Characterization of the Unique Flagellar Hook Structure of the Spirochetes Borrelia burgdorferi and Treponema denticola

Kelly Ann Heintzelman Miller
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation
Miller, Kelly Ann Heintzelman, "Characterization of the Unique Flagellar Hook Structure of the Spirochetes Borrelia burgdorferi and Treponema denticola" (2013). Graduate Theses, Dissertations, and Problem Reports. 4983.
https://researchrepository.wvu.edu/etd/4983

This Dissertation is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Graduate Theses, Dissertations, and Problem Reports by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
Characterization of the Unique Flagellar Hook Structure of the Spirochetes *Borrelia burgdorferi* and *Treponema denticola*

Kelly Ann Heintzelman Miller

Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Immunology and Microbial Pathogenesis

Nyles W. Charon, Ph.D., Chair
Michael R. Miller, Ph.D.
Thomas Elliott, Ph.D.
Slawomir Lukomski, Ph.D.
Rita Rio, Ph.D.

Department of Microbial Pathogenesis and Immunology
Morgantown, WV
2013

Keywords: flagella, hook, *Borrelia burgdorferi*, *Treponema denticola*, mass spectrometry, peptide cross-linking, spirochete
ABSTRACT

Characterization of the Unique Flagellar Hook Structure of the Spirochetes *Borrelia burgdorferi* and *Treponema denticola*

Kelly Ann Heintzelman Miller

The long-term goal of this project is to better understand *Borrelia burgdorferi* and *Treponema denticola* motility as it relates to pathogenesis. The structure of the spirochete periplasmic flagella is unique when compared to externally located flagella. One unusual characteristic is the flagellar hook, which serves as a universal joint coupling rotation of the membrane bound motor complex to the flagellar filament. The hook is composed of approximately 120 FlgE monomers, and in bacteria with externally located flagella, these structures readily disassociate into monomers (~50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa. We hypothesize that this high molecular weight complex (HMWC) is the result of covalent cross-linking of FlgE proteins. Cross-linking of bacterial flagella proteins has not been examined previously. Our goals are to thoroughly characterize the cross-linking in the *B. burgdorferi* and *T. denticola* hook proteins. We anticipate that once we have this information, new drugs could be developed to inhibit this cross-linking, which we anticipate will severely affect the spirochetes’ motility and virulence capability. Thus, the proposed project’s long-term goal is centered on developing new drug treatments for Lyme disease as well as other spirochetal diseases, including syphilis. We found that the HMWC of both *B. burgdorferi* and *T. denticola* are stable to a variety of denaturants and is not an artifact of boiling. Previously, western blot analysis was the sole indication that spirochetes cross-link their flagellar hook proteins. By making several modifications to the published procedure for isolating periplasmic flagella, I was able to obtain enough hook protein of both *B. burgdorferi* and *T. denticola* for mass spectrometry analysis. The mass spectrometry analysis confirmed that the spirochete HMWC is composed of FlgE, identified FlgE as the sole protein in these complexes, and that in specific regions the mass spectrometry patterns are different for the monomer and HMWC. We observed that *T. denticola* FlgE over-expressed in *Escherichia coli* forms a stable HMWC *in vitro*, and used the *in vitro* HMWC to study the effects of both chemical treatments and point mutations on HMWC formation. Finally, I propose a mechanism of cross-linking that is consistent with the mass spectrometry, biochemical, and mutational analyses. We hypothesize that FlgE cross-linking strengthens the hook structure for optimal spirochete motility.
Acknowledgements

I wish to dedicate this work to my snuggle buddy Kodiak Lee. You are the joy that keeps me going over day through the highs and lows. You have taught me patience and make me laugh when I'm about to cry.

There are several people I would like to thank for support and guidance through this journey.

Thank God. Without him, nothing is possible.

My husband Eric for patience, listening to me vent, and comforting me when stressed.

My parents for their support, time, and taking care of Kodiak.

Milinda for being a rock and maintaining my sanity. Giving me support both inside and outside of lab.

My mentors Nyles and Mike for taking on one more graduate student before retirement, letting me work on a really cool project, guiding me through this process, and for being good friends.

My friends Amanda, Dacie, and Chrissy. For always being there, for good times, and helping me with the job search.

Andy Cockburn for listening and good suggestions. You always looked at things from a different angle and gave fresh ideas.

My committee: Thomas Elliott, Slawomir Lukomski, and Rita Rio for ideas, suggestions, looking over results with me, assisting in experimental design, and facilitating my scientific development.
Collaborators: Chris Li (SUNY, Buffalo), Brian Crane (Cornell), Jun Liu (University of Texas), MD Motaleb (ECU), Justin Hettick (NIOSH), Melissa Caimano (University of Connecticut), Roger Hendrix and Bob Duda (University of Pittsburgh). Thank you for your contributions to this project.

My dogs Lucky and Reba for stress relief and nice walks.
Table of Contents

Chapter 1: Introduction.. 1
Medical Importance of T. denticola.. 2
Medical Importance of B. burgdorferi.. 3
Flagellar structure and motility... 4
Structure of periplasmic flagella and how spirochetes swim... 12
Motility as a virulence factor of spirochetes.. 15
Covalent bonding of peptides in microorganisms... 17
Methodology to detecting and deciphering cross-links... 22
Indirect evidence of cross-linking in spirochete flagella... 23
Research objectives.. 25
References... 26

Chapter 2: Initial characterization of the FlgE high molecular weight complex of Borrelia burgdorferi... 39
Abstract.. 40
Introduction... 41
Materials and Methods... 43
Results and Discussion.. 48
References... 59

Chapter 3: The biochemistry of the Treponema denticola FlgE high molecular weight complex... 68
Abstract.. 69
Introduction... 70
Materials and Methods... 71
Results... 76
Discussion... 98
References... 104

Chapter 4: Discussion.. 111

Appendix

The unique paradigm of spirochete motility and chemotaxis... 130
Visualizing the sequential assembly of bacterial flagella in Borrelia burgdorferi by cryo-electron tomography... 154

Curriculum Vitae.. 176
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flagellar components of S. enterica</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Proposed structure of trimers of the flagellar hook and filament proteins</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure of the flagellar hook as a whole, highlighting the D2 domain</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Diagram displaying B. burgdorferi structure and swimming</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Proposed mechanism of HK97 capsid cross-linking</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Model of pili assembly in C. diptheriae</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Western blot analysis of B. burgdorferi and T. denticola whole cell lysates using FlgE antibody</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Synthesis of the HMWC under different phases of growth</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of HMWC under different growth conditions</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>PF isolation using lysozyme or mutanolysin</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>Cryo-EM image of PFs, ΔfliK mutant, and polyhooks</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Immunoblot analysis of PFs and ΔfliK mutant</td>
<td>54</td>
</tr>
<tr>
<td>2.6</td>
<td>MS analysis of the HMWCs isolated from PFs and polyhooks</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Expression of FlgE in T. denticola whole cell lysates</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>FlgE western blot analysis of periplasmic flagella either boiled or treated with chemical denaturants</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>Coomassie stained SDS-PAGE of purified T. denticola rFlgE</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Western blot analysis of the rFlgE HMWC treated with denaturants using polyclonal FlgE antibody</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>MS analysis of rFlgE and polyhooks isolated from tap mutant cells</td>
<td>83</td>
</tr>
<tr>
<td>3.6</td>
<td>T. denticola FlgE primary sequence</td>
<td>87</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of heating monomeric FlgE on HMWC formation</td>
<td>89</td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of ammonium sulfate concentration on rFlgE HMWC formation</td>
<td>90</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of NaCl on HMWC formation</td>
<td>91</td>
</tr>
<tr>
<td>3.10</td>
<td>Effect of pH and ammonium sulfate on rFlgE HMWC formation</td>
<td>92</td>
</tr>
<tr>
<td>3.11</td>
<td>Effect of pH on the rFlgE HMWC</td>
<td>93</td>
</tr>
<tr>
<td>3.12</td>
<td>Effect of βME on rFlgE HMWC formation</td>
<td>94</td>
</tr>
<tr>
<td>3.13</td>
<td>Effect of D181A substitution mutation on rFlgE HMWC formation</td>
<td>96</td>
</tr>
<tr>
<td>3.14</td>
<td>Effect of N175A, N179A, and N175AN179A substitution mutations on rFlgE HMWC formation</td>
<td>97</td>
</tr>
<tr>
<td>3.15</td>
<td>Effect of C178A substitution mutation on rFlgE HMWC formation</td>
<td>98</td>
</tr>
<tr>
<td>3.16</td>
<td>Homology modeling of T. denticola FlgE onto the Salmonella model</td>
<td>101</td>
</tr>
<tr>
<td>3.17</td>
<td>Proposed mechanisms for FlgE peptide cross-linking</td>
<td>102</td>
</tr>
</tbody>
</table>
List of Tables
Table 2.1: Primers used to generate the ΔfliK mutant.. 45
Appendix Table A1: Peptides identified in MS analysis of *B. burgdorferi*
periplasmic flagella.. 122
Appendix Table A2: Peptides identified in MS analysis of *B. burgdorferi*
polyhooks.. 123
Appendix Table A3: Peptides identified in MS analysis of *T. denticola*
polyhooks.. 125
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>ammonium sulfate</td>
</tr>
<tr>
<td>βME</td>
<td>betamercaptoethanol</td>
</tr>
<tr>
<td>Cryo-EM</td>
<td>cryo-electron microscopy</td>
</tr>
<tr>
<td>Δ</td>
<td>deletion mutant</td>
</tr>
<tr>
<td>HMWC</td>
<td>high molecular weight complex</td>
</tr>
<tr>
<td>GuHCl</td>
<td>guanidine hydrochloride</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-thiogalactoside</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene difluoride</td>
</tr>
<tr>
<td>PF</td>
<td>periplasmic flagella</td>
</tr>
<tr>
<td>rFlgE</td>
<td>recombinant FlgE</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>UPLC</td>
<td>ultra-performance liquid chromatography</td>
</tr>
<tr>
<td>qTOF</td>
<td>quadruple time of flight mass spectrometer</td>
</tr>
</tbody>
</table>
Amino Acid abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cysteine</td>
</tr>
<tr>
<td>D</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>E</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>N</td>
<td>Asparagine</td>
</tr>
<tr>
<td>T</td>
<td>Threonine</td>
</tr>
</tbody>
</table>
As illustrated by the cartoon, antibiotic resistance is a growing problem around the world. Antibiotic resistance is a challenge for treating bacterial infections; as a result, it is important to develop novel/additional strategies for combating infections. Resistance has been reported in spirochetes. Resistance to azithromycin, which was commonly used to treat syphilis, has been reported in *Treponema pallidum* (6). A multi-drug efflux pump (Bes protein complex) that is a homologue to the TolC efflux system in *Escherichia coli* has been discovered in *Borrelia burgdorferi*. *B. burgdorferi* Bes protein mutants had significantly lower minimum inhibitory concentrations (greater
susceptibility) than the wild type strain for a variety of antibiotics, including penicillin and tetracycline (7).

The purpose of this work was to chemically characterize and increase our understanding of the flagellar hook proteins of *B. burgdorferi* and *Treponema denticola*. Whereas the FlgE hook proteins of other bacteria associate via non-covalent interactions, studies suggest spirochete FlgE proteins are covalently cross-linked (2, 8, 9). Characterizing the unique structure and biochemistry of the hook protein may allow for the production of FlgE cross-linking inhibitors, which in turn could lead to new treatment modalities for spirochete infections.

Medical importance of *T. denticola*

T. denticola resides in the oral cavity, and these anaerobic spirochetes are associated with poor dental health. Examples of dental problems include gingivitis, chronic peritonitis, and acute necrotizing ulcerative gingivitis (10-12). There is a positive correlation between the number of oral spirochetes (including *T. denticola*) located in the mouth and the severity of periodontal disease (13-20). *T. denticola* associates with both host cells and other bacteria (forming a biofilm) in order to cause disease. *T. denticola* is a member of the "red complex" along with *Porphyromonas gingivalis* and *Tannerella forsythia* (21). *T. denticola* and *P. gingivalis* co-inhabit deep pockets in subgingival plaque. Isolation of subgingival plaque from periodontal patients before and
after treatment revealed a synergistic relationship between \textit{T. denticola} and \textit{P. gingivalis} (22-27).

Medical importance of \textit{B. burgdorferi}

\textit{B. burgdorferi} is the causative agent of Lyme disease, which is the most common arthropod transmitted infection in the United States (28, 29). Hard body ticks of the genus \textit{Ixodes} serve as the vector; the specific species varies by geographical location. The deer tick, \textit{Ixodes scapularis}, transmits the disease in the northeastern United States. \textit{Ixodes pacificus} and \textit{Ixodes ricinus} are the carriers in the western United States and Europe, respectively (28). Ixodes ticks feed on a variety of mammals; rodents and migratory birds serve as the primary reservoirs of infection (29, 30).

The infection, which begins at the skin at the site of the tick bite, disseminates to several organs and organ systems. Infected individuals experience a variety of symptoms, and asymptomatic infection is common (31-33). The most commonly affected organs and tissues include the skin, heart, joints, and the nervous system (28, 34, 35). Approximately 75\% of infected individuals develop the classic Lyme associated bulls-eye rash, which is referred to as erythema migrans (36, 37).
Flagellar structure and motility

Enteric bacteria as a model for flagellar structure and motility

Figure 1.1: Flagellar components of S. enterica. This project has focused on the hook, which is indicated by the purple arrow. The yellow arrow is pointing to the filament or propeller, and the black bracket is highlighting the basal body motor. This figure is adapted from (38).

Flagellar composition

The flagellum is used by many bacterial species as a mode of motility and consists of three major parts: the basal body, the hook, and the filament (Figure 1.1, adapted from...
Flagellar structure, assembly, and regulation have been most extensively studied in *Salmonella enterica* serovar Typhimurium (here to referred to as *S. enterica*), and as a result, *S. enterica* serves as a model system. The inner most part embedded in the membrane is the basal body, which serves as an engine or motor. The largest part of the flagellum, which is composed of several thousand flagellin subunits, is the filament. The filament, which acts as a propeller, is on average 10 µm long in *S. enterica*. In between the basal body and the filament is the hook, which functions as a universal joint and is responsible for transmitting torque from the basal body motor to the filament. The hook is 55 nm long and consists of over 120 copies of a single protein, FlgE (38).

Structure of the flagellar hook

A combination of x-ray crystallography and cryo-electron microscopy (cryo-EM) have been used to examine the structure of the flagellar hook in *S. enterica* in fine detail (4, 39). As previously stated, the flagellar hook functions as a universal joint, transmitting torque from the basal body motor to the filament (40). Two hook associated proteins (HAP1 and HAP3 also called FlgL and FlgK) act as adaptors and are located between the hook and filament. The hook and filament share some properties; they are both hollow tubular structures that must be relatively rigid in order to perform their function (39).

The hook differs from the filament in that it must also be flexible (4, 39, 40). Crystallization of a fragment of *S. enterica* FlgE combined with cryo-EM provides insight
as to how the hook is able to be both strong and flexible (4, 39). Four domains (listed from inner core to outside) were identified in the hook D0, Dc, D1, and D2 (Figure 1.2). The residues composing the inner core (D0), where the least flexibility is required, are tightly packed and form a coiled coil of α-helices similar to the filament. The N-terminal and C-terminal regions of the primary sequence that compose the D0 domain of the hook are positioned differently (in relation to each other) than the N and C-terminal regions of the filament. The C-terminal α-helix is longer than the N-terminal helix, and both helices are angled. The angle of the helices and the gap between them allows the bending required for the hook to function as a joint (4). Figure 1.2, adapted from (4), shows the proposed structures of trimers of the hook and filament proteins.

Figure 1.2: Proposed structure of trimers of the flagellar hook (A) and filament (B) proteins. The hook and filament are both hollow, cylindrical structures that must be strong to perform their function. The hook must be flexible in addition to being strong. Differences in packing and orientation of the domains between the hook and filament permits the flexibility required by the hook (4).
Going from the inner to the outer layers of the hook, increasing flexibility is required because the outer domain has the greatest degree of extension/compression difference (4, 39). The Dc domain is cylindrically packed and forms a mesh with the outermost (D2) domain. The cylindrical packing and the formed mesh provide the hook with twisting stability (4). The loose packing of the outer two domains (D1 and D2) gives the hook flexibility. Figure 1.3 shows the cylindrical array and symmetry of the D2 domain.

The D1 domain is loosely packed in all directions, whereas the D2 domain contains strong contacts between residues of the 6-start helix. There are wide gaps between the 6-start helices of the D2 domain that allows flexibility while the residues among a particular helix are bound by strong interactions (Figure 1.3) (4, 39).

Evidence for the universal joint function of the hook is not limited to structural information obtained from crystallization studies. Genetic modifications paired with streptavidin binding were used to directly observe hook dynamics in *Echerichia coli*. Binding of straptavidin molecules to the hook increased stiffness and reduced hook flexibility. The hook was unable to function as a universal joint when flexibility was reduced. Cells that had stiffened hooks failed to form bundles and displayed atypical
swimming behavior. These results directly support the idea of the hook functioning as a universal joint (40).

Assembly of the S. enterica flagellum

The majority of flagellar subunits are located outside of the cell and therefore require a secretion mechanism as part of the assembly process. The majority of secreted flagellar proteins use a type three secretion system (T3SS). The flagellar secretion channel is a narrow 2.5 nm; therefore, the secreted peptides must be partially or completely unfolded during the secretion process (38).

Several proteins, both membrane bound and soluble, are involved in the secretion process. Membrane proteins involved in flagellar assembly are: FlhA, FlhB, FliF, FliO, FliP, FliQ, and FliR. First FliF, which forms the MS ring, becomes embedded in the membrane. Then other membrane proteins follow, using the MS ring as a base. The soluble proteins involved are: FliI, which is an ATPase, FliH, which is a negative regulator of the ATPase, and the chaperone FliJ. Together, the soluble protein members of the secretion process function to increase the efficiency of secretion (38).

Flagellar secretion occurs at a rapid rate of several thousand amino acids/second, which is too fast to be explained by ATP hydrolysis alone; therefore, there must be an additional energy source. Both flagellar secretion and rotation require the proton motive force. Flagellar secretion still occurs in the absence of ATP hydrolysis, but the process
is much slower. ATP hydrolysis, although dispensable for secretion, increases the efficiency of secretion (41, 42).

Transcriptional regulation of flagella genes and assembly in S. enterica

There are over 60 flagellar genes. These genes are categorized into three classes based on promoter type in the majority of flagellated bacteria, including *S. enterica*. These three gene classes form a hierarchy that is regulated at the transcriptional level. Class I is composed of the *flhDC* master operon. Class I activates the σ70 promoter of class II genes. Class II consists of genes that encode proteins that make up the hook basal body structure as well as the regulatory proteins FliA (σ28) and FlgM. FliA and FlgM regulate the switch from class II to class III; in addition, FliA and FlgM are also products of class III transcription (38).

Once the hook basal body is assembled, the σ28 promoters of the class III genes are transcribed (38). The interaction of the regulators FlgM and FliA is responsible for the switch from early (hook basal body) to late (flagellin) substrates. When FlgM is bound to FliA, genes that encode early substrates are transcribed because σ28 is unable to bind RNA polymerase (class II on, class III off). Once the hook reaches 55 nm in length, FlgM is secreted. Secretion of FlgM allows σ28 to bind RNA polymerase, and class III genes are transcribed (38).
Role of the hook in flagellar regulation

Assembly of the hook serves as major checkpoint in transcriptional regulation of flagellar assembly; proper hook length (55 nm for *S. enterica*) allows flagellar secretion to switch from early to late substrates and secretion of FlgM. FliK and FlhB are involved in hook length determination. FliK is secreted with early (rod/hook) substrates (43). FliK interacts with hook proteins and FlhB (44). Once the hook reaches the proper length of 55 nm, FlhB undergoes auto-cleavage between residues N269 and P270 (45). Both FlhB-FliK interaction and FlhB auto-cleavage are required for flagellar secretion to switch from early to late substrates (38, 46).

