panel). Addition of L-NAME after CrMP treatment abolished
dilation to ACh and had no further effect on simvastatin responses in juvenile arterioles
(Figure 6, top panel), and had no further effect on weanling arteriolar responses to ACh
or simvastatin (bottom panel). In juvenile arterioles, treatment with Ibtx + Glib following
CrMP abolished responses to ACh and had no further effect on responses to simvastatin
(Figure 7, top panel). In weanling arterioles, treatment with Ibtx + Glib following CrMP
had no effect on ACh responses, but reduced the dilation to 10^{-5} M simvastatin (bottom
panel).
Western blot analysis of femoral artery/gracilis arteriole homogenates revealed no difference in either HO-1 or HO-2 protein expression between weanling and juvenile rats (Figure 8).
Table 1: General characteristics of all rats and vessels used for functional studies

<table>
<thead>
<tr>
<th>Animal Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>Age (days)</td>
<td>25.3 ± 0.3</td>
<td>43.8 ± 0.5*</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>62 ± 1</td>
<td>168 ± 2 *</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>76 ± 1</td>
<td>97 ± 2 *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>Resting Diameter (µm)</td>
<td>34 ± 1</td>
<td>51 ± 2 *</td>
</tr>
<tr>
<td>Passive Diameter (µm)</td>
<td>57 ± 1</td>
<td>79 ± 2 *</td>
</tr>
<tr>
<td>Resting Vascular Tone (%)</td>
<td>41 ± 2</td>
<td>35 ± 2 *</td>
</tr>
</tbody>
</table>

MAP = mean arterial pressure. Values are given as means ± SE. * P<0.05 vs. weanling group.
Table 2: Summary of resting arteriolar diameters under control conditions and after treatment with CrMP or δ-ALA

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Control</th>
<th>CrMP (10^{-5} M)</th>
<th>n</th>
<th>Control</th>
<th>δ-ALA (10^{-6} M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juveniles</td>
<td>16</td>
<td>47 ± 3</td>
<td>47 ± 3</td>
<td>10</td>
<td>52 ± 3</td>
<td>39 ± 6 *</td>
</tr>
<tr>
<td>Weanlings</td>
<td>17</td>
<td>32 ± 2</td>
<td>37 ± 3</td>
<td>7</td>
<td>35 ± 3</td>
<td>38 ± 4</td>
</tr>
</tbody>
</table>

Values are given as means ± SE. * P<0.05 vs. Control.
Figure 1: Responses of gracilis muscle arterioles from juvenile and weanling rats to increasing concentrations of exogenous CO

![Graph showing responses of gracilis muscle arterioles from juvenile and weanling rats to increasing concentrations of exogenous CO.](image)

- Diameter Change (% From Control)
- Juvenile Arterioles (n=42)
- Weanling Arterioles (n=40)

Carbon Monoxide: 10^{-6} M, 10^{-5} M, 10^{-4} M

$\text{n} = \text{number of vessels. Values are given as means ± SE. * p<0.05 vs. Juvenile response.}$
Figure 2: Responses of arterioles from juvenile rats to exogenous CO alone or in the presence of CrMP, L-NAME, Ibtx/Glib or combined treatments.

Responses of arterioles from juvenile rats to exogenous carbon monoxide before and after NOS inhibition with Nω-nitro-L-arginine methyl ester (L-NAME) alone (top left panel) or in the presence of CrMP (top right panel), and before and after inhibition of KCa and KATP channels with iberiotoxin (Ibtx) + glibenclamide (Glib) alone (bottom left panel) or in the presence of CrMP (bottom right panel). n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Responses of arterioles from weanling rats to exogenous CO alone or in the presence of CrMP, L-NAME, Ibtx/Glib or combined treatments

Responses of arterioles from weanling rats to exogenous carbon monoxide before and after NOS inhibition with Nω-nitro-L-arginine methyl ester (L-NAME) alone (top left panel) or in the presence of CrMP (top right panel), and before and after inhibition of KCa and KATP channels with iberiotoxin (Ibtx) + glibenclamide (Glib) alone (bottom left panel) or in the presence of CrMP (bottom right panel). n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 4: Effect of endothelial removal on responses of juvenile and weanling arterioles to exogenous CO

Juvenile Arterioles (n=8)

Weanling Arterioles (n=7)

n=number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 5: Effect of CrMP on responses of juvenile and weanling arterioles to ACh and simvastatin

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 6: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after treatment with CrMP and L-NAME

- **Juvenile Arterioles (n=8)**
- **Weanling Arterioles (n=9)**

Diameter Change (% From Control)

10^{-7} M 10^{-5} M 10^{-7} M 10^{-5} M

<table>
<thead>
<tr>
<th>Acetylcholine</th>
<th>Simvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7} M</td>
<td>10^{-5} M</td>
</tr>
</tbody>
</table>

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 7: Responses of arterioles from juvenile and weanling rats to ACh and simvastatin before and after treatment with CrMP and Ibtx-Glib

n = number of vessels. Values are given as means ± SE. * p<0.05 vs. Control.
Figure 8: Assessment of heme oxygenase (HO)-1 and -2 protein expression by Western blot in weanling and juvenile femoral artery/gracilis arteriole segments
Discussion

Growth-related changes in microvascular endothelial function have been reported by our laboratory and others (Nelson & Quayle, 1995; Linderman & Boegehold, 1999; Willis & Leffler, 2001; Balch Samora et al., 2007a). In our recent investigations on gracilis muscle arterioles (Balch Samora et al., 2007a, 2007b), we ruled out NO, prostanoids, cytochrome P-450 metabolites and H$_2$O$_2$ as possible mediators of endothelium-dependent dilation in weanling rats. Since CO has been found to mediate endothelium-dependent dilation of cerebral arterioles in newborn pigs (Leffler et al., 1999), we undertook the current study in part to determine if CO could be playing an analogous role in the skeletal muscle circulation of weanling rats.

Juvenile Response

The HO inhibitor CrMP had no effect on the resting diameters of juvenile arterioles (Table 2), suggesting that under the conditions of our study, basal CO release in these vessels is insufficient to influence resting smooth muscle tone. This is similar to previous findings in rat tail artery (Wang et al., 1997), aorta (Kozma et al., 1999) and femoral artery (Kozma et al., 1999), whereas treatment with CrMP has been found to dilate newborn pig pial arterioles (Leffler et al., 1999). Still others have demonstrated that CrMP promotes constriction of gracilis muscle arterioles in the presence of L-NAME (Kozma et al., 1997; Kozma et al., 1999). These variable effects may reflect differences among vascular beds or species, but may also be related to some nonspecific effects of metalloporphyrin HO inhibitors, such as NOS inhibition or activation (Luo & Vincent, 1994; Chakder et al., 1996; Grundemar & Ny, 1997; Appleton et al., 1999).
Treatment with L-NAME reduced the diameter of juvenile arterioles under normal resting conditions, but not after CrMP treatment. This suggests that some level of HO activity must be present for there to be an influence of basally-released NO on resting tone. This confirms findings in other vessel types (Foresti et al., 2002), but the exact mechanism of this synergistic effect is not known. CO is not a required cofactor or co-substrate for NOS, but the smooth muscle signaling pathways through which CO and NO act appear to share many common elements, including cGMP activation (Foresti et al., 2002). It is possible that basally-released CO, even at concentrations too low to exert a direct effect on resting vascular tone (see above), could act to “prime” the NO signaling pathway in vascular smooth muscle, thereby increasing smooth muscle sensitivity to basally-released NO. Further studies are required to critically test this hypothesis.

The heme precursor δ-ALA increases arteriolar CO production in a dose-dependent manner (Leffler et al., 2003) and our finding that 1μM δ-ALA reduces juvenile arteriole diameters by ~25% (Table 2) demonstrates that this increase in endogenous CO production triggers an increase in vascular tone. δ-ALA-induced constriction was previously reported in a study on much larger arterioles from rat gracilis muscle (Johnson & Johnson, 2003), although that effect was more modest (a constriction of ~7% in response to 80μM δ-ALA). The difference in responsiveness to δ-ALA between the two studies may reflect a difference in HO activity or substrate availability between different branch orders within the arteriolar network. In the current study, exogenous CO at concentrations from 10^{-6} to 10^{-4} M also caused arteriolar constriction (Figure 1), which is consistent with the earlier study on larger gracilis muscle arterioles (Johnson & Johnson, 2003).
We observed constriction of gracilis muscle arterioles taken from juvenile rats in response to exogenous CO, ranging from $10^{-6} - 10^{-4}$ M (Figure 1). In phenylephrine-pretreated rat gracilis arterioles, exogenous CO in the range of $10^{-6} - 10^{-3}$ M also produces vasoconstriction (Johnson & Johnson, 2003), but in an initial rapid communication, Kozma et al (1997) reported that exogenous CO elicits the dilation of gracilis muscle arterioles pretreated with L-NAME in the presence and absence of CrMP. Two years later, this same group reported that exogenous CO (10^{-4} M) does not produce dilation of L-NAME pretreated arterioles not previously exposed to CrMP (Kozma et al., 1999).

