Graduate Theses, Dissertations, and Problem Reports

2011

Development of Advanced Coal Devolatilization and Secondary Pyrolysis Kinetics Models for CFD (and process simulation) Codes

Kiran Pandurang Chaudhari

West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation
https://researchrepository.wvu.edu/etd/4703

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.
Development of Advanced Coal Devolatilization and Secondary Pyrolysis Kinetics Models for CFD (and process simulation) Codes

Kiran Pandurang Chaudhari

Thesis submitted to the
College of Engineering and Mineral Resources
at West Virginia University
in partial fulfillment of the requirements
for the degree of
Master of Science
in
Chemical Engineering
Dr. Richard Turton
Dr. John Zondlo
Dr. Charter Stinespring
Dr. Chris Guenther

Department of Chemical Engineering
Morgantown, West Virginia
2011

Keywords: MFIX, PC Coal Lab, Coal Devolatilization, Secondary Pyrolysis, Soot.

Copyright 2011 Kiran Pandurang Chaudhari
Abstract

Development of Advanced Coal Devolatilization and Secondary Pyrolysis Kinetics Models for CFD (and process simulation) Codes

Kiran Pandurang Chaudhari

Detailed kinetic expressions for the gasification of a wide variety of coals in existing Computational Fluid Dynamics (CFD) codes such as Multiphase Flow with Interphase Exchanges (MFIX) developed by NETL. These expressions describe the fundamental steps taking place in the gasification of coal, namely, coal devolatilization, tar-gas chemistry, soot formation and the heterogeneous and homogeneous gasification reaction along with combustion reactions. For this purpose, the data generated by PC Coal Lab (PCCL) is used to simulate the gasification of various coals in CFD codes. The CFD code of most interest is MFIX, which is used to describe the hydrodynamics, heat transfer and chemical reactions in the reacting fluid-solids systems comprising the contents of a gasifier. The implementation of gasification kinetics in MFIX is currently done through a set of subroutines making up the Carbonaceous Chemistry for Continuum Modeling (C3M) code. C3M has default gasification kinetics for only a few coals. While on the other hand, PC Coal lab can predict the gasification kinetics for over 2000 coal species. This project focuses on the development of a seamless connection between PC Coal Lab and the C3M. The interface is designed to allow MFIX to transfer information through C3M to PC Coal Lab, run PC Coal Lab with the input data from MFIX, send kinetic information back to C3M in a form that allows C3M to update and continue the MFIX simulation using updated parameters from PC Coal Lab. Current work is focused on developing similar expressions for biomass devolatilization. In this research PCCL predictions for biomass devolatilization were compared with experimental results and they show a good agreement with experimental results. The algorithm developed is being used to develop a Graphical User Interphase (GUI) at NETL site Morgantown by Phil Nicolletti.
Acknowledgments

First, I wish to express my appreciation to my graduate advisor, Dr. Richard Turton for his guidance and encouragement throughout this work. The quality of this work is a reflection of expert advice that has been received. Appreciation is also extended to Dr. Chris Guenther, Dr. Ronald Breault and Dr. Mehrdad Shahnam for their advice and direction.

There have been many people whose cooperation and assistance have been vital during this research. I am grateful to Philip Nicoletti who helped me with MFIX. I would also like to thank Dr. Stephen Niksa for his vital advice on PC Coal Lab.

Acknowledgment also goes to my lab mates Dr. Debangsu Bhattacharyya, Job Kasule and Dustin Jones along with my friends Tanya Tandon, Vamsi Aluru, Soumya Gujjar, Kedar Panday, Manasa Chennuri, Anand Ranpara and Veeru Talreja for their support.

Financial support provided through National Energy Technology Laboratory (NETL), Morgantown is gratefully acknowledged.

Finally special thanks are expressed to my beloved parents who supported my early education and kept faith in me.
Contents

Chapter 1: Introduction .. 1
 1.1. Gasification reactions .. 2
 1.2. Need for Gasification model ... 4
 1.3. PC COAL LAB .. 5
 1.4. Multiphase Flow with Interphase Exchange ... 7

Chapter 2: Gasification Kinetics ... 11
 2.1. Drying .. 11
 2.2. Devolatilization .. 11
 2.3. Tar Cracking .. 16
 2.4. Secondary Pyrolysis .. 18
 2.5. Combustion and Gasification reactions .. 20
 2.6. Soot Oxidation .. 20

Chapter 3: Biomass .. 23
 3.1. Biomass Devolatilization ... 23

Chapter 4: Methodology ... 29
 4.1. Assumptions ... 30

Chapter 5: Results and discussion .. 33
 5.1. Operating condition variation ... 33
 5.1.1. Effect of pressure .. 33
 5.1.2. Effect of temperature ... 34
 5.1.3. Effect of heating rate ... 34
 5.2. Comparison of devolatilization kinetic parameters ... 35
 5.3. Comparison of stoichiometric coefficients ... 36
 5.4. Comparison of PCCL coal devolatilization predictions with experimental results 37
 5.5. Comparison of yields of devolatilization products .. 39
 5.6. Substitution for MFIX rate parameters using PCCL output ... 43
 5.7. Moisture Release .. 44
 5.8. Tar Cracking ... 45
List of Tables

Table 1.1. Comparison between PCCL and MFIX…………………………………….. 8
Table 2.1. Devolatilization kinetic rate constant for three types of coal………………13
Table 2.2. Tar cracking kinetic data for three coals………………………………………17
Table 3.1. Kinetic parameters for biomass devolatilization……………………………. 24
Table 3.2. Kinetic parameters for rice husk and wheat straw pyrolysis………………….. 25
Table 3.3. Kinetic parameters for Biogran and Pine sawdust………………………….. 25
Table 3.4. Kinetic constants for wood pyrolysis………………………………………… 26
Table 4.1. Comparison of % of C in devolatilization product yield for PRB coal………30
Table 4.2. Comparison of % of C in devolatilization product yield for Lignite coal……31
Table 5.1. Kinetic data obtained from PCCL…………………………………………… 41
Table 5.2. Comparison of devolatilization products obtained from PCCL and MFIX….. 43
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Chemical reactions in gasifier</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>PCCL flow sheet</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Schematic diagram of C_3M subroutine in MFIX</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>FDC$^{i}SP_j$.rpt file showing secondary pyrolysis yields for PRB coal</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Reaction mechanism in bio-FLASHCHAIN</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Effect of pressure on the yields of CO_2, CO, CH$_4$, tar and total volatile matter with heating rate 1500°C/s at 1316 °C</td>
<td>34</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Effect of temperature and heating rate on yield of H$_2$ yield at heating rate of 1500 °C/s, 1500°C/s and 30000°/s.</td>
<td>35</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Graph showing effect of heating rates on the yields of H$_2$, CH$_4$, CO, H$_2$O and CO$_2$ at operating temperature of 955 °C at 500 psi</td>
<td>35</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Figure showing comparison between devolatilization reaction parameters obtained from MFIX and PCCL at 844 °C</td>
<td>36</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Comparison of Stoichiometric coefficients for devolatilization reaction generated from MFIX and PCCL for PRB and Lignite TC25 coal</td>
<td>37</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Graph showing total volatile yield obtained for Linby coal via PCCL and experiments at same operating conditions</td>
<td>38</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Graph showing total volatile yield obtained for Pittsburgh # 8 and Illinois # 6 via PCCL and experiment(EXP) at same operating conditions</td>
<td>38</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Graph showing total volatile yield obtained for Pittsburgh # 8 and Illinois # 6 via PCCL and experiment at 1600 K and 2400 K</td>
<td>39</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Transport flow gasifier for MFIX simulation</td>
<td>40</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Comparison of PCCL(PC) and MFI(MC) simulations for CH$_4$ yield at same operating conditions(Temperatures 844°C and 1316°C)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Comparison of PCCL(PC) and MFI(MC) simulations for CO$_2$ yield at same operating conditions(Temperatures 844°C and 1316°C)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>The Figure showing moisture release along reactor length for Lignite coal at 900 °C and a heating rate of 1000°C/s in PCCL</td>
<td>44</td>
</tr>
</tbody>
</table>
Figure 5.13. The moisture release along reactor length for PRB coal at 900 °C and heating rates of 1000°C/s and 17496°C/s in PCCL 45

Figure 5.14. The evolution of gas species during tar cracking along reactor length for PRB coal at 900 °C... 47

Figure 5.15. The evolution of gas species during secondary pyrolysis along the reactor length for Lignite coal at 1000 °C.. 49

Figure 5.16. The evolution of gas species during secondary pyrolysis along the reactor length for Lignite coal at 1200 °C................................. 40

Figure 5.17. The evolution of char (A) and water (B) during oil malee pyrolysis......... 51

Figure 5.18. A comparison of secondary pyrolysis product yields obtained from experiments and PCCL for beechwood (BW), mix spruce (MS) and rice husk (RH) at 950°C... 52

Figure 5.19. A comparison of pyrolysis product yields obtained from experiments and PCCL for beechwood (A), softwood (B) at 800°C........... 53

Figure 5.20. A comparison of pyrolysis product yields obtained from experiments and PCCL for beechwood (A), softwood (B) at 1000 °C........................... 54
Chapter 1

Introduction

Coal is the world's most abundant and widely distributed fossil fuel source and an extremely important fuel today. Coal gasification is the method by which coal is converted to gas to generate power or processed into generating fuels or chemicals. In Gasification coal is converted into a gaseous mixture of hydrogen, carbon monoxide, carbon dioxide, methane, tar and other higher hydrocarbons by applying heat under pressure in the presence of steam and a controlled amount of oxygen in a unit called the gasifier. The standard method of describing the composition of coal is using proximate and ultimate analyses. The proximate analysis of coal gives the ash, moisture, volatile matter and fixed carbon content while the ultimate analysis gives the carbon, oxygen, hydrogen, nitrogen and sulfur content of the coal.

The gasification of coal at moderate temperatures goes through 4 stages: (1) primary devolatilization; (2) pyrolysis of secondary volatiles; (3) homogeneous reforming of non condensables and (4) char conversion via oxidation and gasification. (Naik et al., 2006) Moisture release occurs at the initial stage of reaction. Volatile matter in the coal is released as several gas phase species through devolatilization. Fixed carbon participates in combustion and gasification reactions. Ash may act as a catalyst for some gas phase reactions but it is not consumed. Devolalitilization occurs at a much faster rate than gasification reactions. Many studies have been published discussing the kinetics for coal gasification.

There has been growing interest in mathematical modeling of coal processing. Different approaches have been presented to describe the gasification of coal and its behavioral changes due to varying operating conditions and process dependence on the coal’s individual properties. The current research focuses on relating two such approaches. The first is that used in the software package called PC Coal Lab (PCCL) and the other is the approach currently used in the CFD package called MFIX.
1.1 Gasification Reactions

The following brief description gives an overview of the most probable reactions happening during coal gasification.

Devolatilization reaction occurs as follows:

\[
\text{Moisture (in coal)} \rightarrow \text{steam} \tag{1.1}
\]

\[
\text{Coal} \rightarrow C_{\alpha}H_{\beta}O_{\gamma}N_{\delta}S_{\varepsilon} \text{ash} + \text{volatiles} \tag{1.2}
\]

The volatiles consist of combustible gases like CO, H\(_2\), CH\(_4\) and C\(_6\)H\(_6\) together with CO\(_2\), H\(_2\)S, N\(_2\) and tar.

Char oxidation takes place in following manner: (Wen and Chaung, 1979)

\[
C_{\alpha}H_{\beta}O_{\gamma}N_{\delta}S_{\varepsilon} \text{ash} + (\frac{\alpha - \gamma}{2} - \frac{\beta}{2} - \varepsilon)O_2 \rightarrow 2(1 - \frac{1}{\phi})\alpha CO + (\frac{2}{\phi} - 1)\alpha CO_2
\]

\[+(\frac{\beta}{2} - \varepsilon)H_2O + \varepsilon H_2S + \frac{\delta}{2}N_2 + \text{ash} \tag{1.3}
\]

Gasification and Combustion Reactions are represented as:

Heterogeneous reactions:

\[2C(s) + O_2 \rightarrow 2CO \tag{1.4}\]

\[C(s) + CO_2 \rightarrow 2CO \tag{1.5}\]

\[C(s) + H2O \rightarrow H_2 + CO \tag{1.6}\]

\[C(s) + 2H_2 \rightarrow CH_4 \tag{1.7}\]

Homogeneous reactions:

\[2CO + O_2 \rightarrow 2CO_2 \tag{1.8}\]

\[CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \tag{1.9}\]

\[C_6H_6 + \frac{15}{2}O_2 \rightarrow 6CO_2 + 3H_2O \tag{1.10}\]

\[2H_2 + O_2 \rightarrow 2H_2O \tag{1.11}\]

\[CO + 3H_2 \rightarrow CH_4 + H_2O \tag{1.12}\]

\[CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \tag{1.13}\]

\[FeS_2 + 2H_2 \rightarrow 2H_2S + Fe \tag{1.14}\]
Reactions other than carbon gasification may approach equilibrium in the available reaction time. Operating conditions such as heating rate, pressure, temperature and properties of coal have significant effects on the coal behavior in the gasification process. All these reactions are shown in pictorial form in Figure 1.1

The accuracy and validity of CFD models depends on the kinetic models used to describe homogeneous and heterogeneous reactions that take place in the gasifier. The homogeneous gas-phase reactions, taking place between pure components, are well known but the initial devolatilization and subsequent tar cracking reactions are less well documented especially at conditions at which the initial devolatilization takes place. Hence a good prediction of kinetics for these reactions is needed. PCCL’s predictions of coal devolatilization products, tar gas chemistry and gasification reactions taking place for a wide variety of coals are in good agreement with experimental results obtained from laboratory measurements. (Niksa, 2008)

\[
FeS_2 + 2CO \rightarrow 2COS + Fe \quad (1.15)
\]
\[
H_2S + CO_2 \rightarrow COS + H_2O \quad (Qizhi Ni et al., 1994) \quad (1.16)
\]
\[
CaCO_3 \rightarrow CaO + CO_2 \quad (1.17)
\]
\[
CaMg(CO_3)_2 \rightarrow CaCO_3 + MgO + CO_2 \quad (Campbell 1978) \quad (1.18)
\]
The predictions from PCCL consist of the complete distributions of all major primary devolatilization products such as CO$_2$, H$_2$O, CO, CH$_4$, C$_2$H$_6$, C$_3$H$_6$, C$_3$H$_8$, H$_2$, H$_2$S, HCN, Tar, and Char – as well as the elemental compositions of tar and char and the tar molecular weight distribution. It also predicts the subsequent secondary pyrolysis of primary volatiles into CO$_2$, H$_2$O, CO, H$_2$, CH$_4$, C$_2$H$_2$, and soot.