The *fliK* and *flhB* N269A (unable to undergo auto-cleavage) mutants have different phenotypes (46). *S. enterica* *fliK* mutants produce longer hooks (poly-hooks) than wild-type cells. Although hook growth does not stop at 55 nm in *fliK* cells, it does slow down. These results suggest that something in addition to FliK is involved in hook length determination (47). A large range of hook lengths (range does not peak at 55 nm) is produced by cleavage defective *flhB* mutants, and the *fliK/flhB* N269A double mutants have the same phenotype as *flhB* N269A mutants. Together these results indicate that FlhB cleavage is able to regulate hook length to a degree in the absence of FliK (46).

Several models of hook length regulation have been proposed. The data can all be explained by the ratio of FlgE/FliK being the determining factor of hook length. The simplest explanation is that FliK measures FlgE over time (temporal regulation). If FliK
makes more measurements over a period of time, the hook is shorter than 55 nm. In other words, hooks are shorter if one increases the amount of FliK (maintaining the same level of FlgE) or decreases the amount of FlgE (while maintaining the same level of FliK). Hook length is longer than 55 nm under the opposite condition: less FliK measurements over time (increasing the FlgE/FliK ratio) (46).

An exception to the norm: Flagellar regulation in *B. burgdorferi*

B. burgdorferi is unique in that flagellar protein synthesis is not regulated at the transcriptional level. The genome sequence of *B. burgdorferi* differs from the genomes of bacteria that use the transcriptional cascade of control described above in that there are no homologues of the regulatory genes *fliA* and *flgM*, and there are no σ^{28} consensus sequences. Rather all motility operons appear to be under σ^{70} control (48).

In addition to the promoter structure of the *B. burgdorferi* genome being unique, construction and analysis of motility mutants provides additional evidence that *B. burgdorferi* does not regulate its motility genes at the transcriptional level (2, 49-52). *B. burgdorferi* *flaB* (major flagellin) mutants had decreased levels of FlaA (minor flagellin), but the *flaA* mRNA transcript was not decreased (49). *B. burgdorferi* *flgE* mutants had decreased amounts of the flagellin proteins FlaA and FlaB as expected; however, protein levels of other class III products (chemotaxis proteins CheA2, CheY3, CheX, and CheW3) were unaffected. Additionally, the mRNA transcript of *flaA* and *flaB* of the *flgE* cells were transcribed at the same level as wild type, and there was no turnover of
FlaB protein. Together, these results indicate that the hook of *B. burgdorferi* is not a checkpoint of flagellar synthesis at the transcriptional level (2).

Construction of a deletion mutant and over-expression mutant of carbon storage regulator A (*csrA*) provides additional evidence of post-transcriptional regulation of *B. burgdorferi* flagellar synthesis. *csrA*[−] (deletion) and *csrA*⁺ (over expression) mutants had opposite effects on FlaB protein levels and flagella morphology. *csrA*[−] cells had 4x the amount of FlaB protein as wild-type cells, and *csrA*⁺ cells had 75% less FlaB protein than wild-type cells. Neither mutation affected the *flaB* mRNA transcript level. *csrA*[−] produced flagellar filaments that were longer than wild-type filaments, and the flagellar ribbons interdigitated with one another and wrapped around the cell more tightly than in wild-type cells. The motility of *csrA*[−] was indistinguishable from the motility of wild-type cells. On the other hand, cells over-expressing *csrA* (*csrA*⁺) had shorter flagella and less flagella per cell than wild-type cells and were non-motile. Results of electrophoretic mobility shift assays and qRT-PCR demonstrated that CsrA negatively regulated flagellar synthesis by inhibiting FlaB translation (50).

Structure of periplasmic flagella of spirochetes and how spirochetes swim

Spirochete motility is unique compared to the well-studied model of *S. enterica* motility. The sub-terminally attached flagella are not externally located; rather, the flagella reside in the periplasmic space (periplasmic flagella), between the outer membrane sheath and the protoplasmic cell cylinder, which makes the motility of spirochetes more complicated than their externally flagellated counterparts (3). *S. enterica* has two modes
of swimming (runs and tumbles), whereas spirochetes have three modes: run, flex, and reverse (3). When both flagellar ribbons are rotating the same direction (clockwise or counter clockwise as viewed along the flagella from its distal end to where it inserts at the cell end), a spirochete tumbles or flexes. Running occurs when the two ribbons are rotating in opposite directions, and the direction of spirochete movement depends upon which ribbon is rotating counter clockwise. As a result, in order to reverse, the direction of rotation of both bundles must be switched (3) (Figure 1.4).

Periplasmic flagella influence cell structure

The periplasmic flagella of spirochetes influence cell structure in addition to providing motility. The periplasmic flagella have the most extreme effect on the morphology of *B. burgdorferi*. In *B. burgdorferi*, there are 7-11 flagella in each ribbon, and the two ribbons overlap in the middle of the cell (50, 53). Wild-type cells form a flat wave, whereas, flaB−
mutants do not produce flagella and are rod-shaped (54, 55). The periplasmic flagella also influence the cell morphology of the helical spirochetes *T. denticola* (56) and *Treponema phagedenis* (57). In *T. denticola* there are two periplasmic flagella located at each end of the cell that overlap in the middle. Wild-type cells often have a twisted, irregular shape (Some cells were right handed helices) but mutants that lack flagella fail to form the twisted-like morphology (56). Unlike *B. burgdorferi* and *T. denticola*, the periplasmic flagella of *T. phagedenis* do not overlap in the middle. As a result, the shape at the ends of the cell (as opposed to the shape of the entire cell) is changed to accommodate the periplasmic flagella (57).

Another difference between spirochete and *S. enterica* flagella is the presence of two types of filament proteins: FlaA and FlaB. The minor flagellin protein FlaA forms a sheath, and the major flagellin protein makes up the core (3, 49, 58-60). The FlaB proteins share sequence homology with FliC of *S. enterica* and other flagellin proteins (61, 62). In addition to spirochetes having multiple types of filament proteins, several spirochetes including *Treponema* and *Brachyspira* have three FlaB proteins (63, 64); however, *B. burgdorferi* only has one FlaB protein (55). Construction of mutants in *Brachyspira hyodysenteriae* of individual (63) and multiple (64) flagellin genes has been informative regarding the function of the individual proteins. *B. hyodysenteria* assembles flagella and continues to be motile when any of the flagellin genes are mutated, but this motility differs from the motility of wild-type cells. Swarm plate assays and velocity determinations via computerized cell tracking demonstrated that flagellin mutants were less motile than wild-type cells (63, 64). Dark field microscopy was used to examine
periplasmic flagella structure. Specifically, helix pitch and diameter were measured and handedness of the helix determined. The structure was only significantly changed in one single mutant, the \textit{flaA}^{-} mutant. These studies have found that \textit{B. hyodysenteria} FlaA forms a sheath around the FlaB core and influences helical shape (63).

Construction of double mutants demonstrated that the individual filament proteins do not equally contribute to motility. Specifically, FlaB1 and FlaB2 had a larger impact on motility than FlaB3, and there is some redundancy in the function of FlaB1 and FlaB2. The \textit{flaB1}flaB2 double mutant, which produced hollow tubes of FlaA with no FlaB core, was the only mutant that was completely non-motile. Single mutants of either \textit{flaB1}- or \textit{flaB2}- were partially motile (64). In summary, spirochetes have multiple filament proteins, and these proteins contribute to flagellar morphology and motility.

Additionally, spirochetes swim faster in highly viscous, gel-like medium than in low-viscosity medium; this is the opposite pattern of what is observed in most bacteria containing external flagella (3, 55, 65-67). Both the unique structure and the ability of these organisms to swim in viscous gel-like environments are likely to be critical for the disease process. Recent real time intravital imaging of \textit{B. burgdorferi} combined with use of gelatin matrices suggests that the ability to swim in viscous environments is important for the disease process (68).
Motility as a virulence factor of spirochetes

Motility and periodontal disease

T. denticola, like the majority of spirochetes, is invasive and motile (10, 11, 69, 70). Analysis of motility (*flgE*) and chemotaxis (*cheA, dmc*) mutants demonstrated that both motility and chemotaxis are used by *T. denticola* in order to penetrate tissue layers *in vitro*. Non-motile *flgE* mutants were not able to penetrate an oral epithelial cell layer. Mutants that were chemotaxis deficient and completely motile penetrated the tissue but had decreased penetration of the oral epithelial cell layer as compared to wild-type cells (71). Additionally, motility has been implicated in the ability of *T. denticola* to evade the host response. Peritoneal macrophages were able to uptake more *flgE* cells than wild type cells as measured by immunofluorescence and real time PCR (72).

Motility and Lyme disease

Intravital microscopy has been used to observe green fluorescent protein labeled *B. burgdorferi* swimming in the infected tissues of mice. *B. burgdorferi* would interact with and bind to the vascular endothelium, and migration through the endothelium required motility (73, 74). Analysis of non-motile mutants provides additional evidence that motility is required for *B. burgdorferi* infectivity. For example, *flaB* mutants are non-motile and avirulent (75). Also, *fliG1* mutants were unable to translate in viscous media and were non-infectious in mice (76). Recently, chemotaxis has been shown to be essential for *B. burgdorferi* infectivity in addition to motility. Mutants of the gene
encoding the chemotaxis histidine kinase (cheA2) were unable to cause disease in mice (77).

Covalent bonding of peptides in microorganisms

Cross-linking is defined as when one macromolecule is covalently bonded to another. Protein-protein cross-linking among bacterial proteins is relatively rare. The two most studied examples are phage head proteins (e.g. lambda phage HK97), and Gram-positive bacteria pili proteins, including those from *Streptococcus pyogenes* and *Corynebacterium diptheriae* (78-80). Additionally, cross-linking has been identified in *Bacillus* spore coat proteins (81, 82). Protein-protein cross-linking brings considerable strength to the final structure; cross-linking protects proteins from proteolysis and mechanical and chemical stresses. In both bacteriophage HK97 and *Streptococcus pyogenes*, cross-linking has been shown to result from the formation of an amide isopeptide bond joining lysine (K) to asparagine (N) residues between proteins (78, 83, 84). Additionally, in Gram (+) pili, an isopeptide bond occurs between K and threonine (T) residues (1). Depending on the system, cross-linking can occur auto-catalytically, or in some cases is trans enzyme catalyzed (5, 78).

Cross-linking of bacteriophage HK97 head proteins

HK97 belongs to the same class as the well-studied *Escherichia coli* phage lambda; HK97 is a temperate double stranded DNA containing *E. coli* phage (85). Double
stranded DNA phage heads undergo expansion prior to DNA packaging. Expansion introduces significant physical pressure to the head proteins, and as a result double stranded DNA phages have adopted a variety of strategies for coping with this stress. For example, lambda uses the auxiliary protein gpD to aid in stability (86). Unlike lambda, HK97 does not utilize accessory proteins for head stability; instead the head proteins are covalently bonded to one another in a form that resembles the chainmail worn by medieval knights (87).

HK97 heads are composed of over 400 covalent cross-links; these cross-links are all composed of intermolecular isopeptide bonds between a K residue of one subunit and an N residue of another subunit (83, 84, 88). Cross-linking of head proteins occurs in vitro as well as in vivo, and cross-linking does not require the addition of co-factors or enzymes (83). Mutational analysis confirmed that the mechanism of intermolecular isopeptide formation was autocatalytic. Several amino acid substitutions were constructed for glutamic acid (E) residue E363. These mutants containing the amino acid substitutions varied in their ability to cross-link, and none of the mutants were as efficient as the wild type. These results confirmed that residue E363 is responsible for catalyzing the cross-linking reaction shown below (5).
Based on x-ray modeling and mutagenesis studies, the autocatalytic mechanism of intermolecular isopeptide formation was deciphered. During head expansion, the three residues required for cross-linking (K169, N356, and E363) are brought into close proximity within a hydrophobic pocket. The surrounding hydrophobic residues promote residue neutrality; it is energetically favorable for E363 to act as a base, removing a proton from K169. When K169 is in an uncharged state, the nitrogen is able to act as a nucleophile, attacking the carbonyl carbon of N356. The end result is an isopeptide bond between K169 and N356 with the loss of ammonia (5) (Figure 1.5).

Cross-linking of Gram positive bacteria pili proteins

Pili are external bacterial appendages that facilitate adhesion to host molecules and are involved in gliding motility in Gram-negative and Gram-positive bacteria. The carefully organized covalently cross-linked pili of Gram-positive bacteria are extremely narrow (2
20 nm thick) and over a hundred units long. The covalent bonding of pili (Spa proteins) is composed of intramolecular and intermolecular isopeptide bonds (89).

The intramolecular isopeptide bonds are formed by an autocatalytic mechanism that is similar to the autocatalysis of HK97 head proteins (5, 78). In the case of pili, the reaction can be catalyzed by either a aspartic acid (D) or glutamic acid (E) residue (78, 89). Following extraction of a proton from the side group of K, the autocatalytic mechanism of pili undergoes the same process of isopeptide formation as the HK97 head proteins, and the end result is a K-N isopeptide (5, 78).

The long chains of covalently cross-linked Spa proteins (intermolecular isopeptide bonds) that make up the pili are assembled by sortases, which are cysteine (C) residue specific transpeptidases (89). In sortase mediated cross-linking, the pili function as both a substrate and nucleophile (1). Sortases contain the active site motif of TLXTC and recognize the substrate motif of I/LCP/AXTG. The sortase C of the active site cleaves the T-G bond of the pili substrate. This cleavage results in an acyl enzyme (thioester) intermediate. Nucleophilic attack by a K residue of another pili protein resolves the thioester and displaces the sortase. The end result is a K-T isopeptide bond between Spa proteins (1, 89) (Figure 1.6).
Cross-linking of Bacillus spore proteins

Sporulation is a strategy used by gram-positive bacteria, members of the Bacillus and Clostridium genre, to survive harsh conditions (ie lack of nutrition availability). The spore coat contains over 40 proteins, and several of these proteins have been observed to cross-link in Bacillus species (81, 82, 90, 91). Cross-linking of spore proteins has not been characterized as extensively as that of HK-97 head proteins and pili proteins.

Tgl, a transglutaminase, has been shown to be required for cross-linking of the spore protein GerQ (81, 82), and mutational analyses have shown that the active site of Tgl is required for GerQ cross-linking (82). Transglutaminases form covalent bonds between K and glutamine (Q) residues, and mutational analysis showed that the three N-terminal K residues (K2, K4, K5) of GerQ are required for Tgl mediated cross-linking (90). In
addition to GerQ, Tgl was shown to catalyze cross-linking of three unidentified spore polypeptides (82). The Cot spore proteins have also been observed to cross-link. Unlike GerQ cross-linking, transglutaminase is not required, and K-Q residues do not make up the cross-link. Instead, the tyrosine rich proteins contain di-tyrosine cross-links (82).

To summarize, cross-linking of peptides can involve different residues, and the mechanism can be either enzyme dependent or independent. The advantage of being protected from proteolysis and harsh conditions is shared among the different types of cross-links.

Methodology to detecting and deciphering cross-links

Having described what cross-linking is, why it occurs, and how it occurs, I will now explain how cross-linking is identified. The idea of covalently bound peptides in the microbial world began with the observation of high molecular weight complexes (HMWC’s) in polyacrylamide gels. In the case of phage head and pili proteins, HMWC’s are detected by SDS-PAGE after extensive boiling. These masses are considerably larger than the expected monomer, and may not even enter a 7% acrylamide running gel (79, 88). Furthermore, these masses are not readily dissociated into monomers by treatments that disrupt non-convalent bonds; these reactions include incubations with guanidine hydrochloride (GuHCl), urea, and formic acid. To determine if the cross-linking is mediated by disulfide bonds, dithiothreitol (DTT) and mercaptoethanol (BME) are used to disassociate such bonds (79, 88). Confirmation of cross-linking is based on
identifying the specific amino acids involved, and determining the nature of the cross-linked bond. Peptide digestion, mapping and mass spectrometry have been used to identify the residues involved in both HK97 and Gram-positive pili proteins (78, 83, 88). Site-directed mutagenesis is used for confirmation of the residues involved (5, 78, 84).

Indirect evidence of cross-linking in spirochete flagella

Construction of $flgE$ mutants provided the initial evidence that the flagellar hook proteins of spirochetes are cross-linked. Immunoblot analysis of whole cell lysates from wild-type, $flgE^-$ mutants and $flgE^+$ (complemented cells) provided surprising results. When lysates or purified flagella from other bacteria such as *S. enterica* are run on SDS-PAGE and probed with FlgE antibody, bands are present at the molecular weight of monomeric FlgE (92). In the spirochetes *B. burgdorferi*, *T. denticola*, *T. pallidum*, and *T. phagedenis* a HMWC is observed in addition to the monomeric band (2, 8, 9, 93) (Figures 1.7).
Figure 1.7: Top: Western blot of *B. burgdorferi* cell lysates using polyclonal FlgE antibody (2). Bottom: Western blot analysis of *T. denticola* cell lysates using FlgE antibody.
The HMWC is present in wild-type and complemented cells, but is absent in \textit{flgE} mutants (2, 8, 9, 93) (Figure 1.7). The HMWC is present in purified flagella and hook basal bodies in addition to whole cell lysates (2, 93). Additionally, we have confirmed that the HMWC of \textit{B. burgdorferi} and \textit{T. denticola} is predominantly FlgE by MS (K.A. Miller, M.R. Miller, and N.W. Charon, submitted).

\section*{Research Objectives}

The long-term goal of this project is to better understand \textit{B. burgdorferi} and \textit{T. denticola} motility as it relates to pathogenesis. Cross-linking of bacterial flagella proteins has not been examined previously. Our goals are to thoroughly characterize the cross-linking in the \textit{B. burgdorferi} and \textit{T. denticola} hook proteins (FlgE). We anticipate that once we have this information, new drugs could be developed to inhibit this cross-linking, which we anticipate will severely affect the spirochetes’ motility and virulence capability. Thus, the proposed project’s long-term goal is centered on developing new drug treatments for Lyme disease as well as other spirochetal diseases, including syphilis.

The objectives of this project are to analyze FlgE cross-linking in \textit{B. burgdorferi} and \textit{T. denticola}. Specifically, we have focused on identifying the amino acid residues responsible for the covalent bonding between the FlgE subunits and characterizing the cross-linking mechanism. These results are likely to be relevant to other spirochetes including \textit{Treponema pallidum}.
Research Hypothesis

The flagellar hook proteins (FlgE) of *B. burgdorferi* and *T. denticola* are covalently cross-linked to each other.

References

36. **Smith RP, Schoen RT, Rahn DW, Sikand VK, Nowakowski J, Parenti DL, Holman MS, Persing DH, Steere AC.** 2002. Clinical characteristics and

50. **Sze CW, Morado DR, Liu J, Charon NW, Xu H, Li C.** 2011. Carbon storage regulator A (CsrA(Bb)) is a repressor of *Borrelia burgdorferi* flagellin protein FlaB. Molecular microbiology **82**:851-864.

52. **Ge Y, Old IG, Girons IS, Charon NW.** 1997. The *flgK* motility operon of *Borrelia burgdorferi* is initiated by a sigma 70-like promoter. Microbiology **143** (Pt 5):1681-1690.

60. **Limberger RJ, Charon NW.** 1986. *Treponema phagedenis* has at least two proteins residing together on its periplasmic flagella. Journal of bacteriology **166**:105-112.