The reasons for these conflicting findings are not readily apparent. In our juvenile arterioles, exogenous CO promotes vasoconstriction that is sensitive to L-NAME at the highest CO concentration (Figure 2), which agrees with findings by Johnson and Johnson (2003). There is mounting evidence that relatively high concentrations of CO induce constriction by inhibiting NO release (White & Marletta, 1992; Puhfal & Marletta, 1993; Thorup et al., 1999; Foresti et al., 2002; Johnson & Johnson, 200). Our finding that CO-induced constriction in juvenile arterioles is abolished by L-NAME (Figure 2, top panels) and dramatically reduced after our endothelial denudation procedure (Figure 4, top panel) is consistent with this mechanism. A comparison of the two data sets reveals that endothelial denudation was actually less effective than L-NAME in reducing arteriolar responses to 10^{-5} M and 10^{-4} M CO. This unexpected finding may indicate that some of the NO inhibited by CO is of smooth muscle origin, or it may simply be due to incomplete removal of the endothelium. However, the latter possibility appears less
likely given that this denudation procedure completely abolished responses to ACh in these vessels.

Simultaneous blockade of K\textsubscript{Ca} and K\textsubscript{ATP} channels had no effect on CO-induced constriction of juvenile arterioles (Figure 2, bottom panels), indicating that a change in K+ channel activity normally does not mediate or attenuate CO-induced constriction in juvenile arterioles.

Whereas CrMP had no effect on the ACh-induced dilation of these vessels, it completely abolished dilator responses to simvastatin (Figure 5, top panel). This result is somewhat intriguing as it suggests that endogenous CO may be involved in this endothelium-dependent dilation, whereas, as described above, increasing HO substrate availability (with δ-ALA) or exogenously applying CO produced arteriolar constriction. Such divergent results may be due to differences in the actual periarteriolar CO achieved by these experimental procedures. In isolated rat renal afferent arterioles, CO at lower concentrations (0.01-0.1 μM) triggers maximal NO release, whereas CO at higher concentrations suppresses NO release (Thorup et al., 1999). In the rat gracilis muscle arterioles studied here, perhaps simvastatin induces significantly less CO production than δ-ALA treatment, and leads to arteriolar wall CO levels that are less than that achieved with exogenous CO in the range of 10-6 - 10-4 M. If this is correct, than the constriction of these vessels to exogenous CO in the range of 10-6 - 10-4 M (Figure 1) may reflect a relatively large increase in arteriolar wall CO levels, similar to or greater than that triggered by δ-ALA. Furthermore, because CrMP completely abolishes the dilation to simvastatin (Figure 5, top), CrMP may have had some non-specific effects in this study, as we previously demonstrated that part of the simvastatin response in these vessels is
due to endothelial NO release (Balch Samora et al., 2007a). In fact, some of the demonstrated effects of metalloporphyrin HO inhibitors include either NOS inhibition (Luo & Vincent, 1994) or activation (Chakder et al., 1996), or inhibition of sGC (Grundemar & Ny, 1997).

Combined treatment with CrMP + L-NAME abolished the dilation of juvenile arterioles to ACh as well as simvastatin (Figure 6, top panel). We previously demonstrated that these responses are entirely endothelium-dependent, and that L-NAME treatment alone reduces juvenile arteriole responses to ACh and simvastatin by ~90% and ~60%, respectively (Balch Samora et al., 2007a). Our current findings, taken in context of these previous findings, suggest that although simvastatin releases endothelium-derived CO in addition to NO, ACh does not.

Combined K⁺ channel inhibition abolished ACh-induced dilations in the presence of CrMP (Figure 7, top panel). Because CrMP alone abolished simvastatin dilations (Figure 5), combined K⁺ inhibition after CrMP treatment had no further effect. We previously demonstrated that inhibition of both K_{ATP} and K_{Ca} channels significantly reduced responses to ACh (by 60% - 70%) and completely abolished responses to simvastatin in juvenile arterioles (Balch Samora et al., 2007a). Combined treatment with CrMP abolished the residual dilation to ACh, which is surprising since CrMP treatment alone had no effect on ACh-induced dilation. This finding may be attributable to some nonspecific effect of CrMP in these experiments.
Weanling Response

As with juvenile arterioles, CrMP treatment had no effect on the resting tone of weanling arterioles (Table 2), suggesting that CO does not influence basal tone in the arterioles from younger rats. However, unlike juvenile arterioles, the tone of weanling arterioles was unaffected by δ-ALA. This suggests that even under conditions that lead to increased substrate for or activation of HO, CO is not produced in a sufficient amount to alter the basal tone of arterioles at this earlier stage of growth.

Leffler and colleagues (1999) have reported that exogenous CO dilates cerebral arterioles of newborn pigs in vivo. In contrast, we found that exogenous CO constricts the weanling arterioles studied here (Figure 1). Although this could reflect normal differences between species or vascular beds, it is also possible that, as discussed above, differences in CO concentration reached within the arteriolar wall could explain these divergent observations. Whereas the CO-induced dilations in newborn pigs occurred at superfusate concentrations ranging from 10^{-11} to 10^{-7} M, with maximal dilation at 10^{-9} M (Leffler et al., 1999), we observed constrictions to CO at bath concentrations between 10^{-6} and 10^{-4} M. Although there is limited information regarding CO levels in vivo, tissue contents of CO are reported to be 1-50 pmol/mg fresh weight (Vreman et al., 2000), which others have calculated to be approximately $1 \times 10^{-6} – 5 \times 10^{-5}$ M (Johnson & Johnson, 2003). As discussed above, CO can either dilate or constrict arterioles, depending on its effective concentration (Thorup et al., 1999).

Although weanling arterioles did not dilate in response to exogenous CO, we found a reduced dilator response to ACh and simvastatin in the presence of CrMP (Figure 5, bottom panel), suggesting that a portion of this endothelium-dependent dilation is due
to endogenous CO release. In these experiments, endogenously produced CO within the arteriolar wall may have been within the range of concentrations reached by Leffler et al., which could produce dilation, rather than the higher concentrations we applied exogenously (10^{-6} to 10^{-4} M), which resulted in constriction.

In contrast to juvenile arterioles, L-NAME did not affect CO-induced constriction of weanling arterioles (Figure 3, top panels), suggesting that a decrease in NO production does not mediate these responses. Although L-NAME did reduce the resting diameter of the weanling arterioles, this did not happen after CrMP treatment, which was similar to our findings in juvenile arterioles and suggests that some level of HO activity is also required for basal NO to modulate resting arteriolar tone at this earlier stage of growth.

In contrast to our findings in the juvenile arterioles, combined inhibition of K$^+$ channels with iberiotoxin and glibenclamide abolished CO-induced constriction of weanling arterioles, both alone and in the presence of CrMP (Figure 3, bottom panels). This suggests that CO constricts weanling arterioles through K$^+$ channel inhibition and depolarization of the vascular smooth muscle (VSM). Endothelial denudation did not affect CO-induced constriction of these vessels (Figure 4, bottom panel), which is also consistent with inhibition of smooth muscle K$^+$ channel activity being the predominant mechanism of CO-induced arteriolar constriction at this age.

HO-1 and HO-2 have previously been identified in both the vascular smooth muscle and endothelium of gracilis muscle arterioles (Johnson et al., 2002). However, we found no differences between weanling and juvenile rats in femoral artery/gracilis arteriole HO-1 or HO-2 protein levels (Figure 8). This suggests that changes in the regulation of HO activity, rather than its expression, underlie the differences we found.
between weanling and juvenile arterioles. Leffler’s group found that regulation of CO production in the pig cerebral circulation can involve changes in both heme availability and HO-2 catalytic activity (Leffler et al., 2003).

Conclusion

In summary, the role of CO in regulating arteriolar tone appears to change during postnatal growth. Exogenously applied CO in a range of $10^{-6} – 10^{-4}$ M results in arteriolar constriction mediated by K^+ channel inhibition and vascular smooth muscle depolarization in weanling vessels, but by NO inhibition in juvenile vessels. Endogenously produced CO mediates the endothelium-dependent dilation of arterioles from both age groups, but this role for CO may be more widespread in weanling arterioles. Such differences underscore the importance of further studies to define the effect of maturation on microvascular function to more fully understand how tissue demands can be met throughout postnatal growth.
References

V. STUDY 4: Increased Myogenic Responsiveness of Skeletal Muscle Arterioles with Juvenile Growth

Abstract

Previous studies from this laboratory suggest that during maturation, rapid microvascular growth is accompanied by changes in some of the mechanisms responsible for regulation of tissue blood flow. To further define these changes, we studied isolated gracilis muscle arterioles from Sprague Dawley rats at approximately 27 days of age ("weanlings") and approximately 42 days of age ("juveniles") to test the hypothesis that myogenic mechanisms for the control of arteriolar tone are altered with growth. When studied at their respective in vivo pressures, the myogenic index (instantaneous slope of the active pressure-diameter curve) for juvenile arterioles was greater than that for weanling arterioles. Endothelial denudation, or PGH₂/TXA₂ receptor antagonism (SQ-29548) without denudation, significantly reduced the myogenic responsiveness of juvenile arterioles over a wide range of pressures, but had no consistent effects on the myogenic responsiveness of weanling arterioles. Inhibition of heme oxygenase with chromium (III) mesoporphyrin IX chloride had no effect on the myogenic activity of arterioles from either group. These findings suggest that arteriolar growth during juvenile maturation is accompanied by an increase in myogenic responsiveness, possibly because endothelium-derived PGH₂ or TXA₂ assumes a role in reinforcing myogenic activity over this period. The results of this study further support the idea that alterations in the mechanisms of vascular tone regulation occur with growth and maturation, and that
these changes may have significant implications for the regulation of tissue perfusion during microvascular development.

