Functional analysis of Arabidopsis cold shock domain proteins

Yongil Yang
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation
https://researchrepository.wvu.edu/etd/4552

This Dissertation is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Graduate Theses, Dissertations, and Problem Reports by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
Functional Analysis of Arabidopsis Cold Shock Domain Proteins

Yongil Yang

Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Genetics and Developmental Biology

Approved by
Dale T. Karlson, Ph.D., Chair
Daniel Panaccione, Ph.D.
Jed Doelling, Ph.D.
Jianbo Yao, Ph.D.
Carina Barth, Ph.D.

Division of Plant and Soil Sciences
Morgantown, WV
2009

Keywords: AtCSP3, AtCSP4, AtCSP1, leaf polar elongation, embryogenesis, seed germination, plant development
Functional Analysis of Arabidopsis Cold Shock Domain Proteins

Yongil Yang

ABSTRACT

The cold shock domain (CSD) is one of the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, an understanding of their functional roles in the Plant Kingdom is lacking. To understand the function of cold shock domain proteins in planta, I analyzed AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana cold shock domain proteins (AtCSPs). Taq-Man probe quantitative RT-PCR (qRT-PCR) analysis confirmed that AtCSP3 transcripts were expressed dominantly in reproductive and meristematic tissues. The homozygous loss of function mutant atcsp3 displays a distinct phenotype with an overall reduced sized of seedlings, small sized orbicular rosette leaves, and curled leaf blades. Microscopic visualization of cleared leaves revealed a reduction in size and increased circular shape of palisade mesophyll cells in atcsp3 leaves. Image analysis of palisade cell layers indicated that the reduced size of the circular mesophyll cells is generated by a reduction of cell length and cell number along the leaf-length axis, resulting in an orbicular leaf shape. Also, I determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss of function mutant, but the leaf cell proliferation is not affected. Loss of function of AtCSP3 resulted in a dramatic reduction of LNG1 transcript involved in two-dimensional leaf polarity regulation. Subcellar localization of AtCSP3 in onion epidermal cells revealed nucleocytoplasmic localization. Collectively, these data suggest that AtCSP3 regulates leaf length specific polarity by affecting LNG1 transcript accumulation during leaf blade lateral expansion. I also discuss putative function of AtCSP3 as an RNA binding protein in relation to leaf development.

Eukaryotic cold shock domain proteins are nucleic acid binding proteins that are involved in transcription, translation via RNA chaperone activity, RNA editing, and DNA repair during tissue developmental processes and stress responses. Eukaryotic cold shock domain proteins have been functionally implicated in important developmental transitions, including embryogenesis in both animals and plants.

Arabidopsis thaliana Cold Shock Domain Protein 4 (AtCSP4; At2g21060) contains a well conserved cold shock domain (CSD) and glycine-rich motifs interspersed by two retroviral-like CCHC zinc fingers. GUS staining analysis in pAtCSP4:GUS transgenic Arabidopsis plants confirmed that AtCSP4 was expressed in all tissues but accumulates in reproductive tissues and those undergoing cell divisions. Overexpression of AtCSP4 resulted in a reduced length of siliques and embryo lethality. Interestingly, a T-DNA insertion atcsp4 mutant did not exhibit any phenotypes, implicating that the similar AtCSP2 gene is functionally redundant with AtCSP4. During silique development, overexpression of AtCSP4 induced early browning and shrunken
seed formation beginning with the late heart embryo stage. A fifty percent segregation ratio of the defective seed phenotype was consistent with the phenotype of endosperm development gene mutants. Transcripts of *FUS3* and *LEC1* genes, which regulate early embryo formation, were not altered in the *AtCSP4* overexpression lines. On the other hand, transcripts of *MEA* and *FIS2* which are involved in endosperm development were affected by overexpression of *AtCSP4* indicating that AtCSP4 may be a regulator of endosperm development via transcriptional or post-transcriptional regulation. Additionally, overexpression of *AtCSP4* also affected the mRNA generation of several MADS box genes in stages of early silique development. Specifically, transcripts of *AP, CAL, AG*, and *SHP2* were up-regulated. Collectively, these results indicate that *AtCSP4* plays an important role during the late stages of silique development by affecting the expression of several development related genes.

Cold shock domain proteins (CSPs) have been reported to play an important role in tissue development and cold responses. Eukaryotic CSPs play a crucial role in cell differentiation and cell proliferation which result in regulating the timing of tissue development and cell division. Cold shock domain proteins have been identified in many plants, although functional analyses have been limited to Arabidopsis, wheat and rice and their in vivo functional roles remain unclear. Among the four *Arabidopsis thaliana* CSPs (AtCSPs) that I have characterized, AtCSP1 is highly similar to AtCSP3 in terms of its predicted amino acid sequence. Transcription of *AtCSP1* in increased in the loss of function mutant *atcsp3*, implicating that AtCSP3 negatively affects AtCSP1 transcription. Using a gene trap line (GT606 defined as *atcsp1*), which has complete loss of full length *AtCSP1* transcript, GUS gene expression was detected preferentially in tissue primordia and highly dividing tissues. The *atcsp1* exhibited early germination after stratification but did not exhibit any further atypical phenotype in vegetative tissues. Germination of *atcsp1* without stratification also occurred earlier than wild type but the germination time delayed 24 hours. Comparative analysis of GUS expression in seeds with or without stratification confirmed that *AtCSP1* expression was affected by cold temperature during radicle emergence. In addition, ABA germination assays revealed a reduced sensitivity to ABA in *atcsp1*. Taken together, AtCSP1 may function to regulate germination timing which is in turn mediated by cold temperatures to promote embryo expansion.
DEDICATION

This work is dedicated to
my wife, parent,
and all of the people who
have helped and supported me
ACKNOWLEDGEMENTS

First I wish to thank Dr. Dale Karlson for advising my work toward my Ph.D. degree in his lab. I will remember all his guidance and advice to find true way to be a good scientist forever. I would also like to thank my committee members Dr. Daniel Panaccione, Dr. Jed Doelling, Dr. Jianbo Yao, and Dr. Carina Barth for all support and advice to get excellent results. Next, I would like to thank all of my lab members, Dr. Kentaro Nakaminami, Dr. Vijay Chaikam, Prashanthi Mulinti, Swamy K. Tripurani, and Kary Thompson. Next, I would like to thank Dr. Hunseung Kang and Dr. Karen H Martin for giving ideas to improve my experimental data. I want to thank Dr. Barton Baker for his help to perform nice experiments without any problem for a year.

I would like to thank many Korean friends, Dr. Hoil Park, Dr. Kyudong Cho, Dr. Junghoon Choi, Sungsu Ahn, and Sunjung Lee. I wish to thank my parents very much for their eternal support to study for long time. Finally, I thank my wife Sukee for her sacrifice and support to continue my work. I give thank to God for finishing my degree without problems. This work was funded by the National Science Foundation grant #IBN-0416945 (D.K.).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of tables</td>
<td>ix</td>
</tr>
<tr>
<td>Literature Reviews</td>
<td>1</td>
</tr>
<tr>
<td>CSP structure</td>
<td>1</td>
</tr>
<tr>
<td>Bacterial cold shock domain protein</td>
<td>1</td>
</tr>
<tr>
<td>Eukaryotic CSD proteins</td>
<td>3</td>
</tr>
<tr>
<td>YB-1 protein</td>
<td>3</td>
</tr>
<tr>
<td>Lin 28</td>
<td>6</td>
</tr>
<tr>
<td>RBP16</td>
<td>6</td>
</tr>
<tr>
<td>Unr</td>
<td>7</td>
</tr>
<tr>
<td>PIPPin</td>
<td>7</td>
</tr>
<tr>
<td>Plant CSPs</td>
<td>7</td>
</tr>
</tbody>
</table>

CHAPTER 1. Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) regulates leaf length polarity cell expansion in lateral leaf

Abstract | 10 |
Introduction | 11 |
Materials and Methods | 13 |
Plant material and culture conditions | 13 |
Gene Expression analysis | 14 |
Morphological analysis of loss of function mutant of AtCSP3 | 15 |
Microscope observation and anatomic analysis | 15 |
Subcellular localization by DNA coated particle bombardment | 16 |

Results | 16 |
AtCSP3 gene structure and tissue specific expression analysis | 16 |
Molecular analysis to isolate atcsp3 mutant alleles | 17 |
Phenotype analysis of atcsp3 T-DNA insertion mutant alleles | 18 |
Leaf index measurement and orbicular leaf shape of atcsp3 | 20 |
Histological characterization of atcsp3 mutants | 20 |
AtCSP3 is required for leaf cell expansion | 23 |
Expression of leaf polar expansion genes in atcsp3 mutants | 24 |
Subcellular localization of AtCSP3 in onion epidermal cells | 25 |

Discussion | 26 |
AtCSP3 expression is enriched in reproductive tissues | 26 |
AtCSP3 loss of function generates stunted and orbicular leaf morphology | 26 |
Stunted and orbicular leaf shape in atcsp3 loss of function mutants | 27 |

atcsp3 loss of function mutation alters LNG1 and AN3 gene expression | 28 |
AtCSP3 may play a role in stabilizing mature RNA of leaf shape determining genes | 29 |

Figures | 31 |
CHAPTER 2- Ectopic expression of Arabidopsis AtCSP4 affects late stages of embryogenesis via alteration of endosperm development related gene expression

Abstract --------------------------------- 45
Introduction--------------------------------- 46
Methods and Materials--------------------------------- 50
 Plant materials and growth conditions------------------- 50
 Gene expression analysis------------------- 51
 GUS expression plant and histological analysis------------------- 51
 Seed clearing and microscopy------------------- 52
Results--------------------------------- 53
 Characterization of the AtCSP4 gene------------------- 53
 AtGRP4 expression analyses------------------- 53
 Morphological analysis of AtCSP4 overexpression and T-DNA insertion mutant------------------- 55
 Optic image analysis of zygotic embryo development------------------- 57
 Embryogenesis related genes and MADS box protein gene expression during early siliqule development stages------------------- 58
 Subcellular localization of AtCSP4------------------- 60
Discussion--------------------------------- 60
 Putative redundant function of AtCSP4/AtGRP2b and AtCSP2/AtGRP2------------------- 60
 Ectopic overexpression of AtCSP4 reduces siliqule lengths and induces and embryo lethality------------------- 61
 Expression of MADS box and seed embryogenesis related genes are altered by overexpression of AtCSP4------------------- 62
Figure--------------------------------- 65

CHAPTER 3 AtCSP1 regulates germination timing promoted by cold temperature

Abstract--------------------------------- 78
Introduction--------------------------------- 79
Methods and Materials--------------------------------- 83
Plant materials and growth condition------------------- 83
 Gene expression analysis------------------- 83
 GUS staining histological analysis------------------- 84
 Germination assay------------------- 84
Result--------------------------------- 85
 Characterization of AtCSP1 protein------------------- 85
 Identification of a Gene Trap line (GT606) as an atcsp1 loss of function mutant------------------- 86
 GUS gene expression analysis------------------- 86
 Germination analysis of atcsp1 and relationship with stratification------------------- 87
 Relationship of ABA and germination in atcsp1 mutants------------------- 89
 Discussion--------------------------------- 89
Figures--------------------------------- 92

SUMMARY--------------------------------- 97

LIST OF REFERENCES------------------- 98
LIST OF FIGURES

Figure 1-1. Predicted secondary structure and tissue specific gene expression of AtCSP3 31
Figure 1-2. T-DNA insertion alleles of AtCSP3 32
Figure 1-3. Morphological analysis of atcsp3 loss of function mutants 33
Figure 1-4. atcsp3 loss of function mutants have short petioles small-sized orbicular leaves 35
Figure 1-5. Orbicular leaf shape of atcsp3 loss of function mutants is caused by impairment of cell growth polarity to leaf-length direction 36
Figure 1-6. Comparision of palisade cell expansion during lateral leaf generation of 5th leaf 38
Figure 1-7. Semi quantitative RT-PCR analysis of genes related to leaf shape development 39
Figure 1-8. AtCSP3 localizes in nucleus and cytosol in onion epidermal cell 40
Figure 1-9. Morphology of curly leaf shape in atcsp3 41
Figure 1-10. Semi-quantitative RT-PCR analysis of leaf flatness related genes in the early stage of lateral leaf generation at 14 DAG 42

Figure 2-1. Secondary protein structure of AtCSP4 and redundancy with AtCSP2 65
Figure 2-2. Tissue specific gene expression of AtCSP4 66
Figure 2-3. Morphological phenotype of T-DNA insertion allele and overexpression of AtCSP4 in vegetative tissues 68
Figure 2-4. Morphological phenotype of T-DNA insertion allele and overexpression of AtCSP4 in Arabidopsis in vegetative tissues 70
Figure 2-5. Comparative analysis of stages of silique development T-DNA insertion and overexpression lines of AtCSP4 72
Figure 2-6. Semi quantitative RT-PCR analysis of genes involved in silique development and seed embryogenesis 73
Figure 2-7. AtCSP4 subcellular localization in onion epidermal cell 74

Figure 3-1. Conserved domain architecture of AtCSP1 and its redundancy with AtCSP3 92
Figure 3-2. Flanking position of the Gene Trap line GT606 (atcsp1) within the AtCSP1 locus 93
Figure 3-3. GUS expression pattern within the GT606 (atcsp1) gene trap line 94
Figure 3-4. Seed germination with or without stratification 95
Figure 3-5. Seed germination in different ABA concentration 96
LIST OF TABLES

Table 1-1. Analysis of flowering time and seedling size---43
Table 1-2. List of context sequence and amplicon length for Taq-Man probes --------------------------44
Table 1-3. Primer list for semi-quantitative RT-PCR --44

Table 2-1. Segregation of homozygous *atcp4* and heterozygous *35S: NTAP: AtCSP4-3AtCSP4-3* plant-75
Table 2-2. Primer list for AtCSP4 transcript detection and amplicon length of PCR product with the R1 primer --------76
Table 2-3. List of context sequence and amplicon lengths for Taq-Man probes------------------------ 76
Table 2-4. Primer list for semi-quantitative RT-PCR analysis ---76
LITERATURE REVIEW

CSP structure

The structures of cold shock domains from bacteria, archaea, and human have been solved and have been reviewed in relation to their functions (Horn 2007, Giaquinto 2007, Kohno 2003). The cold shock domain contains two well conserved RNA binding motifs which are denoted as RNP-1 and RNP-2 (Landsman 1992). The crystal structure of *Bacillus subtilis* CspB revealed that the CSD contains five β-barrel strands connected by a long flexible loop (Schindelin 1993). RNA binding motifs of RNP-1 (K/R-G-F/Y-G/A-F-V/I-X-F/Y) and RNP-2 (L/I-F/Y-V/I-G/K-N/G-L) reside in the second and third β-barrel strands (Graumann 1996, Schroder 1995, Landsman 1992). *E. coli* CspA also forms a similar structure with five anti-parallel β strands forming a closed five barrel structure containing several basic/aromatic islands that are rich in arginine and aromatic residues (Schindelin 1994). These basic/aromatic residues enable the CSD to bind preferentially to nucleic acid strands. Based on the high homology of the CSD in bacteria and eukaryotes, five β-barrel anti-parallel strands are regarded as the standard three dimensional structure for the CSD. Plant CSPs typically contain the conserved cold shock domain and auxiliary domain such as glycine rich regions interspersed by zinc finger motif (Thompson 2008, Karlson 2003). The CSD of YB-1 showed various specificities in the binding to RNA and DNA (Ladomery 1994). For example, it showed high affinity with polypurines poly (A, G) and poly G but not polyA in the presence of 5 mM MgCl₂. In 1 mM MgCl₂ or 1 mM spermidine, it interacts preferentially with poly (C, U) (Ladomery 1994). The nucleic acid binding activity of CSD is enhanced by the existence of C-terminal auxiliary domains (Nakaminami 2005, Ladomery 1994). The three dimensional structure of CspB showed that it has a suitable stereographic structure to bind to nucleic acid backbone, which induces Csp binding activity to nucleic acids (Skabkin 2004).

Bacterial cold shock domain protein

Cold shock domain proteins (Csp) were first reported in bacteria by Goldstein and his colleagues (Goldstein 1990). The *E. coli* Csp family contains nine different *csp* genes designated

1) All citations, including multi-authors citations, show only first author’s name.
as *csp A* through *I* which differ widely in their cellular functions (Yamanaka 1998). Among the nine cold shock proteins, *cspA*, *cspB*, *cspG* and *cspI* (Wang 1999, Etchebaray 1996, Nakashima 1996, Lee 1994, Goldstein 1990) are reported to be involved in cold stress. On the other hand, *cspC* and *cspE* are constitutively expressed but function as multi-copy suppressors of a temperature-sensitive protein. The *cspD* gene is not induced under cold temperature but is highly expressed under nutritional deprivation and normal stationary growth stage in *E. coli* (Yamanaka 1997 and 1994). The functions of *cspF* and *cspH* are not clear in relation to cold shock and during stages of bacterial growth. The aquatic bacterium, *Caulobacter crescentus*, also contains four *csp* genes of which only *cspA* and *cspB* were induced by cold shock (Lang 2004). Therefore, *csp* proteins function in diverse cellular development and stress responses even though their nomenclature was first defined by a response to cold.

A cold sensitive bacterial mutant (BX04) was generated by a quadruple deletion of *cspA*, *cspB*, *cspG*, and *cspE* resulting in cold sensitivity and filamentous cellular growth (Xia 2001). With the exception of *cspD*, overexpression with other *csp* s complemented the cold sensitivity of this quadruple deletion strain. These data indicate that members within the *E. coli* cold shock protein family are functionally redundant.

Bacterial *Csp* s bind single strand nucleic acid strands such as RNA and DNA and induce nucleic acid antitermination. This activity has been observed in different *csp* s such as *cspA*, *cspC* and *cspE* (Bae 2000). Individual cells overexpressing a single *cspE* mutant or double *cspC* and *cspE* mutants showed a loss of nucleic acid binding and melting activity which resulted in cold sensitivity of bacterial cells. These results implicate that the nucleic acid binding and melting activity play an important role in cold adaptation of bacteria via modification of DNA or RNA structure (Phadtare 2006). This research also revealed promoter-proximal sequences containing many genes that are regulated by *cspC* and *cspE* at physiological or cold shock temperatures. The 5’ untranslated region (UTR) of *cspA* mRNA was recognized by RNA binding proteins to unfold the secondary structure of *cspA* mRNA, inducing its own translation (Yamanaka 1997). Bacterial Csps have been implicated to play roles in transcription, mRNA stability and translation under cold stress and stationary condition (reviews: Graumann 1998, Sommerville 1999). *CspA*, the major cold shock protein in *E. coli*, was demonstrated to function as an RNA chaperone due to its RNA binding activity to destabilize RNA secondary structures, allowing
release of secondary structures of RNA for efficient translation or post transcriptional regulation of mRNA at low temperatures (Jiang 1997).

Bacillus subtilis contains three *csp*s which are denoted as: *cspB, C and D*. A double deletion of *cspB* and *cspC* altered protein synthesis, induced cell lysis during the stationary growth phase and impaired the ability of bacteria to differentiate into endospores (Weber 2001). Interestingly, the complementation of translation initiation factor IF1 from *E. coli* in a *B. subtilis* *cspB and cspC* double deletion strain rescues the loss of function for both the growth and the sporulation, implicating a shared function of IF1 with *cspB and cspC*. Archaeal *csp*s have also been identified from psychrophilic and mesophilic *Euryarchaeota* which include *Methanogenium frigidum* and *crenarchaeota* (Saunders 2003, Giaquinto 2007). Archaeal *csp*s binds to single-strand RNA similar to the single stranded nucleic acid binding activity of *E. coli csp*s (Giaquinto 2007). The growth defective *E. coli* mutant (BX04) was rescued by complementation of individual *csp* homologs and structural analogs from three psychrophilic archaea (Giaquinto 2007).

Eukaryotic CSD proteins

YB-1 protein

The YB-1 protein has been extensively studied from various eukaryotic organisms including human (review: Kohno 2003). YB-1 was first identified as a MHC class II promoter binding protein (Didier 1988) which binds to the 5′-CTGATTGG-3′ *cis*-element sequence. When aligned to the cold shock domain of bacterial CspS, YB-1 proteins exhibit more than 40%
identity to the bacterial sequences. Human YB-1 proteins, *dbpA*, *dbpB/YB-1*, and *dbpC/contrin* were cloned and functionally characterized (Tekur 1999, Kudo 1995). Immunofluorescent cellular localization studies confirmed that *dbpA* is localized both in the cytoplasm and the nucleus (Kudo 1995). The gene dispersion of *dbpA* and *dbpB/YB-1* within chromosomes is very different; *dbpA* is located at a unique position of chromosome 12. On the other hand, *dbpB* is dispersed on many chromosomes with multiple copies on chromosome 1. For this reason, *dbpA* and *dbpB* have been regarded as diverse functional genes even though they were derived from a common ancient origin. *dbpC/contrin* is expressed in human germ cells and is highly homologous to mouse *YB-2 (MSY2)* on a sequence level. *MSY2* is also highly expressed in germ cells (Gu 1998). *dbpC/contrin* is regarded as a potentially novel cancer/testis antigen because it is highly expressed in carcinomas but was restricted to germ cells and placental trophoblasts in normal cells (Kohno 2006).

YB-1 is a pleiotropic CSD protein in mammals which is involved in transcription, translation, mRNA editing, and DNA repair mediated by a base excision and mismatched DNA repair mechanism (Gaudreault 2004, Kohno 2003). YB-1 also plays a role in stress response and cell proliferation owing to its DNA repair ability. In general, YB-1 proteins are involved in transcriptional repression and activation which is mediated by its nucleic acid binding activity. YB-1 was first identified as a repressor of the gene expression of the human granulocyte-macrophage colony stimulating factor (GM-CSF) (Coles 2000, Coles 1996). The human VEGF promoter is also repressed by YB-1 which is phosphorylated by ERK2 and GSK3β (Coles 2005). In addition, YB-1 mRNA transcription is regulated by p73 interacting with c-Myc in humans, which is a major functional gene of cell proliferation (Uramoto 2002). These results support that YB-1 proteins function as regulators of cell proliferation by transcriptional repression. However, in Jurket T cells, YB-1 functions as an activator of GM-CSF. In this case, the activation is not mediated by binding to single stranded DNA or RNA of GN-CSF. The activation is mediated by a protein-protein interaction at its C-terminal region with transcription factors such as RelA/ NF-κB p65 (Diamond 2001). Similar to YB-1, *dbpA* and *dbpB/YB-1* have also been reported as activators of viral genes (Ansari 1999, Sawaya 1998, Swamynathan 1997, Raj 1996, Kerr 1994).