MFIX uses the default gasification reaction kinetics subroutines available in C$_3$M, which are limited to few coal types. Moreover these kinetic expressions do not give accurate predictions. Hence we need to have more accurate predictions of coal gasification kinetics and for a wider variety of coals. Therefore, the main objective of this work is to use the predicted kinetics given by PCCL and transfer these results to MFIX by modifying the C$_3$M code. This work will essentially comprise of developing an algorithmic bridge which will transfer the predictions of PCCL to MFIX by updating the relevant kinetic parameters in C$_3$M. The primary focus of this research will be to transfer information on kinetics for devolatilization and tar cracking reactions from PCCL to MFIX. The process will be initiated by the user when the ultimate and proximate analysis for a coal is input in PCCL, the reaction kinetics generated from it will be transferred to C$_3$M in a readable form and these new values will be used in MFIX. Hence the data transfer for the path PCCL→C$_3$M→MFIX will be implemented.

Alternatively, if the user gives the proximate and ultimate analysis for a given coal as input to MFIX, then they should be able to run PCCL using that information and transfer the reaction kinetics to MFIX and update the C$_3$M default kinetics and perform the simulation. This path would be MFIX→PCCL→C$_3$M→MFIX.

1.2 Need for a Gasification Model

One of the main reasons for developing sophisticated models for coal combustion and gasification is the different time scales that exist for the various chemical processes. For example, volatiles burn away in tens or hundreds of milliseconds, whereas char burnout requires a few seconds and char gasification requires tens of seconds. The modeling of coal reaction kinetics is both important and necessary to understanding and predicting the performance of modern gasifier (Niksa, 2008). Mathematical models help to identify key factors involved in coal
type selection, gasifier design and gasification conditions in the gasifier. Such models also save the time and cost of building and operating an experimental set up.

1.3 PC COAL LAB (PCCL)

PCCL is a set mathematical models that predicts a fuel’s (mainly coal and biomass) devolatilization and gasification behavior by simulating processes as they would occur in simple laboratory test facilities. The focus of the current research is to develop a systematic method to take the results and kinetic expressions generated in PCCL Version 4.1 and use them in the C3M code that may be called by MFIX. PCCL predicts the devolatilization, combustion, and gasification behavior of a wide variety of coals. The software can simulate two types of tests, namely, an electrically heated wire grid experiment and a laminar flow drop tube furnace experiment. The predictions give the yields of all major primary devolatilization products – CO₂, H₂O, CO, CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈, H₂, H₂S, HCN, tar, and char – as well as the elemental compositions of tar and char and the tar molecular weight distribution. It also predicts the subsequent secondary pyrolysis of primary volatiles into CO₂, H₂O, CO, H₂, CH₄, C₂H₂, and soot.

PCCL v4.1 describes char combustion from ignition throughout the later stages of burnout based on the expanded version of Hurt’s Carbon Burnout Kinetics (CBK) Model (Hurt, 2002). It also describes char gasification by H₂O, CO₂, H₂, and CO with a newly expanded version of CBK called CBK/G.

In order to run PCCL, the following procedure is followed:

a) The user selects up to five fuels for testing,

b) Proximate and ultimate analyses are input.

c) The method by which the simulation needs to be run is selected, either the wire grid or the drop tube method.

d) The reactor configuration is chosen, and up to five sets of operating conditions for a particular test series are specified.

e) Tests using the wire-grid require values for the initial and ultimate temperature, the heating rate, the reaction time at the ultimate temperature, and the pressure.
f) Tests with the drop tube furnace require values for the initial fuel temperature, temperatures of the gas stream and reactor wall, the gas composition the pressure, mean particle size, and the total residence time.

g) The desired results are selected and include: devolatilization behavior, the distribution of non condensable gases, the distributions of hydrocarbons with H\textsubscript{2} and H\textsubscript{2}S, the N-species distributions, the O-species distributions, tar characteristics, char characteristics, and product distributions for secondary volatiles pyrolysis, char oxidation and char gasification characteristics, reaction kinetics parameters. Users select only the reports that interest them for each simulation.

h) After entering all input information a simulation is run to attain the required results.
1.4 Multiphase Flow with Interphase Exchange (MFIX)

Currently, various CFD codes have been developed to simulate different gasifiers. The CFD code of most interest in the current study is called Multiphase Flow with Interphase Exchanges (MFIX). MFIX is a general-purpose computer code developed at The Department of Energy’s National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations yield transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. The MFIX code is based on a generally accepted set of multiphase flow equations. The following features of MFIX are relevant to the current work (https://mfix.netl.doe.gov/about_mfix.php)

1. MFIX has species mass, energy and momentum balance equations for gas and solid phases.

2. It can access a 3-dimensional coordinate system with either Cartesian or cylindrical coordinates.

3. The required inputs are very simple.

4. MFIX is written in Fortran that allows users to modify easily and enhance the code.

5. MFIX generates serial, shared-memory parallel (SMP) or distributed-memory parallel (DMP) executables from the same code base.

As specified previously, MFIX simulates the reaction kinetics for coals using a default subroutine named Carbonaceous Chemistry for Continuum Modeling (C₃M). The MFIX model for coal chemistry (C₃M subroutine) is a modified version of the reaction scheme from the METC Gasifier Advanced Simulation (MGAS) (Syamlal and Bissett 1992) and is based on gasification kinetic equations proposed by Wen et al. (1982). The kinetics for coal gasification reactions other than devolatilization and tar cracking give fairly good predictions for the yield and evaluation of product gases. Figure 1.3 gives the pictorial representations of subroutines available in C₃M module.
Figure 1.3: Schematic diagram of C₃M subroutine in MFIX.

The default units used in MFIX code are grams, centimeters, seconds, calories and Kelvin.

The following table, Table 1.1, shows the one to one comparison between MFIX and PCCL regarding its functional form for gasification.

<table>
<thead>
<tr>
<th>Number</th>
<th>MFIX</th>
<th>PCCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MGAS tracks 14 gas species, while C₃M module in MFIX considers only 8 it lumps all other species as tar in MFIX</td>
<td>PCCL gives prediction of elemental species during the whole coal gasification,</td>
</tr>
<tr>
<td></td>
<td>C₃M module in MFIX does not consider ash as an inert; from literature it supports that mineral content of ash can act as catalyst also for some reaction.</td>
<td>PCCL assumes ash to be inert.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>For devolatilization MFIX uses the reaction kinetics available in the literature with some modified values of reaction rate constant.</td>
<td>PCCL uses the 3 methods to predict the devolatilization reaction kinetics namely SFOR, DAEM and C2SM methods</td>
</tr>
<tr>
<td>4</td>
<td>C₃M accounts for water gas shift reaction</td>
<td>PCCL does not account for water gas shift reaction</td>
</tr>
<tr>
<td>5</td>
<td>MFIX has first order reaction rate equation for gasification reaction.</td>
<td>PCCL uses simple n^{th} order rate expression for CO₂, H₂O and char hydrogen gasification reactions.</td>
</tr>
<tr>
<td>6</td>
<td>MFIX has different reaction kinetics for carbon, hydrogen, and tar combustion.</td>
<td>PCCL has char and soot combustion reaction kinetics.</td>
</tr>
<tr>
<td>7</td>
<td>Some gasification reaction rate equations have temperature barrier, e.g. above 1200°C the rate equation for char steam gasification reaction should not be used. Similarly Char CO₂ reactions rate equation should be used below 1300°C</td>
<td>In PCCL the temperature effect is taken into consideration by the SNOR model for gasification reactions and by SFOR for devolatilization reactions.</td>
</tr>
<tr>
<td>8</td>
<td>Shrinking core model is used for char combustion in MFIX</td>
<td>PCCL does not use the shrinking core model for char combustion.</td>
</tr>
</tbody>
</table>
Gasification reaction rates are well studied compared to devolatilization. Devolatilization predictions given by PCCL using the FLASHCHAIN (Niksa (1991a, 1991b, 1991c, 1994b)) mechanism are more accurate when compared to laboratory data. The amount of volatiles produced and the amount of char generated will affect the subsequent gasification reactions; hence, devolatilization should be studied in detail.
Chapter 2

GASIFICATION KINETICS

In gasification, when coal is heated under pressure with steam and oxygen it gives out volatile matter, tar, and unburned char which further undergo several reactions that evolve gaseous products such as \(\text{CO}_2 \), \(\text{CO} \), \(\text{H}_2\text{O} \), \(\text{CH}_4 \) along with some hydrocarbons and \(\text{H}_2 \). The following sections outline a review of the reactions that take place in the gasification process and the reaction kinetics for them.

2.1 Drying

Coal consists of moisture and the evaporation of the moisture occurs during heating. When coal is heated at around atmospheric pressure uncombined water is evolved below \(105^\circ \text{C} \) and the remaining moisture is released when temperature approaches \(300^\circ \text{C} \). (Desai and Wen, 1978)

\[
\text{Moisture (in coal)} \rightarrow \text{steam} \tag{1.1}
\]

The rate of loss of moisture from a coal is given by an equation proposed by (Syamlal and Bisset 1992):

\[
\text{Rate} = 1.1 \times 10^5 \exp \left(\frac{-21,200}{RT_s} \right) \varepsilon_r \rho_r X_{s,\text{H}_2\text{O}} \ (\text{g/cm}^3\text{.s}), \tag{2.1}
\]

This rate equation is used in MFIX to calculate moisture release. Whitty (2003) suggests the volumetric evaporation rate for a black liquor droplet as

\[
m_{\text{vap}} = \frac{6h_w}{d_p \lambda_{\text{vap}}} \left(T_g - T_p \right) \tag{2.2}
\]

PCCL gives the drying rate as water flux (kg/m^2 s) along with vapor enthalpy (J/kg) in the /output file CFDC;\text{Tj}.rpt.

2.2 Devolatilization

When coal is heated to high temperatures it gives out volatiles that consist of the following component gases \(\text{CO} \), \(\text{CO}_2 \), \(\text{CH}_4 \), \(\text{H}_2\text{O} \), \(\text{H}_2 \), tar and higher hydrocarbons. This transformation can be simply represented as:
$$\text{VM} \rightarrow \alpha d \text{tar} + \beta_{\text{CO}_2}^d \text{CO} + \beta_{\text{C}_2\text{H}_2}^d \text{CO}_2 + \beta_{\text{CH}_4}^d \text{CH}_4 + \beta_{\text{H}_2}^d \text{H}_2 + \beta_{\text{H}_2\text{O}}^d \text{H}_2\text{O} + \beta_{\text{C}_2\text{H}_4}^d \text{C}_2\text{H}_4$$
$$+ \beta_{\text{C}_2\text{H}_6}^d \text{C}_2\text{H}_6 + \beta_{\text{C}_3\text{H}_8}^d \text{C}_3\text{H}_8 + \beta_{\text{C}_4\text{H}_8}^d \text{C}_4\text{H}_8 + \beta_{\text{H}_2\text{S}}^d \text{H}_2\text{S} + \beta_{\text{NH}_3}^d \text{NH}_3$$

(2.3)

β and α are the respective stoichiometric coefficients for the products as mass fractions.

Devolatilization kinetics is a very complex area because of the structure variation within different types of coals. A few kinetic models treat devolatilization as a volatile release in a fractional distillation (Niksa, 1988) and others have concentrated on an analytical approach dealing with the different types of chemical bonds in a coal (Solomon, 1988). Badzioch and Hawksley (1970) proposed the devolatilization as a first order reaction with respect to volatile matter remaining in coal:

$$\text{rate} = k \exp(-E/RT)(V^*-V)$$

(2.4)

Some authors reported that under varying conditions like time, temperature, pressure, a first order rate equation does not hold. Ubhayakar (1977) defined two types of volatiles, benzene and ethylene that are released at different rates and this lead to the following twin reaction rate expression:

$$\text{rate} = (a_1 k_1 e^{-E_1/RT} + a_2 k_2 e^{-E_2/RT}) m_c e^{-[(k_1 e^{-E_1/RT} + k_2 e^{-E_2/RT})dt}$$

(2.5)

Where a_1 and a_2 are the possible yield of the two volatile types, m_c is mass of undevolatilised coal.

Models by Solomon (1988), van Heek (1990) and Niksa (1988) determine the rates of devolatilization of individual gases from volatile matter based on specific bond types in a coal in order to predict better accuracy. In general, more complex models are not necessary for devolatilization as this process occurs over a very short time period.