Introduction

Postnatal growth of the microvasculature in skeletal muscle is accompanied by progressive changes in vessel structure, in lumenal pressure, flow and shear stress, and in other factors that can influence either resting arteriolar tone or the capacity for acute adjustments in this tone (Aquin et al., 1980; Sarelius et al., 1981; Zweifach et al., 1981; Wang & Prewitt, 1991; Linderman & Boegehold, 1996, 1998, 1999). This is not surprising, since tissue growth during this period is associated with changing metabolic demands that should require corresponding changes in the gain of local blood flow control mechanisms (Hudlicka, 1985; Kelly et al., 1991; Krijgsveld et al., 2001).

The myogenic behavior of resistance vessels contributes importantly to local blood flow regulation (Davis, 1993; Davis & Hill, 1999). In most vascular beds, this myogenic activity is the direct result of stretch-dependent changes in smooth muscle contractility, although endothelium-derived factors can modulate the magnitude of this activity (Harder, 1987; Katusic et al., 1987; Rubanyi, 1988; Kuo et al., 1991). We have consistently found that the specific factors that mediate endothelium-dependent control of arteriolar tone can change during juvenile growth (Linderman & Boegehold, 1998, 1999; Nurkiewicz & Boegehold, 2004; Balch Samora et al., 2007a; Balch Samora et al., 2007b), but the impact of such changes on arteriolar myogenic behavior has not been investigated. In addition, there may be changes in the intrinsic responsiveness of vascular smooth muscle to stretch during rapid network growth. In a previous study, we
found that when pressurized to their respective in vivo pressures, isolated gracilis muscle arterioles from weanling rats develop a significantly higher level of spontaneous tone than arterioles from juvenile rats (Balch Samora et al., 2007a), suggesting that arteriolar smooth muscle responsiveness to myogenic stimuli could be greater in the younger rats. We undertook the current study to more directly investigate the possibility that alterations in myogenic responsiveness, or in the ability to modulate this responsiveness, may occur during microvascular network growth in skeletal muscle arterioles.

Materials and Methods

Animals: All surgical and experimental procedures were approved by the West Virginia University Animal Care and Use Committee. Experiments were performed on isolated gracilis muscle arterioles from male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) of two age groups: 3-4 weeks (“weanlings”) and 6-7 weeks (“juveniles”).

Rats were anesthetized by intraperitoneal injection of sodium pentobarbital (50 mg/kg body weight), with supplemental anesthetic (10% of original dose) administered if needed. The right carotid artery was cannulated with polyethylene tubing for measurement of mean arterial pressure, which was assessed immediately before removal of the gracilis supply arteriole.

Preparation of Isolated Vessels: An arteriolar branch of the femoral artery supplying the gracilis muscle was removed, handling only the surrounding connective tissue to minimize vessel stretching or damage. The rat was then sacrificed by intracardiac injection of sodium pentobarbital. The vessel was placed in warmed physiological salt solution (PSS) equilibrated with 21% O₂, 5% CO₂, and 74% N₂ and
having the following composition (mM): 119 NaCl, 4.7 KCl, 1.17 MgSO₄, 1.6 CaCl₂, 1.18 NaH₂PO₄, 24 NaHCO₃, 0.026 EDTA, and 5.5 glucose. After isolation, each vessel was prepared for in vitro video microscopy as previously described (Fredricks et al., 1994). Briefly, the vessel was mounted in a heated (37º C) chamber that allowed its lumen and exterior surface to be perfused and superfused, respectively, with PSS from separate reservoirs. The vessel was cannulated at both ends with glass micropipettes (50- and 70-µm tip diameters for weanling and juvenile vessels, respectively) and secured to the inflow and outflow pipettes using 9-0 nylon suture. Any side branches were ligated with a single strand teased from 6-0 silk suture. The inflow pipette was connected to a reservoir perfusion system for control of intralumenal pressure and flow. The vessel was then extended to its in situ length and equilibrated at 80% of the animal’s mean arterial pressure to approximate its in vivo perfusion pressure (DeLano et al., 1991).

Experimental Protocols: Vessel diameter was measured using an onscreen video micrometer. During equilibration, all vessels developed spontaneous tone. Any vessel that did not demonstrate endothelial viability, as judged by pronounced dilation to 10⁻⁷ M acetylcholine (ACh, Sigma Chemical, St. Louis, MO), was not used in the study. Changes in vessel diameter to all agonists and inhibitors were made under static, zero-flow conditions after a 30-minute equilibration period with continuous perfusion.

To evaluate the myogenic responsiveness of each arteriole, the perfusate outflow line from the vessel was clamped and the height of perfusion reservoir was increased or decreased to vary intraluminal pressure, in 20-mmHg steps, between 40 and 140 mmHg. Steady-state vessel diameter was measured before and then 3-5 minutes after each pressure change. The order in which the different pressure steps were applied was as follows: 80→100→120→140→60→40 mmHg. After the active arteriolar diameter
responses to each pressure change were measured, the superfusate was replaced with Ca\(^{2+}\)-free PSS, and, after full vessel relaxation, passive diameter was determined at each of the pressure steps previously used.

Endothelial Denudation: To determine the role of the vascular endothelium in modulating myogenic activity, the endothelium was removed in some experiments by mechanical abrasion (Uluoglu & Zengil, 2003). To accomplish this, the pipette tip at each end of the vessel was gently advanced and then withdrawn through the vessel lumen at least three times to ensure elimination of the endothelium. After vessel responses to each step change in intralumenal pressure were determined under control conditions, the endothelium was removed and responses to each pressure step were re-evaluated. We have previously verified that this method successfully denudes the endothelium of gracilis muscle arterioles without affecting the underlying smooth muscle (Balch Samora et al., 2007a). To verify that smooth muscle function was intact following denudation in the current experiments, vasoconstrictor responses to 10\(^{-5}\) M phenylephrine (Sigma) and vasodilator responses to 10\(^{-5}\) M sodium nitroprusside (SNP, Sigma) were assessed before and after the denudation procedure. Only those vessels with unchanged responses to both agonists were included in the final data set.

Inhibitors and Agonists: All chemicals were purchased from Sigma unless otherwise specified. Because previous investigations have documented a role for constrictor prostanoids in modulating the myogenic activity of skeletal muscle arterioles (Hill et al., 1990; Huang et al., 1993; Huang & Koller, 1997; Ungvari & Koller, 2000), pressure-diameter relationships in some vessels were investigated under control conditions and then in the presence of the prostaglandin H\(_2\)/thromboxane A\(_2\) (PGH\(_2\)/TxA\(_2\)) receptor antagonist SQ-29548 (10\(^{-6}\) M) (Cseko et al., 2004). Since
endogenously produced carbon monoxide (CO) can also modulate the myogenic activity in isolated gracilis arterioles (Zhang et al., 2001), pressure-diameter relationships in other vessels were assessed before and after exposure to the selective heme oxygenase (HO) inhibitor chromium (III) mesoporphyrin IX chloride (CrMP, Frontier Scientific). For these experiments, a 10^{-2} M stock solution of CrMP in 0.1 N NaOH was diluted in the bath to produce a final concentration of 10^{-5} M (Andresen et al., 2006). Vessels were incubated with either SQ-29548 or CrMP for 20 minutes before reassessing pressure-diameter curves.

Data and Statistical Analysis: The myogenic index (MI), which is an indicator of the relative slope of the active pressure-diameter relationship for an arteriole at a given pressure, was determined using the following equation: $MI = 100\cdot[(r_f - r_i)/r_i]/(P_f - P_i)$, where r_f is the final radius, r_i is the initial radius, P_f is the final intraluminal pressure and P_i is initial intraluminal pressure. The more powerful the myogenic responsiveness, the more negative the MI.

All data are presented as mean ± SE. For all analyses, a probability value of $p < 0.05$ was considered to be statistically significant. Dilation in response to Ca$^{2+}$-free PSS is expressed as percent increase from control diameter. Differences between the means of individual experimental groups were determined by ANOVA/Newman-Keuls test, or by an unpaired Student’s t-test when two means were compared.