YB-1 readily forms a trimer, hexamer, and a 12 molecule oligomer in solution, but these structures revert to dimer conformation after the addition of ATP (Gaudreault 2004). The YB-1 dimer functions to separate the mismatched DNA complexes such as blunt ends, 5’ or 3’
overhangs of double stranded DNA, and forked DNA structures (Gaudreault 2004). YB-1 possesses endonuclease activity which is mediated by binding to double stranded DNA and 3’ to 5’ exonuclease activity by its single strand DNA binding activity (Gaudreault 2004, Izumi 2001). These results confirmed that YB-1 is involved in DNA repair by the recognition and repair of mismatched or excised base pairs in DNA. Thus it is not surprising that YB-1 has been shown to play a role in repairing DNA damage resulting from UV irradiation (Koike 1997).

YB-1 autoregulates its own translation by sequence specific binding to the 3’ UTR of its own mRNA (Skabkina 2005 and 2003). Thus, the binding of YB-1 to its own mRNA negatively regulates YB-1 protein translation (Skabkina 2005). This process is competed with poly (A)-binding protein (PABP), which activates YB-1 protein translation. FRGY2, a Xenopus cold shock domain protein, exhibitis cytoplasmic RNA binding activity which mediates transcription repression via masking maternal mRNA. The masking of maternal mRNA results in the accumulation of mRNA storage particles in Xenopus oocytes (Matsumoto 2000 and 1996). YB-1 is a major part of cytoplasmic mRNPs which mediate protein translation (Skabkina 2004). YB-1 possesses sequence specific mRNA binding activity suggesting that YB-1 can recognize specific mRNA (Swamynathan 2000, Bouvet 1995). YB-1 activates or inhibits mRNA translation and this activity is dependent on the quantity of the target genes mRNA abundance. In a low ratio of YB-1 protein/mRNA of α- globin, a monomer of YB-1 binds to mRNA, generating a typical mRNP complex. However, YB-1 is associated with mRNA to make a multimer complex which induces untranslatable mRNPs (Skabkina 2004). Studies with FRGY2 showed that YB-1 competes with 5’ cap binding protein and RNase to switch mRNA translation depending on the amount of YB-1 protein (Evdokimova 2001).

In another example linking YB-1 to protein translation, the iron-responsive element-binding protein (IRP-BP/IRP2) is a binding target of YB-1 which results in the positive regulation of ferritin protein translation (Ashizuka 2002). The normal secondary structure formation in 5’ UTR of ferritin mRNA is prevented by IRP2 which inhibits ribosome binding for the initiation of translation under low iron condition. Under high iron condition, the binding of YB-1 to IRP2, which is mediated by iron, allows the release of the secondary structure of ferritin mRNA resulting in the initiation of ferritin protein translation.

During cell cycle progression for cell proliferation, YB-1 is trans-localized from the cytoplasm to the nucleus at the G1/S phase transition in dividing cells. On the other hand, YB-1
localizes in the cytoplasm during stationary cell growth conditions (Jurrchott 2003). The transcription of cyclin A and cyclin B1 are induced by the overexpression of YB-1, suggesting that YB-1 facilitates cell cycle transition for cell proliferation. The nuclear translocation of YB-1 is regulated by phosphorylation at Ser102 which is mediated by Akt kinase (Sutherland 2005). Disruption of phosphorylation causes an accumulation of YB-1 in the cytoplasm and not in the nucleus, resulting in an inhibition of tumor cell growth.

Lin 28

In the *C. elegans* model system, *Lin 28* plays a critical role in determination of developmental timing by influencing the translation or stability of specific mRNAs (Morita 2006). *Lin 28* contains an N-terminal CSD and CCHC retroviral-type zinc finger motifs. *Lin 28* was first identified as a regulator of the second larval stage in *C. elegans* (Moss 1997). *Lin 28* functions in post-transcriptional regulation and its gene expression is down-regulated by the complementary binding of *Lin-4* transcript to the 3’ UTR of the *Lin 28* mRNA (Moss 1997). *Lin28* homologs were identified in Drosophila, Xenopus, mouse, and human (Guo 2006, Moss 2003). Micro RNA regulation via binding of *Lin4* and *Let 7* mRNAs to the 3’UTR of *Lin28* is well conserved in diverse animal (Moss 2003). *Lin 28* in mammalian cells localizes to diverse cell types of undifferentiated cells and associates with mRNAs. Under stress conditions, *Lin28* localizes to P bodies which are cytoplasmic processing bodies inducing RNA degradation and microRNA regulation (Balzer 2007). The CCHC zinc finger domain of *Lin 28* is very important to retain its localization to P-bodies.

RBP16

RBP16 was identified from the mitochondria of *Trypanosoma brucei*, a parasitic protozoan, and contains CSD at its N-terminus and a glycine and arginine rich C-terminal region resembling the RGG RNA-binding motif (Hayman 1999). The cold shock domain of RBP16 functions majorly for interactions with RNA or protein and the RGG-like motif enhances the nucleic acid binding activity of the cold shock domain (Miller 2003). *RBP16* functions in relation to insertion editing of CYb and A6 pre-mRNA *in vitro* (Miller 2006). This editing requires both the CSD and RRG-like motif to fully activate mRNA translation. Arginine-93 within the RGG-like motif on *RBP16* is methylated by protein arginine methyltransferases.
(PRMTs). This methylation provides additional evidence that the function of cold shock domain proteins can be regulated on a posttranslational level (Pelletier 2001 and 2000).

Unr

In mammals, the Unr gene was identified by a survey of amino acid sequences predicted from mammalian cDNA sequences (Doniger 1992). Unr consists of multiple repeats of cold shock domain regions. Unr interacts with ALL-1, which mediates chromosome translocations and fusion to partner genes in human acute leukemia (Leshkowitz 1996). Similar to other eukaryotic CSPs, Unr expression is regulated at the 5’ and 3’ UTR for its own translation (Dormoy-Raclet 2005). The Unr 3’ UTR region specifically destabilized its mRNA structure and the 5’ UTR showed internal ribosome entry site (IRES) activity which is negatively regulated by unr. These data demonstrate that Unr also autoregulates its protein translation via post-transcriptional regulation. Recently, the human rhinovirus-2 mRNA was reported as the target mRNA regulated by unr via RNA chaperone activity (Anderson 2007).

PIPPin

PIPPin, which is a rat brain enriched protein, contains two putative double stranded RNA-binding domains and a CSD (Nastasi 1999). PIPPin binds specifically to histone 1 and 3.3 transcripts and inhibits translation of these mRNAs (Raimondi 2003, Nastasi 2000). Interestingly, PIPPin is a target of sumoylation, which is a well-studied post-translational modification process (Bono 2007). Sumoylation is regarded as an important protein modification process for histones and the PIPPin complex.

Plant CSPs

Plant CSPs were first classified among glycine rich proteins (GRPs) by alignment of the conserved CSD sequence (Kingsley 1994). Until now, plant CSPs have been identified from single cell photosynthetic organisms to higher plants (Thompson 2008, Karlson 2003). A phylogenetic analysis categorized plant CSPs into two groups depending on the absence of presence of auxiliary C-terminal domains (Karlson 2003). Wheat CSP1 (WCSP1) is a cold-specific responsive protein which binds to double and single stranded DNA and RNA (Karlson 2002). This single stranded nucleic acid binding activity has also been demonstrated for
Arabidopsis, rice and moss CSPs (Chaikam 2008, Kim 2007). WCSP1 exhibits mRNA anti-termination activity, implicating its function as an RNA chaperone for the destabilization of mRNA secondary structures (Nakaminami 2006). WCSP1 and rice CSP (OsCSP1), and Arabidopsis CSPs AtCSP2 (AtGRP2/CSDP2;At4g38680) and AtCSP1(CSDP1;At4g36020) rescued a cold sensitive quadruple Csp deletion bacterial mutant BX04 under cold conditions. These data confirmed that plant CSPs are capable of functioning similarly to their prokaryotic counterparts (Sasaki 2008, Chaikam 2008, Kim 2007).

AtCSP2 is functionally related to plant developmental processes and is also responsive to cold stress (Nakaminami 2009, Sasaki 2007, Fusaro 2007). RNAi transgenic AtCSP2 plants exhibited two phenotypes of early flowering and less stamen number under normal growth conditions (Fusaro 2007). AtCSP2 is the most abundant gene among the four AtCSPs and its mRNA abundance is the highest in flowers and siliques. These expression patterns mirror those of AtCSP4 (AtGRP2b;At2g21060) (Nakaminami 2009). A comparative analysis of AtCSP expression in Lansberg (Ler) and Columbia (Col) ecotypes showed that AtCSP4 expression is 1000-fold reduced in the Ler background relative to Col.

A CSP in the green algae Chlamydomonas (NAB1) regulates light harvesting chlorophyll binding protein (LHCBM) mRNA which induces a component of light harvesting antenna. The regulation of LHCBM mRNA ultimately impacts the regulation of photosynthesis and thus this protein is of great importance (Mussgnug 2005).
Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) regulates leaf length polarity cell expansion in lateral leaf
Abstract

The cold shock domain (CSD) is one of the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, an understanding of their functional roles in the Plant Kingdom is lacking. To understand the function of cold shock domain proteins in planta, I analyzed AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana cold shock domain proteins (AtCSPs). Taq-Man probe quantitative RT-PCR (qRT-PCR) analysis confirmed that AtCSP3 transcripts were expressed dominantly in reproductive and meristematic tissues. The homozygous loss of function mutant atcsp3 displayed a distinct phenotype with an overall reduced sized of seedlings, stunted and orbicular rosette leaves, and curled leaf blades. Microscopic visualization of cleared leaves revealed a reduction in size and increased circular shape of palisade mesophyll cells in atcsp3 leaves. Image analysis of palisade cell layers indicated that the reduced size of the circular mesophyll cells is generated by a reduction of cell length and cell number along the leaf-length axis, resulting in an orbicular leaf shape. Also, I determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss of function mutant, but their leaf cell proliferation is not affected. Loss of function of AtCSP3 resulted in a dramatic reduction of LNG1 transcript involved in two-dimensional leaf polarity regulation. Subcellar localization of AtCSP3 in onion epidermal cells revealed nucleocytoplasmic localization. Collectively, these data suggest that AtCSP3 regulates leaf length specific polarity by affecting LNG1 transcript accumulation during leaf blade lateral expansion. I also discuss a putative function of AtCSP3 as an RNA binding protein in relation to leaf development.
Introduction

The cold shock domain (CSD) is regarded as one of the most conserved protein domains that is widespread from bacteria to mammals. The CSD contains two consensus RNA binding motifs, defined as RNP1 and RNP2, which facilitate functions like nucleic acid binding, RNA chaperone activity, post transcriptional regulation, and transcription regulation (for review; Horn 2007, Sommerville 1999, Graumann 1998). As the name implies, not all cold shock proteins (CSPs) in an organism are functionally involved in the cold stress response. For example, only four out of the nine *E. coli* CSPs named CspA, CspB, CspG, and CspI, are induced in response to cold stress (Lee 1994, Nakashima 1996, Wang 1999). Other *E. coli* CSPs such as CspC, CspD, and CspE are not induced by cold stress and CspC and CspD are induced by nutrient stress, whereas CspE can be induced at normal physiological temperatures. (Yamanaka 1997 and 1994). In eukaryotes, cold shock domain proteins contain various N-terminal and C-terminal auxiliary domains in addition to the CSD. The well studied human cold shock domain protein (Y-box binding protein-1; YB-1), performs pleiotropic roles in gene transcriptional regulation, DNA repair, and external stimuli response such drug resistance (reviewed by Kohno 2003). YB-1 activation by Akt-mediated phosphorylation results in its translocation to the nucleus which leads to the regulation of cell proliferation in human ovarian cancer cells (Basaki 2007). In addition, phosphorylation of YB-1 mediated by Akt-1 is regarded as the inducer for increase in expression of genes related to cell proliferation and stress response by translation of silent mRNA (Evdokimova 2006).

Since Kingsley and Palis first description of plant CSPs (Kingsley 1994), functional studies have been initiated in rice, wheat and Arabidopsis. Phylogenetic analysis of plant CSPs confirmed that they are highly conserved in the Plant Kingdom. Two types of plant CSPs were suggested to exist based on the presence or absence of auxiliary domains (Karlson and Imai 2003). *In vitro* functions of a wheat CSP (WCSP1), two rice CSPs (OsCSP1, OsCSP2), and two Arabidopsis CSPs (AtGRP2; AtCSP2, AtCSDP1) were reported as nucleic acid binding proteins. These studies suggest a putative functional role as RNA chaperones, although their precise biological role *in planta* remains elusive (Chaikam 2008, Sakai 2007, Kim 2007, Fusaro 2007, Nakaminami 2006, Karlson 2002). The first functional analysis for an Arabidopsis CSP (AtGRP2/CSDP2/AtCSP2) by RNAi induced gene silencing resulted in early flowering, reduced stamen number and abnormalities during seed embryogenesis (Fusaro 2007). These observations
clearly indicate that in planta functions of AtCSPs are not restricted to abiotic stress and may have important functions in plant development. The relationship to plant development was further supported by a recent detailed investigation monitoring the entire AtCSP gene family throughout all stages of development (Nakaminami 2009). However, the precise in planta functions of AtCSPs are poorly understood at the molecular and functional level.

Plant leaves are the major organ which absorb light energy and convert it into a storable energy source. For this reason, leaf size and shape are important determinants for overall plant growth and development. Leaf organogenesis is divided into three stages of leaf initiation, leaf polarity establishment, and cell expansion which results in final leaf shape (for reviews: Tsukaya 2006 and 2005). In general, these three stages of leaf organogenesis are regulated by different gene groups (for reviews: Barkoulas 2007, Byrne 2005). Leaf shape is initially established at two parts, leaf petioles and leaf blades. Arabidopsis leaf blades expand in two-dimensional flat directions which are defined as longitudinal (leaf-length) and lateral (leaf-width) axes. The ratio of the two directions is used as the criterion to determine leaf blade shape, which is further determined by the cell distribution, cell size and their interaction in leaf lamina.

ROTUNDIFOLIA 3 (ROT3), which is a plant type cytochrome P450 (CYP) 90C1, and ROTUNDIFOLIA 4 (ROT4) are regulators of leaf length polarity growth. A null allele of rot3 exhibits stunted leaf and floral growth. Overexpression of ROT3 in the rot3 mutant background complemented the stunted leaf phenotype (Kim 1998, Tsuge 1996). Overexpression of ROT3 results in longer leaves in the longitudinal direction but is not altered in leaf width. In contrast to ROT3, CYP90D1, a regulator of Brassinolide (BR) biosynthesis, showed a dwarf phenotype only when a double mutant was created in combination with the rot3 null allele background. An enhancer trap line of ROT4, whose protein encodes a membrane bound small peptide, possesses a similar leaf shape phenotype as that of rot3, but the anatomical observation demonstrated that the stunted and small leaf shape in rot4 is caused by a decrease in cell proliferation unlike that of ROT3. Other leaf polarity regulation genes in the leaf-length direction, LONGIFOLIA (LNG1) and LONGIFOLIA2 (LNG2), were reported recently and were shown to function independently of ROT3 (Lee 2006). An activation tagged line of lng 1-1D exhibited a long leaf blade phenotype along with serrated margins and other elongated tissues. lng1 and lng2 loss-of-function mutants were found to have characterized to have a shortened length of leaf blades.
In the case of leaf width polarity specific regulation, loss of function of ANGUSTIFOLIA (AN), SPIKE1, and ANGUSTIFOLIA3 (AN3)/GRF-INTERACTING FACTOR1 (AtGIF1), and overexpression of AtHB13 (OxAtHB13) caused a similar narrow leaf shape in the leaf-width direction (Kim 2002, Qiu 2002, Folker 2002). AN protein, which is similar to the members of the animal CtBP protein family, arranges cortical microtubules to allow polar expansion of leaf cells. SPIKE1 plays a role in cytoskeletal reorganization, which determines overall cell shape and tissue development. Therefore, it was hypothesized that leaf-width polarity regulation is related to cytoskeleton formation which is comprised of cortical microtubules. A loss-of-function mutant of AN3 showed a narrow leaf phenotype in the leaf-length direction which is caused by the defect of cell numbers in leaf blades (Kim 2004). AN3, a homolog of the human transcription factor SYT, accumulated in leaf primordia and regulates cell proliferation. AN3 gene expression in leaves overlapped with other Arabidopsis growth regulator factors (AtGRFs), AtGRF5 and AtGRF9, but not with AtGRF8. Also, yeast two hybrid analysis identified an interaction between AN3/AtGIF1 and AtGRF5 and AtGRF9 (Kim 2004). Overexpression of AN3 and AtGRF5 showed a 20-30% larger leaf size compared to the wild type, which resulted from an increase in leaf cell number (Kim 2004).

By characterizing two independent T-DNA insertion alleles, which exhibited small and stunted leaf shape, we report the first direct evidence of AtCSP3 functioning as a regulatory protein in plant growth and development. In addition, we report two genes that are affected by AtCSP3 during leaf development in Arabidopsis.

Materials and Methods

Plant material and culture conditions

Seeds of *atcsp3-1, atcsp3-2, and atcsp3-3* T-DNA insertion mutants were obtained from the Arabidopsis Biological Research Center (ABRC) with stock numbers of SALK_144972, Wisc_DsLox353G12, and SALK_022658, respectively. Col-0 wild type seeds were purchased from Lehle Seeds (Round Rock, TX). Prior to planting, seeds were stratified for 4 days at 4 °C without light. All plants were grown in Metromix 360 (Scotts Co., Marysville, OH, USA) under 16 h/ 8 hr and 8 hr/ 16hr of light/dark for long day and short day conditions, respectively, at 23 °C.
Measurement of gene transcript abundance

For measuring *AtCSP3* transcript in different tissues, total RNAs, with the exception of leaf tissues, were extracted with Plant RNA extraction Reagent (Carlsbad, CA, Invitrogen). Total RNA from rosette and cauline leaves were extracted with TRIzol® reagent (Carlsbad, CA, Invitrogen). First strand cDNA was synthesized with 500 ng of total RNA by the QuantiTect Reverse Transcription kit (Germantown, MD, Qiagen). Detailed protocols for RNA extraction and cDNA synthesis were obtained from the manufacturers. The generated cDNA was diluted fifty-fold for qRT-PCR and five-fold for semi-quantitative RT-PCR, respectively.

Root tips and elongation areas were separated by cutting roots from 10 day-old seedlings at 3 mm above the root tip. To obtain RNA from root maturation area, root tissues between 3 mm and 1 cm from the root tip were used. For the collection of root tissue, Arabidopsis seedlings were grown vertically on 0.5 X MS/1% agarose plates including 1% sucrose at 10 day after germination (DAG). Rosette leaves and shoot apical meristems were collected from 21 DAG plants grown in soil under the same light and temperature conditions as described above. RNA from cauline leaves and reproductive tissues were extracted from 28 DAG and 35 DAG plants, respectively.

TaqMan Probe qRT-PCR was performed with TaqMan® Universal PCR Master Mix (Foster City, CA, Applied Biosystems) with thermo cycling condition as follows: 95 °C for 10 min followed by 50 cycles of 95 °C for 15 sec and 60 °C for 1 min. Taq-Man probes for *AtCSP3* and actin 2 were prepared from Applied Biosystems and their respective sequences are listed in Table 1-3.

For the confirmation of *atcsp3* T-DNA insertion alleles, cDNA was synthesized with total RNA extracted from leaf tissue of 28 DAG wild type Col-0 and loss of function mutant alleles. cDNA synthesis was performed as described above. Primer sequences for genotyping analysis are described in Table 1-2. PCR conditions were set up as follows: 95 °C for 2 min for initial denaturation, followed by 30 cycles of 95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 30 sec, and a final extension for 7 min at 72 °C. Arabidopsis actin 1 (*AAC1*) was amplified as an internal control for 26 cycles with the same PCR conditions as described above.

For semi-quantitative RT-PCR analysis of leaf cell polarity elongation genes, total RNA was extracted from the 5th leaf from three different soil grown plants under long day conditions for 28 DAG. Primers for *CYCD3;1*, *ROT3*, *LNG1*, *LNG2*, *AN3*, and *AN* were designed by
Primer3 software using the cDNA sequence information obtained from the Arabidopsis Information Resource (www.arabidopsis.org). PCR reactions were performed with a Go-Taq Flexi PCR reaction kit (Madison, WI, Promega). Thermal cycling conditions were set up as follows: 95 °C for 2 min for initial denaturation, followed by 30 cycles of 95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 30 sec, and a final extension of 7 min at 72 °C. AAC1 was used as an internal control amplified by the same PCR conditions as above.

Morphological analysis of loss of function mutant of AtCSP3

Wild type Col-0, atcsp3-2, and atcsp3-1 were grown under long day conditions at 23 °C up to 56 DAG for morphological analyses. Representative photographs were taken a plant among 20 different plants. For root elongation and germination tests, sterilized seeds were grown on 1X Murashige and Skoog (MS) + vitamin B5 mixture / 1 % sucrose/ 1 % phytoagar plates under long day conditions. For assessment of root elongation, seedlings were grown vertically for 5 DAG on 1X MS/1 % agarose including 1 % sucrose, and 5 DAG plants which had the same root length were transplanted to new plates and maintained under the long day conditions. Root elongation was determined by measuring the difference between root length at 4 days after transplanting and initial root length at the time of transplanting.

Whole plants, aligned siliques, and leaf photographs were taken by a Nikon Coolpix 8700 digital camera (Melville, NY, Nikon). Additional photographs of small sized tissues such as flowers and seeds were taken under a Nikon SMZ-U dissecting microscope equipped with a Nikon DXM 1200 CCD camera (Melville, NY, Nikon).

Microscope observation and anatomic analysis

For observation of palisade cells, leaves were fixed in Farmer’s fixative (ethanol: acetic acid 3:1) for 2-4 hours. Chlorophyll was completely removed by washing with 70 % and 100 % ethanol. To clear leaf tissue for microscopic observation, fixed leaves were soaked in 5 N NaOH at 60 °C for 2 hours. Nomarsky images were taken with a Nikon ECLIPSE E600 differential interference contrast (DIC) microscope equipped with a Nikon DXM 1200 CCD camera system (Melville, NY, Nikon). To observe epidermal cells on adaxial leaf surfaces, live 5 th leaf tissue from a 28 DAG plant was stained with 100 µg/ml propidium iodide diluted in 0.1 M L-arginine buffer (pH 12.4) for 2-5 min. Stained leaf pictures were taken by a Zeiss Axioimager LSM 510
confocal microscope with Z-stack image generation mode. Dark field microscopic images were taken by a Nikon ECLIPSE TE2000-S microscope (Melville, NY, Nikon).