Chapter 2: Initial characterization of the FlgE hook high molecular weight complex of *Borrelia burgdorferi*

Kelly A. Miller¹, Md. A. Motaleb², Jun Liu³, Bo Hu³, Melissa J. Caimano⁴, Michael R. Miller⁵, Nyles W. Charon¹*

¹ Department of Microbiology, Immunology, and Cell Biology Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States of America

² Department of Microbiology and Immunology, East Carolina University, Greenville, NC, United States of America

³ Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America.

⁴ Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, United States of America

⁵ Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States of America.

*E-mail: ncharon@hsc.wvu.edu; phone 304-293-4170

This work was submitted for publication in PLOS One.
Abstract

The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (~ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.
Introduction

Spirochetes are a ubiquitous monophyletic motile phylum of bacteria, with many species causing disease [1]. These organisms, which are either helical or flat-waves, have a unique structure, as the organelles responsible for motility, referred to as the periplasmic flagella (PFs), reside between the outer membrane and protoplasmic cell cylinder. Each PF is attached to one cell end and extends towards the opposite end of the cell. Rotation of these relatively rigid organelles generates perturbations and wave propagation along the length of the relatively flexible cell cylinder such that the spirochetes efficiently translate even in viscous gel-like material. Thus, the PFs need to exert substantial force on the cell cylinder to generate these backward moving waves [2-4].

Spirochetes also have several unique attributes with respect to their PFs. Each PF consists of a membrane imbedded motor where the basal body complex resides, a hook region that serves as universal joint, and the filament [2,3]. Thus, in many respects, the PF is similar in structure to the external flagellum of other bacteria. In contrast to the flagellum filament of most other bacteria, the PF filament consists of multiple protein species with a protein sheath surrounding the entire or part of the filament core. For example, *Treponema* and *Brachyspira* species have three different filament core proteins referred to as FlaB1, FlaB2, and FlaB3, and a sheath protein referred to as FlaA [2,3]. *Borrelia burgdorferi* has only one core protein referred to as FlaB and a sheath protein referred to as FlaA. Mutants that lack any of these proteins are deficient in motility [5,6]. In *B. burgdorferi*, mutants that lack FlaB are completely
deficient in PFs, are non-motile, and are non-infectious [7,8]. The PF motor is also unique. Recent cryoelectron microscopy (cryo-EM) results suggest a specialized collar is associated with the motor in the vicinity of the peptidoglycan layer, but the function of the collar is presently unknown [9,10]. In addition, its cytoplasmic C-ring complex is considerably larger than that of other bacteria. The larger C-ring complex in spirochetes is believed to enable the PFs to exert more torque such that the PFs promote wave propagation along the cell length [10].

Another unique attribute of spirochetes, which is the focus of this report, is their flagellar hook. The hook is a hollow tubular structure, approximately 61 nm long in B. burgdorferi, and is composed of at least 120 FlgE proteins [11]. FlgE is a well conserved protein among bacteria. Several reports indicate that FlgE of spirochetes form a stable, high molecular weight complex (HMWC) that is unique. Thus, western blots of whole cell lysates and in some cases purified PFs of B. burgdorferi, Treponema denticola, Treponema pallidum, and Treponema phagedenis probed with polyclonal FlgE antibodies react with a protein(s) located near the top of a gel, sometimes even in the stacking gel, with a mass greater than 250 kDa [11-14]. This HMWC is considerably larger than the monomer (~50 kDa) [11,13-15]. In contrast, in bacteria with external flagella, western blots probed with FlgE antibody show reactivity exclusively at the molecular weight of monomeric FlgE [16,17]. The ability of spirochete FlgE to form a HMWC is similar to electrophoretic patterns found with covalent cross-linked proteins. For example, the head proteins of phage HK97 that infects Escherichia coli, and the pili proteins of Gram positive bacteria such as Streptococcus pyogenes and Corynebacterium diptheriae also form HMWCs when analyzed by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [18,19]. In addition, HMWCs from spirochete FlgE, HK97, and Gram positive pili are stable to a variety of harsh treatments and chemical agents, including boiling, guanidine hydrochloride, and 8M urea [11,14,18,19]. Accordingly, we and others hypothesize that the FlgE HMWC of *B. burgdorferi* and other spirochetes is attributed to covalent cross-linking among its individual proteins, which may be essential for optimum motility and virulence [11,14].

The characterization of the spirochete FlgE HMWC has been limited. Because FlgE is normally in small amounts (less than 9 µg per liter of cells of *B. burgdorferi*), chemical characterization is difficult. Several basic questions arise concerning these complexes. Are the HMWCs formed at all phases of *B. burgdorferi* in vitro growth, and are they formed *in vivo* in an infected animal? Are HMWCs stable to formic acid as are the head proteins of HK97 and pili of Gram positive bacteria [18,19]? Is there more than one protein, such as another basal body protein being part of the HMWC? Does the HMWC consist of a polymer of the complete FlgE protein, or is there truncation of either of its ends? In this communication, using the Lyme disease spirochete *B. burgdorferi* as a model that forms the FlgE HMWC, we answer the above questions.

Materials and methods

Bacterial strains and growth conditions. High passage, avirulent *B. burgdorferi* strain B31A [20], and low passage virulent strain B31A3 [21], were grown at 33°C (except as noted) in the presence of 3% carbon dioxide in BSKII growth medium [7]. Cell counts were determined using flow cytometry as previously described [22]. These strains were originally obtained from P. Rosa, Rocky Mountain Laboratories, MT. The virulent low
passage strain B31MI [23] was grown \textit{in vitro} at 23°C, 37°C, and \textit{in vivo} in dialysis membrane chambers (DMCs) in Sprague-Dawley rats [24]. The non-motile \textit{flgE} insertion mutant SC-E1 derived from strain B31A was previously described [11]. For \textit{in vivo} growth, sterilized dialysis membranes with a molecular weight cut-off of 8000 Da were filled with \textasciitilde 9 ml BSKII medium containing late logarithmic phase \textit{B. burgdorferi} strain B31MI diluted to a starting density of 3000 spirochetes/ml. DMCs were aseptically implanted into the peritoneal cavities of female Sprague Dawley rats, and then harvested 14 days post-implantation as previously described [24]. \textit{B. burgdorferi} recombinant FlgE (rFlgE) was expressed in \textit{E. coli} BL21 cells grown at 37°C in Luria-Bertani broth containing 100 \textmu g/ml ampicillin and purified as previously described [11].

\textbf{Construction of the \textit{\textDelta fliK1} mutant.} The \textit{fliK} mutant, \textit{\textDelta fliK1}, was derived from strain B31A; it was constructed as follows: The \textit{fliK} gene (gene locus \textit{bb0285}; 1179 base pairs) is located in the large \textit{flgB} operon consisting of 26 genes [23,25]. This gene overlaps with the upstream \textit{flgD} gene by 14 base pairs and is separated from the downstream \textit{bb0286} gene by eight base pairs. \textit{fliK} was inactivated by replacing its coding sequence using overlapping PCR with an \textit{aadA} streptomycin/spectinomycin resistance coding cassette that results in non-polar insertions [26]. Specifically, PCR was used to amplify three regions. First, each DNA region was amplified separately using primer pairs P1-P2 (5'-flanking DNA, \textit{flgD-flgE}), P3-P4 (\textit{aadA} coding sequence), and P5-P6 (3'-flanking DNA, \textit{bb0286-bb0287}, Table 1). Second, a PCR product was obtained using primers P1-P4 with the purified DNA products \textit{flgD-flgE} and \textit{aadA} as templates. Third, the desired PCR product was obtained using primers P1-P6 with the
purified DNA products flgD-flgE-aadA and bb0286-bb0287 serving as templates. The final 2836 flgD-flgE-aadA-bb0286-bb0287 base pair PCR product was gel purified and cloned into the pGEM-T Easy vector (Promega Inc.) to yield the fliK:aadA-pGEM plasmid. The integrity of the fliK inactivation plasmid was confirmed by PCR and restriction mapping. A PCR-amplified linear DNA product containing the fliK inactivation region was electroporated into B31A competent cells [20]. The electroporated cells were spread on semisolid BSKII medium containing 80 µg/ml streptomycin. Resistant clones were picked and analyzed by PCR using primers P1-P6 to confirm deletion of fliK. One clone, ΔfliK1, was found to have the desired mutation and further characterized.

TABLE 2.1. Primers used to generate the ΔfliK mutant*

<table>
<thead>
<tr>
<th>Primer #</th>
<th>Name</th>
<th>Direction</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FliK KO F</td>
<td>Forward</td>
<td>agattacaagcaaaagtaac</td>
</tr>
<tr>
<td>2</td>
<td>FliK-Str-KO-Part 2-F</td>
<td>Reverse</td>
<td>ggtagtccgcacaataagaatatcttagtagata</td>
</tr>
<tr>
<td>3</td>
<td>FliK-Strep-R</td>
<td>Forward</td>
<td>catgtaagaaaattcttttagcttggaaccctctttg</td>
</tr>
<tr>
<td>4</td>
<td>FliK-Str-F</td>
<td>Reverse</td>
<td>tgtgtgtgctagttgaaagggagtggtcgccga</td>
</tr>
<tr>
<td>5</td>
<td>FliK-Str-KO-Part 1-F</td>
<td>Forward</td>
<td>caccgctccctcatatacactacttcatagaact</td>
</tr>
<tr>
<td>6</td>
<td>FliK KO R2</td>
<td>Reverse</td>
<td>tagaaccctacctttcagtaagctagc</td>
</tr>
</tbody>
</table>

*Underlined sequences indicate overlapping base pairs.

SDS-PAGE and western blot analysis. SDS-PAGE and immuno blotting were conducted using standard techniques [11,27]. Molecular weight markers were obtained from Bio-Rad (cat no. 161-0376). All samples except as noted were boiled in sample buffer for at least 5 min. Samples were electrophoresed in 8% polyacrylamide gels, and silver stained with Protea Biosciences, Inc. silver staining kit or with Bio-rad Sypro protein gel stain. For western blotting, 1 µg total protein (unless noted otherwise), as determined by the Bradford protein assay (Bio-Rad), was subjected to SDS-PAGE and transferred onto polyvinylidene difluoride (PVDF) membranes. Immunoblots were
probed with rabbit polyclonal antibody directed against *B. burgdorferi* FlgE [11], and secondary horse radish peroxidase (HRP)-labeled polyclonal donkey anti-rabbit antibodies obtained from GE Healthcare. FlaB was detected using monoclonal antibody H9724 to *B. burgdorferi* FlaB as previously described [7,28]. An enhanced chemiluminescent detection system was used to assay for reactivity (Pierce). Relative amounts of FlgE were determined by densitometry. After film development, films were scanned, and relative band intensities were determined using Image Quant software (GE Healthcare Life Sciences).

PFs and polyhook isolation. The PF isolation method of Sal *et al.* [11] was modified to increase the yield of the FlgE HMWC and to purify polyhooks. One liter of late logarithmic phase wild-type or Δ*fliK1* mutant cells at a density of 1.5 x 10^8 cells/ml were divided into four 250 ml portions. Cells from each portion were harvested by centrifugation (8,000 x g, 20 min, 4°C), and the cell pellet was suspended in 28 ml phosphate buffered saline (PBS) and centrifuged (8,000 x g, 15 min, 4°C). After suspending each pellet in 30 ml 0.15 M Tris, pH 6.8, the cells were centrifuged as indicated above, then suspended in 15 ml 0.15 M Tris, pH 6.8. The cell suspension was stirred for 10 min (25°C), and Triton X-100 was added (20% stock in sterile water) to a 2% final concentration. The cell suspension was stirred for 30-60 min at 23°C, or until the outer membranes were disrupted as observed by darkfield microscopy. Such spirochetes appeared thinner after treatment. Darkfield microscopy was carried out as previously described [29]. Mutanolysin (Sigma cat no M9901-50KU) was slowly added from a 200 µg/ml stock in H₂O to 20 µg/ml final concentration and stirred (2 hr., 23°C,
followed by overnight, 4°C). Cells were completely lysed at this stage as revealed by darkfield microscopy. MgSO₄ was added to a final concentration of 1.7 mM followed by stirring for 10 min at 23°C. The suspension was centrifuged at 17,000 x g for 15 min at 4°C to remove cell debris. The supernatant was carefully removed and 20% polyethylene glycol (PEG 8000) in 1 M NaCl was added to 2% final concentration and thoroughly mixed. After incubation on ice for 30 min, the solution was centrifuged (27,000 xg, 30 min, 4°C), and the supernatant fluid was discarded. The PFs or polyhooks were resuspended in 0.1 M KCl, 0.5 M sucrose, 0.1% Triton X-100, 50 mM sodium bicarbonate, pH 11 for 1 hour at 23°C [30], and the final products were recovered by centrifugation at 80,000 x g, 45 min, 4°C. The isolated PFs or polyhooks were pooled, resuspended in a small volume of water (~1 ml), and stored at 4°C with 0.2% sodium azide.

Electron microscopy. Cryo-electron microscopy (Cryo-EM) was used to localize polyhooks within cells, and to test for the integrity of isolated PFs and polyhooks [9]. Briefly, samples were mixed with 15 nm gold clusters for size reference and adsorbed on fresh carbon grids. Grids containing samples were frozen rapidly and stored in liquid ethane at -180°C. Imaging was conducted at 300 kV using a Polara G2 electron microscope (FEI company) connected to a 16 megapixel charged coupled device camera (Tvips GmbH, Germany).
Mass spectrometry (MS) analysis. For mass spectrometry analysis (Protea Biosciences, Inc.), periplasmic or polyhook samples were subjected to SDS-PAGE, and the gels were silver- or Sypro-stained, followed by in-gel digestion with trypsin. Gel bands of interest were excised, washed with 150 mM ammonium bicarbonate and acetonitrile, and lyophilized. The dried gel bands were treated with dithiothreitol and iodoacetamide followed by digestion with 12.5 ng/µl trypsin. The digested peptides were analyzed by LC-ESI MS using a QTrap5500 (AB Sciex Toronto, Canada). Peptides were separated at 35°C on a Kinetex 100 x 2.1 mm C18 column on a Shimadzu LC-20AD HPLC (Tokyo, Japan) using a 120-minute gradient. The mass range acquired (m/z) was 100-1000, and the three most intense multiply charged ions with ion intensities above 50,000 in each MS scan were subjected to MS/MS. The MS/MS data were searched for matches to protein databases using ABI Protein Pilot software 3.0. Only those peptides that were identified with > 95% confidence were considered.

RESULTS AND DISCUSSION

FlgE HMWC formation during different phases of growth. We first tested if the HMWC was synthesized at all phases of growth. Conceivably, cross-linking could occur in a specific growth phase analogous to, for example, Escherichia coli modifying its preformed unsaturated fatty acids by cyclopropanation primarily in stationary phase [31]. Furthermore, specific σS-dependent genes have been shown to be upregulated in B. burgdorferi in stationary phase and during growth under specific conditions [32-34]. Accordingly, samples were taken throughout the in vitro growth cycle of B. burgdorferi,
the cells were lysed, and then tested for the HMWC by western blot (Figure 2.1 A, B). We found that the HMWC was present in all phases of growth. Trace amounts of the monomer were detected in all phases of growth. No differences were seen in the HMWC formation throughout the cycle compared to the monomer. These results suggest that FlgE HMWC formation is not growth phase dependent.

Figure 2.1. Synthesis of the HMWC under different phases of growth at 33°C. (A) Growth curve of *B. burgdorferi* B31A and (B) accompanying immunoblots of whole cell lysates probed with anti-FlgE, with samples taken at designated time points.

FlgE HMWC formation at different temperatures and growth in vivo. Both the tick and mammal are the main habitats of *B. burgdorferi* in nature [34-36], and protein expression markedly varies in these two hosts. [34,36]. In addition, many of the genes
that are encoded by the 21 circular and linear plasmids present in *B. burgdorferi* are differentially expressed in the tick and mammal [35]. We tested whether HMWC formation occurred under conditions that mimic growth in the tick (23°C) and the mammal (37°C). In these experiments, we used a strain of *B. burgdorferi* which was virulent (B31M1), as such strains, in contrast to avirulent strains, show major differences in protein profiles when cultured under these two temperatures [37]. We found that the B31MI strain grown *in vitro* at 23°C and at 37°C formed the HMWC (Fig. 2.2). Similar results were found with cloned virulent strain B31A3 (K. Miller and N. Charon, not shown). These results indicate that the HMWC was synthesized under conditions that mimic growth in the tick and mammal. In addition, the results also indicate that the change in the protein profile that accompanies growth under these two conditions does not influence HMWC formation. We also asked if HMWC formation was a result of *in vitro* growth. *B. burgdorferi* cells grown *in vivo* are known to markedly change their transcriptional and protein profile compared to cells grown *in vitro* [24,34-36]; conceivably, the HMWC may not form in the mammal. Accordingly, we tested if the HMWC is synthesized *in vivo* by implanting B31MI cells in DMC chambers in rats [24]. The cells were harvested at 14 days, centrifuged, and analyzed as before using immunoblotting. We found that the FlgE HMWC was present in cells grown *in vivo* in the DMCs similar to cells grown *in vitro* (Fig. 2.2). In sum, the FlgE HMWC was synthesized in *B. burgdorferi* in all *in vitro* growth conditions tested and also *in vivo*.
Optimization of PFs and FlgE isolation. We began characterization of the HMWC. In our initial studies of *B. burgdorferi* FlgE, we used a method of lysing cells with myristate followed by lysozyme to purify PFs [11]. We found that this method was inadequate for chemical analysis of the HMWC (the yield was less than 1 µg, which is estimated to be less than 10% of the total FlgE protein in a liter of cells). Several modifications were made for optimization. These included substituting Triton X-100 for myristate, and mutanolysin for lysozyme. Triton X-100 has been shown to successfully remove the outer membranes of several spirochete species, including *T. phagedenis* [38], *T. pallidum* [39], *T. denticola* [40], and *B. burgdorferi* [41]. Although mutanolysin and lysozyme both hydrolyze the β-N-acetylmuramyl- (1→4)- N-acetylglucosamine linkage of the bacterial cell wall polymer peptidoglycan-polysaccharide, their activities are differentially effected by peptidoglycan modifications. Specifically, N- and O-acetylation inhibit lysozyme activity in a concentration dependent manner; however, mutanolysin maintains its effectiveness in the presence of these modifications [42-46]. We found that these changes increased the yield of the HMWC greater than three-fold (Fig. 2.3). We
also found that isolated PFs were often contaminated with lipid material as seen in cryo-EM. Using an alkaline wash as done for S. enterica flagella [30], isolated PFs were free of the lipid contaminating material (Fig. 2.4 A,B). The total yield of PFs from a liter of cells varied from 2-4 mg.

Figure 2.3. PF isolation using lysozyme or mutanolysin. Immunoblots probed with anti-FlgE of three independent PF isolation preparations from strain B31A using either the lysozyme or mutanolysin procedure. Approximately 0.5 µg of protein were loaded in each lane.
Figure 2.4. Cryo-EM image of PFs, $\Delta fliK$ mutant, and polyhooks. (A) PFs isolated from wild-type *B. burgdorferi* B31A. (B) The hook basal body structure that is boxed in A is enlarged in B and accompanying structures identified. (C, D) The $\Delta fliK$ mutant with three flagellar polyhooks (50 – 150 nm in length) localized in the periplasmic space between the outer membrane (OM) and protoplasmic cell cylinder (PC). (D) an enlargement of (C). (E) Polyhooks isolated from the $\Delta fliK$ mutant using the mutanolysin procedure.