Results

General characteristics of all rats from which vessels were removed and studied are reported in Table 1. Age, body weight, and mean arterial pressure were significantly greater in juvenile rats than in weanling rats. Table 1 also summarizes the general
characteristics of all vessels studied, measured at equilibration pressures of 61 ± 1 mmHg for weanling arterioles and 77 ± 2 mmHg for juvenile arterioles (80% of mean arterial pressure, which approximates steady-state in vivo pressures for these vessels). Resting and passive diameters of arterioles from juvenile rats were significantly greater than those of arterioles from weanling rats, but at these “in vivo” equilibration pressures, resting vascular tone was significantly less in the juvenile arterioles than weanling arterioles.

Arterioles from both age groups exhibited clear myogenic activity, as judged by a constriction to increases in intralumenal pressure above 80 mmHg in juvenile arterioles and maintenance of a constant diameter at intralumenal pressures above 80 mmHg in weanling arterioles (Figure 1). Calculated myogenic indices were similar for weanling and juvenile arterioles at pressures between 40 and 80 mmHg, but significantly more negative for juvenile arterioles at pressures of 100 and 120 mmHg, indicating a greater myogenic responsiveness (Figure 2, top panel). When intralumenal pressures were normalized to each age group’s estimated in vivo arteriolar pressure, the difference in myogenic responsiveness between weanling and juvenile arterioles was even more profound, especially at pressures closest to their respective in vivo values (Figure 2, bottom panel).

As shown in Figure 3 (left panels), endothelial denudation significantly reduced the steady-state diameter of juvenile arterioles at pressures of 60 and 80 mmHg, whereas denudation shifted the myogenic indices of these vessels to less negative values (indicating reduced myogenic responsiveness) between 80 and 120 mmHg. In contrast, endothelial denudation only had a significant effect on the steady-state diameter of weanling arterioles at 140 mmHg (a slight increase), and had no consistent effect on the myogenic index of these vessels (Figure 3, right panels).
Whereas the PGH₂/TXΑ₂ receptor antagonist SQ-29548 did not change the steady-state diameter of juvenile arterioles at any pressure, it had an effect on the myogenic index of these vessels that was similar to that of endothelial removal: a shift to less negative values at pressures between 80 and 120 mmHg (Figure 4, left panels). In contrast, SQ-29548 tended to increase the steady state diameter of weanling arterioles (a significant effect at 40, 60 and 140 mmHg), but had no significant effect on the myogenic index for these vessels at any pressure (Figure 4, right panels).

The HO inhibitor CrMP had no effect on steady state diameters or the myogenic indices for either juvenile or weanling arterioles (Figure 5).
Table 1: General characteristics of all rats and vessels used in this study

<table>
<thead>
<tr>
<th>Animal Characteristics</th>
<th>Weanlings</th>
<th>Juveniles</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>Age (days)</td>
<td>26.6 ± 0.3</td>
<td>42.4 ± 0.4*</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>62 ± 1</td>
<td>173 ± 3 *</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>77 ± 2</td>
<td>96 ± 2 *</td>
</tr>
</tbody>
</table>

Vessel Characteristics (at lumenal pressure = 0.8 x MAP)

<table>
<thead>
<tr>
<th>n</th>
<th>39</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting Diameter (µm)</td>
<td>34 ± 1</td>
<td>60 ± 3 *</td>
</tr>
<tr>
<td>Passive Diameter (µm)</td>
<td>56 ± 2</td>
<td>88 ± 2 *</td>
</tr>
<tr>
<td>Resting Vascular Tone (%)</td>
<td>38 ± 2</td>
<td>31 ± 3 *</td>
</tr>
</tbody>
</table>

MAP = mean arterial pressure. Values are given as means ± SE. * p<0.05 vs. Weanling group.
Figure 1: Active and passive diameters as a function of intralumenal pressure in juvenile and weanling gracilis muscle arterioles

Values are given as means ± SE. *p<0.05 vs. Passive Diameter.
Figure 2: Calculated myogenic indices of juvenile and weanling arterioles as a function of absolute intraluminal pressure and as a function of intraluminal pressure normalized to the estimated *in vivo* arteriolar pressure for that age group. Values are given as means ± SE. n = number of vessels. *p<0.05 vs. Weanling Arterioles.
Figure 3: Effect of endothelial removal on steady-state diameters and myogenic indices over entire pressure range for juvenile and weanling arterioles

n = number of vessels. *p<0.05 vs. Intact Vessel.
Figure 4: Effect of SQ 29548 treatment on steady-state diameter and myogenic indices over entire pressure range for juvenile and weanling arterioles.

Juvenile Arterioles (n=9)

Weanling Arterioles (n=10)

n = number of vessels. *p<0.05 vs. Control.
Figure 5: Steady-state diameters and myogenic indices over entire pressure range before and after treatment with the heme oxygenase inhibitor chromium (III) mesoporphyrin IX chloride (CrMP) for juvenile and weanling arterioles.

n = number of vessels.
Discussion

The myogenic mechanism assists in the establishment of basal vascular tone, as well as in the autoregulation of blood flow and capillary hydrostatic pressure (Davis & Hill, 1999). During rapid postnatal growth, autoregulatory mechanisms may play a crucial role in maintaining sufficient blood flow to growing tissues. Investigators have found that myogenic responses of mesenteric arteries from 1-day old piglets are significantly greater than those from 10-day old piglets (Su et al., 2003). Furthermore, the spontaneous tone developed by pressurized cerebral arteries from newborn mice is greater than that developed by those from 6-8 week-old mice over a range of intravascular pressures (Geary et al., 2003). Consistent with these findings, we recently found that gracilis muscle arterioles isolated from weanling rats develop a significantly higher level of resting tone than those isolated from juvenile rats when equilibrated at their respective in vivo pressures (Balch Samora et al., 2007a). Therefore, we undertook the current study to more vigorously test the hypothesis that arteriolar smooth muscle responsiveness to myogenic stimuli is greater in the younger rats. As in our earlier study, we found a higher level of spontaneous tone in weanling arterioles than in juvenile arterioles (Table 1). However, our calculations of myogenic index suggest that if anything, weanling arterioles have a smaller myogenic gain than juvenile arterioles when studied at their respective in vivo pressures, and also at pressures of 120 and 140 mmHg (Figure 2).

Because growth-related changes in arteriolar endothelial function have been reported by our laboratory and others (Linderman & Boegehold, 1999; Willis & Leffler, 1999; Nurkiewicz & Boegehold, 2004; Balch Samora et al., 2007a), and because factors
released from the vascular endothelium can modulate smooth muscle myogenic tone (Hill et al., 1990; Kuo et al., 1991; Ekelund et al., 1992; Sun et al., 1995; de Wit et al., 1998; Geary et al., 2003), we examined the effects of endothelial denudation on the relationship between pressure and arteriolar diameter in both age groups. In juvenile arterioles, removal of the endothelium reduced steady-state diameters at pressures of 60 and 80 mmHg (Figure 3, top left panel), but this enhanced basal tone is apparently not myogenic in origin. This conclusion is based on our finding that after endothelial removal, the myogenic gain of these vessels is significantly reduced (i.e., a less negative myogenic index) at pressures from 80-120 mmHg (Figure 3, bottom left panel). This is not consistent with a previous report that endothelial removal has no effect on the myogenic index of gracilis muscle arterioles isolated from Wistar rats of the same age as our current juvenile group (Sun et al., 1994). This may reflect differences in the strain of animal, such that even the same vessel under study may respond differently to changes in pressure. Supporting this theory is the finding of a consistent myogenic index from 60-120 mmHg in endothelial-intact 1st order arterioles in Sun’s study, such that there is no change in slope, whereas in our study, from 40-100 mmHg, the myogenic index becomes progressively more negative, with a steep negative slope. However, it is also possible that the endothelium in the Wistar arterioles may contribute to myogenic activity, such that endothelium-derived vasoactive factors are released upon changes in pressure. However, when the vessels are denuded, all endothelium-derived substances (both constrictor and dilator factors) are removed, resulting in an overall consistent myogenic response that reflects only the smooth muscle contribution. This possibility was not tested in that study. Finally, this discrepancy may also be explained by differences in method of endothelial denudation, as Sun’s group injected air into the lumen, whereas we
mechanically abraded the internal lumen. However, this explanation is less likely given the abolished response to ACh after denudation in the Wistar vessels. The reduction in the myogenic gain that we found after endothelial removal suggests that in the juvenile arterioles we studied, an endothelium-derived constrictor factor normally augments myogenic activity over a wide range of pressures. Application of SQ-29548 altered the myogenic index of juvenile arterioles in a manner similar to that seen with endothelial removal, i.e., a less negative index at pressures from 80-120 mmHg (Figure 4, bottom left panel). This finding is consistent with the possibility that PGH₂ or TXA₂ is the endothelial factor responsible for reinforcing the myogenic activity of these vessels. Other investigators have found a similar role for endothelium-derived constrictor prostanoids, but more typically in hypertensive rats (Huang & Koller, 1997; Ungvari & Koller, 2000). Ungvari and Koller (2000) determined that endothelium-derived endothelin and PGH₂/TxA₂ enhance arteriolar myogenic reactivity in hypertensive animals by increasing Ca²⁺ sensitivity of the vascular smooth muscle.