The devolatilization rate equation suggested by Wen et al. (1982) has the following simple form:

$$\text{rate} = k_d \exp(-E_d / R T_s)(1-\varepsilon)\rho_s X_{VM}$$

(2.6)

Values of frequency factor and activation energy are given according to coal type in Table 2.1. Syamlal and Bisset (1992) modified this rate form because volatile matter release depends on temperature. The modified form of the equation used in C3M as the devolatilization rate equation is:

$$\text{rate} = k_d \exp(-E_d / R T_s)(1-\varepsilon)\rho_s (X_{VM} - X^*) ; X^* \leq X_{VM}$$

(2.7)

$$\text{rate} = 0 ; X_{VM} < X^*$$

(2.8)
Where X^* is minimum possible volatile fraction that is determined using a correlation given by Gregory and Little John (1965)

$$X^* = \left(\frac{867.2}{(T_s - 273)} \right)^{3.914} \quad T_s < 1223 \text{ } K$$

$$X^*_0 = 0 \quad T_s > 1223 \text{ } K$$

x^* is the weight of remaining volatiles as a fraction of the original dry ash free coal

$$X^* = \frac{\rho S_0 (X_{FCO} + X_{VM0}) X^*_0}{\rho_s}$$

The values of k_d and E_d for different coals are given in Table 2.1

<table>
<thead>
<tr>
<th>Reaction constant rate</th>
<th>Bituminous coal</th>
<th>Sub bituminous coal</th>
<th>Lignite</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_d [1/sec]</td>
<td>1.1×10³</td>
<td>7.5×10⁴</td>
<td>5.1×10⁴</td>
</tr>
<tr>
<td>E_d [cal/g-mole]</td>
<td>21.2×10³</td>
<td>18.7×10³</td>
<td>16.2×10³</td>
</tr>
</tbody>
</table>

Choi et al. (2001) used the following devolatilization model for an entrained flow coal gasifier;

$$m_v = m_t \left[\alpha_1 \beta_{1v} \exp \left(\frac{-E_{v1}}{RT_p} \right) + \alpha_2 \beta_{2v} \exp \left(\frac{-E_{v2}}{RT_p} \right) \right]$$

where,

E_{v1} and E_{v2} = activation energy of forward and backward reaction respectively, J/mol

β_{1v} and β_{2v} = equivalent frequency factor of forward and backward reaction, s⁻¹

α_1 = volatile constant based on combustible analysis

α_2 = empirical constant between 0.8 and 1

T_p = solid phase temperature

Chen et al. (2000) proposed the following rate equation for devolatilization in entrained flow gasifiers:
\[
\frac{dY}{dt} = \frac{d(Y_1 + Y_2)}{dt} = k_1(Y_1^* - Y_1) + k_2(Y_2^* - Y_2) \tag{2.13}
\]

\[
k_1 = A_1 \exp(-E_1 / RT_p) \tag{2.14}
\]

\[
k_2 = A_2 \exp(-E_2 / RT_p) \tag{2.15}
\]

Where, \(A_1 = 3.7 \times 10^5 \text{ s}^{-1}\); \(A_2 = 1.5 \times 10^{13} \text{ s}^{-1}\); \(E_1 = 7.4 \times 10^4 \text{ kJ/mol}\); \(E_2 = 2.5 \times 10^5 \text{ kJ/mol}\).

PCCL predicts the devolatilization species kinetics using the FLASHCHAIN mechanism. FLASHCHAIN represents a given coal’s distinctive devolatilization behavior with very good accuracy. The FLASHCHAIN mechanism is described in detail by a series of papers by Niksa (1991a, 1991b, 1991c, 1994b)

According to this mechanism, the influences of thermal history, pressure, and particle size can be understood in terms of only four mechanisms: (1) coal macromolecules depolymerize into fragments with a broad size distribution; (2) a phase equilibrium establishes the mole fraction of tar fragments in a gas stream that are convected out of the particle with no transport resistance; (3) the conversion of labile bridges in the fragments into char links suppresses depolymerization and simultaneously generates non condensable gases; and (4) fragments also crosslink in the condensed phase to form nonvolatile components of char. However for simplicity, PCCL has only three different mechanisms to predict devolatilization such as single first-order reaction (SFOR), the competing two-step reactions model (C2SM) and the distributed activation energy model (DAEM).

The SFOR equation for devolatilization is

\[
\frac{dV(t)}{dt} = A \exp\left(-\frac{E_a}{RT}\right)(V^\infty - V(t)) \tag{2.16}
\]

where,

\(V(t) = \) the instantaneous volatiles yield; % dry ash free

\(V^\infty = \) the hypothetical ultimate volatiles yield; % dry ash free

\(A = \) pseudo-frequency factor, s\(^{-1}\)

\(E_a = \) apparent activation energy, kcal/mol

\(A, E_a,\) and \(V^\infty\) are adjustable parameters that vary with temperature, heating rate, pressure, and coal type. The weight loss rate, \(dV(t)/dt\), is evaluated as the sum of the total rates of tar and gas release from FLASHCHAIN. \(A\) and \(E_a\) values can be obtained in the PCCL output file called
CFDCT\textsubscript{j},rpt. The SFOR over predicts the weight loss in the initial stage of reaction with various heating rates. This is a universal flaw of SFOR.

DAEM rate equation:
The distributed activation energy model (DAEM) for devolatilization is,

\[
\frac{dV(t)}{dt} = V^\infty \exp\left(-\frac{E}{RT}\right) \exp\left[-\int_0^t \exp\left(-\frac{E}{RT}\right) dt\right] f(E) dE \tag{2.17}
\]

where

- \(V(t)\) is the instantaneous volatiles yield;
- \(V^\infty\) is the hypothetical ultimate volatiles yield;
- \(A\) is a pseudo-frequency factor,
- \(E\) is a particular activation energy in a continuous distribution function, \(f(E)\).

and

\[
f(E) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(E-E_0)^2}{2\sigma^2}\right) \tag{2.18}
\]

\(\sigma\) is the standard deviation about the mean energy.

DAEM represents the impact of temperature and heating rate variation better than SFOR and it is suited for moderate temperatures.

C2SM rate equation:
The C2SM model is discussed in detail by Kobayashi et al. (1977). The mechanism is represented as,

\[
S \xrightarrow{k_1} y_1 V_1 + (1-y_1) C_1 \tag{2.19}
\]

\[
S \xrightarrow{k_2} y_2 V_2 + (1-y_2) C_2 \tag{2.20}
\]

\[
\frac{dV(t)}{dt} = \int_0^t (y_1 k_1(t') + y_2 k_2(t')) S(t') dt' \tag{2.21}
\]

where
\[S = S_0 \exp(- \int_0^t (k_1 + k_2) dt') \] (2.22)

\(S \) is the coal reactant; \(S_0 \) is initial coal reactant concentration;
\(V_1(t) \) and \(V_2(t) \) are instantaneous volatiles yields generated through channels 1 and 2, respectively;
\(C_1(t) \) and \(C_2(t) \) are instantaneous char yields; \(k_1 \) and \(k_2 \) are rate constants of Arrhenius form;
\(y_1 \) and \(y_2 \) are stoichiometric coefficients that are less than unity.
These six required parameters are assigned using PCCL. For simplicity the SFOR mechanism will be used when linking PCCL to MFIx.
The SFOR parameter for various operating conditions can be obtained from the output file named CFDC1Tj.rpt under the section devolatilization parameters. PCCL generates SFOR parameters for individual species formation rate and can be obtained from the output file SFORT\(C_i \).rpt.

2.3 Tar Cracking

Tar formed during the devolatilization reaction undergoes pyrolysis producing higher hydrocarbons, non condensable gases, oil, PAH and soot along with some fixed carbon.

\[\text{tar} \rightarrow \alpha \text{Fixed carbon} + \beta^{CO}CO + \beta^{CO_2}CO_2 + \beta^{CH_4}CH_4 + \beta^{H_2}H_2 + \beta^{H_2O}H_2O + \text{Oil} + \text{PAH} \] (2.23)

The tar cracking rate is given by Wen et al. (1982):

\[\text{tar} \rightarrow \text{product gases} \] (2.24)

Product gases consist of components lighter than C6, i.e., CO, CH4, CO2, C2H6, H2O etc. The rate of tar cracking is given by,

\[\text{rate} = k_{20} \exp \left(\frac{-E_{20}}{RT} \right) C_{\text{tar}} \] (2.25)

and tar deposits as char:

\[\text{tar} \rightarrow \text{char} \] (2.26)

\[\text{rate} = k_{30} \exp \left(\frac{-E_{30}}{RT} \right) C_{\text{tar}} \] (2.27)
Where k_{20} and k_{30} are rate constants, s$^{-1}$, E_{20} and E_{30} are activation energies (cal/mol) and C_{tar} is the concentration of tar (gmole/cm3)
Rate constant for three coal types are given in Table 2.2

Table 2.2 Tar cracking kinetic data for three coals (Wen et al. 1982)

<table>
<thead>
<tr>
<th>Reaction rate constant</th>
<th>Bituminous coal</th>
<th>Sub bituminous coal</th>
<th>Lignite</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{20} (sec)$^{-1}$</td>
<td>9.7×109</td>
<td>3.5×1010</td>
<td>8×1010</td>
</tr>
<tr>
<td>E_{20} (cal/mol)</td>
<td>29.0×103</td>
<td>27.75×103</td>
<td>26.50×103</td>
</tr>
<tr>
<td>k_{30} (sec)$^{-1}$</td>
<td>5.3×104</td>
<td>2.5×104</td>
<td>1.1×103</td>
</tr>
<tr>
<td>E_{30} (cal/mol)</td>
<td>7.0×103</td>
<td>5.5×104</td>
<td>4.0×103</td>
</tr>
</tbody>
</table>

Despite the problems with the simplest global rate expressions, it is always possible to identify the parameters in simple, global rate laws for tar decomposition that will match predictions closely to the predictions from the FLASHCHAI in PCCL.

The formulation follows a two-step, first-order, reaction model (Niksa, 2008)

$$
\frac{d^1W_T}{dt} = ^1 R_T = ^1 k_T (^1W_T^\infty - ^1W_T(t))
$$

(2.28)

$$
\frac{d\Delta W_T}{dt} = ^\Delta R_T = k_T (\Delta W_T^\infty - \Delta W_T(t))
$$

(2.29)

The first rate equation describes the release of primary tar with a conventional SFOR; and the second describes the secondary conversion of tar in terms of the difference between the instantaneous primary and secondary tar yields, i.e., $\Delta W_T = ^1W_T(t) - W_T(t)$. Once 1W_T and ΔW_T are evaluated, $W_T(t)$ is determined as $^1W_T - \Delta W_T$. These data are generated by PCCL.

In PCCL, when the temperature is above 1000°C in secondary pyrolysis it is advisable to consider tar conversion into soot and if the temperature is below 1000°C the PAH are the main products of tar decomposition. Depending on availability of hydrogen, PAH may get converted into gases such as higher hydrocarbons and methane.

Rate parameters for tar decomposition can be obtained in the output file SFRTCj.rpt
2.4 Secondary Pyrolysis

Primary pyrolysis (devolatilization) products include light gases, char, and tar, which is a gas mixture of heavy-molecular-weight hydrocarbons at high temperatures and condensable at room temperature. Simultaneously, the volatile matter released in the gas phase may also undergo secondary reactions. Soot is believed to be one of the products of these secondary reactions. Primary devolatilization products are transformed into secondary pyrolysis products at high temperatures such as soot, CO, CO$_2$, H$_2$O, H$_2$, C$_2$H$_2$ and CH$_4$.

Soot is made up of small carbonaceous particles. Tar, oil and PAH generated from tar cracking cannot survive high temperatures. McLean, et al. (1981) first proposed that tar is a precursor of soot in coal flames. Tar gets transformed into a soot aerosol that grows and coalesces into sooty chain agglomerates similar to soot formed in gaseous hydrocarbon flames. At moderate temperatures, PAH like tars will survive but at temperatures above 900 - 1000°C, PAH re-polymerize with non condensable unsaturated hydrocarbons to form soot (Niksa, 2008). A global mechanism for soot formation that was proposed by Chen et al. (1992) is shown below:

All reaction pathways shown above are irreversible. In the earlier stages, R_2 is the major pathway for soot formation, and nitrogen-containing compounds are incorporated in soot. Thereafter, substantial soot mass is added via R_3. Direct tar addition to soot in later stages is possible only if tars eliminate their nitrogen before getting added to the soot. Secondary pyrolysis occurs in the gas phase; hence it can also be affected by reactive gases, especially H$_2$, steam, and O$_2$. H$_2$ shifts tar conversion from PAH and soot into BTX and non-condensable gaseous hydrocarbons while steam and O$_2$ accelerate the rate of secondary pyrolysis.

Ruiz et al. (2007) studied the influence of temperature on the properties of soot formed from C$_2$H$_2$ pyrolysis. No soot was observed at low temperatures (< 1000 °C). However, with
increase in temperature an increase of acetylene (C\textsubscript{2}H\textsubscript{2}) conversion into soot and H\textsubscript{2} was observed (Fletcher et al. 1997).

Currently the C\textsubscript{3}M module does not include a secondary pyrolysis stage. This reaction kinetics in MFX is introduced by adding soot and C\textsubscript{2}H\textsubscript{2} as the new gas species. PCCL generates secondary pyrolysis yields for the given operating condition in the output file called FDC\textsubscript{i}SP\textsubscript{j}.rpt. The output file consists of secondary pyrolysis product yields on a % daf (dry-ash-free) basis. Figure 2.1 shows the output file for secondary pyrolysis of PRB coal at 1325 °C.

<table>
<thead>
<tr>
<th>Thermal History</th>
<th>Wt. Loss</th>
<th>Secondary Pyrolysis Products, daf wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times (min)</td>
<td>Temp (°C)</td>
<td>Soot</td>
</tr>
<tr>
<td>.000E+00</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>.277E-02</td>
<td>78.0</td>
<td>0.0</td>
</tr>
<tr>
<td>.399E-02</td>
<td>126.0</td>
<td>0.2</td>
</tr>
<tr>
<td>.603E-02</td>
<td>245.0</td>
<td>0.8</td>
</tr>
<tr>
<td>.809E-02</td>
<td>473.0</td>
<td>5.7</td>
</tr>
<tr>
<td>.108E+00</td>
<td>898.0</td>
<td>40.4</td>
</tr>
<tr>
<td>.150E+01</td>
<td>1102.0</td>
<td>47.8</td>
</tr>
<tr>
<td>.172E+01</td>
<td>1225.0</td>
<td>49.8</td>
</tr>
<tr>
<td>.194E+01</td>
<td>1290.0</td>
<td>50.7</td>
</tr>
<tr>
<td>.216E+01</td>
<td>1322.0</td>
<td>51.2</td>
</tr>
<tr>
<td>.238E+01</td>
<td>1320.0</td>
<td>51.3</td>
</tr>
<tr>
<td>.258E+01</td>
<td>1332.0</td>
<td>51.4</td>
</tr>
<tr>
<td>.275E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.294E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.314E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.332E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.350E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.368E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.385E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
<tr>
<td>.402E+01</td>
<td>1332.0</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Figure 2.1: FDC\textsubscript{i}SP\textsubscript{j}.rpt file showing secondary pyrolysis yields for PRB coal.

PCCL predicts soot formation based on the mechanism described by Chen et al. (1992).