To begin characterization of the HMWC, we purified PFs, and subjected the fraction obtained to formic acid treatment. Stability to formic acid is the hallmark method used to show protein crosslinking of Gram positive pili [19]. As can be seen in
figure 2.5A, boiling for 15 minutes with or without 88% formic acid failed to disrupt the HMWC. Additionally, the FlgE HMWC was observed when the samples were treated with formic acid without boiling, indicating that the HMWC is not an artifact produced by boiling (Fig. 2.5 A). These results support the conclusion that the HMWC is the result of covalent protein-protein cross-linking.

Figure 2.5. Immunoblot analysis of PFs and ΔfliK mutant. (A) Isolated PFs were treated with formic acid for 2 hrs at room temperature (lane 2) or 100°C for 15 minutes (lane 3). After formic acid treatment, sample buffer was added and the gel was loaded without additional boiling. The control was boiled for 15 min. 1 µg protein was loaded per lane, and the blot was probed with FlgE antiserum. (B) Whole cell lysates (1.0 µg) of wild-type and mutants probed with FlgE and (C) FlaB antiseras. Reactivity was at 42 kDa with anti-FlaB. (D) Isolated polyhooks and PFs probed with FlgE antiserum.
Analysis of a fliK mutant. The characterization of the spirochete FlgE HMWC has been limited because FlgE is normally in limiting amounts. Therefore, we considered the possibility that polyhooks obtained from *B. burgdorferi* would be a rich source of the HMWC. Although *fliK* mutants in other bacteria including *S. enterica* [47,48] and *T. denticola* [13] produce large polyhook structures, we did not know if a similar mutant in *B. burgdorferi* would also produce polyhooks. In addition, we were curious if the polyhooks that are synthesized by the mutant would form FlgE HMWCs. Accordingly, we constructed a non-polar Δ*fliK1* mutant of *B. burgdorferi* by allelic exchange mutagenesis. The Δ*fliK1* mutant was non-motile and cryo-EM indicated long polyhook structures that were produced and localized to the periplasmic space (Fig 2.4 C, D); furthermore, flagellar filaments did not appear to be attached to the polyhooks (Fig. 2.4 C, D) These results suggest that the Δ*fliK* mutant of *B. burgdorferi* is similar to those found in other bacteria, except in this case, the polyhooks are located in the periplasmic space rather than externally in the medium.

The Δ*fliK* mutant was further analyzed. Western blot analysis of whole cell lysates indicated that whereas a previously described *flgE* mutant failed to react with the polyclonal antiserum as expected [11], most of the reactivity of both the wild-type and the Δ*fliK* mutant formed a HMWC near the top of the gel, greater than 250 kDa (Fig 2.5 B). Small amounts of the monomer were detected in the mutant, as with the wild-type. Based on densitometry analysis, we estimate that the Δ*fliK1* mutant produces 4-5 times the HMWC per cell compared to wild-type. We also tested if the Δ*fliK1* mutant produced flagellin by probing cell lysates with FlaB antiserum. In other species of bacteria, *fliK* mutants vary in their ability to continue to synthesize flagellin [49-52]. Although strong
reactivity was noted with the wild-type, no reactivity was noted in the mutant (Fig. 2.5 C), consistent with cryo-EM images (Fig. 2.4 C, D). These results are similar to those of S. enterica fliK mutant cells, as such mutants fail to produce flagella filaments [53,54]. We purified the polyhooks from the ΔfliK1 mutant for further immunoblot and cryo-EM analysis. Similar to results with whole cell lysates, FlgE antibody reactivity remained at the HMWC, with some reactivity with the monomer and at approximately 270 and 150 kDa (Fig. 2.5 D). This pattern was similar to that seen with isolated wild-type PFs. Cryo-EM of this fraction identified large polyhook structures (>200 nm, n = 15) similar to those found in other bacteria [13,54] (Fig. 2.4 E) with a diameter of 16 nm. The ΔfliK1 mutant yielded 1-2 mg protein per liter in the isolated polyhook fraction, indicating that it would be an excellent source of the HMWC.

Finding polyhooks produced by this mutant is intriguing for several reasons. In bacteria, the length of the hook is tightly controlled. In the model system of S. enterica, interactions of FliK with FlhB determine hook length [47,49,54-57]. FliK acts as a molecular ruler that is secreted into the medium, and when the hook reaches proper length, FlhB is cleaved, and FlgE ceases to be added to the end of the forming hook. The cell then begins σ28-initiated transcription, and synthesis of the filament protein FliC then commences with concomitant secretion to the growing flagellum [57]. B. burgdorferi does have a FlhB homolog (bb0272), so it is likely that a similar mechanism exists. However, because the PFs reside in the periplasmic space, if the S. enterica model applies to B. burgdorferi, FliK would be excreted into this space rather than into the medium as occurs in S. enterica. Furthermore, B. burgdorferi is unique, as it lacks the transcription cascade control of flagella gene regulation [2,3,11,58,59]. It lacks, for
example, both the σ^{28} transcription factor and the corresponding promoter recognition sequences [2,3,23]. Several lines of evidence indicate that *B. burgdorferi* relies instead on translational control for flagella synthesis [11,58,59]. Conceivably, perhaps there is a translational control switch that allows *flaB* to be translated once the proper hook length is formed. In support of this notion, because the $\Delta fliK1$ mutant is unable to stop synthesis of the hook once it reaches its proper length, we find that the resulting mutant also lacks FlaB (Fig. 2.5 C).

MS of the HMWC. The revised PF and polyhook purification procedure allowed us to obtain sufficient material for MS analysis of the HMWC. We wanted to determine if other proteins were associated with this complex. We also wanted to determine if formation of the crosslinked HMWC resulted in truncation of either end of FlgE protein, analogous to the sortase-catalyzed reaction in gram-positive pili [60]. The protein composition of the HMWCs obtained from PFs and polyhooks was assessed directly by in-gel trypsin digestion followed by MS analysis (Fig. 2.6). The MS pattern of one of the peptides is illustrated (Fig. 2.6 A). In 17 MS analyses of the HMWC, no other proteins were consistently identified in the HMWCs, and in many experiments, FlgE was the sole protein. For example, in one experiment with the HMWC obtained from PFs, 27 different peptides were identified, and all were derived from FlgE (Appendix Table 1). Similarly, in an experiment with the polyhook, 15 different peptides were identified, and again all were FlgE derived (Appendix Table 2). These results indicate that FlgE is the sole protein of the HMWC. We also asked if the N- and C-terminal regions were present in the HMWC. As can be seen from Fig 2.6 B, 85% of the FlgE sequence was present in the complex, including peptides at the N- and C-terminal regions. These results suggest
that the HMWC is not a cross-linked product of truncated FlgE. Now that we can obtain sufficient material for MS analysis from both wild-type cells and from a ΔfliK mutant, we are actively determining which amino acids form the cross-link, and the precise mechanism of this cross-linking.

Figure 2.6. MS analysis of the HMWCs isolated from PFs and polyhooks. The HMWCs were excised, trypsin-digested and analyzed by MS. (A) MS/MS peaks for one of the identified peptides and accompanying fragmentation evidence (aa 383-395). (B) Peptides identified on the FlgE sequence obtained by MS analysis of the HMWC are underlined. * indicate trypsin cut sites.
Why would cross-linking occur in the flagellar hooks of spirochetes, but not in the hooks of bacteria with external flagella? Cross-linking of proteins in bacteria is rare, and when present it results in strengthening protein-protein interactions [61]. The hook acts as a universal joint, transferring the rotational motion of flagella motors to flagella filaments. In bacteria with external flagella this is easily accomplished, as the flagella freely rotate freely in the external environment. However, in spirochetes, the region in which the flagella reside and rotate is confined to the periplasmic space. In *B. burgdorferi*, the rigid PFs function as a cytoskeleton by pushing against the flexible cell cylinder to generate these waves [2,4]. We hypothesize that spirochete FlgE cross-linking is essential for the additional strength the hook requires to rotate the filaments and exert force against the cell cylinder to generate the waves responsible for motility.

References

52. West MA, Dreyfus G (1997) Isolation and ultrastructural study of the flagellar basal body complex from Rhodobacter sphaeroides WS8 (wild type) and a polyhook mutant PG. Biochem Biophys Res Commun 238: 733-737.

Chapter 3: The biochemistry of the *Treponema denticola* FlgE high molecular weight complex

Kelly Ann Miller¹, Chunhau Li², Milinda James¹, Justin Hettick³, Michael R. Miller⁴, and Nyles W. Charon¹

¹ Department of Microbiology, Immunology, and Cell Biology Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506
² Department of Oral Biology, State University of New York, Buffalo, NY 14214
³ National Institute of Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV 26505
⁴ Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506
Abstract

The structure of the spirochete periplasmic flagellum is unique when compared to the externally located flagellum of other bacteria. One unusual characteristic is the flagellar hook, which serves as a universal joint coupling rotation of the membrane bound motor complex to the flagellar filament. The hook is comprised of approximately 120 FlgE monomers, and in most bacteria these structures readily disassociate to monomers when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa (referred to as the high molecular weight complex (HMWC)) that is stable to these conditions. In this communication, we show that under certain conditions Treponema denticola FlgE over-expressed in Escherichia coli and purified (rFlgE) forms a similar HMWC in vitro, that this complex is stable to a variety of denaturants, that the mass spectrometry (MS) patterns for HMWC's from rFlgE and polyhooks are similar, and that in specific regions the MS patterns are different for the monomer and HMWC. Preliminary fragmentation of the HMWC unique mass identified one of the peptides involved in cross-linking. We examine the biochemical kinetics of and the effect of specific point mutations on in vitro cross-linking. Finally, we propose a mechanism that is consistent with the MS, biochemical, and mutational analyses. We hypothesize that FlgE cross-linking strengthens the hook structure for optimal spirochete motility.
Introduction

Treponema denticola resides in the oral cavity, and these anaerobic spirochetes are associated with poor dental health. Examples of dental problems include gingivitis, chronic peritonitis, and acute necrotizing ulcerative gingivitis (1-3). There is a positive correlation between the number of oral spirochetes (including *T. denticola*) located in the mouth and the severity of periodontal disease (4-11). *T. denticola* associates with both host cells and other bacteria (forming a biofilm) in order to cause disease (12-14). *T. denticola*, *Porphyromonas gingivalis*, and *Tannerella forsythia* form the periodontal "red complex"; there is a strong association between periodontal disease and the presence of these three organisms (15, 16).

T. denticola, like other spirochetes, uses periplasmic flagella as its means of motility (17, 18). Each periplasmic flagellum consists of three major parts: the basal body motor complex, hook, and the filament (17, 19). The hook is composed of ~120 copies of FlgE protein, and it functions as a universal joint that transmits torque from the basal body motor to the filament (20-22). Additionally, the hook serves a checkpoint in the regulation of flagellar assembly. Proper hook length is required for flagellar secretion to switch from early (hook/rod) to late (filament) substrates. For *Salmonella enterica* serovar Typhimurium, the proteins FliK and FlhB are involved in hook length determination; mutants in either of these genes produce polyhooks that are much longer than wild-type hooks and consequently lack flagellar filaments (23-26).

Multiple reports have suggested that the flagellar hook proteins (FlgE) of spirochetes form a stable high molecular weight complex (HMWC). Western blots of whole cell lysates of the spirochetes *Borrelia burgdorferi, T. denticola, Treponema*
pallidum, and Treponema phagedenis probed with a polyclonal FlgE antibody showed reactivity at a HMWC (27-30). These results are different from what is observed in bacteria with external flagella, where western blots probed with FlgE antibody show reactivity exclusively at the molecular weight of monomeric FlgE (~45-50 kDa) (31, 32). Previously, we have shown that the B. burgdorferi HMWC is composed solely of FlgE by mass spectrometry (Miller et al, submitted).

We hypothesize that the FlgE HMWC of T. denticola and other spirochetes is attributed to covalently cross-linking FlgE proteins to each other, and that this cross-linking is necessary for optimal motility and virulence. In this paper, we show that under certain conditions T. denticola FlgE over-expressed in Escherichia coli and purified (rFlgE) forms a HMWC in vitro, and that this complex is stable to a variety of denaturants. We also show that the mass spectrometry (MS) patterns for HMWC’s from rFlgE and native hooks are similar, and that in specific regions the MS patterns are different for the monomer and HMWC. We examine the biochemical kinetics of and the effect of specific point mutations on in vitro cross-linking. Finally, we propose a mechanism that is consistent with the MS, biochemical, and mutational analyses.

Materials and Methods

Bacterial strains and growth conditions. T. denticola strain 35405 wild-type, which was originally obtained from ATCC, and the 35405 derived tap1 mutant (33), which was constructed by Yu Yang and Dr. C. Li, University of Buffalo, were grown at 33°C in a Coy anaerobic chamber that contained an internal atmosphere of 80% nitrogen, 10% carbon dioxide, 10% hydrogen (18). Cells were grown in NOS media as described
previously (34). The tap1\(^{-}\) insertion mutant (33) and the flgE\(^{+}\) insertion mutant (35) were grown in NOS containing 50 \(\mu\)g/ml erythromycin as described. The *T. denticola* recombinant (rFlgE) was expressed in *E. coli* BL21 cells (Life Technologies) grown at 37°C in Luria-Bertani broth containing 100 \(\mu\)g/ml ampicillin.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. SDS-PAGE was carried out using standard techniques (36). Samples were electrophoresed in 8% polyacrylamide gels, and proteins were Imperial stained (Thermo Scientific) following manufacturers protocol. For western blotting, 2 \(\mu\)g total protein for periplasmic flagella or 0.5 \(\mu\)g for recombinant FlgE, as determined by the Bradford protein assay (Bio-Rad) unless noted otherwise, was subjected to SDS-PAGE and transferred onto polyvinylidene difluoride (PVDF) membranes. Immunoblots were probed with polyclonal rat antibody directed against *T. denticola* rFlgE, and secondary polyclonal goat anti-rat antibodies were obtained from GE Healthcare (cat no NA9350). The Pierce enhanced chemiluminescent detection system was used following manufacturers instructions. Relative amounts of FlgE were determined using densitometry. After film development, films were scanned using a Fotodyne densitometer, and relative band intensities were determined using Totalab Quant software (Totalab Life Sciences).

Recombinant FlgE (rFlgE) purification, construction of flgE mutants, and generation of polyclonal FlgE antisera. The strain over-expressing *T. denticola* FlgE in *E. coli* was constructed as follows. The entire sequence of *T. denticola* flgE was
amplified using the following primers: Forward: CACCATGATGGAGATCATTATTTTCGGG and Reverse: CTATCGTTTCAAGTTCAAGAC, and the PCR product was subsequently ligated and cloned into the expression vector pet100 (Life Technologies). The vector encoding the N-terminal His-tag containing flgE was transformed into BL21 cells, which were grown in LB broth containing 100 µg/ml ampicillin. Once cells reached logarithmic phase, rFlgE expression was induced using 1 mM isopropyl-β-thiogalactoside (IPTG) for 4 hours; rFlgE was purified using a nickel agarose column (Qiagen) under denaturing conditions (8M urea), following manufacturers protocol (Quiagen Expressionist Protocol # 10 and 17). For antisera production, rats were immunized with rFlgE. Wild-type and mutated FlgE sequences were confirmed via PCR and sequencing. Constructs containing wild-type and mutated T. denticola rFlgE and T. denticola polyclonal FlgE antisera were the kind gifts of Dr. C. Li and Jiange Bian (University of Buffalo, NY).

Purification of periplasmic flagella, polyhooks, and hook basal body complexes.

Periplasmic flagella (wild-type cells) and polyhooks (tap1^- cells) were purified from one liter of late log phase cells (~1x 10^9 cells/ml) as described previously (Miller et al, submitted). Briefly, cells were washed three times with 28 ml phosphate buffered saline (PBS). Pellets were re-suspended in 30 ml 100 mM Tris, pH 6.8. After stirring for 10 minutes, 20% Triton X-100 (2% final concentration) was added. After the outer membranes were disrupted as observed by dark-field microscopy (30-60 minutes), mutanolysin (200 mg/ml stock solution in sterile water, Sigma cat no M9901-50KU) was added to 20 µg/ml final concentration to lyse the cells. After lysing at room temperature
for 2 hours and 4°C overnight, the samples were warmed to room temperature and 20% polyethylene glycol 8000 containing 1 M NaCl was added to pellet the periplasmic flagella or polyhooks. The periplasmic flagella or polyhooks were re-suspended in 0.1 M KCl, 0.5 M sucrose, 0.1% Triton X-100, 50 mM sodium bicarbonate, pH 11 for 1 hour at 23°C (37), and the final products were recovered by centrifugation at 80,000 x g, 45 min, 4°C. To remove flagellar filaments, wild-type periplasmic flagella were treated with 8M urea for 2 hours, and hook basal body complexes were recovered by centrifugation at 100,000 x g, 1 hour, 4°C. Hook basal bodies were re-suspended in a small volume of sterile water (~100 µl/liter beginning culture).

Mass Spectrometry and ultra-performance liquid chromatography. For mass spectrometry analysis, purified hook basal bodies, polyhooks, or rFlgE was electrophoresed in SDS-PAGE and subsequently Imperial-stained. Protease digestion and MS analysis were carried out by Dr. J. Hettick, NIOSH (Morgantown, WV) and Dr. Brian Crane, Cornell University (Ithaca, NY). Disulfide bonds were reduced by reaction with tributylphosphine for 15 min at room temperature with shaking (300 rpm), followed by alkylation with iodoacetamide for 30 min at room temperature with shaking (300 rpm). Porcine trypsin was suspended in 25 mM NH₄HCO₃ and added to each aliquot at a 40:1 (protein:trypsin) ratio. Samples were incubated overnight at 37°C with shaking (300 rpm). Samples were centrifuged at 14,000 rpm in a microcentrifuge (MiniSpin, Eppendorf, Hamburg, Germany) to pellet any insoluble material.

Enzymatic peptides were separated on a Waters (Milford, MA) nanoACQUITY ultra-performance liquid chromatography (UPLC) system. Aliquots (1 µL) of the digest
mixture were injected and trapped/desalted on a 5 µm SymmetryC$_{18}$ (180 µm x 20 mm) trapping column with 99.5/0.5 A/B (A:0.1% formic acid; B:0.1% formic acid in acetonitrile) at a flow rate of 15 µL/min for 1 minute. Separation was performed on a 1.7 µm BEH130 C$_{18}$ (100 µm x 100 mm) analytical column utilizing gradient elution at a flow rate of 400 nL/min and a gradient of 99/1 to 60/40 A/B over 60 min.

The eluent from the UPLC system was directed to the nanoelectrospray source of a Waters SYNAPT MS quadrupole time-of-flight (qTOF) mass spectrometer. Positive ion nanoelectrospray was performed utilizing 10 µm PicoTip (Waters) emitters held at a potential of +3.5 kV. The cone voltage was held constant at +40 V for all experiments. Dry N$_2$ desolvation gas was supplied to the instrument via a nitrogen generator (NitroFlowLab, Parker Hannifin Corp., Haverhill, MA). [Glu]1-Fibrinopeptide B (100 fmol/µL in 75/25 A/B) was supplied to an orthogonal reference probe and the [M+2H]$^{2+}$ ion (m/z = 785.84265u) measured as an external calibrant at 30 sec intervals. Collision-induced dissociation (CID) was performed utilizing ultra-high purity (UHP) argon as collision gas. Spectra were acquired in an “MSn” fashion (38). Briefly, alternating one-second mass spectra are acquired. The first spectrum acquired at low (6 eV) collision energy allows high mass accuracy precursor ion mass measurement. The second spectrum acquired at high (15-30 eV ramp) collision energy allows high mass accuracy fragment ion mass measurement. The fragment ion spectra may be temporally correlated with precursor spectra post-run. This method of data acquisition allows all precursor ions to be fragmented and analyzed, rather than so called “data dependent acquisition” methods that require real-time decisions to be made on which ions to select for fragmentation, and which may miss low-abundance precursor ions.
MS Data analysis. Data were analyzed with ProteinLynx Global Server v. 2.4 (Waters), a software program for database searching-based protein identification and BioPharmaLynx v. 1.2 (Waters), a software program for analysis of peptide mass maps and identification of sites of modification on known protein sequences. Default peptide mass map analysis criteria of 30 ppm mass error in both low and high collision energy mode were specified. Trypsin was specified as the digestion enzyme, and 2 missed cleavages were allowed.