In contrast to our finding in juvenile arterioles, endothelial removal had no significant effect on the steady-state diameter of weanling arterioles, except for a modest dilation at 140 mmHg (Figure 3, top right panel), which is clearly above the physiological pressure range for these animals. Endothelial removal also had no consistent effect on the myogenic index of these vessels (Figure 3, bottom right panel). These observations suggest that an endothelial influence on the tone of weanling arterioles (myogenic or otherwise) arises in skeletal muscle sometime between 4 and 6 weeks of age. However, it is important to keep in mind that the arterioles in the present study were not being perfused, and therefore were not exposed to endothelial shear stress. In vivo, the release
(and therefore the influence) of endothelial dilator or constrictor factors at either age may be different than in the current situation.

TXA₂, a metabolite of PGH₂, is one of the most potent smooth muscle-contracting substances (Hamberg et al., 1975). PGH₂/TXA₂ receptor antagonism tended to increase the steady-state diameter of weanling arterioles (Figure 4, top right panel), suggesting that basally-released PGH₂ or TXA₂ contributes to the tone of these vessels. However, this is apparently not through an effect on myogenic activity, since the myogenic index is unaltered by SQ-29548 (Figure 4, bottom right panel). In light of our finding that endothelial removal had no effect on the steady-state diameter of weanling arterioles, any PGH₂ or TXA₂ that influences the tone of these vessels must be of smooth muscle origin (Peredo & Enero, 1993; Cseko et al., 2004).

Because we recently found a role for endogenous CO in mediating endothelium-dependent dilations in weanling and juvenile gracilis muscle arterioles, with exogenous CO at higher concentrations causing endothelium-independent constriction (unpublished observations), we reasoned that CO may also be playing a role in modulating myogenic reactivity. Based on their use of CrMP, Zhang et al (Zhang et al., 2001) concluded that isolated gracilis muscle arterioles are capable of generating CO, and that this CO modulates myogenic vasoconstriction. However, in the present study, treatment with CrMP had no significant effect on myogenic responses in either group (Figure 5). Because the rats used in Zhang’s study weighed 250-300 g, whereas our weanlings and juveniles weighed approximately 60 g and 170 g, respectively, a modulating role for CO in these responses may not arise until after adolescence.
Conclusion

These findings suggest that arteriolar growth during juvenile maturation is accompanied by an increase in myogenic responsiveness, possibly because endothelium-derived PGH$_2$ or TXA$_2$ assumes a role in reinforcing myogenic activity over this period. The results of this study further support the idea that alterations in the mechanisms of vascular tone regulation occur with growth and maturation, and that these evolving patterns may have significant implications for the regulation of tissue perfusion during microvascular development.
References

VI. GENERAL DISCUSSION

The primary objective of this dissertation project was to determine how microvascular function (specifically, the regulation of arteriolar tone) changes with postnatal growth and development. We found that endothelium-dependent arteriolar dilation in juvenile rats appears to be mediated by the combined release of endothelial NO, vasodilator prostanoids, H$_2$O$_2$, and CO. CO was the only observed mediator of endothelium-dependent dilation in vessels from weanling rats, although there must be other unidentified mediators, as HO inhibition only blunted endothelium-dependent responses. We also found that vessel growth is accompanied by an increase in overall arteriolar myogenic responsiveness, most likely due to increase in the contribution of PGH$_2$/TXA$_2$ to arteriolar myogenic behavior.

There are some practical implications of our studies. We were able to more thoroughly determine some of the changing mechanisms of vascular function during postnatal growth and maturation. A thorough understanding of the normal changes in endothelial/ smooth muscle signaling pathways and vascular mechanics during postnatal growth may lead to a better understanding of the pathophysiological changes that can also occur over this time in some disease states.

The public health implications of these studies are important given rapidly increasing rates of hypertension, diabetes, and dyslipidemia among children and adolescents in the United States (Wyatt et al., 2006). The vascular dysfunction associated with some cardiovascular diseases has been found to develop well before adulthood (Bohlen & Lobach, 1978; Zweifach et al., 1981; Prewitt et al., 1982; Bohlen,
so that changes linked to the pathological process become superimposed on the changes in vascular function that normally occur with juvenile growth. Increased rates of cardiovascular disease result in bleak medical, social, and economic consequences and can even shorten the longevity of Americans (Wyatt *et al.*, 2006). Therefore, to more clearly elucidate the mechanisms of progressive vascular dysfunction under such circumstances, it is necessary to gain a deeper understanding of those changes in vascular function that accompany normal growth, which we have begun to achieve with these studies. A clearer understanding of how the endothelium and smooth muscle work together to translate biochemical signals into vascular responses during blood vessel growth may ultimately lead to the identification of new therapeutic targets for the endothelial dysfunction associated with cardiovascular diseases that can begin to develop well before adulthood.

There are several limitations of our studies. First and foremost, we were unable to uncover the reasons for these mechanistic changes during postnatal growth. There are multiple changes which occur during development which may contribute to such vascular modifications. The mechanisms responsible for controlling arteriolar resistance and blood flow are not fixed at birth, but instead undergo marked changes during microvascular growth. Although there is a progressive increase in microvascular pressure and volume flow during arteriolar network growth in skeletal muscle (Zweifach *et al.*, 1981; Wang & Prewitt, 1991; Linderman & Boegehold, 1998, 1999), flow-related shear stress actually decreases due to a proportionately greater increase in arteriolar diameters than in blood flow velocity (Linderman & Boegehold, 1998, 1999).
Not only are arteriolar, capillary and venular networks rapidly growing (Sarelius et al., 1981; Unthank & Bohlen, 1988; Wang & Prewitt, 1991; Linderman & Boegehold, 1996), and microvascular wall mass increasing during this time (Bohlen & Lobach, 1978; Wang & Prewitt, 1991), but anatomical modifications such as increases in fiber cross-sectional area of muscles (Enesco & Puddy, 1964; Sillau & Banchero, 1977; Ripoll et al., 1979; Aquin et al., 1980), and increases in length, diameter and wall mass of arterioles (Wang & Prewitt, 1991) are also taking place. Other changes include a decline in capillary density (Sillau & Banchero, 1977; Ripoll et al., 1979; Sarelius et al., 1981), and modifications in local endothelial cell environment and function over time (Risau, 1995; Garlanda & Dejana, 1997).

Another limitation is that the majority of our studies were conducted on vessels isolated from Sprague Dawley rats. Although in vitro studies allow investigators to control multiple variables and explore potential physiological pathways and mechanisms of action, they are generally oversimplifications of the in vivo environment. All parenchymal and neural influences as well as humoral and endocrine effects are eliminated, which does not accurately reflect the in vivo milieu; these changes essentially remove the manifold subtle interactions that occur within the live animal.

Potential Role of Androgens

There are several reports in the literature suggesting that androgens can affect vascular reactivity, although there are not consistent findings (Barrett-Connor, 1995; Alexandersen et al., 1996; Plut et al., 2002). Whereas observational studies have demonstrated an inverse relationship between endogenous testosterone levels and adverse
cardiovascular events (Barrett-Connor, 1995; Alexandersen et al., 1996), androgen deficiency is associated with increased flow-mediated dilation of the brachial artery when compared with age-matched controls (Zitzmann et al., 2002). In fact, vascular reactivity in the brachial artery is improved when older men with advanced prostate cancer are castrated when compared with age-matched and cancer controls (Herman et al., 1997).

In one set of experiments, we explored the possibility that some of the observed mechanistic changes during arteriolar growth might have been initiated by alterations in androgen concentration. Sprague-Dawley rats undergo puberty around postnatal day 50 (Baker et al., 1979; Sharp & La Regina, 1998; Krinke, 2000), and reach sexual maturity at ~90 days (Ariyaratne & Chamindrani Mendis-Handagama, 2000). The number of androgen receptors in rat Sertoli cells markedly increases from postnatal days 10-20 to 35-60, and descent of the testes occurs around days 30-60 (Krinke, 2000). At ages 28 days and beyond, hypertrophy and hyperplasia of adult Leydig cells occurs, resulting in increases in testosterone production per testis in vitro (Ariyaratne & Chamindrani Mendis-Handagama, 2000). Actually, adult Leydig cells begin to secrete significant amounts of testosterone only after Day 35. Serum FSH levels, measured by radioimmunoassays in male Sprague-Dawley rats, peak between days 30 and 45. A rise in LH as well as testosterone occurs from days 30 to sexual maturity (Lee et al., 1975).