The current version of PCCL is not programmed to generate soot formation kinetics. Due to this limitation, no specific kinetics are available from PCCL for soot generation.
In this research, we have lumped secondary pyrolysis and devolatilization together as a single devolatilization step. It has been assumed that secondary pyrolysis occurs only above 1000 °C so that when the reactor temperature is above 1000 °C the modified devolatilization reaction equation becomes,

\[
VM \rightarrow soot + C_2H_2 + \beta^{d}_{CO} CO + \beta^{d}_{CO_2} CO_2 + \beta^{d}_{C_H_4} CH_4 + \beta^{d}_{H_2} H_2 + \beta^{d}_{H_2O} H_2O
\]

(2.30)

This equation satisfies the mass balance. Stoichiometric coefficients are obtained from the ultimate yield predicted by PCCL. Soot formation is expressed using SFOR kinetics for devolatilization.

\[2.5 \text{ Combustion and Gasification Reactions}\]

Char combustion reaction kinetics are proposed using the shrinking core model (Doraiswamy, 1986) in C3M module of MFIX. Reaction kinetics for other gasification reactions is well established and given in the C3M module. The predictions using this kinetics model compare well with the experimental data. Hence these gasification and combustion reaction kinetics will not be changed in MFIX during this research.

\[2.6 \text{ Soot Oxidation}\]

Soot is generated via secondary pyrolysis but it can react simultaneously with steam, O_2, CO_2, and H_2. Above 800 °C soot formation competes with oxidation (Stanmore et al., 2001). The soot reactivity is directly related to its structure and composition. Properties such as surface area, particle size, and crystallinity affect the reactivity of the soot particles. The soot nanostructure depends upon its formation conditions, like fuel identity, residence time, and temperature (Ruiz et al. 2007).

This research focuses only on soot oxidation. The oxidation of soot aerosol particles in a flame environment is difficult to examine experimentally. In the case of oxidation by O_2, the semi-empirical formula of Nagle and Strickland-Constable (NSC) (1962) can be used to correlate the oxidation rate measurements for pyrolytic graphite,
\[\frac{\omega}{12} = \left(\frac{k_A P_o}{1 + k_z P_o} \right) x + k_B P_o (1 - x) \text{ g-carbon/cm}^2\cdot\text{s} \] (2.31)

where \(\omega \) is the reaction rate per surface area and \(x \) is given by:

\[x = \left(1 + \frac{k_x}{k_B P_o} \right)^{-1} \] (2.32)

where,

\[k_A = 20 \exp(-125/RT) \text{ g-cm}^2\cdot\text{sec}^{-1} \cdot \text{atm}^{-1} \] (2.33)

\[k_B = 4.46 \times 10^{-3} \exp(-63.6/RT) \text{ g-cm}^2\cdot\text{sec}^{-1} \cdot \text{atm}^{-1} \] (2.34)

\[k_T = 1.51 \times 10^{-5} \exp(-406/RT) \text{ g-cm}^2\cdot\text{sec}^{-1} \] (2.35)

\[k_Z = 21.3 \exp(17.2/RT) \text{ atm}^{-1} \] (2.36)

\[R = 0.00831 \text{ MJ/Kg mole} \] (2.37)

This correlation was verified by Radcliffe and Appleton (1971) and Park and Appleton (1973) to be applicable to soot oxidation.

Puri, et al. (1994) studied the oxidation of soot in hydrocarbon diffusion flames. They found that the reactivity of soot (in terms of collision efficiency) decreased with increase in temperature, probably due to thermal annealing or radical site stabilization processes. It was also found that the OH radical was the dominant oxidizer of soot, with \(\text{O}_2 \) making only a small contribution in diffusion flames.

John et al. (1997) studied uncatalysed oxidation of a flame soot and diesel soot. They used \(n^{th} \) order model for the oxidation. The order in molecular oxygen concentration was found to be 1 for the flame soot and slightly lower than 1 for the diesel soot. The equation had the following form:

\[r = k_0 \exp(-E_a / RT) \] (2.38)

\[k_0 = c(1 - \xi)^{n_o} P_o^{n_o} \] (2.39)

\[c = \lambda S_{a_0} k_0 \] (2.40)

where,

\(\xi \) = fraction of carbon that is oxidized

\(\lambda \) = surface concentration of active sites (cm\(^2\))
\(k'_0 \) = overall pre exponential factor (sec\(^{-1}\))

\(n_i \) = order of reaction

\(P_{O_2} \) = partial pressure of \(O_2 \) (atm)

\(S_{a_0} \) = initial surface area (cm\(^2\))

\(k_0 \) = pre exponential factor (sec\(^{-1}\))

Leung and Lindstedt (1991) assumed that CO is the only product of soot oxidation and used the reaction kinetics described below:

\[
R = k_3(T)S[O_2] \\
k_3(T) = 0.1 \times 10^5 \times T^{1/2} \times e^{-19680/T}
\]

where, \(R \) is in kmol/ m\(^3\).sec , \(k_3(T) \) is in m\(^3\)/m\(^2\)-soot.sec, \(S \) local surface area of soot (m\(^2\)) and \([O_2]\) is partial pressure of oxygen in Pa.

PCCL predicts soot oxidation using the semi-empirical expression (equation 2.30-2.36) reported by Nagle and Strickland-Constable (NSC) (1962). PCCL has the following reaction chemistry for soot oxidation,

\[
\text{soot} + 2.714 O_2 \rightarrow 3.618 CO_2 + 0.089 H_2O \quad (g/g \text{ basis})
\]

The rate expression implemented in PCCL assumes soot particle size of 0.8 \(\mu \)m and a bulk soot density of 2.0 g/cm\(^3\). SNORC\(_i\).rpt gives the output report for soot oxidation kinetics and the product yields.
Chapter 3

Biomass

Biomass is biological material derived from living, or recently living organisms (www.biomassenergycentre.org.uk). It is a renewable source of energy and the use of renewable energy sources is increasing in an effort to reduce the effect of greenhouse gases production. It is recognized as the fourth largest primary energy source in the world (Li et al. 2004). Wood and biomass can be used in a variety of ways to provide energy:

1. Direct combustion can provide heat and steam production for electricity generation
2. Gasification of biomass provides fuel gas for combustion and hence is useful as fuel for engines or turbines for electricity generation
3. Fast pyrolysis can provide a liquid fuel substitute for fuel oil (Bridgewater et al. 1999)

As with coal the proximate analysis of biomass gives the ash, moisture, volatile matter and fixed carbon content while the ultimate analysis gives the carbon, oxygen, hydrogen, nitrogen and sulfur content of the biomass. Biomass has a high percentage of volatile matter content (Biagini et al. 2002). Biomass contents can also be characterized using the chemical composition of hemicelluloses, cellulose, lignin and xylan.

Biomass pyrolysis causes thermal conversion of organics to produce liquids as the primary products. Biomass gasification means incomplete combustion of biomass resulting in production of combustible gases consisting of CO, H2 and traces of CH4. This mixture is called producer gas (Goswami, 1986). Biomass devolatilization is different from coal devolatilization because of 3 major reasons:

1. Biomass characterization is based on hemicelluloses, cellulose, lignin and xylan
2. The macromolecular structure of biomass consists of few condensed polyaromatic compounds
3. Product yields and release rates are highly affected by ash catalysis (Niksa et al., 2000)

The focus of this research is on biomass devolatilization.

3.1 Biomass Devolatilization

Devolatilization plays a significant role in biomass combustion processes, and it depends on the biomass form and composition. Biomass devolatilization releases light gas products such
as CO, CO₂, CH₄, H₂O, CH₃COOH, and HCOOH along with complex organic compounds (Biagini et al. 2006). PCCL predicts biomass devolatilization with the following products:

\[
VM \rightarrow CO + CO₂ + H₂O + H₂ + CH₄ + C₂H₂ + C₂H₄ + C₂H₆ + C₃H₈ + tar + CH₃OH + CH₃CO + Acetaldehyde + CH₂O + C₂H₅O + NH₃ + H₂S
\]
(3.1)

Thermal decomposition kinetics of biomass is complicated as it involves a large number of reactions. Xiu et al. (2006) and Zhao et al. (2009) described devolatilization of biomass in terms of a simple first order reaction model as follows:

\[
\frac{d\alpha}{dt} = Ae^{-E/RT}(1-\alpha)
\]
(3.2)

\[
\alpha = \frac{W}{W_\infty}
\]
(3.3)

where,

\(\alpha\) = ratio of volatile mass fraction at time \(t\) to maximum volatile mass fraction
\(W\) = volatile mass fraction at time \(t\)
\(W_\infty\) = maximum volatile mass fraction
\(A\) = Arrhenius constant
\(E\) = Activation Energy
\(t\) = residence time

Table 3.1 gives the kinetic parameters for 4 types of biomass reported by Xiu et al., 2006.

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>(A (s^{-1}))</th>
<th>(E (kJ/mol))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat straw</td>
<td>1.05×10³</td>
<td>31.65</td>
</tr>
<tr>
<td>Coconut shell</td>
<td>6.84×10³</td>
<td>48.73</td>
</tr>
<tr>
<td>Rice Husk</td>
<td>1.19×10³</td>
<td>39.30</td>
</tr>
<tr>
<td>Cotton stalk</td>
<td>2.44×10³</td>
<td>40.84</td>
</tr>
</tbody>
</table>

Table 3.2 gives the kinetic parameters for rice husk and sawdust pyrolysis in entrained flow reactor reported by Sun et al. (2010) using equation (3.2) and (3.3).
Table 3.2 kinetic parameters for rice husk and wheat straw pyrolysis.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>A (s$^{-1}$)</th>
<th>E (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice husk</td>
<td>92.76</td>
<td>35.67</td>
</tr>
<tr>
<td>Sawdust</td>
<td>80.64</td>
<td>32.59</td>
</tr>
</tbody>
</table>

E. Biagini et al. (2002) defined single first order biomass devolatilization rate using a global mass balance as,

$$-\frac{dW}{dt} = k(W - W_\infty)$$ \hspace{1cm} (3.4)

$$k = Ae^{\frac{-E}{RT}}$$ \hspace{1cm} (3.5)

W = mass of the sample

W_∞ = final solid residue of sample i.e $W_\infty = W_{ash} + W_{char}$

A = Arrhenius constant

E = Activation Energy

t = residence time

The kinetic parameters obtained are reported in Table 3.3

Table 3.3: Kinetic parameters for Biogran and Pine sawdust (E in kcal/mol; A in s$^{-1}$)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Isothermal run conversion</th>
<th>Isothermal run conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>90%</td>
</tr>
<tr>
<td>Biogran</td>
<td>$E = 21.2, A = 2.2\times10^3$</td>
<td>$E = 18.1, A = 12$</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>$E = 29.1, A = 3.9\times10^4$</td>
<td>$E = 24.4, A = 5.7\times10^3$</td>
</tr>
</tbody>
</table>

Blasi and Branca(2001) studied primary wood degradation with three parallel reactions for the formation of the main products (char, liquid, gas). The schematic of mechanism is shown below,

![Schematic of mechanism](image-url)
\[k = k_G + k_L + k_C \] \hspace{1cm} (3.6)

\[k_j = Ae^{-E_j/RT}, \ j=G,L,C \] \hspace{1cm} (3.7)

Table 3.4 gives estimated values for kinetic parameters of wood pyrolysis.

<table>
<thead>
<tr>
<th></th>
<th>(E(\text{kJ/mol}))</th>
<th>(\ln A[\text{s}^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_G)</td>
<td>152.7 (\pm) 18.2</td>
<td>22.2 (\pm) 3.4</td>
</tr>
<tr>
<td>(k_L)</td>
<td>148.0 (\pm) 17.2</td>
<td>23.1 (\pm) 3.2</td>
</tr>
<tr>
<td>(k_C)</td>
<td>111.7 (\pm) 14.3</td>
<td>15.0 (\pm) 2.7</td>
</tr>
</tbody>
</table>

PC Coal Lab predicts biomass devolatilization kinetics and product yields using the bio-FLASHCHAIN (bio-FC) mechanism (Niksa, 2000). Bio-FC predicts primary devolutilziation products along with tar and major gas species yields based on proximate and ultimate analyses of biomass. PC Coal Lab can predict the devolatilization behavior for any form of wood, grass, agricultural residue and paper. Bio-FC treats biomass as a chain copolymer of cellulose and lignin-like components. Figure 3.1 gives the schematic diagram of the bio-FC mechanism.
Figure 3.1: Reaction mechanism in bio-FLASHCHAIN (Niksa, 2000).

Similar to coal PCCL predicts biomass devolatilization using single first-order reaction (SFOR), the competing two-step reactions model (C2SM) and the distributed activation energy model (DAEM). In this research only the SFOR model will be considered. The SFOR equation for devolatilization of biomass is

\[
\frac{dV(t)}{dt} = A \exp\left(-\frac{E_a}{RT}\right)(V^\circ - V(t)) \tag{2.16}
\]

Where,

- \(V(t)\) = the instantaneous volatiles yield; % dry ash free
- \(V^\circ\) = the hypothetical ultimate volatiles yield; % dry ash free
- \(A\) = pseudo-frequency factor, s\(^{-1}\)
- \(E_a\) = apparent activation energy, kcal/mol

\(A\), \(E_a\), and \(V^\circ\) are adjustable parameters that vary with temperature, heating rate, pressure, and coal type. The weight loss rate, \(dV(t)/dt\), is evaluated as the sum of the total rates of tar and gas release from bio-FC. \(A\) and \(E_a\) values can be obtained in the PCCL output file called CFDC\(_i\)T\(_j\).rpt.
Currently the C3M module does not have kinetics for biomass devolatilization. Similar to coal we can modify SFOR kinetics in C3M for biomass devolatilization. New gas species including acetaldehyde, CH$_3$OH, CH$_3$CHO, CH$_2$O, C$_2$H$_5$O, NH$_3$ need to be added in C3M. Reaction kinetics for the added gas species must be introduced in C3M module.
Chapter 4
Methodology

The main aim of this research is to build a connecting bridge between PCCL and MFIX via C_3M. An interface between PCCL and C_3M that allows two-way communication between the programs is being created. The interface is designed to allow MFIX to transfer information through C_3M and PCCL, then run PCCL with input data from MFIX, and then send kinetic information back to C_3M in a form that allows C_3M to update and continue to run the MFIX simulation using the updated parameters from PCCL. Coal types whose proximate and ultimate analyses are known will be used for verification of the results. The MFIX simulation will be run initially for transport flow gasifiers. However, it is expected that all forms of gasifier will be able to be handled using the PCCL/C_3M interface in MFIX. A full description of the methodology to be used is best illustrated by examining the type and form of the results that PCCL generates. This is illustrated in the following section.