In vitro rFlgE cross-linking experiments. Following nickel column purification, rFlgE was dialyzed overnight at 4°C against 1xPBS, pH 7.4 to remove urea. Experiments were started immediately following dialysis because rFlgE would spontaneously polymerize. For experiments, rFlgE (concentration of 0.2 mg/ml) was diluted in buffer at pH 3.2 (40 mM acetate, 0.9% NaCl), 7.4 (1 x PBS), or pH 8.5 (40 mM Tris, 0.9 % NaCl) as indicated to a final concentration of 0.04 mg/ml. Samples incubated at 4°C for the time points indicated in the results. For mutant rFlgE cross-linking experiments, rFlgE was dialyzed against 40 mM Tris, 0.9% NaCl, pH 8.5 and incubated at a concentration of 0.387 mg/ml unless indicated otherwise.

Results

The HMWC is present in whole cell lysates and purified periplasmic flagella from wild type cells and polyhooks from tap1Δ mutants but is not present in a flgE
insertion mutant. We tested the specificity of our FlgE antibody by subjecting whole cell lysates of wild-type *T. denticola* strain 35405, the *flgE* strain, and the *tap1* strain to SDS-PAGE and immunoblotting with FlgE antibody (Fig. 3.1). The *tap1* strain has a *fliK* mutation that results in formation of polyhooks. Whole cell lysates of the wild-type strain (Figure 3.1A, lane 1) and the *tap1* strain (Fig. 3.1A, lane 3) reacted with the antibody in the stacking gel, but no reactivity occurred with the *flgE* strain (Fig. 3.1A and B, lane 2). These results show that our antibody is specific to FlgE, and that the polyhook mutant (*tap1* strain) produces a HMWC similar to wild-type cells (Fig. 3.1). In order to obtain sufficient FlgE HMWC to study, we purified polyhooks from the *tap1* strain using methods previously described (Miller et al, submitted). Purifying polyhooks resulted in ~50x the FlgE protein yield compared to wild-type periplasmic flagella as determined by densitometry (Fig. 3.1B, C). Isolating polyhooks from *B. burgdorferi* also resulted in increased FlgE yield/cell compared to isolating wild-type periplasmic flagella (Miller et al, submitted).
Figure 3.1. Expression of FlgE in *T. denticola* whole cell lysates (2 µg protein/lane) (A) and purified periplasmic flagella (1 µg protein/lane) (B). Cell lysates from wild-type strain 35405 and mutant strains (35405 background) were analyzed by western blotting with polyclonal FlgE antibody. C) Densitometry of western in B.

The FlgE HMWC is stable to denaturant treatment. In order to test the stability of the HMWC, purified periplasmic flagella (Fig. 3.2) were treated with denaturing conditions that typically disassociate non-covalent bonds. These treatments include: boiling, low
pH, urea, guanidine hydrochloride (GuHCl), and formic acid (39, 40). The HMWC from isolated periplasmic flagella is stable to treatment with 8M urea and pH 2.5 at room temperature for 1 hour (Figure 2A). Figure 2 shows that the HMWC is stable to boiling for 15 minutes (Fig. 3.2B lane 4), 8M GuHCl (Fig. 3.2B lanes 5 and 6), 23N formic acid at room temperature for 2 hours (Fig. 3.2B, lane 7), and 1N formic acid at both 65°C for 30 minutes and boiling in 1N formic acid for 15 minutes (Fig. 3.2C, lanes 3 and 4).

Figure 3.2. FlgE western blot analysis of periplasmic flagella either boiled or treated with chemical denaturants. (A) Periplasmic flagella incubated with the indicated denaturants for a total of 1 hour at 24°C and centrifuged for 1 hour at 100,000 x g. The pellets following centrifugation were suspended in sample buffer and boiled for 5 minutes prior to gel loading (2 µg/lane). (B) and (C) Effect of boiling and denaturants. Samples were treated with the indicated denaturants for a total of 2 hours. Indicated samples were boiled in the denaturant for 15 minutes. Lanes were equally loaded for protein (5 µg) after adding sample buffer, without additional boiling. Formic acid treated samples were neutralized by the addition of 4M NaOH prior to loading.
The monomer, which is predicted to be 49 kDa, is produced without HMWC when spirochete FlgE is over-expressed in *E. coli* (Fig. 3.3); however, over time at pH 7.4 we observed purified *T. denticola* rFlgE (concentration of 0.56 mg/ml) to polymerize at 4°C (Fig. 3.5A, lane 2). Therefore, we tested whether the rFlgE HMWC formed *in vitro* is stable to the same denaturants as the HMWC from periplasmic flagella (Fig. 3.4). The rFlgE HMWC was stable to treatment with GuHCl, urea, and formic acid. The stability of the HMWC to these strong denaturant treatments that disrupt non-covalent protein-protein interactions is consistent with our hypothesis that the FlgE proteins in spirochetes are covalently cross-linked to each other. Formation of the rFlgE HMWC *in vitro* suggests that cross-links may form auto-catalytically *in vivo*.

Figure 3.3. Coomassie stained SDS-PAGE of purified *T. denticola* rFlgE.

10 µg protein was loaded per lane.

Arrow is pointing to rFlgE.
Figure 3.4. Western blot analysis of the rFlgE HMWC treated with denaturants using polyclonal FlgE antibody. *T. denticola* rFlgE had previously polymerized at pH 7.4, 4°C at a concentration of 0.56 mg/ml over a 2 month period. Samples incubated with the indicated denaturants for 1 hour, and were loaded immediately without boiling. The control sample was not treated, but was boiled in sample buffer for 5 minutes prior to gel loading. Samples were equally loaded for total protein (0.5 µg/lane). Arrow is pointing to monomeric FlgE, and the HMWC is indicated by the bracket.

MS analysis of monomeric FlgE and the HMWC. Figure 3.5A shows one gel that was used for MS analysis at NIOSH (Morgantown, WV), and figure 3.6 shows the *T. denticola* FlgE sequence. Polyhooks and rFlgE were electrophoresed on SDS-PAGE and Imperial-stained. The bands highlighted by the boxes were excised, in gel digested with trypsin, and the resultant peptides were analyzed by UPLC-QTOF-MS/MS.
Appendix table A3 shows the peptides identified with > 95% confidence at NIOSH. All of the identified peptides correspond to *T. denticola* FlgE. The digest patterns were similar for the three HMWC’s analyzed (Fig 3.5 A red boxes). Differences were observed between the monomer (black box) and the HMWC’s (Fig. 3.5), and the corresponding locations in the protein sequence are shown in figure 3.6. Specifically, trypsin fragment 15 (ATTSVNYACNL) was highly prevalent in the monomer but rarely identified in the HMWC (Fig. 3.5B). Additionally, the HMWC contained trypsin fragment 13 (IINTSGQTEDLNIPIGKQ) and 14 (LDAK) joined to each other but not individually, whereas trypsin fragment 14 (LDAK) was never observed in the monomer. We speculate that this is due to the C-terminal lysine (K) residue of trypsin fragment 13 being involved directly in the cross-link; cross-linking of this amino acid would prevent trypsin from cutting this site. Furthermore, there is an anomalous mass of 3732.9 Da present in the HMWC from both native hooks and rFlgE but absent in the monomer (Fig. 3.5C,D). That mass equals the sum of trypsin fragments 13, 14, and 15 minus ammonia. The anomalous mass could possibly be the result of a cross-link between K165 on trypsin fragment 13 to an asparagine (N) residue on trypsin fragment 15. Those specific differences between monomeric and HMWC FlgE were identified in several MS runs. Preliminary fragmentation of the 3732.9 Da mass in collaboration with Dr. Brian Crane, Cornell University (Ithaca, NY) identified the N-terminus sequence (IINTSGQ) of tryptic fragment 13 of the in vitro formed HMWC (Fig. 3.6). This partial sequence information is highly suggestive that the cross-linked peptide contains tryptic fragments 13-15. Obtaining additional sequence data for the anomalous mass is in
progress and should allow for identification of the peptides involved and the nature of the cross-link.
Figure 3.5. MS analysis of rFlgE and polyhooks isolated from tap1* mutant cells. (A) Imperial stained SDS-PAGE. rFlgE incubated at pH 7.4 for 2 months at 4°C. Boxes indicate samples that were excised, digested with trypsin and analyzed by MS/MS. (B,C,D) Screen shots of the mass spectrum. (B) Mirror image of mass range from 1000-2000. Arrow is highlighting the peptide (trypsin fragment 15) that is over-represented in the monomer. (C and D) Mirror image of mass range from 3500-3800 with arrow pointing to anomalous mass (3732.9) that is unique to the FlgE HMWC. (C) HMWC obtained from polyhooks. (D) HMWC obtained from rFlgE.

Figure 3.6. T. denticola FlgE primary sequence. Red underlines indicate peptides (trypsin fragments 13, 14, and 15) that are postulated to be involved in FlgE cross-linking. Tryptic fragment 14 (sequence LDAK) is not observed in the monomer. Residues in bold are those identified by preliminary fragmentation of the 3732.9 Da mass that is unique to the HMWC.
Kinetics of rFlgE cross-linking. The rFlgE monomer is produced without HMWC when spirochete FlgE is over-expressed in E. coli (Fig. 3.3); however, over time at pH 7.4 we observed purified T. denticola rFlgE (concentration of 0.56 mg/ml) to polymerize at 4°C (Fig. 3.5A, lane 2). This phenomenon was first observed 2 months after rFlgE purification. Formation of the rFlgE HMWC in vitro suggests that cross-links may form auto-catalytically. We therefore investigated conditions that induce or inhibit cross-linking; such information should facilitate determination of the chemistry/mechanism of the cross-linking reaction.

Heating monomeric rFlgE reduces HMWC formation. To test if the in vitro reaction is enzymatic (Most enzymes are heat sensitive and denatured by boiling), we heated rFlgE monomer at 90°C for 5 minutes (Fig. 3.7). Following heating, samples incubated at pH 8.5 and were analyzed by western blotting with polyclonal T. denticola FlgE antibody at the indicated time points. At all time points examined, polymerization is much greater in the control samples than the heated samples (Fig. 3.7). Similar results were observed when rFlgE was boiled for 15 minutes. Because FlgE is the only protein present in these samples (Fig. 3.3), these results indicate that rFlgE cross-linking is autocatalytic.
Figure 3.7. Effect of heating monomeric rFlgE on HMWC formation. After indicated samples were heated at 90°C for 5 minutes (Non-heated samples (N) incubated at room temperature), samples incubated at 4°C (A) or 24°C (B) for the time periods indicated at pH 8.5. For western blot analysis, 0.5 µg protein/lane was loaded.

Ammonium sulfate stimulates HMWC formation. *Salmonella* FlgE protein forms long hook like structures (polymerized FlgE monomers but not cross-linked) *in vitro* when incubated with sodium citrate or ammonium sulfate at room temperature or 4°C (41, 42). Therefore, we treated *T. denticola* rFlgE with various concentrations of ammonium sulfate at 4°C, pH 8.5 and analyzed HMWC formation by immuno-blotting with FlgE antibody. Samples were subjected to SDS-PAGE and western blotting. Figure 3.8 shows that 1M ammonium sulfate is optimal for *T. denticola* rFlgE polymerization.
Figure 3.8. Effect of ammonium sulfate (AS) concentration on rFlgE HMWC formation. Samples incubated with the indicated concentrations of AS at pH 8.5, 4°C for 3 days. For western blot analysis (left panel), 0.5 µg protein/lane was loaded, and the corresponding densitometry for the 270 kDa band (indicated by arrow) is shown in the right panel.

Sodium chloride does not effect HMWC formation. Ammonium sulfate stimulated polymerization; therefore, we tested the effect of a different salt on polymerization by using various concentrations of NaCl at 4°C, pH 8.5. FlgE polymerization was not stimulated in the presence of NaCl (0.1-2.0 M), whereas ammonium sulfate (1.0 M) reproducibly stimulated formation of the rFlgE HMWC (Figs. 3.8,3.9). These results suggest that ammonium sulfate-induced polymerization is not a general salt effect; the increase in polymerization could be due to ammonium sulfate-induced protein aggregation. These results are in agreement with studies on polymerization of
Salmonella hooks in vitro into long hook-like structures (41, 42). Perhaps, ammonium sulfate stimulates T. denticola hook polymerization in vitro in a similar manner.

![Image](image.png)

Figure 3.9. Effect of NaCl on rFlgE HMWC formation. Samples were treated with the indicated salt concentrations and incubated at pH 8.5, 4°C for 7 days. For western blot analysis, 0.5 µg protein/lane was loaded onto SDS-PAGE, and the blot was probed with polyclonal FlgE antibody.

rFlgE HMWC formation is influenced by pH. We compared the effects of pH and ammonium sulfate on rFlgE polymerization. T. denticola rFlgE was incubated in the presence or absence of 1M ammonium sulfate for 10 days at 4°C at pH 3.2 or pH 8.5 (Fig. 3.10). Only the monomeric form is present at pH 3.2 (Figure 3.10A); this could be due to inability of rFlgE to polymerize at low pH or the degradation of the HMWC at low pH. To test the latter possibility, we exposed rFlgE HMWC that had previously polymerized at pH 7.4, 4°C to pH 3.2 and pH 8.5 to determine if low pH was promoting degradation of the rFlgE HMWC. Figure 3.11 shows no difference between low pH and alkaline pH on previously formed rFlgE HMWC. Together, these results demonstrate
that low pH inhibits polymerization of monomeric FlgE and are in agreement with the stability of the HMWC as noted in the formic acid experiments of isolated periplasmic flagella and rFlgE (Figs. 3.2, 3.4).

Figure 3.10. Effect of pH and ammonium sulfate (AS) on rFlgE HMWC formation. Samples incubated at 4°C at pH 3.2 (A) or pH 8.5 (B) for 10 days (D). For western blot analysis, 0.5 µg protein/lane was loaded. Samples incubated with or without AS were taken at the indicated time points.
Figure 3.11. Effect of pH on the rFlgE HMWC. *T. denticola* rFlgE that had previously polymerized at pH 7.4, 4°C was incubated at pH 3.2 or 8.5 for the indicated number of days. Samples were equally loaded for total protein (0.5 µg/lane). Arrow is pointing to monomeric FlgE, and the HMWC is indicated by the bracket.

Mercaptoethanol (βME) reduces HMWC formation. There were several reasons to test the effect of a reducing agent on rFlgE polymerization *in vitro*. 1) Cysteine (C) residues are rather rare in flagellar hook proteins, but the single C residue in *T. denticola* FlgE is conserved in all spirochetes (*B. burgdorferi, T. denticola, T. phagedenis, T. pallidum*) shown to cross-link their flagellar hook proteins (based on BLAST and Clustal analyses). 2) MS data in combination with the *S. enterica* flagellar hook structure (20) both suggest that the cross-linking occurs in the region of the protein that is near the C residue. In the *S. enterica* hook structure there are close contacts between amino acid residues of the six-start helix of the D2 domain, which strengthens
the hook without impairing flexibility (20). Clustal alignment places the spirochete Cys in the D2 domain. 3) The periplasm is an oxidizing environment (43); therefore, an oxidative environment may stimulate FlgE cross-linking. We found that βME reduced formation of the HMWC greater than 250 kDa but did not inhibit rFlgE polymerization at 150 kDa (Fig.3.12).

![Figure 3.12](image)

Figure 3.12. Effect of βME on rFlgE HMWC formation. Samples were treated with the indicated concentrations of βME for 7 days at 4°C, pH 8.5. For western blot analysis, 0.5 µg protein/lane was loaded onto SDS-PAGE, and the blot was probed with polyclonal FlgE antibody.

Site-directed mutagenesis impairs in vitro rFlgE HMWC formation. Trypsin fragment 15 was highly prevalent in the FlgE monomer but rarely identified in the HMWC; therefore, we generated point mutations of residues that are located in this fragment in order to determine if mutation of specific residues altered rFlgE HMWC
formation (Figs 3.13-3.15). In collaboration with C. Li and J. Bian (University of Buffalo), we mutated the following residues to alanine (A): D181, N175, N179, and C178. In addition to single point mutations, a double mutant (N175AN179A) was generated due to possibility that either of these residues could participate in the cross-link.

The substitution mutants varied in their ability to polymerize (Figs 3.13-3.15). Mutating D181 had the most profound effect (Fig. 3.13). HMWC formation was completely abolished in the D181A mutant in the presence or absence of ammonium sulfate (Fig. 3.13). N175A HMWC formation was similar to wild-type HMWC formation (Fig. 3.14A), whereas, HMWC formation in the N179A mutant was greatly reduced (Fig. 3.14B). rFlgE HMWC polymerization was completely abolished in the N175AN179A double mutant (Fig. 3.14C). The effect of mutating C178 was interesting. The C178A mutant was unable to form a HMWC in the absence of ammonium sulfate (Fig. 3.15A); however, C178A formed a HMWC in the presence of ammonium sulfate but at a greatly reduced level compared to wild-type rFlgE (Fig. 3.15B). These results are in agreement with the βME experiment (Fig.3.12) and suggest that the C178 residue either catalyzes the cross-linking reaction, or is part of the required microenvironment for the reaction to occur.
Figure 3.13. Effect of D181A substitution mutation on rFlgE HMWC formation. For western blot analysis, 0.5 μg protein/lane was loaded onto SDS-PAGE, and the blot was probed with polyclonal FlgE antibody. Samples incubated at 4°C at pH 8.5 without (A) or with ammonium sulfate (B) and were taken at the indicated time points.
Figure 3.14. For western blot analysis, 0.5 µg protein/lane was loaded onto SDS-PAGE, and the blot was probed with polyclonal FlgE antibody. Effect of N175A (A), N179A (B) substitution mutations and a double N175AN179A substitution mutant (C) on rFlgE HMWC formation. Samples incubated at 4°C at pH 8.5 with ammonium sulfate, and aliquots were taken at the indicated time points.
Discussion

Polymerization of *T. denticola* rFlgE *in vitro* forming a stable HMWC was unexpected. Studying this phenomenon has three major advantages compared to studying hook basal body complexes, assuming that the process is the same as *in vivo*. First, it provided a means to identify inducers and inhibitors of FlgE polymerization. Previously, this was not possible because FlgE isolated from growing spirochetes is always present as a HMWC (27-30) (Miller et al, submitted) (Fig. 3.1). Second, rFlgE polymerization generated large amounts of material that could readily to be used for MS
analysis. Over-expressing rFlgE in *E. coli* resulted in milligrams of FlgE protein compared to obtaining micrograms by harvesting hook basal body complexes or polyhooks (as determined by protein assay). Third, it provides an efficient means to screen mutants for HMWC formation and identify those residues responsible for cross-linking.

Studying polymerization of monomeric FlgE into the HMWC over time has provided some insight into the mechanism of the cross-linking reaction through identification of inducers and inhibitors of cross-linking. The ability for *T. denticola* rFlgE to polymerize *in vitro* is highly suggestive that the cross-linking reaction is autocatalytic; there is no external enzyme required. In support of this hypothesis, FlgE was the only peptide consistently identified in MS analysis of native hooks, and in several experiments was the sole protein identified.