Subcellular localization by DNA coated particle bombardment

The coding region for the *AtCSP3* gene was amplified with primers containing the following restriction enzyme digestion sites; 5’-TCTGTCGACATGGCGATGGAAAGATCAATC-3’ and 5’-AGACCATGGTTTAGAAACCGAAGTACATT-3’. Amplified PCR products were purified and digested with NcoI and Sall and inserted into a pre-digested sGFP(s65T) vector. DM-10 tungsten particles (Hercules, CA, BIO-RAD) were coated with 1 µg of plasmid. Particle bombardment was carried out into onion epidermal cells by using a Biolistic® PDS-1000 particle bombardment system (Hercules, CA, BIO-RAD) using the following conditions: 25 inches of Hg vacuum, 1000 psi rupture disk, and 12 cm target distance. Bombarded tissue was incubated at 20 °C for overnight in the dark. Images were obtained by a Zeiss Axioimager LSM-501 confocal microscope and analyzed by LSM image analysis software (German, Carl Zeiss AG).

Results

AtCSP3 gene structure and tissue specific accumulation of mRNA

AtCSP3 (At2g17870) is one of four *Arabidopsis thaliana* cold shock domain proteins (AtCSPs). The genomic sequence of *AtCSP3* consists of a single exon without any introns with a complete open reading frame of 906 base pairs, encoding a protein of 301 amino acids (Figure 1A). The AtCSP3 protein consists of a well conserved N-terminal cold shock domain (CSD) and seven C-terminal CCHC retroviral-like zinc finger motifs that are interspersed by glycine rich regions. Quantitative real-time PCR (qRT-PCT) analysis was used with gene specific Taq-Man probes to characterize tissue specific mRNA accumulation patterns for *AtCSP3*. qRT-PCR results indicated that *AtCSP3* transcripts were accumulated in all vegetative and reproductive tissues (Figure 1B). However, *AtCSP3* transcripts were enriched in reproductive tissues and tissues with active cell divisions. *AtCSP3* transcripts were differentially expressed in different root regions. In root tissue, *AtCSP3* transcripts were highly accumulated in the maturation area.
compared to the elongation zone and root tips. In aerial tissues, \textit{AtCSP3} transcripts were detected highly in tissues with active growth and cell divisions like shoot apex, inflorescence, and siliques. Relative mRNA accumulation levels for \textit{AtCSP3} were lower in leaves and dry seeds. Clear differences in \textit{AtCSP3} transcript accumulation were observed between siliques containing full mature seeds before drying and seeds that were completely dried, indicating that \textit{AtCSP3} gene transcription decreases during the seed dormancy process. Taken together, qRT-PCR results indicated that the \textit{AtCSP3} gene is expressed in many tissues but shows elevated expression in meristematic and actively dividing tissues.

\textbf{Molecular analysis to isolate \textit{atcsp3} mutant alleles}

We checked the SIGnAL T-DNA Express web-site to identify all available mutant lines containing putative T-DNA insertions in the \textit{AtCSP3} locus (http://signal.salk.edu/cgi-bin/tdnaexpress). Two SALK lines (SALK_144972C, and SALK_022658C) and a Wisconsin line (WISC DsLox353G12) were identified and predicted to contain putative T-DNA insertions in the open reading frame or putative promoter region of \textit{AtCSP3}. All mutant seeds were obtained from the ABRC stock center. Homozygous lines for each accession were confirmed by genotyping individual plants for several generations (data not shown). Sequence analysis of cloned PCR products with gene and T-DNA border specific primers was used to confirm the exact location of T-DNA insertions in each seed line. DNA sequence analysis confirmed that SALK_022658C has a T-DNA insertion in the promoter region far upstream from the initial codon of \textit{AtCSP3} (Figure 1-2A, genotyping results are not shown). However, SALK_144972C and Wisc DsLox 353G12 have insertions at -42 into the 5'UTR and +170 in the coding region, respectively. WiscDsLox353G12 is denoted as \textit{atcsp3-1}, SALK_144972C as \textit{atcsp3-2}, and SALK_022658C as \textit{atcsp3-3}.

To determine if \textit{AtCSP3} gene transcript is knocked out in the T-DNA insertion mutants, we performed semi-quantitative RT-PCR using T-DNA left border (LB) and several gene specific primers designed at different positions in the sequences (Figure 1-2A). First, we performed PCR with non-flanking 3' UTR region primers (F1 and R1) to determine if \textit{AtCSP3} transcripts were accumulated in the mutants. \textit{AtCSP3} transcripts were detected in all T-DNA insertion lines with this primer set (F1+R1; Figure 1-2B). Thus, none of the \textit{atcsp3} mutant lines are null mutants. We performed semi-quantitative RT-PCR with a forward primer flanking the
T-DNA insertion areas of atcsp3-2 and atcsp3-1 and the reverse R1 primer (Figure 1-1A). When F2 and R1 primers were used in atcsp3-2 plants, a PCR product was obtained. However, when primers F3 and R1 primer (Figure 1-2B; F3+R1) were used, no product was obtained, indicating that these plants contain truncated AtCSP3 transcripts. Similar analyses for atcsp3-1 plants indicated that they also encode truncated transcript. When the multiple sets of primers were used with atcsp3-3 cDNA, PCR products were identical to those of the wild type. Therefore, the T-DNA insertion in the AtCSP3 promoter region in the atcsp3-3 allele did not appear to affect AtCSP3 gene transcription. Thus, it is unlikely that this mutation affected the function of the AtCSP3 protein. Conversely, the atcsp3-1 and atcsp3-2 alleles are loss of function mutants generating 5’ truncated AtCSP3 transcripts and consequently alter AtCSP3 protein function.

Phenotypic analysis of atcsp3 T-DNA insertion mutant alleles

The function of AtGRP2/CSDP2/AtCSP2 (At4g38680) was recently characterized by employing RNA interference (Fusaro 2007). Abnormal phenotypes such as early flowering, altered stamen number and abnormal seed development were observed for an RNAi line of AtGRP2/CSDP2/AtCSP2. Both AtGRP2/CSDP2/AtCSP2 and AtCSP3 contain an N-terminal cold shock domain, however, AtCSP3 contains 5 additional C-terminal CCHC zinc finger motifs that are interspersed with glycine rich regions.

To observe the effects of the truncation in the AtCSP3 transcript, we monitored the phenotype of T-DNA insertion mutants from germination through flowering and seed maturation. Under long day conditions, none of the mutants showed germination defects as determined by uniform emergence of radicles (data not shown). Primary root elongation was also measured on MS plate under long day conditions and no differences were observed among the mutant alleles (Figure 1-3 I).

During later stages of vegetative development, atcsp3-1 and atcsp3-2 mutants exhibited smaller and reduced number of leaves relative to wild type. However, atcsp3-3, whose transcript was not repressed or truncated, exhibited a phenotype identical to wild type plants (Figure 1-3A). Total leaf number from 28 DAG plants was compared with all alleles by counting all leaves after removing the primary stalk. Basal rosette leaf number of atcsp3-2 and atcsp3-1 was identical to the wild type. However, when the total leaf number counted including small younger leaves close to the shoot apex, the mutants had fewer total leaves than wild type (Figure 1-3B and G). In
addition to a reduced total leaf number, we also observed abnormally rounded leaf blades and short petioles in the \textit{atcsp3-2} and \textit{atcsp3-1} mutants. In contrast, \textit{atcsp3-3} leaves had an identical shape to that of wild type plants. In addition to the aforementioned abnormalities in leaf shape, \textit{atcsp3-1} leaves exhibited a curly phenotype. Curled leaves were not observed in the 1st and 2nd leaf pairs, whose leaf expansion started from 7 DAG, but very severe curling was observed in the 3rd leaves. \textit{atcsp3-1} was the only allele exhibiting the severely curled leaf phenotype.

To determine if the mutant alleles showed any defect in the transition from vegetative to reproductive growth, we investigated flowering time by counting the days until the emergence of the primary inflorescence (~ 1 cm in height). Seedlings of the wild type and \textit{atcsp3} mutant alleles started to flower approximately 22 DAG and were similar to the wild type (Table 1-1). When flowering time was investigated using short day conditions (6 hr/18 hr for light/dark), no significant alterations in flowering time were observed (data not shown). Figure 1-3H shows that the height of full grown \textit{atcsp3-2} and \textit{atcsp3-1} plants are approximately 7 cm shorter than the wild type (Table 1-1). In addition, stem of \textit{atcsp3-1} plant is thinner than the wild type at 28 DAG but \textit{atcsp3-2} is not altered (data not shown). Measurements of fresh weight at 6 week DAG also indicated that growth of \textit{atcsp3-2} and \textit{atcsp3-1} plants is clearly reduced relative to wild type and \textit{atcsp3-3}.

Among the reproductive tissues, \textit{atcsp3-1} and \textit{atcsp3-2} flowers were slightly shorter in length relative to the wild type. However, no abnormalities in floral organ shapes were observed in any alleles (Figure 1-3C). Regarding numbers of floral organ tissues, all alleles contained 6 stamens, 1 carpel, 4 petals, and 4 sepals (Figure 1-3D). Although the length of full-grown siliques of \textit{atcsp3-1} and \textit{atcsp3-2} were shorter than that of the wild type (Figure 1-3E), seed size was not altered in \textit{atcsp3-1} and \textit{atcsp3-2} mutant alleles. However, both mutants contained fewer seeds compared to the wild type and \textit{atcsp3-3} (Figure 1-3, F and K). This effect was more pronounced in \textit{atcsp3-1} relative to \textit{atcsp3-2}.

In summary, morphological analyses of \textit{atcsp3} T-DNA insertion alleles revealed that \textit{atcsp3-2} and \textit{atcsp3-1} mutants produce smaller plants with rounded leaf blades and shortened petioles. These same mutants also possessed shortened siliques and fewer seeds. Relative to other alleles and wild type, \textit{atcsp3-1} exhibited severely curled leaf blades and a significant reduction in stem thickness. Consistent with RT-PCR data, which did not show a reduction in \textit{AtCSP3} transcript (Figure 1-2), the \textit{atcsp3-3} allele did not exhibit atypical phenotypes.
Leaf index measurement and orbicular leaf shape of atcsp3s

As shown in Figure 1-3, the stunted and orbicular leaf shape is the obvious phenotype in atcsp3 loss of function mutants. To characterize the leaf shape of atcsp3 T-DNA insertion mutants, I measured the length and width of the 5th leaf from 28 DAG seedlings. In wild-type plants, the shape of the 5th leaf is generally elliptical combined by the great length and short width of leaf blade. Wild type plants also have long petioles (Figure 1-4A). Conversely, leaf shape of the atcsp3-2 and atcsp3-1 mutants was rounded and orbicular with a pronounced reduction in petiole length. atcsp3-1, which contains a T-DNA insertion within the cold shock domain coding region, has a more severely stunted and rounded leaf phenotype which is accompanied by curling of the leaf surface. This phenotype was more severe than the one observed for the atcsp3-2 allele. Both atcsp3-1 and atcsp3-2 alleles had reductions in the length of leaf blades and petioles and their plant sizes were significantly smaller relative to the wild type (Figure 1-4B). In contrast, leaf blade width was not as dramatically reduced as leaf length relative to wild type plants. To better characterize leaf shape, I calculated leaf index by measuring the length and width of the leaf blade area (Figure 1-4 C). Wild type Col-0 and atcsp3-3 plants had 1.52 ± 0.11 and 1.60 ± 0.09 leaf index values, respectively. In the atcsp3-2 and atcsp3-1 mutant alleles, the leaf index values decreased to 1.33 ± 0.09 and 1.30 ± 0.10, respectively. This reduction in leaf index values directly correlates to the increased roundness in leaf shape for these mutant alleles. In addition, leaf bases at the petiole junction were more rounded in atcsp3-2 and atcsp3-1 mutants.

Taken together, atcsp3-2 and atcsp3-1 leaves were orbicular in shape which resulted from a reduction of leaf length and a rounded leaf base. These mutations were also accompanied by shortened petioles. Since the atcsp3-3 mutation did not result in reduction of transcript of AtCSP3, I eliminated atcsp3-3 from further characterization due to its resemblance to the wild type.

Histological characterization of atcsp3 mutants

To understand why the shape of leaf blades is altered in atcsp3 mutants, we observed the size and shape of cells from epidermal and palisade mesophyll cell layers in the middle portion of 5th leaves 28 DAG. The most important difference observed among the wild type and mutant plants was the difference in cell size and shape (Figures 1-5A, B, and C). Adaxial epidermal cells
in *atcsp3-2* and *atcsp3-1* mutants were more densely arranged, while those of Col-0 wild type were more evenly aligned. The distribution of epidermal cells on the leaf surface of *atcsp3-1* mutants was uneven and condensed, which likely results in the curled leaf phenotype. Similarly, we also observed differences in cell distribution and size in palisade mesophyll tissue (Figure 1-5D, E, and F). The size of palisade cells in *atcsp3* mutants was smaller than that of the wild type. Similar to epidermal cells, the distribution of palisade cells in *atcsp3* mutants was more condensed relative to the wild type. In the *atcsp3-2* mutant, the palisade cells were more circular in shape compared to the wild type. This phenomenon was also observed to a lesser degree in the *atcsp3-1* mutant.

To understand why *atcsp3* mutants have orbicularly shaped leaves, I measured cell number and cell size on the same palisade cell layers. Cell length in both directions was counted from microscopic images of palisade cells from 5th leaf blades (Figure 1-5G and H). In microscopic images, the palisade cell layer from *atcsp3* appeared to contain more cells than the wild type. Since the leaf size of *atcsp3-1* and *atcsp3-2* mutants is smaller than that of the wild type, it is difficult to estimate the total number of cells in the leaf blade based on microscopic images within sections of leaves. Therefore, cell number in the microscopic image was multiplied with the ratio between the size of microscopic image and size of the original leaf to determine the total cell number. The estimated total cell number was similar between *atcsp3* mutants and the wild type (Figure 1-5G). Thus, I hypothesized that the reduced leaf size in *atcsp3* mutants might have resulted from alteration in cell number along the leaf-length or leaf-width direction. Counting cell numbers along both directions revealed that *atcsp3* mutants contain fewer cells along the leaf-length direction compared to the wild type. (Figure 1-5G). This alteration in the arrangement of palisade cells along leaf-length direction likely contributes to the formation of orbicular leaves in *atcsp3* mutants.

I also performed a comparative analysis to determine if the individual shape and size of epidermal cells is also altered in the mutants and correlated with the orbicular leaf shape mutation. To distinguish epidermal cells growing in leaf-length axis from cells growing in the leaf-width axis, I labeled cells “α” for leaf-length and “β” for leaf-width axes, respectively. On adaxial leaf surfaces, each epidermal cell and shape was observed and α and β shaped cells were evenly distributed in the epidermal cell layer of the wild type (Figure 1-5A). In contrast, comparative analysis of *atcsp3* loss of function mutants revealed a similar distribution pattern of
“β” shaped cells and a difference in the distribution of “α” shaped cells which grows majorly for leaf-length (Figure 1-5B and C).

I also counted cell number along leaf-length and leaf-width axes to understand the correlation between cell number along both directions and leaf shape. Using this method of characterization, wild type leaves have a greater distribution of cell numbers along the leaf-length axis than the leaf-width direction (Figure 1-5H). Thus, this cell distribution results in the typical elliptical shape of wild type leaves. In contrast, more palisade cells in atcsp3-2 and atcsp3-1 mutants are distributed in the leaf-width direction with less cells oriented in the leaf-length direction than that of the wild type (Figure 1-5H). Cell numbers along the leaf-width and leaf-length axes are nearly equivalent in the mutants resulting in the formation of their orbicular leaf blade shape.

To determine individual cell size, I measured the length along two-dimensions for epidermal and palisade cells. Cell length in both directions was determined by drawing a line that passed through the middle point of an individual cell in the leaf-length or leaf-width direction. ImageJ software was used to calculate cell lengths. Interestingly, cell lengths along the leaf-length axis on both cell types was significantly reduced in atcsp3-1 and atcsp3-2 mutants, whereas cell length along the leaf-width axis was not altered (Figure 1-5 I and J). These data indicate that leaf epidermal and palisade cells in atcsp3-1 and atcsp3-2 mutants are impaired in their expansion along the leaf-length axis but are similar to wild type in the leaf-width direction. Taken together, the results of cell dimension analyses indicate that the orbicular leaf shape of atcsp3-2 and atcsp3-1 results from impairment of the leaf cell polarity specific expansion in the leaf-length direction which is accompanied by an alteration of individual cell shape. In addition, the increase of cell size in the leaf-width direction is likely an additional contributing factor towards the development of an orbicular leaf phenotype.

To determine if the alterations in cell shape and size were responsible for generating the curly leaf blade phenotype in atcsp3-1 mutant plants, we observed the curled areas with the same aforementioned approaches. In curly leaf areas, cell sizes in atcsp3-1 mutants are reduced in both layers, with circular cell shapes in the palisade cell layer and shortened growth along leaf-width direction in epidermal cells (Figure 1-5C, F, I, and H). In general, the curly leaf phenotype initiates from 14 DAG, at which the 3rd and 4th leaves are expanding. 1st and 2nd leaves do not show a curled phenotype during leaf growth cycle (Figure 1-9A and B). Orbicular leaves tended
to be severely curved in the middle portions of leaf blades. Microscopic analysis of epidermal cells revealed a concentration of irregularly sized epidermal cells in curled areas, while more regularly sized epidermal cells were distributed in flat areas of leaves (Figure 1-9C). These observations indicated that the curly leaf phenotype of the \textit{atcsp3-1} mutant is generated by irregularly sized cells distributed within curled areas of leaves.

\textit{AtCSP3} is required for leaf cell expansion

After cell determination in the shoot apical meristem, leaf morphogenesis proceeds in two separate stages including a cell division phase and cell elongation phase. Generally, cell proliferation by cell division occurs during early leaf development, whereas cell expansion continues until leaves mature into full size. Abnormalities in leaf morphology can result from disorder in either of the two or during both stages.

To determine which stage in leaf development process is primarily impaired in \textit{atcsp3} loss of function mutants, I monitored palisade cell shape during early leaf development. The shape and size of the cells in early leaf primordia of 5th leaves from wild type (Col-0), \textit{atcsp3-2}, and \textit{atcsp3-1} plants were similar (Figure 1-10A). Cell number and cell size were not altered until 14 DAG when the leaf primordia expanded into adult leaves after major cell proliferation in 5th leaf blades (Figure 1-6B and C). All of the mutant alleles and wild type plants exhibited a cell size and cell shape that was nearly identical. However, the distance between individual cells in \textit{atcsp3-2} was relatively less than wild type, resulting in a stacked and condensed cell layer appearance. Differences in cell size were observed at 21 DAG, where the cells complete the transition from the cell proliferation stage to the cell expansion stage. These data suggested that morphological differences in cell shape and size in \textit{atcsp3-2} and \textit{atcsp3-1} do not manifest until the end of cell proliferation. Thus, \textit{AtCSP3} appears to primarily control leaf morphology at the leaf cell expansion stage through leaf cell polarity elongation. Similar to the epidermal cell shape as shown in Figure 1-9, palisade cells of 21 and 28 DAG leaves in \textit{atcsp3-1} plants contain irregularly sized palisade cells. However, these irregularly sized cells were not observed in early expanded leaves (Figure 1-6F and I). This observation indicated that the uneven cell formation in \textit{atcsp3-1} is initiated during the cell expansion stage and likely results in the generation of a curly leaf.
Expression of leaf polar expansion genes in atcsp3 mutants

Morphological and anatomical analysis of atcsp3 loss of function mutants suggested that AtCSP3 functions mainly in leaf-length polarity cell expansion to determine leaf shape. Therefore, I was interested to determine if the expression of leaf cell polarity specific genes is affected by the atcsp3 loss of function mutation. To address this question, I monitored the transcript levels of several leaf polarity specific regulator genes at 28 DAG. Specifically, I determined mRNA abundance of ROT3, LNG1, and LNG2 which are leaf-length directional regulators; AN and AN3, which are leaf-width directional regulators; and CYCD3;1 which is a cell division regulator. I harvested total RNA from 5th leaves at 28 DAG for semi-quantitative RT-PCR analysis CYCD3;1, which is a marker of cell division in leaf tissue, was not effected in atcsp3-2 and atcsp3-1 (Figure 1-7). Interestingly, changes were observed in transcript levels of leaf polar growth regulator genes (Figure 1-7). Among the leaf-length regulator genes, LNG1 mRNA was reduced in atcsp3-2 and atcsp3-1 at 28 DAG. Other cell polarity specific regulators to leaf-length direction, ROT3 and LNG2, were not changed in their mRNA transcript abundance compared to the wild type at the same time point. LNG2 is a functionally redundant gene of LNG1, however, LNG2 gene expression in atcsp3-2 and atcsp3-1 did not show the same pattern of gene expression as LNG1. These data are in accordance with the observation that loss of function of either LNG1 or LNG2 does not affect their transcription of each other (Lee 2006). However, ROT3, AN3, and AN did not show any alteration in their expression levels.

Taken together, these data support the hypothesis that AtCSP3 affects transcript accumulation of genes involved in the regulation of leaf cell polarity expansion such as LNG1.

As described in the morphological and anatomic analyses, atcsp3-1 plants had small orbicular leaves accompanied by a curly leaf surface. Thus, I studied the expression of genes involved in leaf flatness in the atcsp3 loss of function mutant background. In the atcsp3-1 mutant, leaves such as 3rd and 4th leaves became curled at approximately 14 DAG, which is 5 days later from the time of emergence of their leaf primordia from the shoot apex (Figure 1-10A). Other leaves, except 1st and 2nd leaves, also became curled approximately 5 days after the emergence of their leaf primordia. Therefore, I hypothesized that the genes responsible for the induction of curly leaf phenotype might be detectable with gene expression analysis approximately 5 days after the emergence of their respective leaf primordia. For this reason, I collected shoot apical tissue and leaf primordia of 7th, 6th and 5th leaves from plants at 14 DAG to
analyze the expression of genes involved in curly leaf phenotypes such as TCPs and HASTY (Qin 2005). Semi-quantitative RT-PCR showed that the transcript levels of TCPs and HASTY were not altered in the early stage of leaf generation (Figure 1-10B). I also checked the mRNA of these genes at 21 DAG and 28 DAG, but no changes in mRNA abundance were observed (data not shown). Although I could not qualify a relation between AtCSP3 and the selected genes related to the control of leaf flatness, these data suggest that the curly leaf phenotype in atcsp3-1 is affected by a mechanism which functions independently from TCP and HASTY gene regulation.