Given these extensive hormonal changes that are transpiring from the weanling (~22 days of age) to juvenile (~46 days) animal, it was imperative to test the hypothesis that androgens may be responsible for bringing about the vascular modifications. This was accomplished by castrating one group of rats at age 22 days. Briefly, aseptic technique, involving sterile instruments and gloves, and a surgeon's gown and mask, was
used to perform either orchidectomy or sham surgeries on weanling rats. Rats were given carprofen SQ immediately after anesthesia induction with isoflurane gas. At 46 days, the juvenile animals were sacrificed after removal of gracilis muscle arterioles for in vitro measurements. Arterioles from both groups were challenged with ACh and simvastatin alone, followed by treatment with either L-NAME, to inhibit NOS, indomethacin, to inhibit cyclooxygenase, or combined NOS/COX inhibition.

Much to our surprise, we found no difference in vascular reactivity between the sham and castrated animals, suggesting that the striking hormonal changes that occur during this time frame are not responsible for the age-linked changes in vascular responses, at least with respect to the contribution of NO and prostanoids to endothelium-dependent dilation.

Timeframe of Mechanistic Changes

Throughout all of our studies, we have observed that these functional transformations in endothelium-dependent dilation occur within a window of approximately 3 weeks, between ~22 days of age (weanling animals) and ~46 days (juvenile animals). In order to more closely pinpoint the period of change, we performed experiments on arterioles from ~35 day old animals. Briefly, challenge with ACh and simvastatin in the presence of L-NAME, indomethacin, or the combined treatment of L-NAME + indomethacin elicited the same response in vessels from the 35 day old animals as those from 46 day old animals, suggesting that the period of mechanistic change in the contribution of NO and dilator prostanoids to endothelium-dependent dilation may be as narrow as 13 days.
In Vivo Studies

Because vascular tone, blood flow, endothelial function, and tissue metabolism are all interrelated, it is essential to investigate changes during postnatal growth with an in vivo approach to better understand the functional consequences of these changes. Using isolated vessels, we previously found age-related differences in myogenic responses and in the endothelial influence on arteriolar tone. In addition to metabolic stimuli, changes in the release of endothelium-derived factors and myogenic tone are thought to contribute to reactive hyperemia (Wolin *et al.*, 1990; O’Leary *et al.*, 1994; Gryglewski *et al.*, 1995; Meredith *et al.*, 1996; Koller & Bagi, 2002; Koller & Bagi, 2004; Toth *et al.*, 2007). Reactive or postischemic hyperemia, also referred to as flow- or shear-induced dilation, is defined as the transient increase in organ blood flow that follows a brief period of occlusion and represents an integrated and multifactorial perfusion response. Because the ability to match blood flow to metabolic demand is essential during growth, it is important to assess differences in flow-mediated responses as animals mature.

To measure vascular responses after brief (30 s) and longer (3 minute) occlusions in weanling and juvenile rats, we isolated and cleaned the left external iliac artery immediately proximal to the origin of the femoral artery. A loose suture was placed around the proximal end of the iliac artery, and a microcirculation blood flow probe (0.7 PSB, Transonic, Ithaca, NY) was placed around the artery distal to the suture to monitor hindlimb perfusion during the experimental procedures. Vascular occlusion was accomplished by elevating the suture until blood flow was eliminated, as observed by the
flow probe reading. Lowering the suture restored perfusion through the artery. The subsequent hyperemic response was monitored, with time-to-peak recorded for each group, and blood flow normalized to hind limb weight for each animal.

Resting blood flow, normalized to tissue mass, in juvenile rats was less than in weanling rats (see Figure 1 below). This agrees with findings in male hamster cremaster muscle, where significant decreases in resting erythrocyte velocity and estimated blood flow were observed to occur with postnatal growth (Sarelius, et al., 1981; Berg & Sarelius, 1996). Similarly, in rat spinotrapezius muscle, there is a 25% volume flow increase from weanling to juvenile rats, but a decrease in blood flow per gram of tissue (Linderman & Boegehold, 1999). This finding suggests that tissue metabolic demand or skeletal muscle oxidative metabolism may decrease during growth. In fact, a decrease in oxidative capacity has been shown to occur during development in chickens (Hudlicka et al., 1973; Hudlicka, 1985), rabbits and kittens (Cotter, 1975), and mice (De Luise & Harker, 1989).

Normalized peak flow after release of the 30 s occlusion was greater in juvenile rats than weanling rats with these values representing a 404 ± 10% increase above control flow in juvenile rats vs. a 164 ± 12% increase above control flow in weanling rats. In contrast, peak flows recorded after 3 m occlusions were not different between age groups (Figure 1). The amplitude and duration of reactive hyperemia in skeletal muscle are determined in part by the length of the ischemic period (Gentry & Johnson, 1972; Messina et al., 1977; Bjornberg et al., 1990; Koller & Kaley, 1990b; Toth et al., 2007). The dilation that occurs post-occlusion has traditionally been considered to occur either by myogenic or metabolic mechanisms, or by a combination of the two in a synergistic
fashion (Shepherd, 1964). It has been suggested that myogenic regulatory mechanisms dominate during brief occlusions (up to 30 seconds), but metabolic influences mediate hyperemic responses after longer occlusions (Johnson et al., 1976; Bjornberg et al., 1990; Koller & Kaley, 1990b; Toth et al., 2007). If shorter occlusions do trigger myogenic mechanisms rather than metabolic influences, the finding of a greater than two-fold increase over basal flow in the juvenile vessels compared with the weanling vessels after a 30 s occlusion suggests that as animals mature, myogenic responses are enhanced. However, in Study 4, we found that calculated myogenic indices were similar for weanling and juvenile arterioles at pressures between 40 and 80 mmHg. Nonetheless, we also determined that the myogenic indices were significantly more negative for juvenile arterioles at pressures of 100 and 120 mmHg, indicating a greater myogenic responsiveness at these higher pressures. While the myogenic relaxation is induced by decreased stretch, there are various metabolic mechanisms, such as decreases in O₂, or an accumulation of CO₂, H⁺ ion, and other metabolites that may mediate postischemic hyperemia (Shepherd, 1964; Johnson et al., 1976; Lombard & Duling, 1981; Sherwood, 2007; Toth et al., 2007). Therefore, even though the response was similar in both groups after a 3 m occlusion, we cannot assert the presence of analogous metabolic influences throughout postnatal growth.

There are few investigations which have focused on the possible modulation of hyperemic responses with growth and development. Our findings differ from those observed in guinea pig coronary circulation, where postnatal growth is accompanied by a decrease in the peak hyperemic response following a 45-second occlusion (Toma et al., 1985). Measurements of cutaneous blood flow in premature newborn infants (postnatal
age ranges from 0.3 to 72 days) after a one min occlusion indicate no influence of postconceptional age, postnatal age, weight, or transcutaneous O₂ tension on reactive hyperemic responses (Beaufort-Krol et al., 1989). These discrepancies may be due to vascular bed or interspecies variability, or to differences in duration of occlusion, which affect amplitude (Gentry & Johnson, 1972; Messina et al., 1977; Bjornberg et al., 1990; Koller & Kaley, 1990b).

As also shown in Figure 1, the average time to reach the peak flow response also differed between groups, with weanling rats exhibiting a significantly slower response (an average time-to-peak that was more than twice that in the juvenile rats). This is somewhat surprising, since it has been argued that younger animals may have a superior capability for regulation of skeletal muscle blood flow (Proctor et al., 1981). There could be many reasons for this finding, all of which are speculative. Because changes in tissue O₂ affect reactive hyperemic responses (Lombard & Duling, 1981), it is important to have an idea of what, if any, the differences in O₂ tension between groups might be. The increase in tissue blood flow after occlusion is essentially a “repayment” of “flow-debt” (Zatta & Headrick, 2005). Without having measured tissue O₂ concentrations, it is difficult to determine how much metabolic “debt” each animal sustained. Therefore, weanlings may not have needed as much functional recovery to return to metabolic balance. In an earlier study, whereas resting tissue PO₂ over a range of superfusate PO₂ values was found to be similar in 32, 60, and 80 day hamster cremaster muscle, in adult animals the tissue PO₂ decreased significantly during muscle stimulation, but was relatively unchanged in the younger animals (Proctor et al., 1981). These studies by Proctor and colleagues suggest that there may, in fact, be maturational changes in O₂.
utilization and response, such that an age-associated decrease in tissue O_2 consumption occurs.
Figure 1: Hindlimb blood flow in juvenile and weanling rats

Top panel: Hindlimb blood flow in juvenile and weanling rats under resting conditions, and peak values reached after release of 30 second and 3 minute occlusions of the left external iliac artery. Middle panel: Time to peak flow value after occlusion release in both age groups. Bottom panel: % change in flow/time. n = number of animals. Values are given as means ± SE. * p<0.05 vs. Control. † p<0.05 vs. corresponding juvenile value.
VII. CONCLUSION

Because there are few studies that have investigated how postnatal growth affects microvascular function, we undertook these experiments, in part, to help fill a critical gap in the literature. Specifically, we wanted to gain further insight into growth-related changes in the control of skeletal muscle arterioles.