The cross-linking mechanism of bacteriophage HK97 head proteins and the cross-linking within pili of gram-positive bacteria is autocatalytic with either a glutamic (E) or aspartic (D) acid catalyzing the reaction (44, 45). Both the ability for *T. denticola* rFlgE to polymerize *in vitro* (Figs. 3.4-5, 3.7-15) and the reduction of polymerization by heating (Fig. 3.7) indicate that *T. denticola* FlgE cross-linking is autocatalytic with FlgE acting as the enzyme. The inability for rFlgE to polymerize at low pH (Fig. 3.10) also supports the possibility of a D or E residue catalyzing the reaction. At pH 3.2, the side chain belonging to either of these amino acids would be protonated, and as a result would be unable to catalyze isopeptide formation as in HK97. There are multiple D and E residues in the region of the protein that was suggested to be involved in cross-linking by MS (Fig. 3.6, red lines). Furthermore, the abolition of HMWC polymerization in the
D181A rFlgE mutant suggests that D181 is required for cross-linking (Fig. 3.13). Whether D181A is essential for catalysis (similar to the HK-97 and pili mechanism) or is one of the cross-linked amino acids is yet to be determined.

One possible source of the isopeptide bond is a cross-link between a lysine (K) and an asparagine (N). In HK97 cross-linking, an ammonia is lost when an isopeptide bond is formed between K169 and N356 (44). The size of the anomalous mass (3732.9 Da) identified by the MS data is equal to trypsin fragments 13-14 being cross-linked to trypsin fragment 15 minus ammonia. There are several K and N residues in this region of the protein (Fig. 3.6). Site directed mutagenesis of rFlgE suggests that N179 is the preferred site for cross-linking, and that N175 can be used alternatively in the absence of N179. However, the in vitro cross-linking reaction may be more promiscuous than the reaction in spirochete hooks. Alternatively, the N mutations may simply affect the conformation of the protein.

The cross-link could possibly be between N179 and K165 (C-terminus of trypsin fragment 13). A cross-link involving K165 would explain why both trypsin fragments 13 and 14 are linked to trypsin fragment 15; a cross-link at that location would prevent trypsin from cutting between fragments 13 and 14. The MS data is consistent with this possibility. Fragment 13 is identified individually in monomeric FlgE, and fragment 14 is never observed. Homology modeling (Fig. 3.16) of T. denticola FlgE onto the Salmonella model (20) is also consistent with this possibility. The K residues from tryptic fragments 13 and 14 on one FlgE subunit appear to be in close proximity to N179 and D181 on another subunit (Fig. 16). Modeling was done by Dr. Brian Crane, Cornell University (Ithaca, NY). Obtaining sequence data for the 3732.9 Da mass unique to the
FlgE HMWC is needed to either confirm or disprove this speculation. Preliminary fragmentation of the 3732.9 Da mass has identified the N-terminus of tryptic fragment 13 (Fig. 3.6, sequence highlighted in bold), and additional studies are in process.

Figure 3.16. Homology Modeling of *T. denticola* FlgE onto the *Salmonella* model (20). Tryptic fragment 15 residues Asn 179 and Asp 181 on one FlgE subunit are located in close proximity to Lys 165 and Lys 169 on another FlgE subunit.

A cross-link between K165 and N179 could occur by multiple mechanisms consistent with both the MS and mutagenesis data (Fig. 3.17). For example, D181 could remove a proton from C178 resulting in a nucleophilic C. C178 then could attack N179 (from the same FlgE subunit), releasing NH₃ and forming a thio-ester intermediate. K165 from a different FlgE could attack the thio-ester, releasing C178 and forming a K165-N179 isopeptide bond (Fig. 3.17A). An alternative mechanism (Fig. 3.17 B) also
begins with D181 removing a proton from C178. C178 could then remove a proton from K165 from the second FlgE subunit, making K165 a strong nucleophile. K165 then attacks N179 in the first FlgE subunit forming the K165-N179 isopeptide bond.

Figure 3.17. Mechanisms that could possibly account for an isopeptide bond between N179 of one FlgE subunit (teal) and K165 of another subunit (blue). Tryptic fragment 15 residues are teal. Tryptic fragment 13-14 is shown in blue.

Spirochete motility is unique compared to the well-studied model of S. enterica motility. The sub-terminally attached flagella are not externally located; rather the flagella reside in the periplasmic space (periplasmic flagella), between the outer membrane sheath and the protoplasmic cell cylinder; as a result the flagella wrap
around and push against the cell cylinder for motility to occur (17, 19). The periplasmic flagella influence cell structure in several spirochete species. In *T. denticola* there are two periplasmic flagella located at each end of the cell that overlap in the middle. Wild-type cells often have a twisted, irregular shape (some cells were right handed helices) but mutants that lack flagella fail to form the twisted-like morphology (18). Additionally, spirochetes swim faster in highly viscous, gel-like medium than in low-viscosity medium; this is the opposite pattern of what is observed in most bacteria containing external flagella (19, 46-49). Perhaps, FlgE cross-linking is required for optimal spirochete motility. Spirochete FlgE cross-linking may be required for the additional strength the hook requires for the filaments to exert force against the cell cylinder to generate the waves. Periplasmic flagella, although similar with respects to the flagella of other bacteria, have distinct structural peculiarities. For example, the motor C ring complex is larger than that found in most bacteria, and it is thought that this is related to the necessity of generating more torque needed for optimal motility (50, 51). Furthermore, there is an unusual structure associated with the motor, referred to as the collar, which is unique to spirochetes (50, 51). Its function is presently unknown. Finally, as reported in this communication, the FlgE subunits appear to cross-link to one another. Future studies are needed to determine the role of flagellar hook cross-linking in spirochete motility and virulence.
References

9. **Riviere GR, DeRouen TA, Kay SL, Avera SP, Stouffer VK, Hawkins NR.**

10. **Riviere GR, Smith KS, Carranza N, Jr., Tzagaroulaki E, Kay SL, Dock M.**

Chapter 4: Discussion

Spirochete motility is significantly different from the well-studied paradigm of S. enterica motility. Spirochete flagella are unique in both their location and structure (1, 2). The subterminally attached flagella reside in the periplasmic space, whereas, the flagella of the majority of bacteria are externally located, and consequently, the periplasmic flagella often play a structural role in addition to their motility function. In B. burgdorferi, wild-type cells form a flat wave, whereas mutants that do not produce flagellin (flaB', flgE') are rod-shaped (3-5). In T. denticola, wild-type cells often have a twisted irregular shape (a minority of cells form right handed helices), but mutants that lack flagella fail to form the twisted like morphology (6).

The flagellar hook acts as a universal joint, transferring the rotational motion of flagella motors to the flagella filaments (7). In bacteria with external flagella this is easily accomplished, as the flagella rotate freely in the external environment; however in spirochetes, the region in which the flagella reside and rotate in is confined to the periplasmic space. As a result, spirochete flagella wrap around and push against the cell cylinder during motility (2, 8). Spirochete FlgE cross-linking may be required to strengthen the hook sufficiently for the filaments to exert the necessary force on the cell cylinder for motility to occur.

The long-term goals of this project are to better understand B. burgdorferi and T. denticola motility as it relates to pathogenesis and use that information to develop spirochete-specific antibiotics. The specific objectives of my dissertation were to
analyze the FlgE cross-linking in *B. burgdorferi* and *T. denticola*. Below I discuss the major findings of my work: optimization of the procedure for isolating periplasmic flagella, mass spectrometry (MS) analysis of the FlgE high molecular weight complex (HMWC) and monomeric FlgE, characterization of the *B. burgdorferi* HMWC, the biochemical kinetics of *T. denticola* FlgE HMWC formation *in vitro*, and the effect of specific mutations on *T. denticola* HMWC formation *in vitro*.

Optimization of periplasmic flagella and poly-hook isolation facilitates chemical analysis of spirochete hooks. Previously, western blot analysis was the sole indication that spirochetes cross-link their flagellar hook (FlgE) proteins. The yield of FlgE using the published procedure for isolating periplasmic flagella was not sufficient for MS analysis. By making several modifications to the purification procedure, I was able to obtain enough hook protein of both *B. burgdorferi* (Ch. 2) and *T. denticola* (Ch. 3) for MS analysis. These modifications included substitution of Triton X-100 and mutanolysin for myristate and lysozyme, respectively, and incorporation of an alkaline wash (9). The MS analysis confirmed that the HMWC of spirochetes is composed of FlgE and identified FlgE as the primary protein in these complexes.

Application of the optimized protocol for isolating periplasmic flagella is not limited to this work. Motility is essential for several spirochete species to cause disease (10-15). By using this procedure, our lab and others are now able to more efficiently isolate the spirochetes’ periplasmic flagella. Optimization of periplasmic flagella purification has facilitated visualization of flagellar assembly in *B. burgdorferi* by cryo-EM (Zhao et al,
PNAS in press). Cryo-EM was used to compare isolated periplasmic flagella with those in situ. Combining cryo-electron tomography with mutational analysis permitted determination of the location of several flagellar structures and visualization of flagellar assembly. Assembly of the MS ring, rod, hook, and filament were examined, and as a result an additional difference between periplasmic flagella and the external flagella of S. enterica was observed. Both the organization and length of the rod differ between B. burgdorferi (length of ~4nm) and S. enterica (~15 nm). Supplying Dr. Liu with purified periplasmic flagella deciphering the molecular structure of the entire B. burgdorferi flagellar motor in fine detail and the specific formation of the flagellar rod (Proofs of this article are located in the appendix). Deciphering the structure of the periplasmic flagella is likely to increase our understanding of spirochete motility and subsequently pathogenesis.

MS analysis of spirochete hooks identifies differences between the HMWC and monomeric FlgE. Peptide digestion and MS have been used to identify the cross-linked peptides of HK97 phage head proteins and Gram positive pili (Spa) proteins (16-18), and site-directed mutagenesis is used for confirmation of the residues involved (16, 19, 20). The majority of possible tryptic peptides were identified by MS in both the HMWC and monomeric FlgE. There were a few peptides that were present in lower abundance in the FlgE HMWC than in the FlgE monomer (ie tryptic fragment 15). Tryptic fragment 13 was found individually in the monomer, but was connected to tryptic fragment 14 in the HMWC. We hypothesize that the lower frequency of these peptides is the result of a cross-link. Additionally, we have observed an anomalous mass (3732.9
Da) that is present in both the *T. denticola* FlgE HMWC from cells and the *in vitro* formed HMWC but absent in FlgE monomer. Sequencing of this anomalous peptide is needed to verify the amino acids involved in the cross-link. Preliminary fragmentation has identified the N-terminus of trypsin fragment 13 as present in the anomalous mass.

Characterization of FlgE cross-linking in *B. burgdorferi*. The life cycle of *B. burgdorferi* includes mammalian and arthropod hosts, and protein expression varies under these two conditions (21-23). Consequently, I tested whether or not the HMWC was present in two virulent strains (B31A3 and B31MI) at temperatures that correspond to the arthropod (23°C) and the mammalian (37°C) hosts as well as cells grown *in vivo*. The FlgE HMWC was present in all *in vitro* growth conditions tested and in cells grown *in vivo*. These results indicate that the HMWC is not an artifact of *in vitro* growth. Because the HMWC is present in virulent cells grown *in vivo*, it is possible that FlgE cross-linking is required for optimal motility and virulence of *B. burgdorferi*. Experiments with mutants that produce monomeric FlgE (fail to cross-link) are needed to determine the role of cross-linking in motility and virulence.

FlgE cross-linking is an autocatalytic mechanism. Studying polymerization of monomeric rFlgE has provided some insight into the mechanism of the cross-linking reaction. There are three lines of evidence that indicate that there is no external enzyme required for FlgE cross-linking. 1) Purified *T. denticola* rFlgE forms a HMWC *in vitro* (in the absence of other proteins). 2) Heating or boiling decreases the ability of *T. denticola* rFlgE to form a HMWC. 3) MS analysis of hooks from both *B. burgdorferi* and *T.
denticola identify FlgE as the sole protein present in the HMWC. The cross-linking of HK97 head proteins and the cross-linking within Gram-positive pili both utilize an autocatalytic mechanism (16, 19), whereas, the cross-linking between pili requires sortases (16).

Site-directed mutagenesis of T. denticola rFlgE effects on *in vitro* HMWC formation. Based on MS and modeling analyses we tested the effect of several point mutations on rFlgE HMWC formation. These mutants varied in their ability to form a HMWC. HMWC formation *in vitro* provides an efficient means to screen amino acid substitution mutants for HMWC formation. HMWC formation *in vitro* was completely abolished in the D181A and N175AN179A mutants, and was nearly abolished in the N179A mutant. Studying the phenotype of these mutants in *T. denticola* is required to determine the role of these residues on the structure and cross-linking of the hook. Subsequently, mutants that do not cross-link their hook proteins but continue to produce monomeric FlgE should be assayed for effects on motility and virulence.

Proposed Mechanism of Cross-Linking

Cross-linking of spirochete flagellar hook proteins appears to be unique. At this time the data is too premature to define the mechanism of the cross-link, but it is possible to generate hypotheses consistent with the data obtained thus far. Cross-linking appears to share characteristics with the cross-linking mechanisms of both HK97 and pili. FlgE cross-linking appears to be autocatalytic (similar to HK97), but a C (cysteine) residue appears to be involved. There is no C involved in the HK97 reaction (19). C is involved
in the sortase reaction of Gram-positive pili (24), but there appears to be no enzyme required for flagellar hook cross-linking. Additionally, there is no sortase motif in *B. burgdorferi* or *T. denticola* FlgE, and the MS data suggests the entire FlgE protein is present (unlike the sortase reaction where a signal sequence is cleaved (25). The current data suggests the possibility of both an D (aspartic acid) residue and a C residue being responsible for the catalysis of a peptide cross-link between a K (lysine) and an N (asparagine). A cross-link between these residues occurs both in HK97 (19) and Gram positive pili (16), but the process of generating the cross-link appears unique. Additional studies are needed to determine the precise mechanism of cross-linking and the residues involved.

Finding a unique mechanism of cross-linking has profound implications for treatment of spirochetal diseases. If the mechanism of cross-linking is indeed unique, an inhibitor of cross-link formation would also be unique. If spirochete flagellar cross-linking is unique and cross-linking is required for virulence, the development of spirochete-specific antibiotics that act by inhibiting the cross-link becomes possible. Spirochete mutagenesis studies that identify mutations that result in failure to cross-link (while maintaining production of FlgE) are needed to determine the role of FlgE cross-linking in motility and virulence.

Summary and Implications for Future Work

My work has increased our understanding of spirochete motility. Spirochete motility, which is mediated by periplasmic flagella, has several differences compared to externally located flagella. One of these distinctive characteristics is the cross-linking of
flagellar hook (FlgE) proteins. The two major contributions I have made are 1) biochemical characterization of the FlgE HMWC in spirochetes (and rFlgE HMWC) and 2) optimization of periplasmic flagella purification. Both of these contributions serve as the basis for future experiments to be conducted regarding spirochete motility and pathogenesis.

The MS analysis of FlgE HMWC has indicates the majority of the protein sequence is not being cross-linked and also has identified a several peptides (tryptic fragments 13-15) as likely being involved in the cross-link. Presently, studies are in progress to obtain additional sequence data for the unique 3732.9 mass, and K165A and K169A mutants are being constructed to determine if one (or both) of these Lys residues is involved in the cross-link. The information obtained from MS analysis and rFlgE point mutations will guide spirochete mutagenesis studies; these studies will allow determination of the role of FlgE cross-linking in motility and virulence.

The optimized periplasmic flagella isolation procedure is now the standard protocol for our laboratory as well as others. The optimized procedure has been used to isolate periplasmic flagella and poly-hooks successfully from both B. burgdorferi and T. denticola; therefore, it is likely applicable for isolating periplasmic flagella from other spirochete species. The ability to efficiently harvest periplasmic flagella will facilitate further characterization of these unique structures.
References

burgdorferi gene expression by using whole genome arrays. Infection and immunity 71:1689-1705.

Appendix Table A1: Sample Protea MS analysis of *B. burgdorferi* HMWC from wild-type periplasmic flagella. All identified peptides matched FlgE. Corresponding sequences and confidence values are shown.

<table>
<thead>
<tr>
<th>Name of Protein Identified in Wild Type Bb</th>
<th>Confidence</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>AGAFDVSDDR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>ALASFMNPGLK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>ASULGVSNGLHILK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>GDLQPAITFN</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>IALASFMPGGGL</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>IALASFMPGGGL</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>IGFTGIALGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>LGTGSYTSITQASGDSSTK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>MDVGNMINAVNTIGFK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>QVGLGMVASIDTIHTQAFQSTQK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>RLPIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>SGDTNFVETSNSGQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>SGVSLQNHQTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>SITIHTQGAF</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>QIDTIITQGAFQGTQK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>SLYDSFGNSVLELR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>SLYSGVSLQHQT</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>1TITSDOLLQELVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VGEVGQEQTVNLK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VINTASDIDLIIPIGDK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VINTASDIDLIIPIGKEKAGK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VNFQDMISQSIASGSR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VNFQDMISQSIASGPRPTDAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>YDSFGNSVLELR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>YSGVSLQNHQTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99.0</td>
<td>VGEVGQEQTVN</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>89.0</td>
<td>AGAFDVSDDRLHNVPANGMR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi R31]</td>
<td>80.0</td>
<td>HILVNPANGMR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>37.0</td>
<td>GNVSVLELR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>21.0</td>
<td>GRVNFQDMISQSIASGSR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>5.0</td>
<td>PLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>4.0</td>
<td>IQGWMAR</td>
</tr>
</tbody>
</table>
Appendix Table A2: Sample Protea MS analysis of *B. burgdorferi* HMWC from poly-hooks. All identified peptides matched FlgE. Corresponding sequences and confidence values are shown.

<table>
<thead>
<tr>
<th>Name of Protein Identified in Bb FlK-mutant</th>
<th>Confidence</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>AGAFDVDSDR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>ASDLGVSGNGFFILK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>HLVNPANGMR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IALASFMPNPGGLAK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LGTVGSYTSITQFADSSSTK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>MDVGNHNNANTIGFK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>RLPIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>SGDTNFVETSNSQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>TTTSDQQLQELVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>VGEVGEQQTVLK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>91</td>
<td>IQGWMAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>90</td>
<td>SLYSGVSGLQNHQTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>45</td>
<td>NLFYTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>17</td>
<td>GTVWVK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>80</td>
<td>IQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>11</td>
<td>VNFQDMISQISGAIRPRTDAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>GLALGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>15</td>
<td>NIANVNTIGFK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>1</td>
<td>VNFQDMISQISGASR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>AGAFDVDSDR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>7</td>
<td>AGAFDVDSDR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>9</td>
<td>GTVWVK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>HLVNPANGMR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IALASFMPNPGGLAK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IALASFMPNPGGLAK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IALASFMPNPGGLAK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>45</td>
<td>IALASFMPNPGGLAK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>IGETGLAGLGDIR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>82</td>
<td>IQGWMAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>40</td>
<td>IQGWMAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>1</td>
<td>IQGWMAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>1</td>
<td>IQGWMAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LGTVGSYTSITQFADSSSTK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>Flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>------------------</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>2</td>
<td>LPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>MDVGNINANVNTIDFK</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>37</td>
<td>NLFYTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>2</td>
<td>NVSVLELR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>RLPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>6</td>
<td>RLPLIQEGANPADIAR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>SGDTNFSVTSNHSQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>SGDTNFSVTSNHSQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>SGDTNFSVTSNHSQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>99</td>
<td>SGDTNFSVTSNHSQVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>11</td>
<td>SLYSGVSGLQNHQTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>1</td>
<td>SLYSGVSGLQNHQTR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>78</td>
<td>TITTDQDLLQELVR</td>
</tr>
<tr>
<td>flagellar hook protein FlgE [Borrelia burgdorferi B31]</td>
<td>64</td>
<td>TITTDQDLLQELVR</td>
</tr>
</tbody>
</table>
Appendix Table A3: Sample NIOSH analysis of *T. denticola* HMWC from poly-hooks. All identified peptides matched FlgE. All peptides listed below were identified with > 95% confidence.