Subcellular localization of AtCSP3 in onion epidermal cells

To determine the subcellular localization of the AtCSP3 full length protein, I fused its complete coding sequence to the N-terminus of sGFP(S65T) which was driven by a CaMV 35S promoter (Figure 1-8 A). The sGFP(S65T) and AtCSP3:sGFP plasmids were bombarded into onion epidermal cells with a particle bombardment delivery system and cells transiently expressing GFP were visualized with confocal microscopy. Cells transformed with sGFP(S65T) alone showed both nuclear and cytosolic fluorescence (Figure 1-8 B). AtCSP3:sGFP transformed cells also fluoresced in both the cytosol and nucleus indicating that AtCSP3 is a nucleocytosolic protein.
Discussion

AtCSP3 expression is enriched in reproductive tissues

AtCSP3 (At2g17870) is one of four Arabidopsis cold shock domain proteins (AtCSPs) containing an N-terminal cold shock domain (CSD) and C-terminal retroviral-like CCHC zinc fingers interspersed with glycine-rich regions. The four AtCSPs are highly similar at the amino acid sequence level (Karlson 2003) and have been recently characterized in relation to floral and silique development (Nakaminami 2009). AtGRP2/CSDP2/AtCSP2 was recently characterized on a biochemical level (Sasaki 2007) and RNAi mutational analysis linked its function to plant development (Fusaro 2007).

To begin to understand the function of AtCSP3 in plant development, we studied its expression patterns in different tissues with qRT-PCR analysis. Similar to AtGRP2/CSDP2/AtCSP2 expression patterns, AtCSP3 also accumulates more in tissues like shoot apices, inflorescence meristems, open flowers, and siliques compared to mature rosette leaves and stem tissue (Figure 1-1, Sasaki 2007, Fusaro 2007). These data are in good accordance to those obtained from the AtCSP3 transcript abundance analysis results performed using microarray data by Genevestigator (http://www.genevestigator.ethz.ch/) (data not shown) and those previously described (Nakaminami 2009).

AtCSP3 loss of function generates stunted and orbicular leaf morphology

T-DNA independent insertion alleles were selected for functional characterization and confirmed by semi-quantitative PCR analysis. Both atcsp3-2 and atcsp3-1 mutant alleles have 5’ truncations in AtCSP3 RNAs in the 5’UTR and the cold shock domain, respectively (Figure 1-2). The loss of function mutations in the AtCSP3 gene resulted in smaller sized leaves, flower and siliques and an orbicular leaf shape in both mutant alleles (Figure 1-3). The most prominent characteristic for the loss of function mutants is the abnormal orbicular leaf shape that is accompanied by short petioles (Figure 1-4). Since AtGRP2/CSDP2/AtCSP2 and AtCSP3 exhibit high homology in their cold shock domain regions, I were interested to confirm whether atcsp3 mutants also exhibit developmental related defects as described for AtGRP2/CSDP2/AtCSP2 down-regulated plants. As previously mentioned, AtGRP2/CSDP2/AtCSP2 RNAi mutants showed defects in flowering time, flower organogenesis, and seed development (Fusaro, 2007).
It is important to note that the authors did not mention abnormalities in vegetative tissue growth for the AtGRP2/CSDP2/AtCSP2 knock-down mutants (Fusaro 2007). With the exception of shorter length flowers, atcsp3 loss of function mutants did not exhibit significant abnormalities in flower organogenesis or flowering time. Taken together, our observations suggest that AtCSPs likely have diversified roles in Arabidopsis since mutant atcsp3 phenotypes did not overlap with those described for the AtGRP2/CSDP2/AtCSP2 gene.

Stunted and orbicular leaf shape in atcsp3 loss of function mutants is promoted by leaf-length specific expansion and cell distribution in lateral leaf expansion

atcsp3 loss of function mutants exhibited an atypical orbicular leaf morphology. Recently, abnormal leaf shape has been investigated in different Arabidopsis mutant alleles by employing genetic and histochemical methods (for review Tsukaya 2007). In general, lateral leaf blade morphology is determined by the harmonious control of two-dimensional proliferation and expansion of leaf cells. Investigations of loss of function rot3, rot4, an, and an3 mutant plants described a functional relationship between cell proliferation and cell expansion. As previously described, the small and rounded leaf morphology of rot3 and rot4 is caused in the leaf-length direction by alteration of cell proliferation and cell expansion, respectively (Narita 2004, Tsuge 1996). The rounded leaf shape of the atcsp3 loss of function mutants is very similar to the rot3 and rot4 mutant phenotype (Narita 2004, Tsuge 1996). Even though an and an3 gene mutants exhibited different leaf shapes than rot3 and rot4 mutants, they were also implicated in polarity specific regulation of leaf shape (Horiguchi 2005, Tsuge 1996). Therefore, the molecular mechanisms controlling cell proliferation and cell elongation during leaf blade morphogenesis appears to be complex. Image analysis of the wild type and atcsp3 loss of function mutants (Figure 1-5) indicated that total cell number in atcsp3 leaf blades is not affected, but the cell distribution is altered in two-dimensions. Our data demonstrated that cell numbers in the leaf-length axis are dramatically decreased, whereas cell numbers in the leaf-width axis are increased and cell sizes are smaller relative to the wild type (Figure 1-5H, I, and J). I hypothesize that these alterations result in the orbicular leaf phenotype in atcsp3 mutants (Figure 1-4).

Leaf cell proliferation is primarily determined during early leaf generation stage and partially during two-dimensional lateral leaf growth. As showed in Figure 1-6, early lateral leaves of wild type and atcsp3 loss of function mutants have similar palisade cell size, cell
numbers and cell shape. In addition, I did not observe any altered phenotype for dorsoventrality and determination of the leaf primordium cells. In contrast, as shown in Figure 1-6, the cell expansion during the late stages of early leaf generation is different in wild type and \textit{atcsp3} loss of function mutants. These microscopic observations indicate that \textit{ArCSP3} does not function in leaf primordia and during the early leaf expansion stage but it mainly affects two-dimensional cell expansion during lateral leaf expansion. Although the orbicular leaf phenotype in \textit{atcsp3} loss of function mutants is caused by an alteration in two-dimensional cell expansion, the curly leaf phenotype of \textit{atcsp3-1} cannot be explained only with defects in two-dimensional polarity cell expansion. In rosette leaves of \textit{atcsp3-1}, epidermal cells have an entangled appearance in curly areas of leaf blades (Figure 1-5C and Figure 1-9C). In addition, palisade cells in mature leaves have an uneven cell size which differs from the wild type and \textit{atcsp3-2} (Figure 1-5F). During early lateral leaf genesis, palisade cell expansion in \textit{atcsp3-1} showed an irregular cell size and cell shape (Figure 1-6I). Therefore, it is possible that the physical force caused by the convergence of uneven sized and shaped cells at curled leaf areas breaks the normally flattened plane of the leaf blade surface. Taken together, microscopic analysis indicated that the \textit{atcsp3-1} leaf is distorted by uneven leaf cell distribution which is accompanied by uneven leaf cell expansion.

\textbf{atcsp3 loss of function mutation alters LNG1 gene expression}

Leaf shape and size determination is affected by cell differentiation on adaxial and abaxial leaf surfaces during early stages of leaf morphogenesis and two-dimensional leaf cell expansion (Barkoulas 2007, Kim 2006). Complicated temporal and spatial networks of many genes play important roles in determining general leaf morphology. An incomplete transition of leaf development from the shoot apical meristem results in abnormal leaf morphology with deformation in symmetry, polarity, and flatness (Heisler 2005, Benkova 2003, Ori 2000, Byrne 2000, Tiantis 1999, Timmermans 1999, Waites 1998, Long 1996). The \textit{atcsp3} loss of function mutant did not exhibit phenotypic abnormalities during the leaf initiation stage. Our semi-quantitative RT-PCR data for \textit{SHOOT MERISTEMLESS} (\textit{STM}), \textit{ASYMMETRIC LEAVES1} (\textit{AS1}), \textit{CUC1} and 2 (\textit{CUP-SHAPED COTYLEDON 1} and 2), and \textit{PIN-FORMED 1} (\textit{PIN1}) genes using shoot apex and early leaf tissues did not identify any alteration in the patterns of mRNA abundance (data not shown). These observations support the hypothesis that \textit{ArCSP3} primarily
functions during lateral leaf development. Our histological observations, which determined that the abnormal leaf cell shape and size of atcsp3 are initiated during lateral leaf expansion, are in good accordance with this scenario (Figure 1-6).

I demonstrated that the atcsp3 loss of function mutation affects LNG1 mRNA expression via an unknown mechanism. LNG1 is regulators of leaf-length polarity. (Figure 1-7). LNG1 is an independent leaf cell expansion regulator of leaf length polarity and its expression is not affected by ROT3 and AN (Lee 2006). Our RT-PCR data for ROT3 and AN genes in atcsp3 mutants is similar to those previously published in a study characterizing a lng1 loss of function mutant. These data suggest that AtCSP3 does not function in relation to ROT3 and AN during two-dimensional leaf expansion (Lee 2006). Overexpression of LNG2, which is a homolog of LNG1, results in a narrow and long leaf phenotype, was not altered in the atcsp3 mutants. Lee et al. confirmed that a lng1-3 lng2-1 double mutant has an additive effect in leaf-length cell expansion (Lee 2006). In addition, LNG1 and LNG2 expression was not affected in lng2 and lng1 mutants, respectively (Lee 2006). Thus, I hypothesize that AtCSP3 affects LNG1 gene function only, resulting in reduced cell length along leaf-length direction and this regulation occurs independently of LNG2 gene function.

Although the whole leaf phenotype of atcsp3-1 looks more severe than atcsp3-2, the atcsp3-2 mutant exhibited severe deformation in cellular shape and size resulting in an orbicular leaf shape phenotype. Although I cannot confirm why the two mutants have varying degrees in severity of leaf morphology mutations, it may result from differences in gene expression between the two alleles due to a positional effect of the T-DNA insertion. A future comparative microarray study between the two mutant alleles would enable us to gain a more precise understanding for this disparity.

AtCSP3 may play a role in stabilizing mature RNA of leaf shape determining genes

The reduction in expression of LNG1 at 28 DAG in atcsp3 mutants suggests that AtCSP3 positively affects their transcripts during leaf blade expansion. By what mechanism could AtCSP3 have an effect on LNG1? The CSD is a well conserved domain which facilitates binding to single and double stranded nucleic acids (Graumann 1998). Bacterial CSPs have an effect on both the transcriptional and translational level (Hofweber 2005) and in eukaryotes, YB-1 has pleiotropic functions in transcription and translation (for review; Ghono 2003). Typically,
RNA binding activity of YB-1 activates the translation of silent RNA for genes relating to cell proliferation, malignant transformation, and stress response (Evodokimova 2006). *Chlamydomonas* RNA binding protein NAB1 also regulates LHCBM mRNA stabilization, resulting in the induction of LHCBM protein translation (Mussegmug 2005). To date, all plant CSPs tested including OsCSP1, OsCSP2, *AtGRP2/CSDP2/AtCSP2*, AtCSDP1, and WCSP1 exhibit nucleic acid binding activity (Chaikam 2008, Fusaro 2007, Kim 2007, Nakaminami 2006, Karlson 2003). Subcellular localization of AtCSP3 shows that AtCSP3 is a nucleo-cytoplasmic protein similar to other RNA binding proteins (Figure 1-8). Therefore, it is reasonable to consider that AtCSP3 may exert a similar role and positively affects *LNG1* transcripts during leaf cell proliferation and expansion in the lateral leaf genesis stage.
Figure 1-1. Predicted secondary structure and tissue specific gene expression of *AtCSP3*

A) Domain architecture of AtCSP3 protein.

B) Quantitative real-time PCR analysis of *AtCSP3* mRNA expression in different tissues. *Actin2* was used as an internal control for normalization. All data points for individual *AtCSPs* were calibrated with the respective normalized value of cDNA from root tips. The data shown represent the average and standard deviation of three replicates (elon. means elongation part; mat. means maturation part of root; S.A.M. abbreviates shoot apical meristem).
Figure 1-2. T-DNA insertion alleles of AtCSP3
A) Genetic map of T-DNA insertion positions within the AtCSP3 locus. The white box represents the AtCSP3 exon and black boxes represent 5’ and 3’ UTRs. With respect to the open reading frame, a SALK and Ds-Lox lines had insertions at -42 and +170 base pairs, respectively.
B) Semi-quantitative RT-PCR analysis of AtCSP3 expression with RNA harvested from leaves 28 DAG of wild type (Columbia-0) and AtCSP3 T-DNA insertion alleles. PCR was performed for the described cycle numbers with primers flanking the insertion (F3 or F2 and R1) and additional non-flanking region primers (F1 and R1). Arabidopsis actin 1 (AAC1) was used as an internal control. This figure is a representative image from three replicate reactions.
Figure 1-3. Morphological analysis of *atcsp3* loss of function mutants

A) Vegetative growth of the wild type (Col-0) and *atcsp3* insertion lines at 28 DAG grown under long day conditions (16/8 hrs for light/dark) at 23 °C. Flower bolts were removed to facilitate clear visualization of rosette leaf morphology. B) Total number of leaves of the wild type and *atcsp3* insertion mutants. Rosette leaves were taken from the same plant shown in panel (A) and leaves were aligned starting from the first leaf from cotyledons. Additional small developing leaves were harvested from the area surrounding the shoot apex. C) Comparison of flower size. Opened flowers were collected from primary bolts at 35 DAG (bar=0.5cm). D) Vertical views of flowers. E) Comparison of fully matured siliques collected at 48 DAG (bar=1cm). F) Seed size
comparison. All seeds were collected from the wild type and atcsp3 insertion lines shown in E). G) Total leaves were counted from 14 to 49 DAG. Total leaves were numbered starting from the first leaf next to cotyledons exclusive of cauline leaves (n=16). All data show the average of total leaf number and error bars indicate standard deviation. H) Plant size of wild type Col-0 and atcsp3 loss of function mutants. 28 DAG plants were grown in soil under long day light conditions and compared to each other. I) Root elongation measurement of the wild type and atcsp3 loss of function mutants (n=20). J) Silique length comparison. The longest siliques were selected to determine silique length at 48 DAG (n=20). K) Seed count number. Seeds were collected from the same silique that was used for silique length measurement (n=20). All plots in I, J, and K show an average measured value and error bars represent standard deviation.
Figure 1-4. *atcsp3* loss of function mutants have short petioles and small-sized orbicular leaves. A) Comparison of leaf shape of 5th leaves from the cotyledons. 5th leaves were collected from 28 DAG plant, grown in soil under long day conditions at 23°C (bar, 1 cm). Graphs in B, C, and D were plotted with the average leaf blade length, petiole length and leaf index of 5th leaves from 28 DAG plants, respectively. B) 2-dimensional measurement of leaf blade length. Leaf length was measured in the longitudinal (leaf length and lateral (leaf-width) directions from leaf epidermal cell images of a leaf blade by ImageJ software (n=20). C) Measurement of petiole length (n=20). D) Comparison of leaf index. Each leaf index was determined by the ratio of length to width in a leaf blade (n=20). A value close to 1.0 is indicative of increased roundness in leaf shape.
Figure 1-5. Orbicular leaf shape of atcsp3 loss of function mutants is caused by impairment of cell growth polarity to leaf-length direction. Anatomical analysis was performed with 5th leaves of 28 DAG plants. Images of individual mutant alleles were taken from the same position in middle part of an adaxial leaf blade. Left end to right end of image depicts leaf-length direction and top to bottom depicts leaf-width direction. A-C) Propidium staining images of epidermal cell of wild type Col-0, atcsp3-2, and atcsp3-1, from left to right panels. D-F) Nomarsky images of palisade meshophyll cells of wild type Col-0, atcs3-2, and atcsp3-1, from left to right panel (bar,100 μm). Note that loss of function atcsp3 mutants have small cell sizes relative to the wild type. G) Number of palisade cell on leaf blades. Total cell number was determined by counting the number of cells per unit area which is multiplied by the ratio between the original leaf area and observed leaf area (n=3). H) Count of palisade cell numbers.
in two dimensional directions. Palisade cell number was counted along middle axes in two dimensional directions from DIC images (n=3). I) Length of individual epidermal cells in relation to length and width of leaves. Measurement of “α” shape epidermal cells was used to determine cell length in the leaf-length orientation. For measurements in relation to leaf-width, “β” shape cell were used (n=30 from three different leaves). J) Cell length of individual palisade cells in both directions. (n=30 from three different leaves). All data in graphs are average values with error bar indicating standard deviation.
Figure 1-6. Comparison of palisade cell expansion during lateral leaf generation of the 5th leaf.

DIC images were taken from the middle part of 5th leaves at different time points from wild type Col-0, atcsp3-2 and atcsp3-1. Wild type Col-0, atcsp3-2, and atcsp3-1 images are placed from left to right in a row. Upper row A), B), and C) are 14 DAG 5th leaf palisade cells from the adaxial surface of leaf blades. Middle row D), E), and F) are 21 DAG 5th leaves and bottom row G), H), and I) show 28 DAG 5th leaves. Scale bars indicate 100 μm.
Figure 1-7. Semi-quantitative RT-PCR analysis of genes related to leaf shape development.

Total RNA was extracted from 5th leaves of 28 DAG plants. With the exception of AAC1 amplification, all PCR reactions were performed for 30 cycles with the described primer sets in Table 1-3. AAC1 was used as an internal control and was amplified for 26 cycles. This figure contains representative results that were obtained among three replicates for each individual gene.
Figure 1-8. AtCSP3 localizes in the nucleus and cytosol in onion epidermal cell.

A) Schematic representation of sGFP(S65T) and AtCSP3:sGFP vectors. The coding region of AtCSP3 was amplified by high fidelity PCR and sub-cloned into the sGFP(S65T) vector for transient expression via particle bombardment system. B) Transient analysis of subcellular localization for AtCSP3 in onion epidermal cells (bar, 100 µM). Note the nucleocytoplasmic localization of AtCSP3.
Figure 1-9. Morphology of curly leaf shape in *atcsp3-1*. A) Comparison of leaf shape at 28 DAG (bar, 1cm). B) Side view of a 4th leaf at 28 DAG (bar, 1cm). C) Dark field microscopic images of epidermal cells in curly and flat adaxial leaf surfaces of 5th leaves in *atcsp3-1* at 28 DAG. Wild type Col-0 image displays the mid-portion of the 28 DAG leaf surface. This image indicates that the curled leaf surface contains entangled and irregularly shaped epidermal cells within the curly leaf area. Flat areas in *atcsp3-1* leaves contain cells with even size and shape.
Figure 1-10. Semi-quantitative RT-PCR analysis of leaf flatness-related genes in the early stage of lateral leaf generation at 14 DAG.

A) Whole plant morphology at 14 DAG. At this time, the 7th leaf is in a primordial stage and the 6th leaf is approximately 1 mm in length. 5th leaf length reaches to ~ 4 mm in the wild type and atcsp3 mutant alleles (bar=1cm). B) Summary of semi-quantitative RT-PCR analysis for leaf flatness related genes. S denotes shoot apical meristem. 5, 6, and 7 are leaf numbers of 14 DAG plant. All PCR reactions, except AAC1, were performed with 30 cycles. AAC1 was used as an internal control and was amplified with 26 cycles.
Table 1-1. Analysis of flowering time and seedling size

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Flowering time (DAG)</th>
<th>Height (cm)</th>
<th>Fresh weight (mg)</th>
<th>Sample size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col-0</td>
<td>22.5 ± 1</td>
<td>38.88 ± 1.28</td>
<td>395.5 ± 14.5</td>
<td>14</td>
</tr>
<tr>
<td>atcsp3-3</td>
<td>22.5 ± 0.90</td>
<td>38.58 ± 1.62</td>
<td>371.5 ± 17.8</td>
<td>16</td>
</tr>
<tr>
<td>atcsp3-2</td>
<td>23.25 ± 0.97</td>
<td>31.83 ± 2.53</td>
<td>256.5 ± 26.6</td>
<td>14</td>
</tr>
<tr>
<td>atcsp3-1</td>
<td>22.58 ± 0.79</td>
<td>31.33 ± 2.31</td>
<td>189.6 ± 13.7</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 1-2. List of context sequence and amplicon length for Taq-Man probes

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon length (b.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin 2</td>
<td>CTGGATCGGTGGTTCCATTCTTGCT</td>
<td>85</td>
</tr>
<tr>
<td>AtCSP3</td>
<td>ATGATATGTGCTTTCATTATTTAC</td>
<td>91</td>
</tr>
</tbody>
</table>

Table 1-3 Primer list for semi-quantitative RT-PCR

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>TGGTTGTATTGTAGTTTTTG</td>
</tr>
<tr>
<td>F2</td>
<td>CGGTTTCATTACTCCCGATG</td>
</tr>
<tr>
<td>F3</td>
<td>GGGTTTCATTTCACCATTTC</td>
</tr>
<tr>
<td>R1</td>
<td>TCATTGCAAGGAAGACAGAAG</td>
</tr>
<tr>
<td>AAC1-for</td>
<td>CGGCGATTCAGGGAAACATTGG</td>
</tr>
<tr>
<td>AAC1-rev</td>
<td>GTGCTCGACTCTGGAGATGGT</td>
</tr>
<tr>
<td>ROT3-for</td>
<td>AGATTTTCGTCAGCGAAAAGA</td>
</tr>
<tr>
<td>ROT3-rev</td>
<td>CCAAGGGTGTGAAAGCAAAT</td>
</tr>
<tr>
<td>AN-for</td>
<td>AAACCTGCGGCTTTTCTTGT</td>
</tr>
<tr>
<td>AN-rev</td>
<td>CCTGTTGCTTACTGGGTGAT</td>
</tr>
<tr>
<td>LNG1-for</td>
<td>ATGGAGAAGACGACAGCATT</td>
</tr>
<tr>
<td>LNG1-rev</td>
<td>GACTGCTTTCGAGACCCCAAG</td>
</tr>
<tr>
<td>LNG2-for</td>
<td>GAAGGAAGAGAGCGGCTAT</td>
</tr>
<tr>
<td>LNG2-rev</td>
<td>CGGCTTCTGAATTTTCACC</td>
</tr>
<tr>
<td>AN3-for</td>
<td>GCTGGTTACTACCCAGCAGAA</td>
</tr>
<tr>
<td>AN3-rev</td>
<td>ATGCCAAGCTGGCTATGGTG</td>
</tr>
<tr>
<td>CYCD3;1-for</td>
<td>ATGGATGCTTCAGCTCGTTT</td>
</tr>
<tr>
<td>CYCD3;1-rev</td>
<td>GATGCGGTCTGACTGGTAGTT</td>
</tr>
</tbody>
</table>
CHAPTER 2

Ectopic expression of Arabidopsis \textit{AtCSP4} affects late stages of embryogenesis via alteration of endosperm development related gene expression
Abstract

Eukaryotic cold shock domain proteins are nucleic acid binding proteins that are involved in transcription, translation via RNA chaperone activity, RNA editing, and DNA repair during tissue developmental processes and stress responses. Eukaryotic cold shock domain proteins have been functionally implicated in important developmental transitions, including embryogenesis in both animals and plants. Arabidopsis thaliana Cold Shock Domain Protein 4 (AtCSP4; At2g21060) contains a well conserved cold shock domain (CSD) and glycine-rich motifs interspersed by two retroviral-like CCHC zinc fingers. GUS staining analysis in pAtCSP4:GUS transgenic Arabidopsis plants confirmed that AtCSP4 was expressed in all tissues but accumulated in reproductive tissues and those undergoing cell divisions. Overexpression of AtCSP4 reduced silique length and embryo lethality. Interestingly, a T-DNA insertion atcsp4 mutant did not exhibit any phenotypes, implicating that the similar AtCSP2 gene is functionally redundant with AtCSP4. During silique development, overexpression of AtCSP4 induced early browning and shrunken seed formation beginning with the late heart embryo stage. A fifty percent segregation ratio of the defective seed phenotype was consistent with the phenotype of endosperm development gene mutants. Transcripts of FUS3 and LEC1 genes, which regulate early embryo formation, were not altered in the AtCSP4 overexpression lines. On the other hand, transcripts of MEA and FIS2 which are involved in endosperm development were affected by overexpression of AtCSP4 indicating that AtCSP4 may be a regulator of endosperm development via transcriptional or post-transcriptional regulation. Additionally, overexpression of AtCSP4 also affected the transcript abundance of several MADS box genes in stages of early silique development. Specifically, the transcripts of AP, CAL, AG, and SHP2 were up-regulated. Collectively, these results indicate that AtCSP4 plays an important role during the late stages of silique development by affecting the expression of several development related genes.