All the different protocols used in both PCCL and C_3M subroutine for describing the devolatilization and tar chemistry reactions will be studied. The differences between the reaction kinetics predicted by PCCL and MFIX via C_3M subroutines will then be determined. The parameters that are necessary to be substituted in C_3M subroutine will be noted. Powder River Basin (PRB) a sub bituminous coal has been chosen as a sample coal.

Input file Coalpc.dat and Testplan.dat will be set up in PCCL according to the operating conditions (which includes proximate and ultimate analysis of coal, temperature and pressure of gasifier, diameter of coal particle, heating rate) specified in MFIX. Wire grid/drop tube method will be chosen accordingly. Output files of interest generated by PCCL are CFDC$_i$$T_j$.rpt, FDC$_iHC_j$.rpt, FDC$_iNG_j$.rpt, FDC$_iSP_j$.rpt, SFORC$_iT_j$.rpt, SFR$_iTC_j$.rpt, TDC$_iPR_j$.rpt, TDC$_iTC_j$.rpt and TDC$_iHC_j$.rpt ($i =$ Coal number, $j =$ Number of operating condition).

CFDC$_i$$T_j$.rpt gives devolatilization reaction kinetic parameters. FDC$_i$HC$_j$.rpt contains the yield of hydrocarbons generated in devolatilization. FDC$_i$NG$_j$.rpt contains the yield of noncondensables gases like H_2O, CO_2 and CO produced in devolatilization. SFORC$_i$T$_j$.rpt gives the single first order reaction kinetic parameters for the formation of devolatilization product species. SFR$_i$TC$_j$.rpt contains kinetic parameter for tar cracking. TDC$_i$PR$_j$.rpt, TDC$_i$TC$_j$.rpt and TDC$_i$HC$_j$.rpt output files generate the yield of output products in the tar cracking reaction. PCCL
predicts PAH and oil as the product gas species generated from tar cracking and soot and C₂H₂ as the product gas species in secondary pyrolysis.

All the percentage yields of output products generated by PCCL are in dry ash free basis; hence they will be converted into gram basis. PAH, oil, soot and C₂H₂ will be added as new gas species in MFIX. An algorithm will be developed to transfer kinetic data generated by PCCL to MFIX in its format. Simulations similar to those described in Section 4.4 are run to verify the connecting bridge validity.

For Biomass new gas species like acetaldehyde, CH₃OH, CH₃CHO, CH₂O, C₂H₅O, NH₃ will be added in C₃M. SFOR kinetics will be used for biomass devolatilization.

4.1 Assumptions

1. The hydrocarbons (C₂H₄, C₂H₆, C₃H₆, C₃H₈) higher than CH₄ will be treated as CH₄. This will simplify the simulations. Current C₃M module in MFIX does not have higher hydrocarbons other than CH₄ also in addition it does not have any reaction chemistry for these gas species.

Treating the gas species individually will increase simulation time.

Table 4.1 and Table 4.2 shows the comparison of % carbon in coal when the hydrocarbons are treated as CH₄ or accounted as individual gas species for PRB and Lignite coal respectively.

PRB Coal:

Ultimate analysis (%): C = 75.2, H = 4.6, O = 20.2

Basis: 100gm

<table>
<thead>
<tr>
<th>Products</th>
<th>% daf yield as individual species</th>
<th>%daf yield when higher hydrocarbon treated as CH₄</th>
<th>% C as individual gas species</th>
<th>% C when higher hydrocarbon treated as CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>9.1</td>
<td>9.1</td>
<td>2.48</td>
<td>2.48</td>
</tr>
<tr>
<td>CO</td>
<td>5.6</td>
<td>5.6</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>H₂O</td>
<td>8.5</td>
<td>8.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>3.8</td>
<td>6.68</td>
<td>2.85</td>
<td>4.95</td>
</tr>
<tr>
<td>Products</td>
<td>% dry ash free</td>
<td>%daf yield when higher hydrocarbons treated as CH₄</td>
<td>% of C as individual gas species</td>
<td>% of C when higher hydrocarbons treated as CH₄</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>CO₂</td>
<td>8.3</td>
<td>8.3</td>
<td>2.26</td>
<td>2.26</td>
</tr>
<tr>
<td>CO</td>
<td>7.7</td>
<td>7.7</td>
<td>3.30</td>
<td>3.30</td>
</tr>
<tr>
<td>H₂O</td>
<td>8.5</td>
<td>8.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>5.8</td>
<td>10.78</td>
<td>4.35</td>
<td>8.03</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>2.42</td>
<td>0</td>
<td>2.07</td>
<td>0</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>0.55</td>
<td>0</td>
<td>0.44</td>
<td>0</td>
</tr>
<tr>
<td>C₃H₆</td>
<td>1.91</td>
<td>0</td>
<td>1.64</td>
<td>0</td>
</tr>
<tr>
<td>H₂</td>
<td>0.97</td>
<td>0.97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tar (77.2% C)</td>
<td>15.2</td>
<td>15.2</td>
<td>11.73</td>
<td>11.73</td>
</tr>
<tr>
<td>HCN</td>
<td>0.58</td>
<td>0.58</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.09</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Char</td>
<td>48.4</td>
<td>48.4</td>
<td>48.4</td>
<td>48.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>74.45</td>
<td>73.98</td>
</tr>
</tbody>
</table>
It can be seen that % of carbon in coal is in good argument with % of carbon in product species when higher hydrocarbons are treated as CH$_4$.

1. Molecular weight of soot is assumed to be 300 gm/mole.

3. PAH and soot has almost over 95% of carbon content. Specific heat of PAH and soot are assumed to be the same as fixed carbon.

CPPAH= -0.1315 + 1.341E-03*XXX -1.087E-06*XXX*XXX + 3.06 E-10*XXX*XXX*XXX
CPSOOT= -0.1315 + 1.341E-03*XXX -1.087E-06*XXX*XXX+ 3.06 E-10*XXX*XXX*XXX
(Where XXX is the temperature in Kelvin)(MFIx document)

4. Oil is a mixture of benzene, toluene, xylene (BTX). Average molecular weight of the mixture is 92 gm/mol. In addition it is assumed that the specific heat of oil is the same as toluene which has same molecular weight as oil.

CPOIL= (1.4014 E+05 - 1.5230E+02*XXX + 6.9500E-01*XXX**2)/92 (Perry, 1997)

5. Version 4.1 of PCCL is not programmed to give kinetics of soot generation in secondary pyrolysis. In this research, it is assumed that when temperature is above 1000°C, soot and C$_2$H$_2$ will be products in the devolutilization step.
Chapter 5

Results and Discussion

Devolatilization and tar cracking are the main reactions that have to be modified in MFIX. PCCL takes into consideration the effect of different operating conditions for coal gasification; hence it is necessary to check the effects of operating conditions on coal devolatilization and tar cracking. Initially the differences in yields of devolatilization products given by MFIX and PCCL operating with the same input conditions were investigated. The parameters that must be replaced in the C3M module for MFIX were identified.

5.1 Effect of Variations in Operating Conditions on pyrolysis of coal

5.1.1 Effect of Pressure

The devolatilization rate decreases as pressure increases according to a number of researchers. (Oh et al. 1989, Niksa et al. 2003, Lee et al. 1991, Van Heek 1990).

The PCCL wire grid method was used to study the effect of varying operating pressure. The effect of pressure on devolatilization and tar cracking is expressed through the yield of products from those reactions. Powder River Basin (PRB) sub-bituminous coal was used as the sample coal.

PCCL results predict that:

1. Increase in pressure has significant effect on yields of tar and volatile matter at the same heating rate and temperature.
2. Yields of tar and volatile matter decrease as pressure increases at constant temperature and heating rate.
3. Yield of H2 is affected by pressure only at higher temperatures; namely, it increases with an increase in pressure at constant temperature and heating rate.
4. Pressure has no significant effect on the yields of CO2, CO, H2O and CH4. These results are illustrated in Figure 5.1
Figure 5.1 Effect of pressure on the yields of CO₂, CO, CH₄, tar, H₂ and total volatile matter with heating rate of 1500 °C/s at 1316 °C

5.1.2 Effect of Temperature

PCCL results show that:

1. As temperature increases at constant heating rate and pressure, the yields of CO, H₂ and total volatile matter increase as shown in Figure 5.2.
2. An increase in temperature has practically has no effect on the yields of CO₂, H₂O, tar and CH₄ at constant heating rate and pressure.

5.1.3 Effect of heating rate

Gibbins (1989) recorded an increase in yield of devolatilization products with an increase in heating rate.

PCCL results show:

1. As heating rate is increased at fixed temperature and pressure the yield of CO₂, H₂, CH₄, H₂O, CO decreases as shown in Figure 5.3.
2. Yield of tar and total volatile matter increases as heating rate is increased at constant temperature and pressure.

The effects of heating rate and temperature on predictions from PCCL are shown in Figure 5.2
Figure 5.2. Graph showing effect of temperature and heating rate on yield of H$_2$ at heating rate of 1500 °C/s, 15000°C/s and 30000° C/s.

![Graph showing effect of temperature and heating rate on yield of H$_2$](image1.png)

Figure 5.3. Graph showing effect of heating rates on the yields of H$_2$, CH$_4$, CO, H$_2$O and CO$_2$ at operating temperature of 955 °C at 500 psi.

![Graph showing effect of heating rates on yields](image2.png)

It can be seen that the effects of operating conditions predicted by PCCL are in agreement with experimental data available in the literature.

5.2 Comparison of devolatilization kinetic parameters

As discussed earlier MFIX has fixed devolatilization reaction kinetic parameters for 5 different types of coals. PCCL generates devolatilization reaction kinetic parameters considering all the operating conditions. Figure 5.4 shows the variation in devolatilization reaction rate.
parameters obtained from MFIX and PCCL operated at the same operating conditions. Figure 5.4 shows that MFIX overpredicts the kinetic parameters for devolatilization reaction.

![Comparison of kinetic parameters](image)

Figure 5.4 Figure showing comparison between devolatilization reaction parameters obtained from MFIX and PCCL at 844 °C for lignite TC 25 and PRB coal.

5.3 Comparison of stoichiometric coefficients

MFIX calculates the stoichiometric coefficients for devolatilization and tar cracking reactions via the C₃M subroutine. Stoichiometric coefficients for devolatilization and tar cracking reactions can be generated using the output data obtained from PCCL. Stoichiometric coefficients calculated using PCCL data for CO₂, H₂, H₂O, CO and CH₄ show much greater variations compared to those obtained from MFIX. The PCCL stoichiometric coefficients will
be substituted in the subroutine rates.f of MFIX. Figure 5.5 shows the comparison of stoichiometric coefficients obtained from MFIX and PCCL for Powder River Basin (PRB) and TC 25 lignite coals.

![Stoichiometric coefficients comparison](image)

Figure 5.5 Comparison of Stoichiometric coefficients for devolatilization reaction generated from MFIX and PCCL for PRB and Lignite TC25 coal.

5.4 Comparison of PCCL coal devolatilization predictions with experimental results

Gibbons et al. (1989) studied the time temperature variation on coal pyrolysis. Experiments were carried out on Linby coal at 700°C with a heating rate of 1 °C/s and 1000 °C/s. Figure 5.6 shows the yield of total volatile matter obtained via experiments and PCCL using same operating conditions. Fletcher et al. (2005) studied effects of pressure on coal pyrolysis and char morphology. Total volatile matter yield was reported for Pittsburgh # 8 and Illinois # 6 at 2.5, 6, 10 and 15 atm pressures. Figure 5.7 represents the effects of pressure on total volatile matter yield obtained via experiment and PCCL. Neoh and Gannon (1984) observed rapid pyrolysis of Pittsburgh # 8 and Illinois # 6. They reported total volatile matter yield at 1600 K and 2400 K. Figure 5.8 shows a comparison of total volatile yield between experiments and PCCL using same operating conditions.
Figure 5.6: Graph showing total volatile yield obtained for Linby coal via PCCL and experiments at same operating conditions.

Figure 5.7: Graph showing total volatile yield obtained for Pittsburgh # 8 and Illinois # 6 via PCCL and experiment (EXP) at same operating conditions.
Looking at Figures 5.6-5.8 it can be concluded that devolatilization predictions of PCCL are reasonably accurate and in good agreement with the experimental results. Hence the results give confidence in using PCCL kinetics for modifying coal gasification kinetics in MFIX.

5.5 **Comparison of yields of devolatilization products**

A one-to-one comparison between PCCL and MFIX output was made to see the differences between yields of devolatilization products from the two programs. The wire grid method in PCCL was chosen as per the suggestion of Dr. Niksa. PCCL generates higher hydrocarbons other than CH$_4$ during devolatilization while MFIX does not report these gas species as output, in order to allow a comparison between the two methods, these higher hydrocarbons can be adjusted in one of two ways. The first way is to add them in to the tar and modify the tar molecular weight and the other way is simply to lump them with CH$_4$. Heating rates obtained from MFIX were used as input to the wire grid method. PCCL output was collected and stoichiometric coefficients in MFIX were substituted along with rate parameters. The higher hydrocarbons were lumped into CH$_4$ and the calculation for this is shown in Appendix I.

In MFIX, a transport flow gasifier was chosen for simulation. Dimensions of the grid for the gasifier are 10cm × 100 cm. The set up is shown in Figure 5.9 and a brief description of the gasifier that was simulated is given below:
In this model coal feed is at cells 33-36 in the y direction, the pressure outlet is along cells 92-95 in the y direction. In this gasifier model, a hot air stream passes over a bed of coal that is coming in along with the recycled char. A hot nitrogen stream was also added above the feed inlet to maintain the temperature. Hence, throughout the channel the coal undergoes a gasification process and all the product gases leave via the pressure outlet. The output yields of all the gases were taken at the pressure outlet exit.