<table>
<thead>
<tr>
<th>Name of Protein Identified</th>
<th>Peptide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlgE_Tdenticola</td>
<td>AYEQRGTYLQYLENFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>DIQSGI1GVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWSTEFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMEEAEGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQTEDLNIPIGQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDRVNLGEIGTSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTFGK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDRVNLGEIGTSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LSQAARPTEELEGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GRVNFQDLISQQLSAARPTEELEGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VIGITTGVQNSFIVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMEEAEGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NVANVNTTFGK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRAGAFGIDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TVNVDPTNADATATR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TVNVDPTNADATATR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQTEDLNIPIGQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDRVNLGEIGTSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIGGTLEMSNVDLTDQFVDIMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFSGVTQMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>FSGVTQMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTFGK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATPVDPTNADATATR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GFQAGAKTIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LDAK</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GFQAGAK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDVNLGEIG</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRAGAFGI</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLET</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRAGAFGIDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRAGAFGIDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GRVNFQDLISQQL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMAEEAEGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWSTEFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATTSVNYACNLDKR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VGIITTDGVQNSFIVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFSGVTMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VGIITTDGVQNSFIVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VGIITTDGVQNSFIVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AGAFGIDKEGLVLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AGAFGIDKEGLVLPANGMRVQGWMAEEAEGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATTSVNYACNLDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFSGVTMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIIIGTLEMSNVDLTDQFVDIMVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFSGVTMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>QEIQQIAMAGFANQGGLEK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMAFFAFGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GEIGTSK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIIIGTLEMSNVDLTDQFVDIMVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFSGVTMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGFKR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LSGAARPTEELGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATVNVD</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMA</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQ</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGE</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTML</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>PELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWS</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VPGEVNAWR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VPGEVNAWR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>DGEKTFYTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MMRLSFSGVGTG</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRAGAFGIDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATTSVNYACNLDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IITFDVNLGEIGT8K</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDVNLGEIGT8K</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWSTEK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWSTEK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>FGEAHEDQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIIGGTLEMSNVDL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATTSVNYACNLDR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATVNVDPTNADATTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGF</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RGRVNFQDLISQQL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VGIITTDGVQNSFIVR</td>
</tr>
<tr>
<td>FlgF_Tdenticola</td>
<td>SFSGVTGMONHOTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQTEDLNIPIGQK</td>
</tr>
<tr>
<td>Peptide</td>
<td>Sequence</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>QEIGQIAMAGFANQGGLEK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AGAFGIDKEGLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AGAFGIDKEGLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AGAFGIDKEGLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LDIAKATTSVNYACNLDKR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LDIAKATTSVNYACNLDKR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MMRLFSGVTGMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIIGNVANVNTTGFKRGR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LISQQLSGAARPTTEELGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINNTSQTEDLNIPIGQKLDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINNTSQTEDLNIPIGQKLDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GFQAGAKTQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GFQAGAKTQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFFYTRAGAFGIDKEGLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANRAQILESTWSTEFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANRAQILESTWSTEFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VNFQDLISQQLSGAARPTTEELGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFARVPGEVNAWR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFARVPGEVNAWR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIGGTLMSVDLTDFQFVDMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIGGTLMSVDLTDFQFVDMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIGGTLMSVDLTDFQFVDMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFIGGTLMSVDLTDFQFVDMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFVDVN</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINNTSQTEDLNIPIGQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TEDLNIPIGQKLDK</td>
</tr>
<tr>
<td>FlgF_Tdenticola</td>
<td>GVTGMQNHQTR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIIQSTDMLETVL</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AYEQDGYTLGYLENFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFVDVNLGEI</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFVDVNLG</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIIQSTDMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINNTSQTEDLN</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPANGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GIDK</td>
</tr>
<tr>
<td>Name of Protein Identified</td>
<td>Peptide Sequence</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AYEQDGYTLGYLENFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>AQILESTWSTEFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMAEEAEAGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>RLPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPAEGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VYDSFGEAEHELQIDFAR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQTEDLNIPIGQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSDTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDVNLEIGTSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>MDVIGNVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPAEGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDVNLEIGTSDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LSGAAPTEELGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GRVNFQDLISQQLSGAAPTEELGGVNPK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>LPELPEGANR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VGIYTTDGVQNSFIVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>VQGWMAEEAEAGFR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TIQTSJTMLETVLNLK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPAEGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NVANVNTTGFK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>EGTLVNPAEGMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TFYTRACAFCIDK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>TVNVDPTNADATATR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>ATVNVDPTNADATATR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IDQSGIITGVYSNGVR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>IINTSGQTEDLNIPIGQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>HTFDVNLEIGTSDKNTITQFSDKSTTK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>GYFiggTLEMSVNDLTDFQVDMIVTQK</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>SLFGSVTMQNHQTMR</td>
</tr>
<tr>
<td>FlgE_Tdenticola</td>
<td>NTITQFSDK</td>
</tr>
</tbody>
</table>
The Unique Paradigm of Spirochete Motility and Chemotaxis

Nyles W. Charon,1 Andrew Cockburn,1 Chunhao Li,3 Jun Liu,4 Kelly A. Miller,1 Michael R. Miller,2 Md. A. Motaleb,5 and Charles W. Wolgemuth6

1Department of Microbiology, Immunology, and Cell Biology, 2Department of Biochemistry, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506-9177; email: ncharon@hsc.wvu.edu, acockbur@mail.wvu.edu, kamiller@hsc.wvu.edu, mmiller@hsc.wvu.edu
3Department of Oral Biology, The State University of New York at Buffalo, New York 14214-3092; email: cli9@buffalo.edu
4The University of Texas–Houston Medical School, Department of Pathology and Laboratory Medicine, Houston, Texas 77030; email: jun.liu.1@uth.tmc.edu
5Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834; email: motalebm@ecu.edu
6Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030-3505; email: cwolgemuth@uchc.edu

Abstract

Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.
INTRODUCTION

A century ago Clifford Dobell (23) said “the movements of the Spirochaets are still surrounded in mystery.” A half century later Claes Weibull (101) quoted Dobell and went on to say “it could be asked whether the situation has changed very much since those days.” After yet another half century, although progress has been made, many intriguing questions about spirochete motility remain unanswered and some obscurity about their elegant motions still persists. Genomic analysis indicates that spirochetes are a monophyletic clade (72), so we expect that spirochete motility has some similarity across taxa. Several reviews have been published on spirochete motility and the reader is referred to these articles (15, 34, 51, 102). However, there has been some fresh and robust progress in several areas that focus on particular aspects of spirochete motility, especially on the spirochete *Borrelia burgdorferi* (*Bb*). This progress has been spurred by the increase in research interest in *Bb* because of the importance of the disease it causes and recent breakthroughs in genetic manipulation. Furthermore, owing to its small diameter, *Bb* is optimal for analysis utilizing the groundbreaking methodology of cryoelectron tomography (cryo-ET).

B. burgdorferi Life Cycle, Lyme Disease, and Genomics

Bb is the causative agent of the zoonosis called Lyme disease (81, 86, 89). Small mammals such as mice and voles, and specific species of birds, serve as reservoirs of infection. Humans are accidental hosts. Transmission occurs via the bite of hard shell ticks of certain *Ixodes* species. In humans, Lyme disease has many manifestations, including a spreading rash (erythema migrans), acute and chronic arthritis, a skin disease (acrodermatitis), neurologic problems, and heart block. In the United States, Lyme disease is the most prevalent arthropod-borne human infection. Ten different species in *Bb*
The overall morphology of spirochetes, with their flagella located internally, raises the long-standing questions: How do these bacteria swim and how do they carry out chemotaxis?

MORPHOLOGY

B. burgdorferi as a Model Spirochete

Bb fits the morphological description of a spirochete (*Figure 1b*). Both light-microscopy and high-voltage transmission electron microscopy (TEM) indicate that *Bb* has a flat-wave morphology (32, 33) ([Supplemental Figure 1](#), [Supplemental Movie 1](#); follow the [Supplemental Material](#) link).
This planar wave form is similar to that of the syphilis spirochete *Treponema pallidum* (22, 39) but differs from the many helix-shaped members of the phylum such as the family *Leptospiraceae* (72, 77). *Bb* is long and thin, with a length between 10 and 20 μm and a diameter of approximately 300 nm (32). Its shape is characterized as a planar, regular, periodic undulation of the cell body, with an amplitude of 0.78 μm and a wavelength of 2.83 μm.

Ultrastructure of *B. burgdorferi*

The fine structure and general composition of *Bb* have been analyzed using several approaches. The composition of the *Bb* OM is unusual. It lacks lipopolysaccharide but contains lipids uncommon in bacteria, such as cholesterol (8). Cryo-ET has been used extensively to analyze cell structure (17, 43, 54). The OM also has a large number and variety of surface-exposed lipoproteins that are seen by cryo-ET as a layer surrounding the cell (54). The OM has a width of 4 nm and tightly fits around the PC. At the PC surface, the peptidoglycan forms a wall approximately 6.8 nm wide (54). As discussed below, for the spirochete to form a dynamic flat wave and carry out its remarkable motions as it swims, the wall must be astonishingly flexible. Little is known about the structure of the *Bb* peptidoglycan other than that it contains alanine, glycine, glutamic acid, and ornithine (7), and nothing is known about what imparts its highly flexible nature. Inside the wall layer is the 4-nm-wide protoplasmic cell membrane, which encloses the cytoplasm.

Periplasmic Flagella In Situ

Between 7 and 11 PFs are subterminally inserted into each end of the PC (15, 38, 43, 105) (Figure 1b and Figure 2). These PFs are structurally similar to the flagella of other bacteria. Each PF is composed of a motor, hook, and filament. The flagellar motors are linearly inserted along the long axis of the cell at each end and are 90 to 120 nm apart from each other (17, 43, 54, 105). The flagellar motor that is closest to the cell tip is approximately 150 nm from that end. Although previous TEM analyses indicate that the PFs form a bundle (32, 62), recent results with cryo-ET indicate that the flagellar filaments instead form an elegant ribbon in the PS (17) (Figure 1b). The minimum thickness of the ribbon is equivalent to the diameter of a PF.
(16–18 nm) (38, 43), but the ribbon can be thicker and multilayered. The filaments are closely packed, with approximately 3 nm of space between them. The ribbon also increases the thickness of the PS so that the OM bulges in its vicinity (17, 43, 54). Thus, in regions of the cell where there are no PFs, the PS thickness is approximately 16 nm. In contrast, the PS thickness is 42 to 49 nm in domains containing PFs (17, 54). High-voltage TEM and cryo-ET indicate that the ribbons wrap around the body axis (the longitudinal center of the cell, as if the cell is a sausage) clockwise (CW) and thus are right-handed (17, 32). However, along the cell axis (i.e., the abscissa, as the cell is in the form of a flat wave, or a sine wave), the PFs form a left-handed helix with a helix pitch (a complete helical turn) of approximately 2.83 μm, which is equivalent to the periodic wavelength of the cell (32). Recent results suggest that in short cells (10 μm in length) there are more PFs in the cell center than in long cells (20 μm in length) (C. Li, unpublished data). Evidently, the rate of growth of a given flagellar filament decreases as the cells become longer. Furthermore, the two opposing ribbons overlap in the central region. It is not clear whether the two ribbons form a continuous ribbon, or whether the ribbons are on opposite faces of the cell (32, 43, 93).

Periplasmic Flagella Structure and Composition

Purified PFs have been analyzed in some detail. At neutral pH, PFs are left-handed and have a helix diameter of 0.28 μm and a pitch of 1.48 μm; however, a small fraction have a helix diameter of 0.8 μm and a pitch of 2.0 μm (16, 24). The flagellar filaments consist of a major 41-kDa FlaB protein and a minor 38-kDa FlaA protein (15, 31). FlaB shows sequence identity to FlaB of other spirochetes and to the flagellar filament proteins of other bacteria such as FliC of *Escherichia coli*. Sequence analysis indicates that FlaB is likely to be excreted into the PS by the Type III flagellin-specific pathway (15). FlaA has sequence identity to FlaA proteins that are present in PFs of other spirochetes. In contrast to FlaB, FlaA is likely to be excreted from the SecA-mediated pathway to the periplasm (15). In most spirochete species, FlaA forms a sheath that surrounds the FlaB core. The function of FlaA is presently unknown, but recent work on the spirochete *Brachyspira hyodysenteriae* is instructive (49). *flaA* mutants of *B. hyodysenteriae* have unsheathed PFs, are still motile, but swim more slowly than the wild type. In addition, the PFs from these mutants have a different helix pitch and diameter and are less rigid than those from the wild type. Thus, FlaA interacts with FlaB to augment filament shape and rigidity for optimal motility. However, in *Bb*, so little FlaA is made relative to FlaB that only a small region of the filament has a sheath (31). TEM analysis comparing the wild type to the *flaA* mutant indicates that the FlaA sheath is localized adjacent to the flagellar hook (S. Shibata, S. Aizawa, M.A. Motaleb & N. Charon, unpublished data). Perhaps flagellar rigidity near this region is essential for optimal PF rotation and motility.

Cytoskeletal Function of the Periplasmic Flagellar Filaments

The analysis of specific mutants indicates that the PFs have a major role in the overall morphology of *Bb*. First, mutants in the following genes form a straight rod instead of a flat wave (Supplemental Table 1): *flaB*, which encodes the major flagellin protein; *flgE*, which encodes the flagellar hook; *fliF*, which encodes the MS ring of the motor; and *fliG2*, which encodes a motor protein of the switch complex (50, 62, 84). A mutant that overproduces the regulatory protein CsrA also forms a rod (see below) (93). Ultrastructure and Western blot analyses indicate that the one common deficit of all these mutants is the lack of flagellar filaments and filament proteins. Thus, the ability to form flat waves positively correlates with the presence of flagellar filaments and FlaB. Second, a mutant that has a shorter cellular wavelength and a smaller amplitude than that of the wild type was recently isolated (93). This mutant, which has a deletion in the *csrA* regulatory gene,
produces PFs that are considerably longer than those of the wild type. Cryo-ET analysis revealed that the flagellar ribbons in *csrA* mutants wrap around the PC more tightly than do ribbons in wild-type cells with a smaller helix pitch and diameter. In addition, the two ribbons interdigitate with one another. These results indicate that increasing the length of the PFs leads to cells with an altered flat-wave morphology (see below). Taken together, the results with the many filament-deficient mutants and the *csrA* deletion mutant strongly support the concept that the PFs influence cell shape by having a skeletal function.

Why is *B. burgdorferi* a Flat Wave?

How do the PFs exert their skeletal function? Bacterial cells and flagella are elastic materials. When forces are applied these structures deform, and when the forces are removed these structures revert back to their original shape. Because the PC of *Bb* is a straight rod when the PFs are not present, and purified PFs are helical, evidently the interaction between the two components leads to the flat-wave morphology. The helix pitch of the PFs in situ (2.83 μm) is markedly different from those that are purified away from the cell body (1.43 μm and 2.0 μm) (16, 24, 32). For the PFs to be contained within the PS, these structures must deform. The PC produces the force that bends the PFs. Concomitantly, the PFs exert an equal but opposite force back onto the PC, which causes the cell to bend into its characteristic shape. Mathematical modeling, which takes into consideration the elastic properties of the PFs and PC, has shown that the balance between these two forces is a cell with a flat-wave shape—it is not intuitive! However, this force balance conspires to produce the correct wavelength and amplitude only if the PFs are in the helical conformation that is observed less frequently in purified PFs (helix diameter of 0.8 μm and a pitch of 2.0 μm) (24). How does the *csrA* deletion mutant that has longer PFs cause the cell to have a shorter wavelength and cell amplitude (93)? One possible explanation is that the increase in length of the PFs, and perhaps the interdigitation characteristic of the PF ribbons in the mutant, causes the PFs to flip into the helical state that is observed more frequently in purified PFs. This change in preferred conformation of the PFs is predicted to produce a flat-wave shape with a smaller wavelength and amplitude.

Hook and Motor Structure

The flagellar hook region in *Bb* and certain other spirochetes has some unique attributes. In other bacteria, the hook serves as a universal joint connecting the flagellar filament to the motor (85). In *Bb*, the hook is a 61-nm-long hollow tube consisting of approximately 133 FlgE units (84). As mentioned above, inactivation of *flgE* results in cells that lack flagellar filaments, are nonmotile, and are rod shaped (84). In most bacteria, the FlgE subunits are held together by protein-protein interactions that are readily dissociated by denaturing agents. Surprisingly, FlgE in *Bb* and other spirochetes forms a stable, high-molecular-weight complex (52, 84). Several lines of evidence indicate that FlgE subunits in *Bb* are covalently cross-linked (84) (K. Miller, M. Miller & N. Charon, unpublished data). The flagellar hook and filament are likely to be under greater stress in spirochetes than in other bacteria, as the PFs deform the PC while they rotate (see below, Dynamics of Motility). Perhaps the hook proteins are cross-linked in spirochetes for added structural strength to perform this function.

The incredible methodology of cryo-ET is being exploited to analyze the intact *Bb* motor (44, 54), as well as other spirochetal motors (53, 69). The overall structures of spirochetal motors are similar to each other, consisting of the MS ring, the C ring, the rod, the export apparatus, and the stator (Figure 3) (Supplemental Movie 2). *Bb* exhibits a relatively large C ring, ∼57 nm in diameter, compared to the 45-nm C ring of *E. coli* and *Salmonella enterica* serovar Typhimurium.
A three-dimensional reconstruction of the *Borrelia burgdorferi* flagellar motor. The major components (the rod, the stator, the P ring, and the MS ring) are labeled. The C ring is composed of FliG, FliM, and FliN. The “collar” is a spirochete-specific feature. The export apparatus is divided into two separate densities, although the boundary between the MS ring and the export apparatus is not well defined. Abbreviation: CM, protoplasmic cell membrane.

(95). This enlarged C ring shares similar features with the *S. enterica* structure: a cylindrical structure with a slightly bulky bottom and a Y-shaped extension at the top (95). Thus, the C ring is likely composed of multiple copies of FliG, FliM, and FliN proteins arranged in a manner similar to that of *E. coli* and *S. enterica*.

The stator, encoded by the *motA* and *motB* genes, is the motor force generator embedded in the protoplasmic cell membrane. The visualization of the stators in many species of bacteria is difficult (19), and this difficulty may in part be the result of the stator being dynamic and that its functional units freely interchange between the motors circulating in the protoplasmic cell membrane (46). In contrast, the stators of *Bb* and other spirochetes are clearly visualized (44, 53, 54, 69). Cryo-ET analysis of *motA* and *motB* mutants of *Bb* provides the first structural evidence that these genes encode the 16 stators radially arranged around the rotor (Figure 3) (Supplemental Movie 2) (X. Zhao, T. Boquoi, M.A. Motaleb & J. Liu, unpublished data). Conceivably, the stators in *Bb* and other spirochetes are relatively stable, or unit interchange occurs without disrupting the overall arrangement of the stator. Remarkably, the cytoplasmic domain of the stator is adjacent to the C-terminal domain of the C-ring rotor protein FliG. This stator-rotor interaction evidently induces an unexpected conformational change in FliG, and this change is likely to be a fundamental mechanism for flagellar rotation (X. Zhao, T. Boquoi, M.A. Motaleb & J. Liu, unpublished data).