Introduction

Cold shock domain proteins (CSPs) are among the most conserved nucleic acid binding proteins known, whose members are identified in bacteria, plants, and animals. CSPs participate in various cellular functions, which are mediated by their characteristic ability to bind nucleic acids (for review: Braun 2000, Evdokimova 2001, Kohno 2003, Wilkinson 2001). CSPs are mainly implicated to function pleiotropically during organism development and they are well-
studied in relation to cold stress responses in bacteria. In humans, the Y-box binding protein 1 (YB-1), is transferred from cytosol into the nucleus in response to specific physiological, environmental and growth stimuli. YB-1 functions in transcription regulation, DNA repair, and mRNA splicing (Faustino 2003, Kohno 2003, Raffertseder 2003), thereby effecting organism development. Under normal conditions, YB-1 is localized in the cytoplasm and functions as RNA chaperone in cytoplasmic RNPs and mediates translational repression (Bader 2005, Evdokimova 2001). Mouse YB-1 is expressed during embryogenesis and a YB-1 deficient mutant exhibits an embryo lethal phenotype (Lu 2005). MSY4, another mouse CSP, is also highly expressed during embryogenesis and can rescue a YB-1 loss of function mutant in early embryogenesis (Lu 2006). Similar to animal CSPs, cold shock domain proteins from plants such as Arabidopsis and rice have also been implicated in development (Nakaminami 2009, Chaikam 2008, Sakai 2007, Fusaro 2007). Among the four Arabidopsis CSPs, AtCSP2 (AtGRP2/CSDP2) is characterized for its function in affecting flowering time and reproductive tissue development including seed development (Fusaro 2007). Further studies are necessary to understand the functions of AtCSPs in relation to plant reproductive development.

Embryogenesis primarily establishes the future body plan of the shoot-root system in angiosperms. Zygotic embryogenesis consists of two main phases: 1) embryo morphogenesis or formation, which determines plant organ development and 2) maturation phase or postembryonic development, which induces organ expansion and storage of metabolites for seed germination. Embryo morphogenesis fulfills apical-basal formatting, shoot and root meristem generation and cell differentiation during early embryogenesis (Laux 2004). In the maturation phase or postembryonic development, the mature embryo is surrounded by lipid and storage substances which are important for seed germination and desiccation tolerance (Raz 2001). Physiology and genetics of the embryogenesis process has been well studied (for reviews: Park 2008, Willemsen 2004, Laux 2004, Jurgens 2001, Goldberg 1994). After fertilization, the fertilized zygote divides to establish a position-dependent root and shoot meristem, which determines the fate of the plant body post-germination (Mayer 1998). The mature seed consists of the embryo and endosperm, whose pattern formation and future developmental plan are decided by a specific gene regulatory network (for review: Laux 2004). The transcriptional regulation of embryo formation is initiated specifically from the first asymmetric division of the fertilized single precursor cell, resulting in a primary apical-basal embryo. This apical and basal embryo development is genetically
regulated by WUSCHEL-RELATED HOMEBOX (WOX) 2 and WOX 8 genes, respectively (Haecker 2004). GNOM/EMBER, PINFORMED7 (PIN7), PIN1, GURKE, FACKLE (FK), monopteros (mp) genes also regulate apical-basal embryo formation (Friml 2003; Gälweiler 1998; Geldner 2003, 2001; Mayer 1993, 1991; Schrick 2000; Berleth 1993).

Post embryonic development is controlled by the LEAFY COTYLEDON (LEC) class of genes which include LEC1, LEC2, FUS3, and FUSCA3 genes (Parcy 1997; Lotan 1998; Luerßen 1998; Stone 2001). Loss of function mutants for each of these genes exhibit defects in the storage of nutrients that are required for germination and desiccation tolerance during seed dormancy. During late embryogenesis in Arabidopsis, endosperm development is a pivotal process for seed maturation. Four genes belonging to the Fertilization Independent Seed (FIS) family repress endosperm maturation in non-pollinated and non-fertilized embryos (for review: Köhler 2006). The FIS family Polycomb group (PcG) proteins include MEDEA (MEA/FIS1; Grossniklaus 1998, Kiyosue 1999), Fertilization Independent Seed 2 (FIS2; Luo 1999), Fertilization Independent Endosperm 3 (FIE/FIS3; Ohad 1999), and MULTI-COPY SUPPRESSOR OF IRA1 (MSI1; Köhler 2003a, Guitton 2004). Loss of function mutants of FIS genes result in two distinct phenotypes depending on pollination and fertilization. In the absence of pollination, loss of function mutants can initiate seed development. In contrast, in the presence of pollination and fertilization, embryogenesis is arrested at the heart stage of embryo development, resulting in embryo lethalality (For review: Chaundhury 2001; Chaundhury 1997, Peacock 1995, Grossniklaus 1998, Ohad 1996). Proteins of FIS family assemble to form an FIS complex, which functions in the repression of endosperm development genes by parental and maternal imprinting in Arabidopsis (for review: Köhler 2006, Gehring 2004). A MEA loss of function mutant results in 50% embryo lethality in a heterozygous mutant line which is not rescued by a multi-copy as well as a single copy of the wild type MEA allele, indicating that MEA functions only from the female gametophyte for embryogenesis (Grossniklaus 1998, Chaundhury 1997). PHERES1 (PHE1), which encodes a MADS box protein that is imprinted in maternal chromatin, is repressed by the FIS complex, including MEA (Vielle-Calzada 1999, Köhler 2003a, Köhler 2003b). FIE and MEA proteins form a multimeric complex, which modifies chromatin structure thereby inducing the transcription of target genes (Spillage 2000). Using a transgenic DNA methyltransferase-1 gene antisense plant, DNA methylation of
chromatin was shown to affect parent-of-origin effect and plays a primary role in endosperm development (Luo 2000).

MADS box proteins have been extensively studied in relation to their functional role in floral organ identity determination and transition of the floral meristem. The ABC model was developed to explain the overlapping functions of several MADS box proteins during floral organ formation (for review: Robles 2005, Jack 2004). APETALAI (AP1) and APETALAI2 (AP2) belongs to the A class which are important for the generation of sepals and petals. APETELAI3 (AP3) and PISTILLATA (PI) belong to the B class of genes forming petals and stamens. The C class consists of the AGAMOUS (AG) gene, which is involved in stamen and carpel development. In addition, the SEPALATA (SEP) gene was represented in both B and C class floral organ development (Honma 2001, Pelaz 2000, Coen 1991). In parallel to seed maturation via embryogenesis, siliques also develop as an organ for storing developing seeds (for review: Roeder 2006). MADS box genes included in the ABC model are expressed highly during silique development and embryogenesis (Lehti-Shiu 2005, Folter 2004, Alvarez Buylla 2000, Parénicová 2003). Gene expression of AG, which is a carpel development gene, especially increases again during fruit development and ripening (for review: Seymour 2008). Also, SHATTERPROOF (SHP) and FRUITFULL (FUL) are expressed highly and are functionally important during silique development. (Folter 2004, Liljegren 2000, Ferrandiz 2000, Gu 1998). Redundant functions were identified for AP1 and FUL genes during floral meristem identity determination, however their function diverges during fruit development (Ferrandiz 2000). CAULIFLOWER (CAL) also functions in floral meristem identity determination along with AP1. Many AGAMOUS-like proteins are also highly expressed during fruit development (Lehti-Shiu 2005). Especially, AGAMOUS like-15 (AGL15) and AGAMOUS like-18 (AGL18) are expressed in both endosperm and embryo tissue (Alvarez Buylla 2000, Heck 1995). A double loss of function mutant, agl15/agl18 flowers early but not single mutants, implicating that AGL15 and AGL18 act redundantly to regulate floral transition (Adamczyk 2007). Constitutive overexpression of AGL15 in Arabidopsis delays leaf and flower senescence as well as fruit maturation (Fernandez 2000). AGL15 was recently shown to bind AtCSP2 and AtCSP4 promoters using a Chromatin immunoprecipitation (ChIP) assays. These data support the hypothesis that AtCSP genes are regulated by MADS box proteins, and that AtCSPs may have a functional role during silique development (Nakaminami, 2009).
In the present study, we performed morphological analyses in T-DNA insertion and gain of function AtCSP4 mutants. Overexpression of AtCSP4 impairs normal silique size determination and embryo development. In addition, the expression of several MADS box genes and endosperm development genes are altered in AtCSP4 overexpression lines. These data suggest that AtCSP4 affects the silique development and embryogenesis by affecting genes involved in silique and seed development.

Methods and Materials

Plant materials and growth conditions

A GABI-Kat T-DNA insertion mutant of AtCSP4 was obtained from GABI-Kat (Stock number: GK 623B08.01, www.gabi-kat.de) and Col-0 wild type seeds were purchased from Lehle Seeds (Round Rock, TX). Seeds were stratified at 4 °C for 4 days under dark conditions. All plants were grown in Metromix 360 soil (Scott Co., Marysville, OH, USA) under long day conditions at 23 °C (16 hr/8hr for light/dark cycle). To generate AtCSP4 overexpressed lines, we amplified the coding region of AtCSP4 with gene specific primers from Col-0 wild type plant with KOD-Hot High Fidelity Taq Polymerase ; forward primer 5’-CAC CAT GAG CGG AGG AGG AGA CGT GAA C-3’, reverse primer 5’-ACG AGC ACC ACC GCT AGT GCA ATC CCT TGC-3’ (Novagen, Gibbstown, NJ, USA). The amplified coding sequence of AtCSP4 was cloned into the pENTR entry vector plasmid according to standard procedures (Rubio 2005, GATEWAY; Invitron Carlsbad, CA). pN-TAP binary vector (NTAPa) was obtained from ABRC (http://www.arabidopsis.org, stock number:CD3 696). The AtCSP4 gene sequence was then transferred from pENTR into the NTAPa vector using LR reaction (Invitrogen, Carlsbad, CA). The resultant plasmid was designed as 35S:NTAP:AtCSP4. To confirm sequence integrity and reading frame, the construct was analyzed by DNA sequencing (Macrogen, Rockville, MD). This construct was transformed into the GV3103 Agrobacterium strain using a MicroPulser electroporator with an electronic pulse of 2.4 kV, 25 uF for 5 milliseconds according to the manufacturers instructions (Biorad, Hercules, CA). The 35S:NTAP:AtCSP4 gene construct was transformed into Arabidopsis by the floral dip method (Clough 1998). Transgenic plants were selected on 1× Murashinge and Skoog (MS) plates including Gamborg’s Vitamins, 1 % phytoagar, 1 % sucrose and 25 µg/ml gentamycine (Caisson Labs, North Logan, UT).
Gene expression analysis

For characterizing gene expression in the $\textit{atcsp4}$ T-DNA insertion mutant and overexpression lines of $\textit{35S:NTAP:AtCSP4}$, total RNA was extracted from leaf tissue using TRIzol® reagent (Invitrogen, Carlsbad, CA). cDNA was synthesized using 500 ng of total RNA with the QuantiTect Reverse Transcription kit (Qiagen, Valencia, CA). Semi-quantitative RT-PCR analysis was performed with the Go-Taq Flexi PCR reaction kit (Promega, Madison, WI). Thermocycling conditions for determining $\textit{AtCSP4}$ transcript levels were as follows: 95 °C for a 2 min initial denaturation followed by 95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 30 sec, for a specified number of cycles (as described within individual figures) followed by a final extension step for 7 min at 72 °C. Primers are listed in Table 1-2.

For $\textit{AtCSP4}$ transcript measurement in different tissues, we utilized Taq-Man probe qRT-PCR analysis with TaqMan® Universal PCR Master mix (Applied Biosystems, Foster City, CA). Primers and TaqMan® probes for $\textit{AtCSP4}$ and $\textit{ACT2}$ genes were purchased from Applied Biosystems and primer sequences are described in Table 1-3; with the names NM_180280.1 ($\textit{ACT2}$) and NM_127676.2 ($\textit{AtCSP4}$). Thermocycling conditions used are as follows: 95 °C for 10 min followed by 50 cycles of 95 °C for 15 sec and 60 °C for 1 min. Total RNA from different tissues, except leaves, were extracted with the Plant RNA extraction Reagent (Invitrogen, Carlsbad, CA). cDNA was prepared as described above.

Total RNA of siliques was extracted from different stages of silique development to study the transcript levels of MADS box and embryogenesis related genes using the Plant RNA extraction Reagent (Invitrogen, Carlsbad, CA). Total RNA was reverse transcribed to cDNA using the same protocol as described above. All thermocycling was performed as follows with the described cycle number written within figures: 95 °C for 2 min, each cycle comprising 95 °C for 30 sec, 58 °C for 30 sec, and 72 °C for 30 sec, with a final extension step for 7 min at 72 °C. Primers for each gene amplification are described in Table 1-4.

GUS expression plant and histological analysis

To generate a GUS expression gene construct fused to the $\textit{AtCSP4}$ promoter, a 2 kb fragment upstream of the start codon of the $\textit{AtCSP4}$ gene was amplified by KOD Hot Start DNA polymerase (Applied Biosystems, Foster City, CA). Primers were designed using genomic
sequence information containing KpnI and NcoI restriction sites. The following primers were used: forward 5’-TCT GGT ACC GGG AAA AAC CCA CGC TTG -3’ and reverse 5’-TCT CCA TGG TCA CCG TTC CCT TGC GTC -3’. The amplified DNA fragment was digested by restriction enzymes and subsequently ligated into the pCAMBIA1303 binary vector in-frame with the GUS gene. This vector was transformed into the LBA4404 Agrobacterium strain by a MicroPulser electroporator as previously described. Transformation of this vector into Col-0 wild type Arabidopsis was performed by the floral dip method (Clough 1998). Transgenic Arabidopsis was screened on 1× MS containing 1 % sucrose, 1 % phytoagar containing 25 µg/ml of hygromycin.

GUS staining was performed on non-fixed tissues harvested from various developmental stages. Collected tissues were incubated quickly in GUS staining buffer (50 mM Na₂HPO₄, 30mM NaH₂PO₄, 0.4mM K₃[Fe(CN)₆], 0.4mM K₄[Fe(CN)₆], 8mM EDTA, 0.1 % Triton X-100, 10 % methanol, and 1 µg/ml 5-bromo-4-chloro-3-indol-glucuronide cyclohexylamine salt (X-Gluc)), overnight at 37 °C. Stained tissue was washed several times in 70 % ethanol and samples were subsequently observed under a Nikon SMZ-U dissecting microscope equipped with a Nikon DXM 1200 CCD camera (Melville, NY, Nikon).

Seed clearing and microscopy

Seeds were dissected from different silique developmental stages and cleared in modified Hoyer’s solution (80 % chloral hydrate, 20 % glycerol, 10 % water by volume) for 2 hours. Cleared seeds were mounted on slide glass and images were acquired with a Nikon ECLIPSE E600 differential interference contrast (DIC) microscope equipped with Nomarski optics and Nikon DXM 1200 CCD camera system (Nikon, Melville, NY).

Subcellular localization of AtCSP4

The coding region of the AtCSP4 gene was amplified with the following primers: 5’-TCTGTCGACATGAGCGGAGGAGGAGACGT-3’, and 5’-AGACCATGGTACGAGCACC-ACCGCTAGTGC-3’ containing the NcoI and SalI restriction enzyme digestion sites, respectively. Amplified PCR products were digested with these restriction enzymes and ligated into a pre-digested sGFP(s65T) plasmid. Sequence integrity and maintenance of the reading frame were confirmed by DNA sequencing. Five ug of sGFP empty plasmid or sGFP-AtCSP4
plasmids were coated onto DM-10 Tungsten particles which were prepared as according to the manufacturer’s instructions (BIO-RAD, Hercules, CA). A Biolistic® PDS-1000 particle bombardment system was used for transient transformation of onion cells by employing 25 inches of Hg vacuum, a 1000 psi rupture disk, and a 12 cm target distance (Hercules, CA, BIO-RAD). Bombarded onion epidermal cell layers were incubated at 22 °C for overnight under dark conditions. DIC and GFP images were obtained by a Zeiss Axioimager LSM-501 confocal microscope and analyzed with LSM image analysis software (Carl Zeiss AG, Germany).

Results

Characterization of the AtCSP4 gene

AtCSP4 (AtGRP2b; At2g21060) and AtCSP2 (AtGRP2; At4g38680) are highly homologous to one another and encode smaller sized proteins than the other two AtCSPs (AtCSP3; At2g17870 and AtCSP1/CSDP1;At4g36020). The AtCSP4 gene encodes a 603 base pair transcript which does not contain introns. The AtCSP4 is a small sized protein with a highly conserved N-terminal CSD and three repeated glycine-rich domains which are interspersed by two C-terminal CCHC zinc finger motifs (Figure 2-1 A). AtCSP4 shows 86 % of amino acid homology to AtGRP2 and their CSD regions are highly conserved (Figure 2-1 B). Due to this high similarity in sequence, it is possible that AtCSP4 may function redundantly with AtCSP2.

To determine if AtCSP2 expression is affected by AtCSP4, we studied AtCSP2 transcript levels in a T-DNA insertion mutant and AtCSP4 overexpression plants (Figure 2-3A and C). As expected, the T-DNA insertion mutant and overexpression plants showed a loss and accumulation of AtCSP4 transcript, respectively (Figure 2-1 C). In order to assess if AtCSP4 levels affect AtCSP2 transcript accumulation, we also tested for alterations of AtCSP2 transcript abundance and none were detected. These data indicate that AtCSP4 and AtCSP2 do not participate in any feedback regulation for one another.

AtGRP4 expression analyses

The Genevestigator (http://www.genevestigator.ethz.ch/) public microarray database confirmed that the AtCSP4 mRNA is present in all tissues of Arabidopsis but is enriched in reproductive and meristematic regions. AtCSP4 and AtCSP2 transcripts are expressed at higher
levels relative to the two additional AtCSPs (Nakaminami 2009). Comparative analysis of AtCSP4 expression using microarray and real-time PCR data confirmed that AtCSP4 transcript is highly abundant in reproductive tissues, especially in carpels and siliques. To characterize the tissue specificity of the AtCSP4 transcript, we employed a Taq-Man probe quantitative real-time PCR (qRT-PCR) assay. As shown in Figure 2-2A, the AtCSP4 mRNA is expressed in all tissues similar to the pattern of AtCSP2/AtGRP2 (Nakaminami 2009, Fusaro 2007). The AtCSP4 gene transcript is much less abundant in mature leaf tissues where cell divisions are reduced and tissue identity has already been determined. In contrast, the AtCSP4 transcript preferentially accumulates in reproductive and meristematic tissues such as inflorescences and shoot apices. AtCSP4 is highly abundant in mature siliques harboring full grown seeds.

To monitor the tissue specific gene expression of AtCSP4 in planta, we developed transgenic plants by transforming wild-type plants with the T-DNA binary vector containing the AtCSP4 promoter fused to the GUS reporter gene (Figure 2-2B). We used T2 generation transgenic plants for GUS expression assays. GUS staining results revealed that AtCSP4 is expressed in all tissues in good accordance to data obtained by qRT-PCR analysis (Figure 2-2A). Specifically, the AtCSP4 promoter is highly active in reproductive and meristematic tissues. In root tissues, root tip areas of primary and lateral roots were strongly stained, while root vascular tissues were weakly stained (Figure 2-2, B and C). At 21 DAG, lateral root tips contained high levels of GUS (Figure 2-2D). In young seedlings at 7 DAG, the hypocotyl contained strong GUS gene expression relative to other tissues (Figure 2-2C). Tissues exhibiting high cell divisions such as young leaves, leaf primordia, and shoot apices showed high GUS gene expression (Figure 2-2D). In leaf blades, GUS expression was especially accumulated at the trichome base on the younger leaf surface area. In contrast, mature and older leaves no longer maintained high levels of GUS expression. Vascular tissue also exhibits GUS expression in young leaves but its expression disappears gradually following leaf expansion. Root vascular tissue also exhibits high levels of GUS gene expression at early stages of root development (Figure 2-2C). The shoot apical meristem exhibits high activity of the AtCSP4 promoter, resulting in dark blue staining in the center of shoot apices from both primary and lateral shoots (Figure 2-2F) and the inflorescence meristem (Figure 2-2G). Reproductive tissues exhibit stronger AtCSP4 promoter activity relative to vegetative tissues (Figure 2-2F and H) with floral tissues exhibiting strong GUS expression during the early stages of floral organ development.
Floral organs such as carpels, sepals, and stamens exhibited high GUS gene expression, whereas sepals did not (Figure 2-2H). Siliques with mature seeds showed the highest level of GUS gene expression relative to any other tissue (Figure 2-2I). Specifically, the dehiscence area, two valves, and matured, but not ripened seeds, in siliques stained very strongly (Figure 2-2I).