The following parameters were used in the simulation runs:

1. Temperatures: 844°C and 1316°C
2. Sample Coal: PRB
3. Heating rate 1000°C/s
4. The simulation was run for 20 sec.
5. The following output cells in MFIX were used to obtain yields of product gases at the pressure exit:

Figure 5.9 Transport flow gasifier for MFIX simulation
I cell: 11, 11; J cell: 92, 95; (which was the location of pressure outlet.)
Time span for which the output yield was obtained, T= 15, 20 sec and it was averaged.
6. Rate parameters obtained from PCCL data for the specified temperature and heating rate:

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>844</th>
<th>1316</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1/s)</td>
<td>15,720</td>
<td>2315</td>
</tr>
<tr>
<td>E (cal/gmol)</td>
<td>9320</td>
<td>6370</td>
</tr>
</tbody>
</table>

7. When running the simulation in MFIX, only devolatilization rate was on while all other rates were turned off. Two simulations were run using the above mentioned conditions. One MFIX trial was simulated using the original C3M subroutine parameters for the devolatilization reaction (these are designated by MC in following figures) and the other simulation used the C3M subroutine rate parameters (like devolatilization rate parameters and stoichiometric coefficients for product gases) modified from data obtained via PCCL (which is designated as PC in the following figures)

A summary of the results are shown in Figures 5.10 and 5.11. From these figures the following observations can be made:
1. O2, N2, moisture and ash yields in both MFIX and PCCL correction trial are about same.
2. CO, CO2, CH4 and tar yields predicted by PCCL corrections are much higher than those from the original subroutine C3M in MFIX.
3. H2 yields predicted by MFIX are higher than those obtained from PCCL at low temperature but at higher temperature this trend reverses.
4. Fixed carbon (FC) yield from PCCL is higher than in the original MFIX run.
5. Volatile matter (VM) yield in the PCCL correction trial is lower than in the original MFIX run.
Figure 5.10 Comparison of PCCL (PC) and MFIX (MC) simulations for CH$_4$ yield at same operating conditions (Temperatures 844°C and 1316°C).

Figure 5.11 Comparison of PCCL (PC) and MFIX (MC) simulations for CO$_2$ yield at same operating conditions (Temperatures 844°C and 1316°C).
5.6 **Substitution for MFIX parameters using PCCL output**

Before going further it was necessary to check that the parameters replaced in MFIX give the same output yield for devolatilization products as PCCL for the same operating conditions. For this comparison the moisture rate option was turned off. For the initial run, only the devolatilization reaction was modified. Parameters that needed to be changed in MFIX were:

1. In the subroutine rrates.f the devolatilization reaction parameter activation energy and Arrhenius constant are replaced by SFOR parameters obtained from PCCL.
2. In the subroutine rrates.f the stoichiometric coefficients for devolatilization reactions are replaced with stoichiometric coefficients obtained from PCCL output.
3. The tar molecular weight is modified in mfix.dat

Table 5.2 Comparison of devolatilization products obtained from PCCL and MFIX.

<table>
<thead>
<tr>
<th>Products</th>
<th>Mass Fraction by MFIX</th>
<th>Mass fraction on N and O free basis by MFIX</th>
<th>PCCL yield in gm</th>
<th>PCCL yield in Mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>0.108</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO</td>
<td>0.0122</td>
<td>0.1149</td>
<td>3.869</td>
<td>0.1149</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.0202</td>
<td>0.1908</td>
<td>6.424</td>
<td>0.1908</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.0155</td>
<td>0.1468</td>
<td>4.9424</td>
<td>0.1468</td>
</tr>
<tr>
<td>H₂</td>
<td>0.00053</td>
<td>0.005</td>
<td>0.1679</td>
<td>0.005</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.0188</td>
<td>0.1778</td>
<td>5.986</td>
<td>0.1778</td>
</tr>
<tr>
<td>N₂</td>
<td>0.786</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tar</td>
<td>0.032</td>
<td>0.3647</td>
<td>12.2778</td>
<td>0.3647</td>
</tr>
</tbody>
</table>
By comparing the second and last column of Table 5.2, it can be concluded that the parameters that are modified in MFIx are in good agreement with PCCL and hence the two models can be linked together.

5.7 Moisture Release

MFIx has single first order reaction kinetics for moisture release with a fixed Arrhenius constant and activation energy for 5 specific types of coals. PCCL generates moisture release flux based on the heating rate and temperature history. Simulation was run using the transport flow gasifier reactor set up described earlier in Section 5.5 with the operating conditions as follows:

1) Reactor temperature 1000°C.

2) Pressure 1.5 MPa

3) Coal Feed: Lignite and PRB

4) Only the moisture release rate was switched on, others were turned off.

5) Moisture release rate was modified in MFIx using moisture release flux given by PCCL.

Figure 5.12 and Figure 5.13 shows the moisture release along the reactor length using the original MFIx kinetics compared to modified PCCL kinetics for the Lignite and PRB coals respectively. It can be seen that, as the heating rate increases the PCCL moisture release curve shifts upward. It shows that PCCL takes into consideration the effect of heating rate while MFIx does not.
Figure 5.12 The Figure showing moisture release along reactor length for Lignite coal at 900 °C and a heating rate of 1000°C/s in PCCL.

Figure 5.13 The moisture release along reactor length for PRB coal at 900 °C and heating rates of 1000°C/s and 17,496°C/s in PCCL.

5.8 Tar Cracking

MFIIX uses single first order reaction (SFOR) kinetics for tar cracking. The kinetic parameters are fixed for the 5 types of coal. PCCL also gives tar cracking in SFOR kinetics but considers the effects of heating rate and operating temperature. In addition PCCL predicts PAH
and oil as additional product gas species for tar cracking. PAH and oil cannot survive over 1000°C. In this research, the tar cracking reaction is assumed to take place at temperatures below or equal to 1000°C otherwise the secondary pyrolysis reaction starts to take place.

The tar cracking simulation was run using the transport flow gasifier reactor set up described earlier in Section 5.5 with the operating conditions as follows:

1) Reactor temperature 900°C.

2) Pressure 1.5 MPa

3) Coal Feed: PRB coal

4) Heating rate used for PCCL 1000°C/s

5) Only moisture release, devolatilization and tar cracking reaction rates were turned on while all other gasification reactions were turned off.

6) Moisture release rate was modified in MFIX using the moisture release flux given by PCCL while devolatilization and tar cracking kinetic parameter were updated using SFOR parameters generated by PCCL.

7) PAH and oil were added as new gas species.

8) There was no fixed carbon generated via tar cracking.

Figure 5.14 shows the evolution of tar cracking products along the reactor length. It can be seen that the products show the expected evolution trend for all gas species. From this figure it can be concluded that tar cracking reaction kinetics in MFIX can be modified using PCCL predicted SFOR kinetics.
5.9 Secondary Pyrolysis with soot oxidation

PAH and oil become unstable at temperatures above 1000 °C and react with secondary hydrocarbons to form soot and C\textsubscript{2}H\textsubscript{2}. Version 4.1 of PCCL does not give soot formation kinetics from PAH and oil but gives the total yield of soot and C\textsubscript{2}H\textsubscript{2} formed in secondary pyrolysis. We have assumed for this work that only above 1000°C will secondary pyrolysis take place and for

Figure 5.14 The evolution of gas species during tar cracking along reactor length for PRB coal at 900 °C.
this case the devolatilization reaction kinetics will be used to simulate the secondary pyrolysis reactions but with the yields adjusted to give the correct make of soot and C₂H₂ along with other gas species. Soot will also get oxidized in this process. Soot oxidation kinetics are given by Nagle and Strickland-Constable (NSC) (1962). Figures 5.15 and 5.16 show the simulation results for secondary pyrolysis and soot oxidation in transport flow gasifier. The operating conditions are as follows:

1) Reactor temperature 1000°C and 1200°C.

2) Pressure 1.5 MPa

3) Coal Feed: Lignite

4) Heating rate used for PCCL 1000°C/s

5) Only moisture release, devolatilization and soot oxidation reaction rates were turned on all other gasification reaction were turned off.

6) Soot oxidation rate was introduced in MFIX using the NSC model given by PCCL while devolatilization kinetic parameters were updated using SFOR parameters generated by PCCL.

7) Soot and C₂H₂ were added as new gas species.
Figure 5.15 The evolution of gas species during secondary pyrolysis along the reactor length for Lignite coal at 1000 °C.
Figure 5.16 The evolution of gas species during secondary pyrolysis along the reactor length for Lignite coal at 1200 °C.
5.10 Biomass Devolatilization

The yield for biomass devolatilization predicted by PCCL was compared with experimental results available in the literature. Perez et al. (2008) reported the affect of temperature on the yield and quality of pyrolysis products of pine wood and oil malee. Figure 5.17 shows the comparison of char yield and water released generated by PCCL with experiments for oil malee pyrolysis at temperatures ranging from 350-500°C.

Couhet et al. (2009) observed the failure of the component additively rule to predict gas yields of biomass in flash pyrolysis at 950°C. Experiments were carried out on beechwood (BW), mix spruce (MS) and rice husk (RH). Figure 5.18 shows the secondary pyrolysis product yield obtained for BW, MS and RH at 950 °C from experiments (EXP) and PCCL. Yields of CO and CO₂ obtained from PCCL are considerably different from the experimental results while yields for the other gas products are comparable.

Figure 5.17 The evolution of char(A) and water (B) during oil malee pyrolysis
Du pont et al. (2008) modeled the pyrolysis kinetics of beechwood and softwood. Figures 5.19 and 5.20 give the comparison between pyrolysis product yields generated by PCCL and experiments at 800 and 1000°C for beechwood and softwood.
Figure 5.19 A comparison of pyrolysis product yields obtained from experiments and PCCL for beechwood (A), softwood (B) at 800°C.
Figure 5.20 A comparison of pyrolysis product yields obtained from experiments and PCCL for beechwood (A), softwood (B) at 1000 °C.

Comparing Figures 5.17-5.20, it can be concluded that devolatilization predictions of PCCL are reasonably accurate and in good agreement with the experimental results for biomass pyrolysis. Hence the results give confidence in using PCCL kinetics for modifying biomass devolatilization kinetics in MFIX.
5.11 Algorithm

The basic idea behind the algorithm is to obtain the required kinetic parameters from PCCL to update C3M. A seamless connection between PC Coal Lab and the C3M is created. The interface is designed to allow MFIX to transfer information through C3M to PC Coal Lab, run PC Coal Lab with the input data from MFIX and then sends kinetic information back to C3M in a form that allows C3M to update and continue the MFIX simulation using updated parameters from PC Coal Lab.

The output files generated from PCCL consists of product yields and reaction kinetics parameters for devolatilization, tar cracking and secondary pyrolysis. These results need to be converted into an acceptable format for C3M. SFOR parameters for moisture release and devolatilization were obtained from CFDCjTj.rpt while product gas species yields were obtained from FDCiHCj.rpt, FDCiNGj.rpt and FDCiTCj.rpt. For tar cracking the SFOR and devolatilization parameters were obtained from SFTRCjTj.rpt. Secondary pyrolysis product yields were derived from FDCiSPj.rpt. The detail mechanism of conversion is explained in appendix I. A Graphical User Interface (GUI) to link MFIX to PCCL via C3M will be developed which will automatically do all the conversions.

The following steps illustrate how the process will work:

1. User will have to enter the coal proximate and ultimate analysis in the GUI.
2. GUI will run PCCL with same operating conditions used in MFIX.
3. GUI will update the C3M using the new parameters obtained from PCCL.
4. MFIX simulations will be run using the updated C3M parameters.
Chapter 6
Conclusions

The effects of temperature, pressure and heating rate on devolatilization yield predicted by PCCL was studied. PCCL predictions for devolatilization were compared to experimental measured yields and were found in good agreement with experimental data for the same operating conditions. Detailed kinetic expressions using PC Coal Lab (PCCL) were implemented for the devolatilization, tar cracking and secondary pyrolysis of a wide variety of coals in existing CFD code Multiphase Flow with Interphase Exchanges (MFIX) developed by NETL.

The C₃M code was studied in detail and the parameters in need of change were identified. An algorithm to link MFIX to PCCL via C₃M was developed. The parameters obtained from PCCL were converted into an acceptable format to update the fortran code in C₃M. The algorithm was tested using a simulation of a transport flow gasifier with the current C₃M kinetics and compared with results using modified kinetics obtained from PCCL. The algorithm is being used to develop a GUI at NETL site Morgantown by Phil Nicolletti.

PCCL predictions for biomass devolatilization were compared with experimental results and they show good agreement with experimental results.
Chapter 7
Future Work

Version 4.1 of PCCL is not programmed to give soot formation kinetics. The algorithm will be updated when suitable soot formation kinetics become available.

Future work will concentrate on developing algorithms for implementing homogeneous and heterogeneous reactions in C3M/MFIX. The focus of this portion of the work will be on analyzing PCCL data for these reactions and to develop rate and appropriate yield equations to describe the reaction kinetics.

Furthermore, gasification reactions of soot that will occur in the gasifier must also be modeled. The heterogeneous oxidation and gasification reactions of the soot will therefore have to be modeled on an equivalent cell concentration basis and suitable algorithms to keep track of the conversion of the soot particles will be developed.

The current work considers steady state conditions in gasifier; future work will focus on unsteady state temperature profile across the reactor.

The C3M module does not have biomass pyrolysis kinetics. Biomass pyrolysis will be studied in detail and PCCL data will be used to provide suitable kinetic parameters to C3M. Finally the effect of ash and hetero-atoms (N and S) on devolatilization will be studied.
References

11. Coal Chemistry document for MFIX

42. S Niksa, “Predicting the rapid devolatilization of diverse forms of biomass with bioflashchain”, Proceeding of combustion institute V28(2000), 2727-2733.