We found that at any given time, the tone of skeletal muscle arterioles does not reflect a single mechanism, but rather an integrated effect of multiple mechanisms that, to some extent, may compensate for one another should one pathway become compromised. During early microvascular growth, endothelium-dependent dilation appears to rely on CO, but not prostanoids, NO, H2O2, cytochrome P-450 metabolites, or any other EDHF. As animals mature, more vascular reliance on NO, dilator prostanoids, H2O2 and K+ channels occurs. Arteriolar growth during juvenile maturation is also accompanied by an increase in myogenic responsiveness, possibly because endothelium-derived PGH2 or TXA2 assumes a role in reinforcing myogenic activity over this period. *In vivo* experiments demonstrated that although significant decreases in resting blood flow occur with growth, peak flow after release of short occlusions is significantly enhanced with growth and development.

Further investigation is needed in order to determine the extent to which changes in the control of skeletal muscle arterioles occurs with growth and maturation. A clearer understanding of how the endothelium and smooth muscle work together to translate biochemical signals into vascular responses during blood vessel growth may ultimately
lead to the identification of new therapeutic targets for the endothelial dysfunction associated with cardiovascular diseases that can begin to develop well before adulthood.
VIII. REFERENCES

by metalloporphyrins at low concentrations. *Drug metabolism and disposition: the biological fate of chemicals* 27, 1214-1219.

Coleman HA, Tare M & Parkington HC. (2001). EDHF is not K⁺ but may be due to spread of current from the endothelium in guinea pig arterioles. *American journal of physiology* 280, H2478-2483.

Cotter MA. (1975). A study of the interrelationships between the vascular supply and metabolism of skeletal muscle fibres in the course of development and during chronic stimulation of adult muscles. Birmingham University, U.K.

Hemler ME, Cook HW & Lands WE. (1979). Prostaglandin biosynthesis can be triggered by lipid peroxides. Archives of biochemistry and biophysics 193, 340-345.

Hooker D. (1911). The chemical regulation of vascular tone as studied upon the perfused blood vessels of the frog. The American journal of physiology 28, 361-367.

O'Leary DS, Dunlap RC & Glover KW. (1994). Role of endothelium-derived relaxing factor in hindlimb reactive and active hyperemia in conscious dogs. The American journal of physiology 266, R1213-1219.

Teng GQ, Nauli SM, Brayden JE & Pearce WJ. (2002). Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. *Brain research* 133, 81-91.

Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR & Roman RJ. (1996). 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-

IX. Techniques/programs/software training during PhD experience

AcqKnowledge Software
DataTrax
EndNote X
Kodak 1D 3.6
Metamorph 6.01
Microsoft Office Suite
Optimus 6.2
Sigma Stat 3.0
Sigma Plot 9.0

Catheterization of the carotid artery and jugular vein

Isolated Vessel System

Cell Culture (human alveolar cell line A549; rat alveolar macrophages)

Olympus IX70 inverted microscope (with Dage CCD-72S monochrome camera) to determine % cellular confluence

Pressure-flow BET instrument to determine surface area of particles

JEOL 6400 Scanning Electron Microscope to determine particulate diameter

Intratracheal instillation

Bronchoalveolar lavage (BAL)

Spinotrapezius preparation (for in vivo microscopy)

Iontophoresis

Intraluminal Injection
Myobath vessel system

Western Blot

Skin-fold test

Catheterization of the femoral artery and vein

Hind limb preparation (isolation of soleus, gastrocnemius, and plantaris) for force transduction analysis after electrical stimulation and vascular flow and resistance measurements (femoral artery)

Recovery surgery (sterile technique)

Orchidectomy

Venous and Arterial anastomosis

End-to-end and end-to-side technique

Right-side-up technique

Vein grafting

Renal transplants

Proficiency obtained with fine forceps, needle holders, vannas, vascular clamps, clamp applicators, and vessel dilators
X. CURRICULUM VITAE

Name: Julie Balch Samora

Internet: jbsamora@hsc.wvu.edu

Home Address: 1367 Headlee Ave
Morgantown, West Virginia 26505

Home Phone: (304) 598-3603
Cell Phone: (304) 685-3062

Birth Date; Location: May 26, 1977; Morgantown, WV

Marital Status: Married
Number of Dependents: Two
Name of Spouse: Walter Paul Samora, III (“Quincy”)
Name of Dependents: Ethan Christopher Samora (2.5 years)
Erin Michelle Samora (9 months)

Citizenship: United States of America

Education:

2009 M.D. candidate, West Virginia University School of Medicine;
Morgantown, WV

2007 Ph.D. candidate in Cellular & Integrative Physiology, West Virginia
University School of Medicine, Advisors: Matthew A. Boegehold,
Ph.D. & Jefferson C. Frisbee, Ph.D.

2005 M.P.A. with a specialization in Healthcare Administration, West Virginia
University

2004 M.P.H., West Virginia University; Morgantown, WV

2001 M.M. in Bassoon Performance, Yale University; New Haven, CT

1999 B.F.A. in Music Performance with an additional major in Biological
Sciences, Carnegie Mellon University; Pittsburgh, PA

1995 Interlochen Arts Academy; Interlochen, MI
Continuing Education:

2006 Christine M. Kleinert Institute Microsurgery Teaching Laboratory; Louisville, KT; Received training in microscopic vascular anastomosis (both arterial and venous); proficiency obtained with fine forceps, needle holders, vannas, vascular clamps, clamp applicators, and vessel dilators; end-to-end as well as end-to-side anastomosis; interpositional grafting; right-side-up technique; use of foot switch controls and motorized zoom/focus

2006 Certificate in Women’s Health

2005 Certificate in Healthcare Administration

2004 Community Health Education Specialist (CHES)

Professional Society Memberships:

Phi Beta Kappa
Pi Alpha Alpha (The National Honor Society for Public Affairs and Administration)
Pi Kappa Lambda (Music Honor Society)
Sigma Xi (The Scientific Research Society)
Microcirculatory Society, USA, student member
Society for Experimental Biology and Medicine, student member
American College of Surgeons, student member
American College of Preventive Medicine, Medical Student Section
American College of Physicians, student member
American Medical Association, Medical Student Section
American Medical Student Association
American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD)
American Association for Health Education
West Virginia State Medical Association, student member

Institutional Service:

2006-2008 Institutional Review Board
2005-2008 Curriculum Committee, WVU School of Medicine
2005-2007 American Physician Scientists Association (APSA) Institutional Representative for West Virginia University
2005-2006 APSA Public Policy Committee
2003-2004 Search Committee Member for the Dean, WVU School of Medicine
Leadership Roles/Extracurricular Activities:

2007-2008 Northern WV Rural Health Education Center (NWVRHEC) Board Member
2003-2004 Leadership Council, Community Medicine Student Association
2002-2003 President, Surgical Interest Group
2002-2003 President, Physicians for Human Rights
2001-2003 President, WVU School of Medicine (Class of 2005)
2000-2001 Graduate and Professional Health Advocate, Yale School of Music
1999-2000 Volunteer, Harmony Place; New Haven, CT
1998-1999 President, Carnegie Mellon Mortar Board Honor Society; Pittsburgh, PA
1998-1999 President, Sigma Alpha Iota Music Fraternity
1997-1998 Vice President, Sigma Alpha Iota Music Fraternity
1995-1997 Doctors of Carnegie, Vice President of Programming (1998-99), Vice President of Special Events (1997-98)
1998-1999 University Disciplinary Committee
1997-1998 Sexual Assault Advisor
1997-1998 Residence Hall Judicial Board
1997-1998 Volunteer, University of Pittsburgh Medical Center
1997-1998 Shadyside Hospital Preceptorship Program
1997-1998 Manager, Women in Sports House
1996-1997 Manager, Tennis House
1996-1997 Photographer, Tartan Yearbook
1995-1997 International Orientation Counselor
1995-1996 Regent Square Elementary, tutoring and mentoring program

Academic Honors and Professional Recognition:

2007 Research Recognition Award from the Cardiovascular Section of the American Physiological Society (APS)
2007 Van Liere Research Day Poster Presentation 1st Place Award, Level VI
2007 American Medical Association (AMA) Foundation Leadership Award (one of 15 medical students selected)
2006 Van Liere Research Day Poster Presentation 1st Place Award, Level II
2006 Sigma Xi Research Day 2nd Place Award, General Science Category
2006 Benjamin Zweifach Graduate Student Travel Award to the Annual Microcirculatory Society meeting
2006 Health Sciences Center Research and Graduate Education Travel Award
2004 Edward L. Reed Memorial Scholarship recipient for the 9th Biennial Symposium on Minorities, the Medically Underserved & Cancer
2004 Outstanding Student Honor Society (with Highest Honor)
2003 Recognized through the Women in Medicine: “Strength through Diversity” program to represent the WVU School of Medicine
2003 Gaydos Award, WVU School of Medicine, for the highest average in
Evidence Based Medicine and Health of the Public