Taken together, the qRT-PCR and GUS staining results indicate that AtCSP4 is expressed in multiple tissues but accumulates preferentially in meristemetic and reproductive tissues. Lastly, AtCSP4 is highly expressed in silique tissue comprising matured seeds.

Morphological analysis of AtCSP4 overexpression and T-DNA insertion mutant

To characterize AtCSP4 gene function in planta, we functionally characterized an AtCSP4 overexpression and T-DNA insertional mutant line. The T-DNA insertion line was obtained from the GABI collection (GK-623B08.01). A homozygous line was obtained and the precise location of the T-DNA insertion was determined with sequence analysis with a T-DNA flanking and gene specific primer pair. From these genotyping results, we confirmed that the T-DNA insertion occurs within the cold shock domain coding region at +91 base from the first initiation codon (Figure 2-3A). When total RNA was isolated and converted into cDNA, AtCSP4 transcript was not detected in the GK-623B08.01 with a primer pair that was designed to amplify full length AtCSP4 (Figure 2-3B: F1+R1). To confirm if this line is a null mutant allele of AtCSP4, we performed semi-quantitative RT-PCR with non-flanking region primers, whose complementary positions are denoted in Figure 2-3A. Interestingly, an AtCSP4 gene fragment was amplified with primer pairs that did not flank the T-DNA insertion and which targeted the 3’ UTR (Figure 2-3B). However, when a forward primer was used which flanked the T-DNA insertion in combination with the 3’ UTR specific primer, no product was amplified (Figure 2-3B). Therefore, these data confirm that the GK-623B08.01 T-DNA insertion line is not a null allele of AtCSP4, but instead it generates truncated AtCSP4 mRNA.

We generated an overexpression line of AtCSP4 fused to an N-terminal TAP-tap that was driven by a 35S promoter (35S:NTAP:AtCSP4) as a means to observe the functional effect of ectopic overexpression of AtCSP4 (Figure 2-3C). We obtained 17 different gentamycin resistant lines in the T1 generation. Four representative lines showing embryo lethal and abortive phenotypes are presented in Figure 2-4. AtCSP4 transcript accumulation in these lines was
determined by semi quantitative RT-PCR, which confirmed elevated levels of AtCSP4 transcript in overexpression lines relative to the wild type.

To gain insight into the function of AtCSP4, we compared the phenotypes of T-DNA insertion mutant and overexpression lines of AtCSP4 to the wild type under long day light conditions. As shown in Figure 2-3E, the atcsp4 T-DNA insertion mutant and the 35S:NTAP:AtCSP4 overexpression lines exhibits typical phenotypes during shoot and leaf tissue development. The seedling height of both homozygous atcsp4 and heterozygous 35S:NTAP:AtCSP4 lines did not differ from those observed in the wild type under long day conditions (Figure 2-3E and F). In addition, total leaf number and leaf size did not differ from wild type (Figure 2-3G). With respect to flowering time, all lines initiated flowering at 23 DAG similar to wild type plants (data not shown). Therefore, overexpression or T-DNA insertional mutation of AtCSP4 does not appear to affect vegetative development and flowering time. Even though, we did not identify any atypical phenotypes during vegetative growth, we observed brown and shrunken seeds within mature siliques of 35S:NTAP:AtCSP4 overexpression lines. We were unable to obtain 35S:NTAP:AtCSP4 homozygous plants, even after screening up to the T4 generation using gentamycin resistance as a selectable marker (data not shown). These data indicated that the embryo lethal phenotype may arrest normal seed development in 35S:NTAP:AtCSP4 homozygous lines. Therefore, we compared reproductive tissue morphology of heterozygous 35S:NTAP:AtCSP4 lines from the T3 generation to those of the homozygous T-DNA insertion mutant atcsp4 and the wild type. We used the 35S:NTAP:AtCSP4-3 line as a representative line of 35S:NTAP:AtCSP4 for all the tests. The interval between individual silique position on the primary stem of atcsp4 and 35S:NTAP:AtCSP4 was identical to the wild type (Figure 2-4A). Floral shape and size of atcsp4 and 35S:NTAP:AtCSP4 were not altered (Figure 2-4B). However, the length of mature siliques in the 35S:NTAP:AtCSP4 line was shorter than that of the wild type and atcsp4 (Figure 2-4C and D). In addition, the embryo lethal phenotype was always associated with overexpression lines which developed short siliques.

To examine the embryo lethality seeds 35S:NTAP:AtCSP4 plants, we observed the external seed shape and seed formation in mature siliques. As shown in Figure 2-4C, all four of the 35S:NTAP:AtCSP4 lines showed short siliques, harboring embryos that were either aborted or embryo lethal seeds. The extent of embryo lethality varied among the the four lines. Specifically, the 35S:NTAP:AtCSP4-12 line possessed white immature seeds as well as embryo
lethal seeds. 35S:NTAP:AtCSP4-3 and 4-8 lines showed very similar distribution of embryo lethal seeds and the 35S:NTAP:AtCSP4-1 line contained has the lowest number of embryo lethal seeds. The proportion of the 35S:NTAP:AtCSP4-3 plants generating short silique harboring embryo defective seed to the plants generating wild type silique and seeds is 54.9 % : 45.1 % in the T3 generation plant which was grown in soil without antibiotics selection (n=36). We also counted the number of defective seeds and normal wild-type seeds in short siliques to determine the segregation ratio in self fertilized T3 generation plants of 35S:NTAP:AtCSP4-3. The total number of defective seed and wild-type seed in the plants showing an embryo lethal phenotype segregated to 51.66 % : 49.34 % (Table 2-1). However, the atcsp4 T-DNA insertion mutant contained typical silique morphology and seed maturation. Taken together, the AtCSP4 gene does not appear to be an essential gene for completion of the reproductive stage. This hypothesis is further supported by the fact that AtCSP4 is 1000-fold down-regulated in Ler ecotype relative to Col-0 (Nakaminami 2009). Ectopic overexpression of AtCSP4 induces short siliques that harbor about 50 % embryo defective seeds. Therefore, overexpression of AtCSP4 impairs normal seed and silique maturation via an unknown functional mechanism.

Image analysis of zygotic embryo development

We conducted further studies to identify the precise embryogenesis stage which stage is impaired and which part of the seed is damaged by overexpression of AtCSP4. Seeds were cleared and extracted from early maturing stages of siliques derived from 35S:NTAP:AtCSP4-3, T-DNA insertion mutant atcsp4, and the wild type. We referred to each silique stage according to Dr. Bowman’s definition for determination of the stages of embryo development (Bowman 1994, www.genomforschung.uni-bielefeld.de/GF-research/AtGenExpress-Seedssiliques.html). As shown in Figure 2-3, the atcsp4 T-DNA insertion mutant exhibits normal embryo and endosperm development in seeds. No morphological defects were observed in the external seed shape and size in atcsp4 mutants. Since 35S:NTAP:AtCSP4-3 contains has two different seed phenotypes, embryo lethal and wild type seeds within the same silique, we carefully observed all seeds until the embryo defective phenotype appeared. Seeds in 35S:NTAP:AtCSP4-3 plants developed normally until the heart stage of embryogenesis (Figure 2-5 K and L). No abnormalities were observed in 35S:NTAP:AtCSP4-3 until the early heart stage. In comparison to the wild type, endosperm expansion occurred normally in the overexpression plants until this stage. However,
after the heart stage, 35S:NTAP:AtCSP4-3 seeds no longer advance to the torpedo stage and endosperm started to shrink at the same stage and the seed coat rapidly turned brown (Figure 2-5M and N). In constrast, seeds from the atcps4 T-DNA insertion mutant and the wild type sustained green color and normal shape (Figure 2-5N and O). The other seeds in 35S:NTAP:AtCSP4-3 plants continued growing normally and did not differ morphologically from the wild type. Thus, we conclude that the embryo lethal seeds in 35S:NTAP:AtCSP4 result from defects in the late heart stage embryo and immature endosperm development during seed maturation.

Embryogenesis related genes and MADS box protein gene expression during early silique development stages

Seed development is initiated after fertilization by the mating pollen and ovule. Seeds are developed from a gynoecium in the carpel and the carpel grows into a silique which harbors developing and mature seeds. To elucidate the relationship between defective seed maturation and related gene expression in the 35S:NTAP:AtCSP4-3 line, we studied the gene expression levels of both initial floral organogenesis genes and seed development related genes in 35S:NTAP:AtCSP4 plants. As shown in Figure 2-5, zygotic embryogenesis of 35S:NTAP:AtCSP4-3 is impaired from the late heart stage. The late heart stage embryo comprises the silique stage 4, according to Dr. Bowman’s definition of silique development (Bowman 1994, www.genomeforschung.uni-bielefeld.de/GF-research/AtGenExpress-Seedssiliques.html). Public microarray data of silique development revealed that AtCSP4 peaks in its gene expression at the carpel developmental stage, which occurs during early silique development (http://www.genevestigator.ethz.ch/). Therefore, we collected floral buds and early developmental stages of siliques to monitor gene expression of candidate genes that function in silique development and seed embryogenesis. Among the representative regulators of embryo formation during early embryogenesis, FUS3, LEC2, and ABI3 were amplified at same number of PCR cycles using cDNA from floral buds, and silique stage 1, and stage 3 tissues from wild type and 35S:NTAP:AtCSP4-3 plants. The transcripts of MEA, FIS2, FIE, and PHE1 genes were studied in these tissues with the cDNA prepared from RNA extracts from 35S:NTAP:AtCSP4 plants. As shown in Figure 2-6 A, FUS3 and LEC2 genes were not altered in their transcript in overexpression plants in the tissues we studied relative to the wild type. We could not detect the
ABI3 transcripts in our amplification assays even after 40 cycles of amplification (data not shown). Among the genes involved in endosperm development, MEA mRNA was highly accumulated during the early stage of embryogenesis in 35S:NTAP:AtCSP4-3 plants (Figure 2-6A). Previous studies indicated that in wild-type plants, MEA transcript was detected in inflorescences and open flowers before fertilization and it gradually disappears after the initiation of embryogenesis. Our semi-quantitative RT-PCR results showed the expected gene expression that is consistent with previously reported data in the wild type (Figure 2-6A, Baroux 2006). In contrast, the MEA transcripts in 35S:NTAP:AtCSP4-3 was dramatically reduced relative to that of the wild type during seed development (Figure 2-6A). Two other endosperm developmental genes, FIS2 and FIE were accumulated their mRNA at similar levels in floral buds in the wild type and 35S:NTAP:AtCSP4-3, but the FIS2 mRNA was less expressed during stage 3 in 35S:NTAP:AtCSP4-3. Collectively, results of semi-quantitative RT-PCR analysis of embryogenesis related-genes suggest that the mRNA accumulation of endosperm development genes such as MEA and FIS2 was affected during floral bud and early stages of silique development in 35S:NTAP:AtCSP4-3 plants, with MEA mRNA accumulation being the most affected during embryogenesis. Transcripts of LEC1, FUS3, ABI3, and FIE, an endosperm development gene, were not altered during early embryogenesis stages in 35S:NTAP:AtCSP4-3, indicating that those genes are not likely to contribute to the defective seed phenotype observed in 35S:NTAP:AtCSP4-3 plants.

To understand the relationship between the impairment of silique development (shortened size) and development of abnormal seeds, I studied the expression of genes that are involved in silique development in 35S:NTAP:AtCSP4 plants. MADS box proteins have been functionally implicated in early silique development, ovule development, and seed embryogenesis (Lehti-Shiu, 2005). Since one of the characteristic mutant phenotypes of 35S:NTAP:AtCSP4 plants was a shortened silique length, we monitored the expression of MADS box protein genes in developing floral and silique tissue. I also determined the transcript expression of pistil and fruit development genes such as FUL and SHP2. In floral buds, the transcripts of AP1, CAL, and AG genes accumulated more in 35S:NTAP:AtCSP4-3 plants relative to the wild type (Figure 2-6B). During the silique stage 1 and mature flower stage, SHP2 mRNA was also transcribed at higher levels than wild type. Similar observations were made for mRNA generation of AP1, CAL, and AG. In silique stage 3 samples, most of the evaluated genes, with the exception of SHP2,
recovered to same level of expression as in wild type. The SHP2 transcripts in 35S:NTAP:AtCSP4-3 accumulated more at silique stage 3. However, FUS transcript abundance was not altered in all of the tested stages relative to the wild type. Therefore, overexpression of AtCSP4 affects the mRNA accumulation of AP1, CAL, and AG during the floral organogenesis phase starting from floral buds. However, those aforementioned genes are not altered in expression during silique development. I propose that short siliques generated 35S:NTAP:AtCSP4-3 are induced by increasing transcripts of several MADS box protein genes at the onset of the early phases of silique development.

Subcellular localization of AtCSP4 in onion cell

The sub-cellular localization of AtCSP4 was examined by making a C-terminal fusion of sGFP(S65T) to AtCSP4, which is driven by CaMV 35S promoter (Figure 2-8A). The 35S:sGFP and 35s:AtCSP3:sGFP plasmids were transformed into onion epidermal cells by particle bombardment. 35S:sGFP was expressed in both nucleus and cytosol (Figure 2-8B) and 35S:AtCSP4:sGFP transformed onion cells also exhibited localization specific to cytosol and nuclei.

Discussion

Putative redundant function of AtCSP4/AtGRP2b and AtCSP2/AtGRP2

Plant CSP genes have been functionally characterized in wheat, tobacco, rice, and Arabidopsis but their function remains elusive (Sakai 2007, Chaikam 2008, Fusaro 2007, Karlson 2003, Nakaminami 2006 and 2009. Arabidopsis possesses four CSPs which can be sorted into two groups based on the protein length and amino acid identity; AtCSP2 and AtCSP4 proteins contain ~200 amino acids and AtCSP3 and AtCSP1/CSDP1 contain ~300 amino acids. The amino acid identity and similarity between AtCSP2 and AtCSP4 is 86% and 95%, respectively (Figure 2-1B). Detailed tissue specific expression analyses confirmed that both of these genes are highly expressed in meristemic and reproductive tissues (Nakaminami 2009). Although the AtCSP4 transcript is less abundant than AtCSP2, AtCSP4 exhibited a similar trend of expression during development (Nakaminami 2009). Comparative analysis of gene expression between the Ler and Col-0 ecotype revealed that AtCSP4 expression is 1000-fold reduced in Ler
relative to the Col-0 ecotype, suggesting that a loss of AtCSP4 is not critical for plant survival. This hypothesis is further supported by T-DNA mutant analysis where knock-out of the AtCSP4 gene does not appear to have adverse effects on plant growth and development (see Figure 2-3). Interestingly, when AtCSP4 is overexpressed, severe development affects are manifested. AtCSP2 transcript is unaffected in atcsp4 knockout and overexpression mutant lines. Thus, the functional interactive relationship between AtCSP4 and AtCSP2 is not clearly understood at this time.

Our qRT-PCR data for AtCSP4 is in good accordance with a previous report (Figure 2-2A, Nakaminami 2009). GUS expression driven by the AtCSP4 promoter also confirmed that AtCSP4 is predominantly expressed in meristemic and reproductive tissues, especially in siliques (Figure 2-2B). These GUS data are also in good accordance with AtCSP2 gene expression data previously obtained in situ hybridization and GUS detection assays (Nakaminami 2009, Fusaro 2007, Sasaki 2007). However, no atypical phenotypes were observed in an atcsp4 T-DNA insertion mutant. These data contrast those previously observed for an RNAi mutant lines of AtCSP2 (Figure 2-2, Fusaro 2007). Taken together with the RNAi results and the 1000-fold reduction of AtCSP4 in Ler ecotype, the lack of any aberrant phenotype in vegetative and reproductive tissues in the atcsp4 T-DNA insertion mutant strongly suggests that AtCSP2 may have greater functional importance in planta (Figure 2-3, 4 and 5; Nakaminami 2009, Fusaro 2007). Furthermore, similarities in expression patterns of AtCSP4 and AtCSP2 suggests that AtCSP2 may function redundantly with AtCSP4 and complements the atcsp4 mutant. Most functionally characterized plant CSPs have been suggested to function as RNA binding proteins based on the results of nucleic acid binding assays in wheat and Arabidopsis (Sakai 2007, Fusaro 2007, Kim 2006). In the case of winter wheat WCSP1 and Arabidopsis CSDP1, RNA chaperone activity has been proposed on the basis of in vivo and in vitro assays (Nakaminami 2006, Kim 2006).

Ectopic overexpression of AtCSP4 reduces silique lengths and induces and embryo lethality

A homozygous atcsp4 T-DNA insertion line generates truncated mRNA of AtCSP4. In addition to characterizing this knock-out line, I also developed four 35S promoter driven Arabidopsis for overexpression of AtCSP4 which all exhibit same phenotype. The atcsp4 T-DNA insertion mutant does not exhibit any atypical phenotype (Figure 2-3). Flowering time and
whole seedling size did not differ from those observed in wild type plants. Unlike the atcsp4 T-DNA insertion mutant, the RNAi mutant of AtCSP2 showed early flowering and abnormal flower generation (Fusaro 2007). On the other hand, overexpression of AtCSP4 resulted in atypical phenotypes in reproductive tissues such as shortened silique size and defective seed maturation although developmental timing of vegetative and reproductive tissues was not affected by ectopic overexpression of AtCSP4 (Figure 2-3). Positions of silique formation on the stem were also not altered (Figure 2-4A and B). In heterozygous 35S:NTAP:AtCSP4-3 plants, siliques contained ~50% defective seeds (Table 2-1). These mutants resemble the phenotype observed for a FIS gene family mutant with impaired endosperm development (Grossniklaus 1998). For this parent-of-origin effect, the embryo lethal seed phenotype in a heterozygous mea mutant, a representative FIS gene, also shows a 50% proportion in self-fertilization. The other fis mutants such as mis1 also exhibited similar ratio of defective seed (Köhler 2003). Embryo formation in 35S:NTAP:AtCSP4-3 is also arrested at the late heart stage which is the same time point where defects in embryo formation in observed for a fis mutant allele (Figure 2-5; Ingouff 2005, Kiyosue 1999, Grossniklaus 1998, Chaudhury 1997, Ohad 1996). Therefore, it is reasonable to hypothesize that the defective seed in overexpression of AtCSP4 results from a parent-of-origin effect on the endosperm development process.

Expression of MADS box and seed embryogenesis related genes are altered by overexpression of AtCSP4

Microscopic observation of embryos in seeds of 35S:NTAP:AtCSP4-3 revealed that early shrinkage of endosperm is established from the late heart stage (Figure 2-5). These clearing data indicate that overexpression of AtCSP4 affects embryogenesis. CSPs from animal systems have also been implicated in embryo development. For example, mouse YB-1 and MSY4 proteins are expressed highly during embryogenesis and a double knock-out in mice cells prevent cell senescence, suggesting both genes share function in proliferative tissue in higher vertebrates (Lu 2006). In Arabidopsis, ChIP analysis confirmed that AGL15, a well-studied MADS domain protein expressed in developing embryos, binds to the promter regions of AtCSP4 and AtCSP2. These correlative data suggest that AtCSPs may also play an important role in silique development similar to their animal counterparts (Nakaminami, 2009). Therefore I are interested to further understand the functional relationship of plant CSP’s during silique development. As
shown in Figure 2-5, the early embryo formation and endosperm development in 35S:NTAP:AtCSP4-3 is not retarded before late heart embryo formation stage. However, its embryo growth ceased from the late heart stage of embryo formation, which is almost the final stage of embryo cell divisions, and accompanied with a retardation of endosperm expansion (Figure 2-5, Laux 2004). In 35S:NTAP:AtCSP4-3, expression of early embryo formation genes such as FUS3, and ABI3 were not altered, while the expression of MEA and FIS2 that are involved in endosperm development were affected during early seed development stages. Collectively, the defective seed in 35S:NTAP:AtCSP4-3 may be caused by an impairment of late embryogenesis and endosperm development. MEA, FIE, and MSI1 make a huge complex (~650 kDa) which may combine with FIS2 (Köhler 2003, Chanvivattana 2004). A loss of function mutant of the FIS gene perturbs endosperm development in a similar manner that is consistent with overexpression of AtCSP4. Gene expression of MEA and FIS2, which are FIS class PcG in Arabidopsis, is increased after fertilization in the AtCSP4 overexpression line (Figure 2-6). MEA functions in relation to DNA methylation in the chromatin complex for sustaining paternal gene imprinting. MEA silencing in vegetative tissues is mediated by H3K27 methylation (Jullien 2006a, Jullien 2006b). Therefore, the cascade of gene regulation from AtCSP4 to MEA may affect the gene methylation to develop endosperm.

MADS box proteins commonly function in relation to floral transition, fruit development, and ovule development (Seymour 2008, Lehti-Shiu 2005). Silique development is established from carpel identity determination which is regulated by AG, AP1 and FUL function redundantly in floral meristem identity determination but their function is divergent in relation to lateral development involving fruit development (Ferrandiz 2000). The ful mutant generates very a small silique size because of defects in silique valve cell differentiation (Ferréndiz 2000). Also, FUL interferes with SHP1 and SHP2 gene expression, but AG induces their gene expressions in early silique development stage. API, CAL, AG, and SHP2 except FUL gene were affected by ectopic overexpression of AtCSP4. However, all the MADS box genes that were tested in this study did not exhibit altered expression patterns at silique stage 3, when globular embryo formation is initiated. Therefore, I propose that regulation of MADS box protein genes by overexpression of AtCSP4 affects majorly silique development but not embryogenesis.