46. Stillman R, ”Simulation of a Moving bed Gasifier for a Western Coal” IBM J. Res Dev. V23(1979), pp 240-252

Notation

\(d_p \) Diameter of droplet \((m) \)

\(E_d \) Activation energy \((\text{cal/gmol}) \)

\(\rho_s \) Density of coal particle \((\text{gm/cc}) \)

\(k_d \) Frequency factor \((1/s) \)

\(h_w \) Heat transfer coefficient of water \((\text{watt/m}^2\text{K}) \)

\(\lambda_{\text{vap}} \) Latent heat of vaporization \((\text{J/mol}) \)

\(X_{\text{wH,O}} \) Mass fraction of moisture content in coal

\(T_p \) Temperature of droplet \((K) \)

\(T_s \) Temperature of solid phase \((K) \)

\(\varepsilon_s \) Volume fraction of solid phase

\(m_{\text{vap}} \) Volumetric evaporation rate of black liquor droplet \((\text{kg/m}^3\text{s}) \)

\(T_g \) Local gas temperature \((K) \)

\(m_c \) Mass of raw coal \((\text{gm}) \)

\(m_v \) Rate of devolatilization \((\text{gm/s}) \)

\(R_g \) Gas constant \((\text{cal/K.mol}) \)

\(V \) Volatile yield at any time \((% \text{daf}) \)

\(V^* \) Ultimate volatile yield \((\text{Kg or daf %}) \)

\(X_{\text{VM}} \) Mass fraction of volatile matter

\(Y \) Volatile yield \((\text{gm}) \)

\(Y_1 \) Volatile yield for low activation devolatilization reaction \((\text{gm}) \)

\(Y_1^* \) Maximum of \(Y_1 \) \((\text{gm}) \)

\(Y_2 \) Volatile yield for high activation devolatilization reaction \((\text{gm}) \)

\(Y_2^* \) Maximum of \(Y_2 \) \((\text{gm}) \)

\(C_{\text{tar}} \) Concentration of tar \((\text{gmole/cm}^3) \)

\(\omega \) Rate of soot oxidation \((\text{g carbon/cm}^3\text{sec}) \)

\(\xi \) Fraction of carbon oxidized
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>Surface concentration of active sites</td>
<td>(cm2)</td>
</tr>
<tr>
<td>S_{a_0}</td>
<td>Initial surface area</td>
<td>(cm2)</td>
</tr>
<tr>
<td>$[O_2]$</td>
<td>Partial pressure of oxygen</td>
<td>(Pa)</td>
</tr>
</tbody>
</table>
Appendix I

Algorithm to couple PCCL and MFIX:

I.1. The reaction schemes considered in this algorithm are as follows,

Devolatilization only:

\[\text{Moisture(in coal)} \rightarrow H_2O \]

\[\text{VM} \rightarrow \alpha_d \, \text{tar} + \beta_{CO}^d \, \text{CO} + \beta_{CO_2}^d \, \text{CO}_2 + \beta_{CH_4}^d \, \text{CH}_4 + \beta_{H_2}^d \, \text{H}_2 + \beta_{H_2O}^d \, \text{H}_2O \]

Devolatilization with tar cracking:

\[\text{Moisture(in coal)} \rightarrow H_2O \]

\[\text{VM} \rightarrow \alpha_d \, \text{tar} + \beta_{CO}^d \, \text{CO} + \beta_{CO_2}^d \, \text{CO}_2 + \beta_{CH_4}^d \, \text{CH}_4 + \beta_{H_2}^d \, \text{H}_2 + \beta_{H_2O}^d \, \text{H}_2O \]

\[\text{tar} \rightarrow \text{PAH} + \text{oil} + \beta_{CO}^c \, \text{CO} + \beta_{CO_2}^c \, \text{CO}_2 + \beta_{CH_4}^c \, \text{CH}_4 + \beta_{H_2}^c \, \text{H}_2 + \beta_{H_2O}^c \, \text{H}_2O \]

Devolatilization with soot formation or secondary pyrolysis:

\[\text{Moisture(in coal)} \rightarrow H_2O \]

\[\text{VM} \rightarrow \text{soot} + \text{C}_2\text{H}_2 + \beta_{CO}^d \, \text{CO} + \beta_{CO_2}^d \, \text{CO}_2 + \beta_{CH_4}^d \, \text{CH}_4 + \beta_{H_2}^d \, \text{H}_2 + \beta_{H_2O}^d \, \text{H}_2O \]

\[\text{soot} + 2.714 \, O_2 \rightarrow 3.618 \, \text{CO}_2 + 0.089 \, H_2O \]

Stoichiometric coefficients for PAH, oil, soot, and C\textsubscript{2}H\textsubscript{2} are obtained from PCCL.

I.1.1. User has to select the reaction for which PCCL data will be extracted:

1. Devolatilization
2. Devolatilization with Tar Cracking (PAH and oil formation)
3. Devolatilization with soot formation /secondary pyrolysis (soot and C\textsubscript{2}H\textsubscript{2} formation){soot is seen above 1000°C}
I.1.2 Primary changes to be made in MFIX

Add oil, PAH, soot and C\textsubscript{2}H\textsubscript{2} as new gas species in MFIX.

I.1.2.1. Specific heats for all these new gas species are added in CP_FUN1.inc

I.1.2.2. Equations to calculate specific heat of added gas species at any temperatures were added in CP_FUN2.inc

\[
\text{CPOIL} = \frac{(1.4014 \times 10^5 - 1.5230 \times 10^2 \times \text{XXX} + 6.9500 \times 10^1 \times \text{XXX}^2)}{92}
\]

\[
\text{CPC2H2} = \frac{(2.0011 \times 10^5 - 1.1988 \times 10^3 \times \text{XXX} + 3.0027 \times \text{XXX}^2)}{26}
\]

\[
\text{CPPAH} = -0.1315 + 1.341 \times 10^{-3} \times \text{XXX} - 1.087 \times 10^{-6} \times \text{XXX} \times \text{XXX} + 3.06 \times 10^{-10} \times \text{XXX} \times \text{XXX} \times \text{XXX}
\]

\[
\text{CPSOOT} = -0.1315 + 1.341 \times 10^{-3} \times \text{XXX} - 1.087 \times 10^{-6} \times \text{XXX} \times \text{XXX} + 3.06 \times 10^{-10} \times \text{XXX} \times \text{XXX} \times \text{XXX}
\]
I.1.2.3. Modify the constant pressure specific heat of air calculation (C_{pg(IJK)}) equation with addition of new gas species in physical_prop.f

```plaintext
CPOIL=(1.4014E+05 -1.5230E+02*XXX +6.9500E-1*XXX**2)/92
CPC2H2=(2.0011E+05 -1.1988E+03 *XXX +3.0027*XXX**2)/26

Equations to calculate specific heat for oil, PAH, soot and C_2H_2
```

```plaintext
N = ZERO
M = 1
IF (NMAX(0) > 0) THEN
    M1 = M1 + 1
ENDIF
```

```plaintext
Adding specific heat terms for oil, PAH, soot and C_2H_2
```
I.1.2.4. Total number of gas species and their molecular weight need to be modify in mfix.dat

Total numbers of gas species are modified to 12

Molecular weights of new added gas species were updated, oil (98), PAH (332), Soot (300), C₂H₂ (26).

I.1.2.5. Modify rates.f with following variables:

Pressure term for new gas species: PPAH, PSOOT, PC2H2, POIL.
Soot oxidation kinetics variables: XYZ, TAN, KPC, TANN, KPCC, XYZZ, TANC, RXNWF.
Partial pressure calculation equation for PPAH, PSOOT, PC2H2, POIL.
I.1.2.6. Modify rrates.f for soot oxidation reaction:

Soot oxidation equation given by PCCL need to be introduced in MFIX.
(When there is only devolatilization or devolatilization with tar cracking this rate will be multiplied by zero.)

Add pressure term for PPAH, PSOOT, PC2H2 and POIL for double precision

Add soot oxidation reaction rate terms XYZ, TAN, KPC, TANN, KPCC, XYZZ and TANC, RXNWLF for double precision

Partial pressure calculation equation for PAH, Soot, Oil and C2H2

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

--- Partial pressure calculation equation for PAH, Soot, Oil and C2H2 ---

TAN=1.51E+05 *EXP(-48800/TGX)
KPC=4.46E-03 *EXP(-7640/TGX)*(PO2)
XY2= 1/(1+(TAN/KPC))
TANN=XY2*(240 *EXP(-15100/TGX)*(PO2))
KPCC=1+(21.3*EXP(2060/TGX))
XY2Z=TANN/KPCC
TANC=(1-XY2)*(5.35E-02*EXP(-7640/TGX)*(PO2))
RXNWF=(XY2Z+TANC)*((6*EP_s1/0.000008)*(X_g(IJK,12)/MW_g(12))

IF(X_g(IJK,12) .GT. ZERO) THEN
TAN=1.51E+05 *EXP(-48800/TGX)
KPC=4.46E-03 *EXP(-7640/TGX)*(PO2)
XY2= 1/(1+(TAN/KPC))
TANN=XY2*(240 *EXP(-15100/TGX)*(PO2))
KPCC=1+(21.3*EXP(2060/TGX))
XY2Z=TANN/KPCC
TANC=(1-XY2)*(5.35E-02*EXP(-7640/TGX)*(PO2))
RXNWF=0*(XY2Z+TANC)*((6*EP_s1/0.000008)*(X_g(IJK,12)/MW_g(12))
ELSE
RXNWF=ZERO
ENDIF

Write the formation and consumption rates of various species:
Obtain the rates of formation and consumption of various species
in g/(cm^3.s) from the rate expressions RXNWF and RXNxB obtained in the
I.2. Input Specification for PCCL:

- Proximate analysis as received basis:
 - Fixed Carbon: 40.2
 - Volatile matter: 32.9
 - Moisture: 22.3
 - Ash: 4.6

- Ultimate analysis dry ash free basis:
 - C: 75.2
 - H: 4.6
 - O: 20.2
 - N: 0
 - S: 0

- Heating rate for wire grid method
- Pressure in MPascal
- Temperature in °C
- Particle diameter in microns

Coal properties to be specified in coalpac.dat as shown in figure 1

Operating conditions to be specified in testplan.dat as shown in figure 2

<table>
<thead>
<tr>
<th>FT</th>
<th>Coal Label</th>
<th>PROXIMATE, as rec’d</th>
<th>ULTIMATE, daf wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td></td>
<td>F5.1</td>
<td>F5.1</td>
</tr>
<tr>
<td>CO</td>
<td>LIGNITE</td>
<td>43.8</td>
<td>41.0</td>
</tr>
<tr>
<td>CO</td>
<td>SUBBITUMINOUS</td>
<td>43.2</td>
<td>37.8</td>
</tr>
<tr>
<td>CO</td>
<td>HIGH VERTICAL BITUMINOUS NUMBER ONE</td>
<td>28.2</td>
<td>59.6</td>
</tr>
<tr>
<td>CO</td>
<td>HIGH VERTICAL BITUMINOUS NUMBER TWO</td>
<td>27.6</td>
<td>56.1</td>
</tr>
<tr>
<td>CO</td>
<td>HIGH VERTICAL BITUMINOUS NUMBER THREE</td>
<td>39.7</td>
<td>40.2</td>
</tr>
</tbody>
</table>

Figure 1: Input file for coal types coalpac.dat
Figure 2: Input file for operating conditions testplan.dat

<table>
<thead>
<tr>
<th>CF</th>
<th>TR</th>
<th>TS</th>
<th>OR</th>
<th>Gas</th>
<th>T_{initial}</th>
<th>T_{ultimate}</th>
<th>Q, °C/s</th>
<th>$%O_2$</th>
<th>P, MPa</th>
<th>t_{RP}, s</th>
<th>D_p, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>WG</td>
<td>FE</td>
<td>DP</td>
<td>ED</td>
<td>N2</td>
<td>25.</td>
<td>1025.</td>
<td>10000.</td>
<td>0.0</td>
<td>0.10</td>
<td>0.022</td>
</tr>
<tr>
<td>02</td>
<td>WG</td>
<td>FF</td>
<td>DP</td>
<td>FD</td>
<td>N2</td>
<td>25.</td>
<td>1025.</td>
<td>10000.</td>
<td>0.0</td>
<td>0.10</td>
<td>0.180</td>
</tr>
<tr>
<td>03</td>
<td>WG</td>
<td>FF</td>
<td>DP</td>
<td>FD</td>
<td>N2</td>
<td>25.</td>
<td>1025.</td>
<td>1000.</td>
<td>8.0</td>
<td>0.10</td>
<td>1.500</td>
</tr>
<tr>
<td>04</td>
<td>WG</td>
<td>FF</td>
<td>PT</td>
<td>FD</td>
<td>N2</td>
<td>25.</td>
<td>850.</td>
<td>8500.</td>
<td>0.0</td>
<td>0.10</td>
<td>1.250</td>
</tr>
<tr>
<td>05</td>
<td>WG</td>
<td>FF</td>
<td>PT</td>
<td>FD</td>
<td>N2</td>
<td>25.</td>
<td>850.</td>
<td>8500.</td>
<td>0.0</td>
<td>1.00</td>
<td>1.250</td>
</tr>
</tbody>
</table>
I.3. DEVOLATILIZATION

I.3.1. Moisture Release:

Output file to look at is, CFDC\textsubscript{i}T\textsubscript{j}.rpt: \{ for moisture flux in kg/m2\cdot s\}

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{MOISTURE RELEASE} & \textbf{CFDC\textsubscript{i}T\textsubscript{j}.rpt:} & \textbf{for moisture flux in kg/m2\cdot s} \\
\hline
\end{tabular}
\end{center}

Changes to be made in rates.f

The moisture flux is in kg/m2\cdot s hence convert it into gm/cm3\cdot s, so the expression becomes,

\[\text{RXNGF} = (\text{Moisture flux}) \times 0.1 \times (6 \times \text{EP\textsubscript{1}(IJK)/D\textsubscript{p}(IJK,1)}) \times X\textsubscript{s}(IJK,1,3) \]

\{0.1 is conversion factor\}

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{INITIAL STAGE KINETICS} & \textbf{g) COAL MOISTURE} & \textbf{H\textsubscript{2}O} & \textbf{ARBITRARY RATE EXPRESSION} \\
\hline
\textbf{g'} (cm3\cdot s) & \textbf{RXNG} & \textbf{0.036}\times 0.1 \times (6 \times \text{EP\textsubscript{1}(IJK)/D\textsubscript{p}(IJK,1)}) \times X\textsubscript{s}(IJK,1,3) \\
\textbf{RXNGB} & \textbf{ZERO} \\
\textbf{ELSE} & \textbf{RXNGF} = \textbf{ZERO} \\
\textbf{ELSE} & \textbf{RXNGB} = \textbf{ZERO} \\
\hline
\end{tabular}
\end{center}
I.3.2. DEVOLATILIZATION:

I.3.2.1. Output files to look:

- CFDC\textsubscript{T},rpt: [for Arrhenius constant/frequency factor (A) in 1/sec; Activation Energy (E) in kcal/mol] (A=257.5 1/s; E=6620 kcal/mol)

- FDC\textsubscript{NG},rpt: [for % dry ash free basis yields of CO\textsubscript{2}(9.2), H\textsubscript{2}O(8.5), CO (5.9) and CH\textsubscript{4}(6.7)]
% daf yield of CO₂, H₂O, CO and CH₄
(total hydrocarbon yield is assumed to be CH₄ yield)

- FDCiHCj.rpt: [for % dry ash free basis yield of H₂(0.55)]
% daf basis yield of H₂(0.55)

- FDC;TCₐ.rpt: [for % dry ash free basis yield of Tar(13.4) , molecular weight(291.9)]

% daf yield of tar (13.4) Molecular weight of tar (291.9)
I.3.2.2. Convert % daf basis yields into gm yield

If X is the % daf basis yield then gm yield will be $[X \times (FC + VM) / 100]$

(here $FC + VM = 40.2 + 32.9 = 73.1$)

<table>
<thead>
<tr>
<th>Products</th>
<th>% yield daf</th>
<th>yield in gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>5.9</td>
<td>5.9×0.731=4.3129</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>9.2</td>
<td>9.2×0.731=6.7252</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>6.7</td>
<td>6.7×0.731=4.8977</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.55</td>
<td>0.55×0.731=0.4021</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>8.5</td>
<td>8.5×0.731=6.2135</td>
</tr>
<tr>
<td>tar</td>
<td>13.4</td>
<td>13.4×0.731=9.7954</td>
</tr>
</tbody>
</table>

I.3.2.3. Find total VM by summation of all gm yields:

Total VM = \sum (Yield in gm of all devolatilization products)

<table>
<thead>
<tr>
<th>Products</th>
<th>yield in gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>4.3129</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>6.7252</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>4.8977</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.4021</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>6.2135</td>
</tr>
<tr>
<td>tar</td>
<td>9.7954</td>
</tr>
<tr>
<td>VM</td>
<td>32.3468</td>
</tr>
</tbody>
</table>

I.3.2.4 Convert gm yield into mass fractions (per 1 gm of VM):

Stoichiometric coefficient = (Yield in gm of product) / (VM yield in gm)

For tar just to match stoichiometric coefficients summation as one,

Stoichiometric coefficient of Tar = 1 - Sum (Stoichiometric coefficients of CO, CO2, CH4, H$_2$, H$_2$O)
I.3.2.5. Changes to be made in rrates.f of MFIX:

- (modifying rrates.f): Change devolatilization rate parameters AKD(A)(257.5) and AED(E)(6620)

<table>
<thead>
<tr>
<th>Products</th>
<th>Yield in gm</th>
<th>Stoichiometric Coefficient</th>
<th>Stoichiometric Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>4.3129</td>
<td>0.1333</td>
<td>BETAD(2)</td>
</tr>
<tr>
<td>CO₂</td>
<td>6.7252</td>
<td>0.2079</td>
<td>BETAD(3)</td>
</tr>
<tr>
<td>CH₄</td>
<td>4.8977</td>
<td>0.1514</td>
<td>BETAD(4)</td>
</tr>
<tr>
<td>H₂</td>
<td>0.4021</td>
<td>0.0124</td>
<td>BETAD(5)</td>
</tr>
<tr>
<td>H₂O</td>
<td>6.2135</td>
<td>0.1921</td>
<td>BETAD(6)</td>
</tr>
<tr>
<td>tar</td>
<td>9.7954</td>
<td>0.3029</td>
<td>ALPHAD</td>
</tr>
<tr>
<td>VM</td>
<td>32.3468</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Changing stoichiometric coefficients BETAD (2-6) and ALPHAD

AKD needs to be replaced by A obtained from PCCL

AED needs to be replaced by E obtained from PCCL
I.3.2.6. Changes to be made in usr0.f:
Stoichiometric coefficient used to calculate heat of devolatilization (HEATD) need to be replaced with new calculated coefficients.

```
ENDIF
IF(HHVT .EQ. UNDEFINED)THEN
  HHVT = 8080. * FTC + 34444.44 * (FTH - FT0/8.) + 2277.8 * FTS
ENDIF
HHVC = ZERO
HHVT = ZERO

HEAT OF DEVIOLATIZATION REACTION (cal/g-VM)

IF( HHVC .GT. ZERO) THEN
  HEATD = (-HHVC -&
  PAVN * ( (-HHVT) * ALPHAD +&
    ( -2415.16) * BETAD(2) +&
    (-1330.0) * BETAD(4) +&
    (-12043.8) * BETAD(11) +&
    (-12427.3) * BETAD(12) +&
    (-12099.1) * BETAD(13) +&
    (-10012.5) * BETAD(14) +&
    (-3156.5) * BETAD(9) +&
    (-5814.4) * BETAD(6) +&
    (-3956.5) * BETAD(7) +&
    (-3394.2) * BETAD(9) ) ) /
  PAFC * (-7837.7)
ENDIF

HEAT OF CRACKING REACTION (cal/g-Tar)
```

ALPHAD=0.3029
BETAD(2)=0.1333
BETAD(4)=0.1514
BETAD(5)=0.0124
BETAD(6)=0.1921
Rest of them are zero
I.4. Tar Cracking Algorithm:

I.4.1. Modifying Input files in PC Coal Lab (PCCL)

There is no change in “Coalpc.dat”.

While specifying operating conditions in “Testplan.dat”, ninth entry in sixth row must be specified as “T” for tar cracking.

I.4.2. Moisture release and devolatilization are the initial steps in the tar cracking mechanism.

For moisture release and devolatilization kinetics user should refer back to algorithm described before for devolatilization step (I.3) only.

I.4.3. Output files to look for:

- SRTRC{T}_{i}.rpt: [for Arrhenius constant/frequency factor \((A)\) in 1/sec; Activation Energy \((E)\) in kcal/mol](\(A=17.2/s; E=5800\text{cal/mol}\)
SRTRC,Tj.rpt: To get stoichiometric coefficients for the tar cracking reaction where PAH, oil, CO, CO₂, CH₄, H₂ and H₂O are the products formed during tar cracking. We need to get mass fractions of these products from the output file.
I.4.4. Assigning mass fraction to respective gas species:

<table>
<thead>
<tr>
<th>Product</th>
<th>Mass fraction</th>
<th>Mass fraction in MFIX rrates.f</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAH</td>
<td>0.6290</td>
<td></td>
</tr>
<tr>
<td>oil</td>
<td>0.1220</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0587</td>
<td>BETAC(2)</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.0695</td>
<td>BETAC(3)</td>
</tr>
<tr>
<td>H₂</td>
<td>0</td>
<td>BETAC(5)</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.0605</td>
<td>BETAC(6)</td>
</tr>
<tr>
<td>CH₄</td>
<td>1-(0.6290+0.1220+0.0587+0.0695+0.0605)=0.0603</td>
<td>BETAC(4)</td>
</tr>
</tbody>
</table>

(As other hydrocarbons can not be lumped in CH₄)

I.4.5. Changes to be made in rrates.f of MFIX:

- Change the kinetic parameters for tar cracking reaction. AKC and AEC to be replaced by new Arrhenius constant and Activation energy obtained from PCCL.

\[\text{AKC}=17.2 \text{ sec}^{-1}, \ \text{AEC}=5800 \text{ cal/mol} \]

```
AS = EXP(0.6290*CH4+0.1220*OIL+0.0587*CO+0.0695*CO2+0.0605*H2O)
K1 = 13.4*EXP(-5800/(2.303*RT))*CH4
K2 = K1*EXP(-5800/(2.303*RT))
K3 = K1*EXP(-5800/(2.303*RT))
K4 = K1*EXP(-5800/(2.303*RT))
K5 = K1*EXP(-5800/(2.303*RT))

1) \text{TAR} \rightarrow \text{CHAR  + GASES} \ g/(m^3.a)
(1.0) (alpha) (1-alpha = Sum of beta's)
It is assumed that tar cracking is catalyzed by char and that the resulting carbon is deposited on char.

IF (K1 > 1.0) THEN
    K2 = K1*EXP(-5800/(2.303*RT))
    K3 = K1*EXP(-5800/(2.303*RT))
    K4 = K1*EXP(-5800/(2.303*RT))
    K5 = K1*EXP(-5800/(2.303*RT))
ENDIF
K2 = ZERO
K3 = ZERO
K4 = ZERO
K5 = ZERO
```

AKC to be replaced with Arrhenius constant obtained from SFTRC/Tj.rpt (here AKC= 17.2 sec⁻¹)

AEC to be replaced with Activation Energy Obtained from SFTRC/Tj.rpt (here AEC =5800 cal/mol)
- Substitute the stoichiometric coefficient for the product species of tar cracking reaction in `rates.f`.

Change stoichiometric coefficients BETAC (2-6) and add stoichiometric coefficients for Oil and PAH.

Stochastic coefficient of CO (0.0587)

Stochastic coefficient of CO₂ (0.0695)

Stochastic coefficient of CH₄ (0.0603)

Stochastic coefficient of H₂ (0.0605)
1.4.6. Changes to be made in usr0.f:

Stoichiometric coefficients used to calculate heat of cracking reaction need to be replaced with new coefficients.

\[
\text{HEAT} = -\text{HHVT} - (& \\
-7837.7) \times \alpha \text{PH}^{\text{Ac}} + & \\
(-2415.6) \times \text{BETAC(2)} + & \\
(-13300.9) \times \text{BETAC(4)} + & \\
(-12043.9) \times \text{BETAC(11)} + & \\
(-12427.3) \times \text{BETAC(12)} + & \\
(-12059.1) \times \text{BETAC(13)} + & \\
(-10012.6) \times \text{BETAC(14)} + & \\
(-34158.5) \times \text{BETAC(5)} + & \\
(-584.4) \times \text{BETAC(6)} + & \\
(-3956.5) \times \text{BETAC(7)} + & \\
(-3994.2) \times \text{BETAC(9)} + & \\
\text{ELSE} \\
\text{HEATD} = 0.0 \\
\text{HEATC} = 0.0
\]

Stoichiometric coefficient for Oil (0.122) and PAH (0.629)
I.5. Secondary Pyrolysis with soot oxidation:

I.5.1. Algorithm for moisture release to be referred back to devolatilization step (I.3) described before.

I.5.2. Output file to look at is:

- CFDC,T_j.rpt: [for Arrhenius constant/frequency factor (A) in 1/sec; Activation Energy (E) in kcal/mol](A=257.5 l/s; E=6620 kcal/mol)

- FDC,SP_j.rpt: This file gives the yields of product formed after devolatilization and secondary pyrolysis.
I.5.3 Convert % daf basis yields into gm yield

If X is the % daf basis yield then gm yield will be $[X \times (\text{FC} + \text{VM})/100]$

(here $\text{FC} + \text{VM} = 40.2 + 32.9 = 73.1$)
I.5.4. Find total VM by summation of all gm yields:

Total VM= \(\sum \) (Yield in gm of all devolatilization and secondary pyrolysis products)

<table>
<thead>
<tr>
<th>Products</th>
<th>yield in gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>6.8714</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>6.7252</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>0.2924</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>1.6667</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>6.2135</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_2)</td>
<td>1.6082</td>
</tr>
<tr>
<td>soot</td>
<td>8.9913</td>
</tr>
<tr>
<td>VM</td>
<td>32.3687</td>
</tr>
</tbody>
</table>

I.5.5. Convert gm yield into mass fractions (per 1 gm of VM):

Stoichiometric coefficient= (Yield in gm of product) / (VM yield in gm)

For Soot just to match stoichiometric coefficients summation as one,

Stoichiometric coefficient of Soot= 1- Sum (Stoichiometric coefficients of CO, \(\text{CO}_2 \), \(\text{CH}_4 \), \(\text{H}_2 \), \(\text{H}_2\text{O} \), \(\text{C}_2\text{H}_2 \))

<table>
<thead>
<tr>
<th>Products</th>
<th>Yield in gm</th>
<th>Stoichiometric Coefficient</th>
<th>Stoichiometric Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>6.8714</td>
<td>0.2123</td>
<td>BETAD(2)</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>6.7252</td>
<td>0.2078</td>
<td>BETAD(3)</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>0.2924</td>
<td>0.0090</td>
<td>BETAD(4)</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>1.6667</td>
<td>0.0515</td>
<td>BETAD(5)</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>6.2135</td>
<td>0.1920</td>
<td>BETAD(6)</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_2)</td>
<td>1.6082</td>
<td>0.0497</td>
<td></td>
</tr>
<tr>
<td>soot</td>
<td>8.9913</td>
<td>{1-0.2123-0.2078-0.0090-0.515-0.1920-0.0497}=0.2777</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>32.3687</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>
I.5.6. Changes to be made in MFIX:

- (modifying rrates.f) : Change devolatilization rate parameters AKD(A)

 (257.5 sec^{-1}) and AED(E) (6620 cal/mol)
• Changing stoichiometric coefficients BETAD (2-6) along with for soot and C₂H₂. CO₂ and H₂O are formed during soot oxidation hence their production equation is also added in generation equation.

Stoichiometric coefficient of CO (0.2123)

Stoichiometric coefficient of CO₂ (0.2078) along with generation from soot oxidation reaction

Stoichiometric coefficient of CH₄ (0.0090)

Stoichiometric coefficient of H₂ (0.0515)

Stoichiometric coefficient of H₂O (0.1920)
Along with generation from soot oxidation reaction
! (11) C2H2
R_gp(IJK, 11) = (RXNHF - RXNHB) * 0.0497

! (12) SOOT
R_gp(IJK, 12) = (RXNHF - RXNHB) * 0.2777
IF (X_g(IJK, 12).GT.ZERO) THEN
 RoX_gc(IJK, 12) = RXNWF*MW_g(12)/X_g(IJK, 12)
ELSE
 RoX_gc(IJK, 12) = 1.0E-09
END IF

Stoichiometric coefficient for soot (0.2777) and C2H2 (0.0497)

Fate of H2S and HCN is not yet decided