2001 Awarded the Thomas Daniel Nyfenger Memorial Prize for a student who has “demonstrated the highest standard of excellence in woodwind playing at Yale University”

2000-2001 Emma Phipps White Memorial Scholarship, Yale University

1999 Chosen as one of twenty students in the United States to the 1999 All-USA College Academic First Team (USA Today newspaper)

1999 Concerto Competition winner; solo performance with the Carnegie Mellon Philharmonic Orchestra

1999 NCAA Division III ITA Scholar-Athlete award

1998 Best Physiologist of Semester, Carnegie Mellon University

1997 National Dean’s List

1996 National Society of Collegiate Scholars, recipient of Merit Award

1996-1997 Lambda Sigma Honor Society

1995-1996 Horizons and Emerging Leaders programs at Carnegie Mellon

1995-1999 Dean’s List eight consecutive semesters

1995-1999 Andrew Carnegie Scholarship

Work Experience:

2005 Public Administration Internship at Morgantown Pulmonary Associates, a physician-owned and operated private corporation that focuses on respiratory illnesses. Posted insurance payments, completed and mailed insurance forms, aided with billing and collections, attempted to resolve outstanding insurance claims, helped with coding of procedures and diagnoses, contacted insurance companies regarding patient accounts, refiled charts, copied medical records, served as interim medical transcriptionist, completed black lung and Department of Labor reports, typed staff meeting notes, generated Explanation of Benefits (EOBs) for secondary and tertiary claim submissions.

2000-2001 Visiting Artist Program, Pomperaug High School; Southbury, CT

1999-2000 Music Instructor, United Cerebral Palsy Association of Southern Connecticut; Waterford, CT

1999-2000 Waitress, Chart House; New Haven, CT

1999-2000 Administrative Assistant, Oral History of American Music and Norfolk Chamber Music Festival Offices, Yale University

1996-1997 Student Assistant, Graduate School of Industrial Administration, Carnegie Mellon University; Pittsburgh, PA

Conferences:

2007 AMA National Advocacy Conference (NAC); Washington, D.C. Skills
learned include networking, creative problem solving, leadership, effective delivery and communication

2007 Federation of American Societies for Experimental Biology (FASEB); Washington, D.C. (abstract submission and poster presentation)

2007 American Educational Research Association (AERA) Annual Meeting; Chicago, IL (paper presentation)

2006 Paul Ambrose Political Leadership Institute, through the American Medical Student Association (AMSA); Washington, D.C. Skills learned include political strategizing, researching, public speaking, media relations and lobbying

2006 Southern Medical Association (SMA)- Southern Group on Educational Affairs (SGEA) Third Annual Conference on Graduate Medical Education; Galveston, TX (oral presentation with Dr. Scott Cottrell)

2006 Creating a Network of West Virginia Women in Science and Healthcare; Morgantown, WV (panelist)

2006 Federation of American Societies for Experimental Biology (FASEB); San Francisco, CA (abstract submission and poster presentation)

2006 Women’s Health Policy Conference; Charleston, WV

2005 39th Annual Meeting of the West Virginia Political Science Association in conjunction with the American Society of Public Administration; Charleston, WV (panelist and moderator)

2004 19th Annual National MD/PhD Student Conference; Keystone, Colorado (abstract submission and poster presentation)

2004 Continuing Education Program on Quality and Accessibility of Health Care: Past, Present and Future. Part of the “100 Years: Health Professions Education” at West Virginia University School of Medicine (panelist)

2004 38th Annual Meeting of the West Virginia Political Science Association in conjunction with the American Society of Public Administration, West Virginia Wesleyan College; Buckhannon, WV

2004 Intercultural Cancer Council (ICC) 9th Biennial Symposium on
Minorities, the Medically Underserved & Cancer; Washington, D.C.

2004 National Leadership Conference for Students in Healthcare; Washington, D.C.

Publications:

A. Theses

B. Abstracts

1. **Balch Samora J, Frisbee JC, Boegehold, MA.** Mechanisms of microvascular control during juvenile growth. 8th World Congress for Microcirculation, 2007, Milwaukee, WI.

4. Frisbee JC, James ME, **Balch Samora J,** Goodwill AG, Chelladurai B, Basile DP. Low Vascular Nitric Oxide Bioavailability-Induced Skeletal Muscle Microvascular Rarefaction is not Associated with Increased Angiostatin Production. American Heart Association 7th Annual Conference on Arteriosclerosis, Thrombosis and Vascular Biology, 2006, Denver, CO.

C. Peer-Reviewed Manuscripts

Current Research Interests:

Endothelium-dependent regulation of microvascular tone with growth and maturation.
Vascular smooth muscle control of blood flow during growth and maturation.
Antimicrobial resistance and health policy.
Methods to detect and eliminate iatrogenic injury.
Frequency and consequences of suicide misclassification.
Frequency and consequences of health disparities and methods to eliminate them.
Women’s Health Issues.

Teaching:

Undergraduate

“Mechanisms of Body Function” Physiology 441, 300 undergraduate and graduate allied health students, Topics: Cardiac & Renal Physiology; West Virginia University School of Medicine, 2006.

“Elementary School Health Program” CHPR 301, 20 undergraduate students, Topics: Aspects of Personal Health; West Virginia University School of Medicine, 2007.

“Health of the Individual” CHPR 170, 40 undergraduate students, Topics: Mental Health, Reproductive Issues, DSM IV Paraphilias; WVU School of Medicine, 2007 and 2006.

Adjunct Professor, “History of Jazz,” Class sizes roughly 20-30; Housatonic Community College; Bridgeport, CT, Fall 2000 & Spring 2001.

Bassoon Instructor for undergraduate students; Yale University New Haven, CT, 2000-2001.
Graduate/Medical

“Medical Pharmacology” PCOL 761, Small group facilitator; West Virginia University School of Medicine, 2007

“Issues in Men’s Health” PUBH 619, 20 graduate students, Topics: Cardiovascular Disease, Diseases specific to men; West Virginia University School of Medicine, 2007.

“Issues in Women’s Health” PUBH 621, 20 graduate students, Topics: Reproductive Issues; West Virginia University School of Medicine, 2007.

“Occupational Toxicology” PCOL 562, 15 graduate students, Topic: Developmental and Reproductive Toxicology; West Virginia University School of Medicine, 2006 and 2005.

“Human Form and Function” CCMD 730: Small group facilitator, Topic: Physiology; West Virginia University School of Medicine, 2005 and 2003.

Seminars

Arteriolar function with growth and maturation: new insights. West Virginia University, Department of Physiology and Pharmacology, January, 2007.

Growth dependent changes in the endothelial factors regulating arteriolar tone. West Virginia University, Department of Physiology and Pharmacology, December, 2005.

High dietary salt and endothelial dysfunction: the role of tetrahydrobiopterin, eNOS, and superoxide. West Virginia University, Department of Physiology and Pharmacology, December, 2004.

Other

Music Affiliations:

Summer, 2001 Schleswig-Holstein Musik Festival, Germany
2000-2001 New World Symphony Orchestra, substitute; Miami, FL
2000-2001 Performed with Orchestra New England, New Britain Symphony, Sienna Orchestra of Waterbury
2001-2002 Invited as Principal Bassoon of the Daejeon Philharmonic Orchestra in Korea (declined)
1999-2000 Principal Bassoonist, Yale Philharmonic Orchestra
1999-2000 Principal Bassoonist, Yale Opera Orchestra

250
Summer, 2000 Music Academy of the West; Santa Barbara, CA
2000 & 1999 Sarasota Music Festival; Sarasota, FL
1996-2000 Jeunesses Musicales World Orchestra: Germany and Austria
 (Winter, 1999-2000); Poland, Germany, Canada, Switzerland, and the U.S. (Summer, 1999); Germany (Winter, 1998-99); Taiwan, Japan, Korea, and the Philippines (Summer, 1998); Germany and Poland (Winter 1996-97); Switzerland and Holland (Summer, 1996)
1995-1999 Principal Bassoonist, Carnegie Mellon Philharmonic Orchestra
1995-1996 Principal Bassoonist, Pittsburgh Youth Symphony Orchestra
1995 Principal Bassoonist, World Youth Symphony Orchestra;
 Interlochen, MI

Travel:

Fifty U.S. States, Argentina, Aruba, Australia, Austria, Bahamas, Barbados, Belgium, Belize, Brazil, Cambodia, Canada, China, Costa Rica, Curacao, Czech Republic, Denmark, Dominican Republic, Egypt, England, Estonia, Finland, France, French Polynesia, Germany, Greece, Grenada, Holland, Honduras, Hong Kong, Indonesia, Ireland, Israel, Italy, Jamaica, Japan, Korea, Luxembourg, Macau, Malaysia, Martinique, Mexico, Norway, Panama, Paraguay, the Philippines, Poland, Puerto Rico, Russia, Scotland, Singapore, South Africa, Spain, St. Lucia, Sweden, Swaziland, Switzerland, Taiwan, Thailand, Turkey, Uruguay, Venezuela.