As mentioned before, the expression of the MEA gene, which encodes a PcG protein, is also decreased at the floral bud stage, with a dramatic decrease at silique stage 3. That is, the
normal silique generation is impaired from floral meristem identity determination for carpel organogenesis. However, it is not clear whether the silique morphology and seed embryogenesis affects each other causing the 35S:NTAP:AtCSP4-3’s phenotype with these data. Judging from previously published phenotype of various MADS box protein mutants, I presume that overexpression of AP1, AG, and SHP2 does not result in embryo lethality (Liljegren 2000 and 1999, Mandel 1995, Mizukami 1992). Taken together with morphological and semi quantitative RT-PCR analyses, shortened silique and embryo lethality may be resultant from an independent alteration of gene transcripts for MADS box protein and endosperm development related genes.
Figure 2-1. Secondary protein structure of AtCSP4 and redundancy with AtCSP2
A) Predicted domain architecture of the AtCSP4 protein. Amino acid sequence and secondary structures were predicted with the AtCSP4 ORF from the Columbia ecotype by using the PROF web based software.
B) Amino acid alignment between predicted amino acid sequences of AtCSP4 and AtCSP2. Predicted amino acid sequences of both proteins were aligned by the Clustal W software. Identical sequences are marked with a star (*) and conserved amino acids are denoted by a dot (·).
C) Semi-quantitative RT-PCR for comparison of AtCSP2 gene expression in T-DNA insertion or overexpressed AtCSP4 transgenics. Arabidopsis Actin 1 (AAC1) was used as an internal standard.
Figure 2-2. Tissue specific gene expression of AtCSP4
A) Quantitative real-time PCR analysis of AtCSP4 mRNA expression in different tissues. All data points for individual AtCSPs were calibrated with the respective normalized value of cDNA from root tips. The presented data represent the average and standard deviation of three replicates. Actin2 was used as an internal control for normalization.
B) pAtCSP4:GUS expression in transgenic Arabidopsis. A -2 kb promoter region of AtCSP4 was inserted into the pCAMBIA1303 binary vector (pAtCSP4:GUS).
C) pAtCSP4:GUS expression in early seedling of transgenic Arabidopsis. 7 DAG seedlings, D) 21 DAG, E) lateral root from 21 DAG, F) Inflorescence meristem from 28 DAG, G) Floral bud and early flower from 35 DAG plant, H) Flower organ of 35 DAG plant, I) Fully matured siliqua of 42 DAG plant, rectangle indicates modified full mature seed and dehiscence of the same siliqua. GUS staining was performed from seedlings grown on MS plates (C-E) or soil (F-I) under long day conditions. Scale bar indicates 0.5µm.
Figure 2-3. Morphological phenotype of a T-DNA insertion allele and overexpression of AtCSP4 in vegetative tissues

A) Genetic map of T-DNA insertion positions within the AtCSP4 locus. A white box represents the AtCSP4 exon and black boxes represent its 5’ and 3’ UTRs. With respect to the open reading frame, a GABI-Kat line has an insertion at +91 base pairs. B) Semi-quantitative RT-PCR analysis of AtCSP4 expression in leaves from 28 DAG of wild type (Col-0) and AtCSP4 in the GABI-Kat T-DNA insertion line. T-DNA flanking and gene-specific primers positions were denoted in panel A. PCR was performed for the described cycle numbers with primers flanking the insertion and additional non-flanking primers. AAC1 was used as an internal control. All semi-quantitative RT-PCR figures are representative images from three replicate reactions. C) Gene construct of 35S:NTAP:AtCSP4. D) Semi-quantitative RT-PCR analysis of AtCSP4
expression in leaves from 28 DAG of the wild type (Col-0) and three different independent 35S:NTAP:AtCSP4 transgenic lines exhibiting the defective seed phenotype. E) Comparison of whole plants at 42 DAG. All plants were grown in soil under long day conditions (bar=2cm). F) Total leaf number in the wild type, atcsp4, 35S:NTAP:AtCSP4-3 plants. Leaf number was counted weekly post germination (n=30). All plots show mean and error bars represent standard deviation.
Figure 2-4. Morphological phenotype of the T-DNA insertion allele and overexpression of AtCSP4 in Arabidopsis vegetative tissues

All plants used in this test were grown in soil under long day conditions. A) Silique formation on the primary stem at 49 DAG (bar, 2cm). B) Comparison of flower size. Opened flowers were collected from primary bolts at 35 DAG (bar, 0.2cm). C) Comparison of silique size. Fully matured siliques were detached from 49 DAG (bar, 1cm). D) Silique size comparison. Silique size were determined with the longest siliques from 50 different plants from the wild type and atcsp4, and 35S:NTAP:AtCSP4-3, respectively (n=50). E) Seed number comparison. Seed were counted from the same siliques which were used in panel D. All plots in D and E show mean ±
standard deviation. F) Seed formation and maturation of the wild type and atcsp4, and T3 generation of 35S:NTAP:AtCSP4-3, 1, 8, and 12 lines. All siliques were opened from fully matured siliques at 49 DAG (bar, 0.5cm).
Figure 2-5. Comparative analysis of stages of siliques development in the T-DNA insertion and overexpression lines of AtCSP4. Seeds were detached and cleared from 49 DAG siliques. (A-E) wild-type seeds, (F-J) atcsp4, and (K-O) 35S:NTAP:AtCSP4-3. (A, F, and K) show globular stage embryos, (B, G, and L) show early heart stage embryos, (C, H, and M) show late heart stage embryos, (D, I, and N) are torpedo stage embryos and (E, J, and O) show the bent cotyledons (bar, 100µm).
Figure 2-6. Semi-quantitative RT-PCR analysis of genes involved in silique development and seed embryogenesis. A) Semi-quantitative RT-PCR analysis of MADS box genes. *AP1*, *CAL*, *AG*, and *SHP2* were affected by overexpression of *AtCSP4* in floral bud (FB) and stage 1. B) Semi-quantitative RT-PCR of seed embryogenesis related genes. *LEC1* and *FUS3* were used as marker genes related to embryo development. *MEA*, *FIS2*, and *FIE* were used as maker genes related to endosperm development. Overexpression of *AtCSP4* affect endosperm development genes such as *MEA* and *FIS2* but not *FIE*. FB means floral bud and arabic numbers denote silique stages. *AAC1* was used as an internal control.
Figure 2-7. AtCSP4 subcellular localization in onion epidermal cell. A) Schematic representation of sGFP and AtCSP4:sGFP vectors. The coding region of AtCSP4 was cloned into the sGFP(S65T) vector for transient expression via a particle bombardment system into onion epidermal peels. B) Transient analysis of subcellular localization for AtCSP4 in onion epidermal cells (bar, 125 µm). AtCSP4 localized to the cytosol and the nuclei.
Table 2-1. Segregation of homozygous *atcsp4* and heterozygous *35S:NTAP:AtCSP4-3* plant

<table>
<thead>
<tr>
<th>Genotype of plant</th>
<th>Defective seeds</th>
<th>Wild type seed</th>
<th>Total seed number analyzed</th>
<th>Silique number analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col-0</td>
<td>0.58%</td>
<td>99.42%</td>
<td>868</td>
<td>20</td>
</tr>
<tr>
<td>atcsp4</td>
<td>0.69%</td>
<td>99.31%</td>
<td>874</td>
<td>20</td>
</tr>
<tr>
<td>35S:NTAP:AtCSP4-3 AtCSP4-3</td>
<td>51.66%</td>
<td>49.34%</td>
<td>2228</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 2-2. Primer list for AtCSP4 transcript detection and amplicon length of PCR product with the R1 primer

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon length (b.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>CACCATGAGCGGAGGAGGAGAC</td>
<td>777</td>
</tr>
<tr>
<td>F2</td>
<td>AGAAGGGGTTTTGTTTCA</td>
<td>704</td>
</tr>
<tr>
<td>F3</td>
<td>TCACACCTAGCGACGTTG</td>
<td>686</td>
</tr>
<tr>
<td>F4</td>
<td>ATTTGCTAGCCCTCGACG</td>
<td>625</td>
</tr>
<tr>
<td>F5</td>
<td>GTCCTCCAAGGCTATGGAA</td>
<td>564</td>
</tr>
<tr>
<td>F6</td>
<td>TTCATCTGGTGGACGCGG</td>
<td>496</td>
</tr>
<tr>
<td>F7</td>
<td>AAGCTACGGAGGAGGTAA</td>
<td>433</td>
</tr>
<tr>
<td>F8</td>
<td>CATGGCGAGAGAATGCTC</td>
<td>340</td>
</tr>
<tr>
<td>F9</td>
<td>GGTTAAATCATCATCGATCC</td>
<td>150</td>
</tr>
<tr>
<td>R1</td>
<td>TTTCTCAAATCACAAGGAACCA</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2-3. List of context sequence and amplicon lengths for Taq-Man probes

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon length (b.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin 2</td>
<td>CTGGATCGGTTGTTCCATTCTTGGCT</td>
<td>85</td>
</tr>
<tr>
<td>AtCSP4</td>
<td>TAATTAGGACTTGTGGTTATGG</td>
<td>142</td>
</tr>
</tbody>
</table>

Table 2-4. Primer list for semi-quantitative RT-PCR analysis

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Forward Sequence (5’-3’)</th>
<th>Reverse Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC1</td>
<td>CGGCGATTCCAGGGAACATTGTGG</td>
<td>GTGCTCGAACTCTGAGATGGTGTG</td>
</tr>
<tr>
<td>AP1</td>
<td>CTTACGCCGAAAGACAGCTT</td>
<td>ACTGCTCCTGTTGAGCCCTA</td>
</tr>
<tr>
<td>CAL</td>
<td>TAGCAGGCTTAAAGCAGAGA</td>
<td>GTTGTTGGCTGTGTAATCG</td>
</tr>
<tr>
<td>AG</td>
<td>AGGCAATGTTGGGTTGAGAC</td>
<td>CTAACTGGAGAGCGGTGTTG</td>
</tr>
<tr>
<td>FUL</td>
<td>GGGGGGAAGATCTTGATTCTG</td>
<td>AGTTTGTTCCGTCAGACCAG</td>
</tr>
<tr>
<td>SHP2</td>
<td>CGACGCAATGTTTTACTCAA</td>
<td>CCGACGACTGATTCTTT</td>
</tr>
<tr>
<td>FUS3</td>
<td>GTGGCAAGTGTGATCATGG</td>
<td>CGTGAAAACCGTCCAAATCT</td>
</tr>
<tr>
<td>LEC1</td>
<td>TTGAACCTTGACCAGCACAG</td>
<td>AAGCTTGCTCATAGCCAAA</td>
</tr>
<tr>
<td></td>
<td>MEA</td>
<td>TGCCTGCTAAACTCGTGAATGC</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>FIS2</td>
<td>GCTTGATTCCATGTGGAGGT</td>
<td>CTGTGCCACGAGGTAAGTCA</td>
</tr>
<tr>
<td>FIE</td>
<td>TTGTGGGTCAATGGAGATTCA</td>
<td>TGTGGGGAATTTTGATGGAT</td>
</tr>
</tbody>
</table>
CHAPTER 3

AtCSP1 regulates germination timing promoted by cold temperature.
Abstract

Cold shock domain proteins (CSPs) have been reported to play an important role in tissue development and cold responses. Eukaryotic CSPs play a crucial role in cell differentiation and cell proliferation which result in regulating the timing of tissue development and cell division. Cold shock domain proteins have been identified in many plants, although functional analyses have been limited to Arabidopsis, wheat and rice and their in vivo functional roles remain unclear. Among the four Arabidopsis thaliana CSPs (AtCSPs) that I have characterized, AtCSP1 is highly similar to AtCSP3 in terms of its predicted amino acid sequence. Transcription of AtCSP1 increased in the loss of function mutant atcsp3, implicating that AtCSP3 negatively affects AtCSP1 transcription. Using a gene trap line (GT606 defined as atcsp1), which has complete loss of full length AtCSP1 transcript, GUS gene expression was detected preferentially in tissue primordia and highly dividing tissues. The atcsp1 exhibited early germination after stratification but did not exhibit any further atypical phenotype in vegetative tissues. Germination of atcsp1 without stratification also occurred earlier than wild type but the germination time delayed 24 hours. Comparative analysis of GUS expression in seeds with or without stratification confirmed that AtCSP1 expression was affected by cold temperature during radicle emergence. In addition, ABA germination assays revealed a reduced sensitivity to ABA in atcsp1. Taken together, AtCSP1 may function to regulate germination timing which is in turn mediated by cold temperatures to promote embryo expansion.

Introduction

The Arabidopsis thaliana model system contains four cold shock domain proteins (AtCSPs) that are being actively studied for characterization of in planta functional roles. As reported in other organisms, AtCSPs are involved in cold stress responses, growth and development (Sasaki 2008, Kim 2007, Fusaro 2007). By using nucleic acid binding assays, AtCSPs have been characterized as RNA binding proteins but their in vivo function roles have not been clearly elucidated. AtCSP1, which is a low temperature stress responsive gene, was previously shown to rescue the cold sensitive mutant phenotype of an E. coli mutant strain (BX04) which lacks four endogenous cold shock proteins (Kim 2007). Overexpression of AtCSP1 in Arabidopsis was recently shown to delay germination timing under dehydration and
salt stress conditions (Park 2009). However, the function of AtCSP1 beyond the seedling developmental stage is not yet well understood.

The germination of seedlings is an important stage for studying early seedling development. Seed germination is controlled by the balance between the maintenance of seed dormancy and the establishment of seed germination. The turning point between seed dormancy and seed germination is determined by external environmental factors such as light, temperature, time after ripening and internal factors such as phytochromes, hormones and chemicals (Bentsink 2008, Holdsworth 2008). Seed dormancy is a special strategy that viable seeds employ to survive under unfavorable conditions (Finch-Savage 2006). Dry storage of ripened seeds and stratification by a moist chilling treatment are very important factors for breaking seed dormancy. Impairment in the formation of Arabidopsis seed coat such as endosperm and teresa layer also affects embryo dormancy (for review: Bentsink 2008). In addition, the potential of the embryo to protrude into the micropylar endosperm layer is another seed structural factor which decides embryo dormancy (for reviews: Bentsink 2008, Kucera 2006). Due to the difference in timing between environmental stimuli and the breakage of embryo dormancy in dried seeds, it is very difficult to assess embryo dormancy. To overcome this limitation, dormancy assays are regarded as germination assays because the germination commences simultaneously with the breakage of seed dormancy (Bentsink 2008).

Seeds that are exposed to environmental factors such as cold temperatures, light, and long term storage at dry conditions, readily break seed dormancy. Also, several chemicals such as KNO$_3$ and NO$_3$ promote germination. These factors function interdependently to complete germination. For example, light interacts with low temperature in seed germination. However, none of these factors strongly promote germination (Cone 1983). Among these dormancy release factors, nitrate is the most sensitive followed by cold and light (Fingch-Savage 2007).

Germination is defined as a process that establishes water uptake into dried seeds and results in radicle protrusion (Bewley 1994). Water uptake consists of three stages, rapid initial uptake, plateau phase, and a final further increase of water uptake during early germination (Schopfer 1984, Bewley 1997, Menz 2005). Following water uptake, a part of the seed layer is penetrated by a physical force which is defined as two stages of testa and endosperm rupture (Karssen 1976, Heper 1985, Leubner-Metzger 2003, Liu 2005). The radicle which emerges from the intact embryo completes the germination process. The period of cold treatment and
darkness also affects the seed germination rate (Cutler 1996, Meng 2008, Kim 2008). Genetic mutants which exhibit impaired germination phenotypes during early germination stages are identified by germination tests which use the immature seeds that are detached from newly generated siliques (Raz 2001).

Light is an important environmental factor that induces seed germination and breaks dormancy. Phytochrome (Phy) mediated photocontrol is also a major factor that promotes germination by breaking seed dormancy. Five phytochromes have been identified in Arabidopsis and the loss of their light response affects seed germination (Donohue 2008, Castillon 2007, Sharrock 1989). Casal and Sánchez defined three different modes formed by inter-dependent interactions of five Phy genes in regulating the timing of germination (Casal 1989). These modes are generally defined as very low-fluence response (VLFR), low-fluence response (LFR), and high-irradiance response (HIR). Mutants lacking response to different spectrums exhibited alteration in the timing of germination. PhyB functions by red light sensitivity, therefore, mutants lacking PhyB do not exhibit normal seed germination (Shinomura 1994). Mutants lacking PhyA also lack seed germination without seed imbibition but germinated with imbibition (Shinomura 1994). These observations indicate that red/far-red reversible LFR is mediated by PhyB while PhyA functions in VLFR in controlling seed germination (Shinomura 1996). However, double mutants of phyA/phyB did not exhibit any non-germination phenotype, implicating that other potential phytochromes also mediate seed germination (Poppe 1997, Yang 1995). Light also influences seed maturation that subsequently affects seed germination in specific genotypes (Munir 2001).

Cold temperature is required for the breakage of seed dormancy which in turn affects the phytochromes’ role in seed germination (Donohue 2007). Pre-cold treatment with moisture, defined as stratification, is very important to establish seed germination because cold treatment establishes hormone synthesis such as gibberellin (GA) and abscisic acid (ABA) which induce seed germination (for review: Holdsworth 2008). GA is an essential phytohormone that enhances germination and can also replace the imbibition effect by cold and light (Derkx 1993). The endosperm monolayer, which potentially controls germination, is regulated by nitric oxide (NO) which subsequently affects GA signaling (Müller, 2006). The weakening of the endosperm is originally regulated by the embryo and it is regulated by an interaction between GA and ABA. GID, a GA receptor, DELLA domain proteins, and SCF^{SLY1} function in seed germination via
correlation with GA perception (Nakajima 2006, Sun 2004, McGinnis 2003). DELLA domain proteins consist of five members that include GAI, RGA, RGL1, RGL2 and RGL3 which repress GA responses during development (Sun 2004). Among them, RGL2 strongly repress seed germination but others showed an weak influence on germination (Cao 2005, Koornneef 1985). The correlation between DELLA proteins and environmental factors was proposed by Cao et al. (Cao 2005). Mutants lacking all four DELLA proteins did not show light and cold sensitivity required for seed germination. The GA biosynthesis gene (GA3OX) is also involved in seed germination. Among four genes of GA3OX, GA3OX1 and GA3OX2 play important roles in seed germination (Mitchum 2006). SPATULA (SPT) and PIF3-like 5 (PIL5), bHLH transcription factors, have been recently identified as light-stable repressors of seed germination and mediate temperature responses (Penfield 2005). Proteosome degradation of PIL5 is induced by red and far-red light stimuli followed by an induction of germination, implicating that PIL5 interacts with phyA and phyB (Oh 2006 and 2004). Red light suppresses ABA biosynthesis gene expression and induces ABA inactivation gene expression, such as CYP707A2, which promotes seed germination (Seo 2006). PIL5 activates ABA biosynthetic genes and represses an ABA degradation gene that results in the inhibition of seed germination (Oh 2007). Therefore, GA plays an antagonistic role with ABA to allow seed germination under environmental signal such as light and cold temperatures.

ABA is the classic repressor of seed germination (Finch-savage 2006). A general mechanism of ABA function in repressing seed germination is correlated with the induction and maintenance of seed dormancy (Carrera 2008). Since seed dormancy is established from seed maturation, embryogenesis is an interesting developmental process that decides the potential of seed germination. Mutant phenotypes of embryogenesis-related genes such as ABA-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON (LEC1 and LEC2) exhibit decreased dormancy during the seed maturation stage, meaning that loss of function of these genes induces early germination by impairment of seed dormancy (Raz 2001). Many mutants of them showed insensitivity to ABA function in ripened or moist chilled seeds (Nishimura 2007, Pandey 2006, Saez 2006, Yoine 2006, Katagiri 2005, Zhang 2005, Hugouvieux 2001, Xiong 2001). Functions of these loci have been related to RNA translation and metabolism, protein chaperone modification, protein kinase activation and microRNA regulation during seed germination. In protein chaperone modification, the E3 ligase ABI3-interacting protein 2 (AIP2)
and a component of the 26S proteasome (RPN10) act as regulators of seed germination (Smalle 2003, Kurup 2000). The ABI5-binding protein (AFP), which degrades ABI5 showed ABA hypersensitivity during seed germination (Lopez-Molina 2003). Recently, two protein kinases, SNF1-related protein kinase (SnRK2.2) and SnRK 2.3, have been identified and a double mutant showed strong ABA insensitivity for germination resulting in early germination (Fujii 2007).

Herein, I describe the early germination phenotype of a Gene trap line (atcsp1) inserted within the AtCSP1 coding region. The correlation between atcsp1 and moist chilling for seed germination is discussed. Also, I show that AtCSP1 may function as a regulator in the timing of tissue differentiation by affecting the initiation of seed germination.

Methods and Materials

Plant materials and growth condition

The gene trap line was obtained through the Cold Spring Harbor Laboratory (Stock number: CSHL_GT606, http://genetrap.cshl.org). Ler wild type seeds were purchased from Lehle Seeds for comparative analyses in a wild type background (Round Rock, TX). Seeds were stratified at 4 °C for 4 days under dark conditions and grown in Metromix 360 (Scott Co., Marysville, OH, USA) under long day conditions at 23 °C (16 hr/8hr for light/dark). For germination tests, GT606 seeds were surface sterilized with 0.01 % Triton/50 % bleach for 7 min followed by 7 rinses with distilled water. These seeds were sowed on 1 × Murashinge and Skoog (MS) plates, including Gamborg’s Vitamins, 1 % phytoagar and 1 % sucrose under continuous light conditions (Caisson Labs, North Logan, UT).

Determination of transcript abundance

For confirmation of the gene knock-out of AtCSP1, total RNA was extracted from leaf tissue of GT606 (atcsp1) and Ler using TRIzol® reagent (Invitrogen, Carlsbad, CA). We also extracted RNA from an atcsp3 (Wise_DsLox353G12) T-DNA insertion mutant for comparative analysis of gene expression. cDNA was synthesized using 500 ng of total RNA by the QuantiTect Reverse Transcription kit (Qiagen, Valencia, CA). Semi-quantitative RT-PCR was performed with five times diluted cDNA with the Go-Taq Flexi PCR reaction kit (Promega, Madison, WI). Thermo cycling conditions to understand the redundancy between AtCSP3 and
AtCSP1 as follows: 95 °C for 2 min for an initial denaturation followed by 95 °C for 30 sec, 58 °C for 1 min, 72 °C for 30 sec, for a total of 35 cycles (as denoted in individual figures) followed by a final extension for 7 min at 72 °C. Sequences of the primers used are as follows: for AtCSP3 amplification, forward 5’-CCC ATT TCC TCT CTT TGT ACG-3’, reverse 5’-TCA TTG CAA GGA AAG ACA AGA-3’, for AtCSP4 forward 5’-CAC CAT GGC TTC AGA GGA TCA ATC G-3’, reverse 5’-TGA TGA GGT CAA AAT TTC CAG A-3’. Thermocycling conditions for Figure 2 were set as follows: 95 °C for 2 min for an initial denaturation followed by 95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 30 sec, for specified cycles as denoted in individual figures, followed by final extension for 7 min at 72 °C. The primers used are as follows: F1- 5’-CAC CAT GGC TTC AGA GGA TCA ATC G-3’, F2- 5’-AAT TGC CTG GTC CTT TTG GT-3’, and R1 – 5’-TGA TGA GGT CAA AAT TTC CAG A-3’. AAC1 was amplified similarly with the exception of a different cycle number. The primer sequences for AAC1 amplification are a forward primer of 5’- CGG CGA TTC CAG GGA ACA TTG TGG -3’ and a reverse primer of 5’- GTG CTC GAC TCT GGA GAT GGT GTG -3’.

GUS staining histological analysis

For GUS staining in young seedlings, tissues were collected from plants grown on MS plates as described above. Reproductive tissues were detached from the plants grown in soil under long day conditions. Collected tissues were incubated quickly in GUS staining buffer (50 mM Na2HPO4, 30mM NaH2PO4, 0.4mM K3[Fe(CN)6], 0.4mM K4[Fe(CN)6], 8mM EDTA, 0.1% Triton X-100, 10% methanol, and 1 µg/ml 5-bromo-4-chloro-3-indol-glucuronide cyclohexylamine salt (X-Gluc)), overnight at 37 °C. Stained tissues were washed several times in 70% ethanol. All images of the GUS staining results were taken by a Nikon SMZ-U dissecting microscope equipped with a Nikon DXM 1200 CCD camera (Melville, NY, Nikon).

Germination assay

In order to ensure that differences in germination rates were not resultant from seed quality issues, wild-type and mutant plants were grown side by side under identical conditions in growth chamber conditions for seed production under long day conditions. Ripened seeds were dried for 1 month and were used for germination assays. As described above, sterilized seeds were stratified for 4 days at 4 °C in the dark. After stratification, seeds were shifted to 22 °C and
were monitored under continuous light conditions. Radicle emergence was used as the criterion for assessment of differences in germination between wild type and \textit{atcsp1} mutant seeds. For germination assays with or without stratification, sterilized seeds were stratified or exposed to continuous light without stratification.

ABA ((\pm) Abscisic Acid, Sigma-Aldrich, St. Louis) was dissolved in absolute methanol to make a 100 mM as a stock solution. The desired final ABA concentrations in plates were prepared by the adding stock solution to cooled MS agar after autoclaving. For negative control plates, identical volumes of methanol were added to MS agar plates. Sterilization and stratification was performed as described above and seeds were grown under continuous light conditions under the same temperatures as described above. Germination studies were repeated three times and averages and standard deviations were calculated. Images of germinated seeds were observed under a Nikon SMZ-U dissecting microscope equipped with a Nikon DXM 1200 CCD camera (Melville, NY, Nikon).

\textbf{Results}

\textbf{Characterization of AtCSP1 protein}

AtCSP1 is a unique gene encoded by a single exon lacking any introns with a nucleotide sequence of 900 bp in length with a protein sequence of 299 amino acids. As predicted by Pfam software (http://pfam.sanger.ac.uk/; Figure 3-1A), the AtCSP1 protein encodes a well conserved N-terminal cold shock domain and seven C-terminal CCHC retroviral-like zinc finger motifs that are interspersed by eight glycine-rich regions (Figure 3-1A). Among the four AtCSPs in Arabidopsis, AtCSP1 encodes the largest protein followed by AtCSP3. Amino acid sequences of AtCSP1 and AtCSP3 exhibit high similarity of 73.3 \% and identity of 63.8\% (http://www.ebi.ac.uk/Tools/emboss/align/). Alignment of amino acid sequences indicated that their CSD regions are highly conserved among both of these genes. It is possible that AtCSP1 and AtCSP3 might have resulted from a gene duplication event since they are very similar in sequence and clusters of similar genes are present in both of their genomic loci (data not shown).

In order to understand if AtCSP3 and AtCSP1 affect each other’s gene expression, I studied \textit{AtCSP1} and \textit{AtCSP3} transcript abundance in \textit{atcsp3} and \textit{atcsp1} loss of function mutants, respectively. Since the loss of function mutants are derived from different ecotype backgrounds,
I used different wild type Arabidopsis backgrounds for comparative analyses of transcript abundance. The loss of function mutants exhibited a complete loss of gene expression for their corresponding genes (Figure 3-1C). Interestingly, in the \textit{atcsp3} loss of function mutant, At\textit{CSP1} transcript was accumulated relative to the Columbia wild type background (Figure 3-1C). However in the \textit{atcsp1} (GT606) gene trap line, At\textit{CSP3} expression was not affected (Figure 3-1C). These results indicate that At\textit{CSP3} negatively affects the expression levels of At\textit{CSP1 \textit{in planta}} by an unknown mechanism.

Identification of a Gene Trap line (GT606) as an \textit{atcsp1} loss of function mutant

To obtain an \textit{atcsp1} loss of function mutant, I searched all of the Arabidopsis databases and identified a gene trap line named (GT606) utilizing the GUS gene as a reporter marker. I genotyped this line using the Ds5-1 primer, which recognizes the dissociation (Ds) insertion site, and gene specific primers for specific amplification of At\textit{CSP1}. The flanking Ds insertion was identified at +448 base pair downstream from the first initiation codon in the At\textit{CSP1} coding region (Figure 3-2A). I confirmed if this mutant generates a null transcript of At\textit{CSP1} by employing semi-quantitative RT-PCR analysis. As reported in the comparative CSP gene expression test, At\textit{CSP1} is expressed at a lower level relative to the three other At\textit{CSPs} (Nakaminami, 2009). At\textit{CSP1} was not detected prior to 35 cycles in semi quantitative RT-PCR analysis (Figure 3-2B, F1+R1). The GT606 gene trap line did not contain any full length transcript under the same cycling conditions. In contrast, a non-flanking region in 3’UTR was amplified clearly in both wild type and the GT606 gene trap line. Therefore, the GT606 mutant generates a truncated At\textit{CSP1} transcript, and likely renders it as a loss of function mutant due to alteration of coding region for a the At\textit{CSP1} gene locus.

GUS gene expression analysis

The GT606 gene trap line (\textit{atcsp1}) used in our experiments contains a GUS gene insertion within the At\textit{CSP1} locus in the same orientation of the At\textit{CSP1} gene, resulting in the translational fusion of At\textit{CSP1} and GUS. I took advantage of this line for functional analysis of an insertional mutant and coupled it with expression analyses for temporal and spatial characterization of At\textit{CSP1} transcript in various tissues.
In early seedlings at 4 days after germination (DAG), cotyledons showed a high intensity of GUS staining (Figure 3-3A). Hypocotyls showed less GUS staining but embryonic root areas exhibited very high GUS staining. In the same seedlings, the primary root tips also showed high levels of GUS gene expression. Interestingly, the GUS gene expression in cotyledons decreased following their expansion and finally disappeared in cotyledons of 10 DAG plant (Figure 3-3B and C). At this stage, high GUS expression was observed in new rosette leaf primordia. However, the GUS expression was restricted to leaf base areas during leaf expansion and disappeared completely in mature leaves, as observed during cotyledon development (Figure 3-3C). A similar GUS staining pattern was observed in the leaves of middle aged atcsp1 plants (Figure 3-3D). High GUS expression was observed in the tips of primary roots (Figure 3-3A). High GUS expression was also observed in lateral root primordia and preceded in apical regions during lateral root development. In roots, GUS expression is restricted to root tips only (Figure 3-5I). In addition, inflorescence meristems showed high levels of GUS expression (Figure 3-3E). GUS expression was also observed in shoot apical meristem of but expression was less in older stem tissues. At the base of auxiliary tissues such as cauline leaves and secondary stems, high levels of GUS expression were detected. In reproductive tissues, floral buds showed high GUS expression (Figure 3-3F), however only carpel tissues exhibited high GUS expression among the four different floral organs (Figure 3-3 F and G). During silique growth, GUS gene expression was observed in stigmas and the abscission zone (Figure 3-3G and H). However, in mature siliques, GUS expression was observed only at the abscission zone. Seeds were not stained at any stage of their development (Figure 3-4). In summary, by using gene trap line, I determined that AtCSP1 is highly expressed in early developmental stages of various tissues and expression decreases gradually as the tissue matures.

Germination analysis of atcsp1 and relationship with stratification

atcsp1 does not exhibit any atypical phenotypes in the morphology of vegetative and reproductive tissues (data not shown). I could not identify any delay in developmental phase transitions between respective tissues (data not shown). However, I determined that atcsp1 seeds exhibit an early germination mutant phenotype (as early as 18 hours compared to 48 hours for wild type) after four days of stratification. Thus, atcsp1 seeds germinated 30 hours earlier under normal continuous light conditions (Figure 3-4). Cotyledons of atcsp1 also opened significantly
earlier than the wild type when compared to 42 hours after light exposure (HAL) (Figure 3-5 B). The initial germination, including all of the processes from tesa rupture to radical protrusion, completed very quickly (in 6 hours) in \textit{atcsp1}, while it took approximately 24 hours for completion in wild type seeds. Ultimately seeds from both wild type and \textit{atcsp1} mutant plants showed 100% germination. Germination in both \textit{atcsp1} and wild type seeds was retarded without stratification treatment (Figure 3-4). Interestingly, the germination of \textit{atcsp1} without stratification concluded at 30 HAL but only 96% of the total seeds were germinated. Wild type \textit{Ler} seeds also completed their germination without stratification but the germination was delayed relative to germination with stratification treatment. However, the germination timing of wild type seeds between without stratification and with stratification was not so different compared to that of \textit{atcsp1}. Also, wild type \textit{Ler} seed germinated at a rate of approximately 83% without stratification while 98% of \textit{atcsp1} seeds germinated. These observations indicate that loss of function of \textit{AtCSP1} promotes early germination and that \textit{atcsp1} was more sensitive to stratification treatment compared to wild type \textit{Ler}. However, total germinated seed number of \textit{atcsp1} was not affected by treatment of stratification.

To monitor the \textit{AtCSP1} transcript abundance during seed germination with or without stratification, we analyzed GUS expression in \textit{atcsp1} grown under continuous light at 22 °C. The imbibed seeds that were treated with or without stratification did not show any GUS expression before tesa rupture at 12 HAL (Figure 3-4C). During the radicle protrusion stage at 18 HAL, GUS was expressed in primary roots and accumulated around the radicle emergence area but not inside the seed. At 24 HAL, GUS expression was extended to cotyledons and the growing primary root. After 36 hours, GUS expression was concentrated in roots and newly generated hypocotyls. Opened cotyledons exhibited high expression of the GUS gene. In the case of germinated seeds without stratification, GUS expression was detected from the pre-germination stage (Figure 3-4C-24 HAL). However, GUS expression was restricted to the inside of the seed that was swollen by water uptake while radicles and hypocotyls did not show any GUS expression (Figure 3-4C-36 HAL, marked by circle). At 36 hours, GUS expression showed a similar pattern to that of germinated seeds that were pre-treated with stratification. After 36 hours, seedling growth speed was the same in un-stratified seeds and stratified seeds. In both cases, cotyledons were stained in identical areas (Figure 3-4C, 48 HAL). Therefore, GUS staining analysis of stratified \textit{atcsp1} seeds during germination indicated that \textit{AtCSP1} is expressed
highly in germinating seeds and seedling tissues like radicles, hypocotyls and cotyledons. In contrast, in the seeds that are not treated with stratification, AtCSP1 gene expression was mainly observed inside of seeds and was not observed in seedling tissues. After the opening of cotyledons, GUS expression patterns were similar in both cases.

Relationship of ABA and germination in atcsp1 mutants

ABA is a representative phytohormone which plays a role in seed germination and dormancy release. To understand if the early germination phenotype of atcsp1 is related to defects in ABA synthesis, signaling or perception, I measured germination rates under various ABA concentrations. I counted the number of germinated seeds on MS plates containing 1 and 5 µM ABA after a 4 day stratification period. On MS medium with 10 µM ABA, most seeds failed to germinate (data not shown). On 1 µM ABA plates, wild-type Ler seeds germination was delayed to 72 HAL. In contrast, however, seeds of atcsp1 germinated completely at 36 HAL, which is an 18 hour delay compared to the normal germination timing in atcsp1 seeds without ABA treatment (Figure 3-5 A). Under a 5 µM ABA concentration, the negative impact on germination rates was more severe than that of the 1 µM ABA concentration, however the germination of atcsp1 was still higher than wild type. All of the seeds plated on MS medium with 5 µM ABA were still germinating until 7 days after plating, but atcsp1 concluded its germination earlier than wild type (Figure 3-5A).

The representative picture showing the differences in germination of Ler and atcsp1 under various ABA concentrations was depicted in Figure 3-5 B. As shown in Figure 3-4, atcsp1 germinated 30 hours earlier than wild type in the absence of ABA. In Figure 3-5B, cotyledons opened in the majority of atcsp1 seeds at 42 HAL, while a portion of the wild type Ler seeds just initiated radicle protrusion at the same time point under treatment with 1 µM ABA. These data indicate that atcsp1 and wild type Ler are delayed in their germination by ABA treatment but the severity is less in atcsp1 relative to wild type plants.

Discussion

AtCSPs have been characterized as nucleic acid binding proteins but their in vivo function in Arabidopsis is not clearly understood. Even though all AtCSPs appear to be expressed in all tissues, they show high levels of expression in tissues which exhibit cell
divisions and differentiation such as shoot apical meristems and developing siliques (Nakaminami 2009). In good accordance with the aforementioned gene expression pattern, RNAi mediated gene silencing of \textit{ArCSP2} exhibited impairment in plant development (Fussaro 2007). Therefore, it is plausible that AtCSPs may have a similar functional role as other eukaryotic and bacterial cold shock domain proteins in relation to growth and development. Eukaryotic CSPs have been reported to function in tissues with actively dividing cells (Kohno 2003). LIN28, a CSP from \textit{C. elegans} plays an important role in cell differentiation (Moss 2003). LIN28 regulates timing of development by influencing the translation and stability of mRNAs in P bodies during cell differentiation (Balzer 2007). Using a gene trap line with a GUS gene serving as a reporter, I show that \textit{AtCSP1} is highly expressed in meristematic tissues such as shoot apices, inflorescences and root tips. Typically, \textit{AtCSP1} is highly expressed in root and leaf primordia and as the tissues develop, \textit{AtCSP1} expression is concentrated to tissue areas where cell differentiation occurs (Figure 3-3). During seed germination, this pattern of expression of \textit{AtCSP1} was observed in seedling tissues like radicles, hypocotyls and cotyledons (Figure 3-4). However, \textit{atcsp1} did not exhibit any abnormal tissue phenotypes such as alterations in the shape and size of the tissue. However, early germination was observed for \textit{atcsp1} indicating that the \textit{AtCSP1} gene may regulate the timing of tissue development in a similar manner as LIN28.

It was previously reported that AtCSP1 exhibits nucleic acid binding activity. It was then later shown that the AtCSP1 protein also has DNA melting activity and can promote RNase activity, implicating that it can function as an RNA chaperone to affect RNA degradation or translation (Kim 2007). In addition, the association of CSPs with other factors is important for their activity. For example, YB-1, which is a well known vertebrate CSP, associates with other nucleic acid binding proteins including YB-1 itself, to function in the regulation of gene transcription, translation, and RNA stability (Graudreault 2004, Izumi 2001). Similarly, AtCSP1 may also function in association with other proteins and may play a functional role in the determination of tissue developmental timing.

Early germination is a typical phenotype of \textit{atcsp1} (Figure 3-4). Germination is a complicated process which is affected by environmental regulators such as light, temperature, and water uptake. A balance exists between germination potential and the maintenance of dormancy to determine when germination occurs. Our observation of seed germination, with or without stratification, indicated that cold treatment did affect seed germination of \textit{atcsp1} (Figure
3-4). When seeds were not stratified, AtCSP1 expression was not detected in radicles. Interestingly, the radicle growing speed after the radicle protruded from the seed coat was consistent between Ler and atcsp1 in both tests. In addition, growth of seedlings after germination was not altered in both cases. These data indicate that stratification with cold temperature mainly promotes embryo expansion which is followed by endosperm rupture and radicle protrusion. In fact, AtCSP1 has been reported as cold responsive gene in seedlings (Kim 2004, Karlson 2003), therefore, it is possible that cold treatment could result in the accumulation of AtCSP1, which in turn has an effect on seed germination. I was unable to identify any seeds showing a strange structure or shape in atcsp1 mutant seeds. I was also unable to definitively identify a process within the seeds which results in the early germination phenotype in atcsp1.

Reduced sensitivity of atcsp1 to ABA indicates that phytohormone responsiveness is likely an important factor affecting the early germination phenotype of atcsp1. As mentioned before, ABA maintains seed dormancy which interferes with seed germination. Therefore, it is possible that atcsp1 may be less sensitive to ABA, resulting in early germination. Taken together, AtCSP1 plays a role in the determination of tissue developmental timing during germination. The early germination phenotype of atcsp1 and the cold responsiveness of AtCSP1 suggest that stratification may be a functionally important component for AtCSP1 in regulating the timing of embryo expansion timing.
Figure 3-1. Conserved domain architecture of AtCSP1 and its redundancy with AtCSP3

A) Predicted domain architecture of the AtCSP1 protein. Amino acid sequences of AtCSP1 were predicted with Pfam web based software.

B) Clustal W alignment between AtCSP3 and AtCSP1

C) Semi-quantitative RT-PCR for comparison of AtCSP1 and AtCSP3 gene redundancy in loss of function mutants of AtCSP1 and AtCSP3. Arabidopsis Actin 1 (AAC1) was used as an internal standard.
Figure 3-2. Flanking position of the Gene Trap line GT606 (*atcsp1*) within the *AtCSP1* locus

A) Genetic map of the insertion site of the GT606 gene trap line in *AtCSP1*. White and black boxes represent the exon and UTR regions of *AtCSP1*, respectively. GT606 contained an insertion at +449 base pairs relative to the first start codon in the *AtCSP1* coding region.

B) Semi-quantitative RT-PCR analysis of *AtCSP1* expression. PCR was performed for the described cycle numbers with the primers whose position on the *AtCSP1* locus were marked in panel A). *AAC1* was used as an internal control. The image shown in figure was chosen as a representative image from three replicate reactions.
Figure 3-3. GUS expression pattern within the GT606 (*atcps1*) gene trap line

A) GUS expression during early seedling development of transgenic Arabidopsis. 4 DAG seedlings, B) 10 DAG seedlings, with emergence of 1st and 2nd rosette leaves C) Leaf primordia of 3rd rosette leaves in 12 DAG, D) 21 DAG plant, E) Inflorescence meristem from 28 DAG plant, F) Floral bud and early flower from 35 DAG plant, G) Open flower and early developed siliquae at 42 DAG, H) Fully matured siliquae and late open flower of 45 DAG plant, I) Detection of GUS staining during lateral root growth. From left to right, lateral root primordia, 1 and 2 days after primordia generation, respectively. A-E) GUS expression patterns were detected from seedlings grown on MS plate under long day conditions, and F-I) used seedlings grown in soil under long day conditions.
Figure 3-4. Seed germination with or without stratification

A) Germination rate of Ler and atcsp1 with (+Str) or without (-Str). All data represent the mean ± standard for three independent germination tests (n=100). All seeds were stratified and were germinated under continuous light conditions. B) Images of germination results at different time point. Hours after light exposure (HAL) in the germination test with stratification (+Str) and 36 HAL were selected as typical time points which showed significant differences in germination between Ler and atcsp1 in different stratification conditions.

C) GUS expression during seed germination with or without stratification.
Figure 3-5. Seed germination in different ABA concentration

A) Germination rates of *Ler* and *atcsp1* on MS plate with 0 (MS), 1, 5 uM ABA. All data represent the mean ± standard for three independent germination tests (n=100). Seeds were germinated on MS plates under continuous light conditions. B) Images of germination on different MS plates containing ABA concentrations at 42 HAL.
SUMMARY

The aim of this study was to understand the function and role of three different AtCSPs among the four present in Arabidopsis. AtCSP1, AtCSP3, and AtCSP4 are expressed ubiquitously but they tend to accumulate highly in meristems and reproductive tissues which undergo active live cell differentiation and proliferation. Using loss of function mutants and over expression plants, we determined that the functions of the three AtCSPs are very diverse.

Loss of function mutant of AtCSP3 exhibited short length and long width leaf blade along with short petiole. The leaf cell size and shape was also affected by the loss of AtCSP3. The gene expression of LNG1 which determines the leaf cell polarity to the leaf length direction on a leaf blade was regulated positively by AtCSP3. This regulation by AtCSP3 was furthur depended on leaf cell expansion timing which occurs after the leaf cell differentiation and cell proliferation. Based on the data, we determined that AtCSP3 functions as a specific regulator of leaf cell elongation to leaf length direction by affecting the transcript accumulation of leaf cell polarity factor genes.

Plants overexpressing AtCSP4 showed a short silique and defective seed phenotype. Overexpression of AtCSP4 affected the mRNA accumulations of endosperm development genes such as MEA and FIS2. Also, the transcript abundance of several genes of MADS box proteins were altered by overexpression of AtCSP4. Using T-DNA insertion lines of AtCSP4 and comparison of mRNA accumulation of AtCSP2 and AtCSP4 mutants, I determined that AtCSP4 functions redundantly with AtCSP1.

Gene trap lines of AtCSP1 showed GUS expression mostly concentrated at tissue primordia, implicating that AtCSP1 may function as regulator of tissue developmental timing. Loss of function of AtCSP1 showed early germination phenotype which was furthur dependent on stratification.
LIST OF REFERENCES

Literature review

Anderson EC, Hunt SL, Jackson RJ (2007) Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5' untranslated region. J Gen Virol 88 : 3043-3052

Kingsley PD, Palis J (1994) GRP2 proteins contain both CCHC zinc fingers and a cold shock domain. Plant Cell 6: 1522-1523

CHAPTER 1

Reinhardt B, Hanggi E (2007) Restoration of DWF4 expression to the leaf margin of a dwf4 mutant is sufficient to restore leaf leaf shape but not size: the role of the margin in leaf development. Plant J 52 :1094-104

110

CHAPTER 2

Willkinson NF, Shyu AB (2001) Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 23: 775-787

CHAPTER 3