The *Bb* flagellar motor is a remarkable and complicated nanomachine consisting of at least 20 different proteins (Figure 3) (Supplemental Movie 2). To understand flagellar motor assembly and function, the structural and functional roles of all flagellar proteins must be determined. Fortunately, many mutants in motor genes have been constructed by either transposon mutagenesis or targeted mutagenesis (Supplemental Figure 2, Supplemental Table 1). fliE mutants are defective in rod assembly, and fliM mutants are deficient in the middle and the bottom of the C ring (X. Zhao, T. Boquoi, A. Manne, M.A. Motaleb & J. Liu, unpublished data). fliI and
flhH mutants are defective in the assembly of the bottom part of the export apparatus (X. Zhao, T. Lin & S. Norris, unpublished data). FlhL proteins localize between the stator and rotor, and these proteins are evidently involved in the proper orientation of the PFs within the PS (65). flgI mutants fail to form a hollow, torus-shaped structure around the rod. However, in contrast to other bacteria, these flgI mutants are still fully motile; evidently, the P ring is not required for flagellar rotation (54). Instead, a spirochete-specific “collar” may function as a bushing that facilitates the rotation of the flagellum without disrupting the surrounding peptidoglycan layer. The identities of the specific genes encoding the “collar” have yet to be identified. In sum, the structure of the Bb flagellar motor is being characterized in some detail, and specific motor proteins and function are being correlated with specific genes in situ for the first time.

DYNAMICS OF MOTILITY

Swimming In Vitro

Given the structure of Bb, the obvious first question with respect to their motility is, What do swimming cells look like? Also, given that the PFs are located in the PS, how does PF rotation drive motility? The swimming behavior of Bb is more complicated than that of other bacteria as a result of their complex geometry. Bb has four motility modes based on the direction of flagellar rotation: two translational modes (with either end leading) and two nontranslational modes (Figure 4) (Supplemental Movie 3). In an isotropic environment, a given cell runs at least 90% of the time (M.A. Motaleb & N. Charon, unpublished data). During a run, waves are propagated from the front to the back at a frequency of 5 to 10 Hz at room temperature. In contrast to eukaryotic flagella, propagating waves are full size at the anterior end instead of starting as small bends and increasing in size. These waves propagate at a speed of 34 \(\mu \text{m s}^{-1} \) relative to the cell (33). The cells swim at a mean speed of 4.25 \(\mu \text{m s}^{-1} \) in a pure liquid (33). The ratio of the swim speed to wave propagation is 0.12; i.e., in the time it takes a wave to travel the length of the cell, the cell advances 12% of its length through the medium. Thus, as Bb swims, waves are clearly evident as they swim in a given direction.

How are the waves generated, and what is the basis for the nontranslational forms? Everything points to the PFs. We know they are essential for motility, they rotate, they are helix shaped, and they have a skeletal function. Although it has not been directly proven, the following model is proposed (Supplemental Movie 4) (15, 32): During a run, the PFs of the anterior ribbon are predicted to rotate counterclockwise (CCW), and those of the posterior ribbon rotate in the CW direction (as a frame of reference, the PFs are viewed from their distal end to where they insert into the PC). Thus, the PFs of the two ribbons rotate asymmetrically relative to one another during a run. This rotation causes backward-moving waves to be propagated down the length of the cell. Reversals occur when the PFs of both ribbons change the direction of rotation. In addition, recent mathematical modeling suggests that during translation the rotating PFs are not in direct contact with the PC, but rather a thin layer of fluid separates these filaments from the PC (107). Forces between the PFs and the PC are therefore mediated by viscous forces in the fluid present in the PS. This hypothesis is based on the known elasticity of the PFs, PC, and the dynamics of swimming cells. The modeling predicts that the thin layer of fluid in the PS is essential for the smooth backward-propagating waves noted on translating cells. Otherwise, if the PFs interacted directly with the PC, the PFs would be predicted to easily tangle up with one another and the propagating wave would not be as regular as observed. Several questions arise with the overall model of translating Bb. If the PFs are rotating CCW along the axis of the cell as viewed from behind the cell, is the cell rolling about the body axis CW to balance that torque as predicted.
Figure 4
Swimming cells of *Borrelia burgdorferi* as a function of the direction in which the periplasmic flagella (PFs) rotate. Straight arrows at cell ends indicate direction of swimming. Curved arrows indicate the direction in which the PFs rotate. For simplification, only one PF is shown attached at each end of protoplasmic cell cylinder. Panel a shows translational forms, and panel b shows nontranslational forms. Reprinted and modified with permission from Reference 15. Abbreviations: CW, clockwise; CCW, counterclockwise.

(15, 32)? What is happening to the OM? Cryo-ET indicates that it is held very close to the PC and even bulges in the vicinity of the PF ribbon. How is the tight fitting achieved, especially in light of evidence that the OM is a lipid bilayer? Are there bonds that form between the OM and PC, and are those bonds broken as the PFs rotate?

In the nontranslational modes, the prediction is that the PFs from both ribbons rotate in the same direction: both rotate either CW or CCW. This stopped interval is referred to as a flex and is thought to be analogous to the tumble seen in externally flagellated bacteria. The cells often become distorted during this interval and may bend in the middle. It is difficult to distinguish cells with PFs at both ends rotating CCW from cells with PFs at both ends rotating CW. It is not clear exactly what is occurring in the PS that causes the cell to form a distorted morphology. Do the PFs from the opposite end wind around one another to cause the distorted shape? In other spirochete species, the distortion associated with flexing occurs only if the PFs overlap in the center of the cell (33), so this is a possibility.

The description of swimming given above comes largely from motility assays in liquid environments. Many of the natural environments that *Bb* encounters do not behave like a liquid. For example, spirochetes are deposited into the dermis of the mammal via the saliva of the tick. The dermis of the mammal is composed largely of a cross-linked collagen network. This gel-like environment responds to external forces from the bacterium with a combination of elastic and viscous forces; i.e., it is a viscoelastic material. Liquid media, on the other hand, only responds with viscous forces. One of the first investigations into the effect of viscoelasticity on the motility of *Bb* examined swimming in solutions of methylcellulose or hyaluronic acid (41). Swimming speed increases
substantially as the concentration of methylcellulose or hyaluronic acid is increased. The increase in swimming speed with the viscoelasticity of the environment suggested that Bb motility may be optimized for migration through host tissue. In addition, Bb, like several other spirochete species, can translate in highly viscoelastic medium that markedly slows or stops the motility of other flagellated bacteria. Liquid media and methylcellulose solutions, though, are poor facsimiles for many of the natural environments that Bb encounters. For example, collagen in the dermis forms a gel-like network (i.e., it is more elastic than viscous), whereas low-concentration methylcellulose solutions (less than a few percent) are viscoelastic fluids (i.e., they are more viscous than elastic) (12). The natural environments are differentiated further from liquid media and methylcellulose solutions because they contain cells and various extracellular matrix components, such as collagen, fibronectin, and decorin, to which Bb binds.

Bb in gelatin exhibited four motility states, which are determined by transient adhesion between the bacterium and the matrix (36). In addition to adhering to these substrates, spirochetes also migrate through the matrix, even though the pores in the gelatin matrices are significantly smaller than the diameter of the bacteria. As in previous reports, the undulation and migration speed of the bacteria depend strongly on the physical properties of the environment; however, the bacteria always swim slower in gelatin than in liquid media. Therefore, the unique motility mechanism of Bb enables it to penetrate dense tissues in its hosts, but the speed of the bacteria may not be enhanced in these natural environments.

Swimming In Vivo

We are at an early stage in sorting out the role of Bb motility in vivo. One of the major breakthroughs is the ability to track green fluorescent protein (GFP)-tagged virulent Bb in vivo using intravital microscopy and fluorescence spinning disc confocal microscopy. Soon after injection of Bb into mice, spirochetes are seen interacting with capillaries and veins (61). The movement of the organisms is stop and go, with the stops characterized by adherence to the endothelium. Approximately 90% of interactions with the endothelium are less than 1 s, and about 10% are 1–20 s. These interactions are mediated in part by the spirochete surface protein BBK32 and host fibronectin and glycosaminoglycans (70). In contrast, approximately 1% of the cells are stationary, with one end attached and partially embedded in the endothelium, often at the endothelial cell junctures, and the other end gyrating. These stationary cells resemble the often seen tethered spirochetes whereby the cells adhere to stationary ligands via an OM surface-associated component yet remain motile (18). The attached spirochetes eventually escape the endothelial cell lining and penetrate into connective tissue. In the liver, the spirochetes first interact with Kupffer cells, which then trap, immobilize, and engulf the spirochetes, and then present antigens to the invariant natural killer T cells (47). The role of motility and chemotaxis in both the adherence and penetration through blood vessels, and in the interaction of immune cells in the liver, is likely to be important. Future experiments with specific motility and chemotaxis mutants should be definitive.

Some remarkable imaging studies have examined GFP-tagged Bb in the tick host both before and after feeding on mice (26). In unfed nymphs, Bb cells are nonmotile and distributed throughout the midgut. By 72 h after feeding on mice, the density of Bb is high; however, the spirochetes remain nonmotile but are viable. Remarkably, the presence of a diffusible factor(s) in the tick midgut is likely to be responsible for their nonmotility. At 72 h, only a small number of the spirochetes traverse the midgut basement membrane, enter the hemocoel, and colonize the salivary glands for transmission to mammals. These invasive spirochetes are motile. Why is Bb motility specifically inhibited in the tick midgut? Perhaps the tick developed a means of defense to keep the infection...
localized by inhibiting Bb motility. Future experiments to characterize the inhibitory factors should be enlightening.

CHEMOTAXIS

Chemotaxis (movement toward or away from a chemical stimulus) in spirochetes is unique. Bacteria undergo a biased random walk during chemotaxis, and this walk is achieved by modulating the direction or speed of flagellar rotation (76, 88, 99). A two-component regulatory system mediates the biased walk up a gradient of attractant or away from a repellent. In the paradigmatic chemotaxis model of *E. coli* and *S. enterica*, variation in motor direction is determined as follows: The response regulator CheY is phosphorylated by the histidine kinase CheA to form CheY-P. CheA is part of the polarly located methyl-accepting chemotaxis protein (MCP) receptor signal complexes. The probability that CheA phosphorylates CheY is a function of the occupancy level of an attractant or repellent that binds directly or indirectly to the MCPs in the PS. CheY-P diffuses through the cytoplasm and interacts with the flagellar switch protein FliM, causing the motor rotational biases to shift from the default rotation of CCW to CW. If all the motors rotate CCW, the cell swims. If one of the motors rotates CW, the cell tumbles (97). The motors are within 1 μm of the MCP complexes. Thus, CheY-P can diffuse and bind to the motors within 0.1 s (98). The CheY-P formed has phosphatase activity associated with it. However, dephosphorylation of CheY-P, which restores the default CCW behavior such that the cell can immediately respond to changes in the environment, is enhanced by the action of the CheY-P-specific phosphatase CheZ.

Chemotaxis in *Bb* is different from this and other well-studied bacterial chemotaxis models. Two conundrums are evident. First, these spirochetes have two sets of flagellar motors: one at each cell end. As noted above, these sets of motors are located at a considerable distance from one another (between 10 and 20 μm). In addition, recent results using fluorescent antibodies and cryo-ET indicate that the MCP complexes are subpolarly located at each cell end (105) (Figure 2). If CheY-P is formed at one end of the cell at these complexes, it could readily diffuse to the adjacent motors. However, given a cell length of 10 μm, it would take at least 10 s for CheY-P to diffuse to the motors at the other end of the cell (67). Because the speed of these bacteria is at least 4 μm s⁻¹ (33), simple diffusion of CheY-P to the opposite end of the cell to coordinate the rotation of the PFs is unlikely. Furthermore, in *Bb*, instead of runs and tumbling, there are four swim configurations based on the direction of flagellar rotation (Figure 4), all of which contribute to a higher level of complexity in swim behavior than that of most other bacteria. Thus, the first conundrum is, How does *Bb* coordinate the rotation of the PFs within the ribbons at both cell ends to effect chemotaxis?

Second, for the bacteria to swim in a given direction, the motors at each end must rotate in the opposite direction of those at the other end; i.e., if the PFs in one ribbon rotate CCW, the others rotate CW. This asymmetrical rotation is markedly different from the swimming behavior of *E. coli* and *S. enterica* whereby all the motors rotate in the same direction during translation. Furthermore, as discussed below, in the absence of a functional CheY response regulator, *Bb* constantly runs. Thus, the second conundrum is, What is the basis for asymmetrical rotation of the PFs during translational swimming in the absence of CheY?

Although significant progress has been made in understanding *Bb* chemotaxis, a palpable molecular model putting it all together is still in the developmental stage. To address the above questions, a capillary tube chemotaxis assay was developed using flow cytometry to enumerate cells, and several chemically defined chemoattractants were identified (4, 63). These attractants include N-acetylg glucosamine, glucosamine, glucosamine dimers, and glutamate. The assay allowed...
researchers to test whether specific genes were involved in chemotaxis. Bb has multiple copies of chemotaxis genes, including six mcp (two lack membrane-spanning regions), two cheA, three cheY, two cheB, two cheR, and three cheW (29). It has only one CheY-P phosphatase gene commonly found in bacteria, cheX, which has an activity similar to that of cheZ found in E. coli (64, 74). The results of extensive gene targeting analysis indicated that the chemotaxis pathway involves MCPs, CheW3, CheA2, CheY3, and CheX (Supplemental Figure 2, Supplemental Table 1). Biochemical analysis supports the conclusion that CheA2 readily phosphorylates CheY3 (67) and CheX dephosphorylates CheY3-P (64, 74). Interestingly, the half-life of the CheY3-P is 10 min (67), which is considerably longer than the half-lives of most CheY-P of other bacteria such as E. coli, which is a few seconds (37). Most important, because CheY plays such a pivotal role in the chemotaxis of all known species of bacteria, CheY3 is concluded to be the key chemotaxis response regulator in Bb.

An analysis of the swim behaviors of the chemotaxis mutants may yield a clue to the basis of asymmetrical rotation of the flagellar ribbons during translational motility. Both cheA2 and cheY3 mutants constantly run in one direction (48, 67) (Supplemental Table 1, Supplemental Movie 3). These results are similar to those of other bacteria such as E. coli and S. enterica; cheA and cheY mutants in these bacteria also constantly run. However, in Bb the motors rotate asymmetrically at one end relative to the other during a run, whereas in E. coli all the motors are rotating CCW. Evidently, in the default state, i.e., when no CheY3-P are present, the motors at one cell end are different from those at the other, as they rotate in opposite directions. Perhaps there is a protein that interacts with motors at one cell end such that in the default state the PFs rotate in the opposite direction relative to those at the other end. There is precedent for protein localization of this type, as some bacteria-specific proteins localize at the old cell end and not at the new cell end (6). A candidate protein is FliG1 (50). Bb and many other spirochetes have two fliG genes encoded in their genomes, fliG1 and fliG2 (29, 50). FliG is involved in motor rotation in other bacteria, is essential for flagellar assembly and motility, and plays a major role in determining the direction of motor rotation (55). fliG2 likely plays this role in Bb, as mutants in this gene are nonmotile and lack PFs; FliG2 has all the essential sequence and structural domains common to other bacterial FliGs (50). However, FliG1 lacks some of the essential residues common to FliG of other bacteria. fliG1 mutants are still motile but are unable to swim in highly viscous media containing methylcellulose; only one of the cell ends is able to gyrate. Interestingly, GFP-tagged FliG1 localizes at only one cell end (50). It will be interesting to determine whether FliG1 is partly responsible for the asymmetrical rotation of the PFs.

The phenotypes of other specific mutants complicate this scenario. The cheX mutant constantly flexes (64), which is analogous to the constantly tumbling cheZ mutants of E. coli (10). A cheX mutant is predicted to have a higher CheY3-P concentration than the wild type does. One expectation of the protein localization model is that cells with a high CheY3-P concentration should also run, not flex. For example, those motors that run CW in the default state should reverse and rotate CCW under a high CheY3-P concentration, and those motors that run CCW in the default state should run CW. Perhaps there is another CheY-P phosphatase that has not been identified in Bb, and as result, the cheX mutant could have an intermediate level of CheY3-P that results in flexing. In B. subtilis, FliY and CheC have CheY-P phosphatase activity, but Bb lacks homologs to these genes (68).

Bb also has a gene encoding CheD. CheD in other bacteria augments the phosphatase activity of CheC, binds to and deamidates glutamine residues on MCPs, and regulates the activity of CheA kinase. cheD mutants in other bacteria have a decreased activity of CheA kinase, leading to lower levels of CheY-P (78). CheD may have a similar function in Bb, as a cheD mutant has a nonchemotactic, constantly running phenotype, similar to the cheY3 and cheA2 mutants that are also expected to decrease CheY3-P concentration (M.A. Motaleb & N. Charon, unpublished work).
data). However, because CheD in other bacteria has functions in addition to activating the CheA kinase, its role in Bb chemotaxis is presently unclear.

The second messenger, 3′,5′-cyclic-diguanosine monophosphate (c-di-GMP), is emerging as a major factor influencing motility and possibly chemotaxis (see Transcriptional and Translational Regulation of Motility and Chemotaxis Genes, below). Certain mutants involved in c-di-GMP synthesis, degradation, and effector binding have aberrant swim behavior, such that some mutants (e.g., pdeA) constantly run, whereas others (e.g., pdeB) have a high flex rate (90, 91). c-di-GMP and its effector protein bind to the flagellar motor protein in other bacteria and influence the direction and speed of flagellar rotation (9, 21, 27, 73). At this time it is difficult to determine how c-di-GMP influences Bb swimming behavior at a molecular level.

The second messenger, 3′,5′-cyclic-diguanosine monophosphate (c-di-GMP), is emerging as a major factor influencing motility and possibly chemotaxis (see Transcriptional and Translational Regulation of Motility and Chemotaxis Genes, below). Certain mutants involved in c-di-GMP synthesis, degradation, and effector binding have aberrant swim behavior, such that some mutants (e.g., pdeA) constantly run, whereas others (e.g., pdeB) have a high flex rate (90, 91). c-di-GMP and its effector protein bind to the flagellar motor protein in other bacteria and influence the direction and speed of flagellar rotation (9, 21, 27, 73). At this time it is difficult to determine how c-di-GMP influences Bb swimming behavior at a molecular level.

The results accumulated indicate the following conclusions: First, CheY3 is the major response regulator, and the pathway leading to its phosphorylation and dephosphorylation involves MCPs, CheW3, CheA2, CheX, and possibly CheD. Second, the asymmetrical rotation of the PFs in the default state can best be explained by differences in the motors at each end of the cell, but support for this hypothesis awaits experimental evidence. Third, it is too early to understand the basis of flagellar coordination mediated by CheY3 that results in chemotaxis, although many hypotheses are conceivable. As previously mentioned, diffusion of CheY3-P from one cell end to the other is too slow to coordinate the rotation of the PFs at the distal end. As an alternative, perhaps there is a cytoskeletal structure whereby CheY-P moves rapidly from one end to the other. There is precedence for this possibility: In Myxococcus xanthus, the protein AglZ mediates gliding motility by moving from one cell end to the other by way of the MreB cytoskeleton (58). Because completion of this internal cell migration of AglZ is on the order of several minutes, a CheY3 transport system in Bb would have to be considerably faster.

Another model possibility for coordinating the PFs at each end relates to a mechanosensing mechanism. Perhaps there is an interaction between the PFs at one end of the cell and those at the other such that rotation of the PFs at one end influences the rotation of the PFs at the other end. This possibility is conceivable, as the PFs in Bb overlap in the center of the cell. However, this hypothesis does not apply to all spirochetes, as Leptospira interrogans has PFs that are short and do not overlap (102), yet these spirochetes are chemotactic (110) (N. Takahashi & N. Charon, unpublished data). CheY3-P could act at another, unknown site such that the membrane potential is altered when the cell is undergoing chemotaxis, and this change in potential might allow coordination of the PFs (35). Alternatively, perhaps CheY3-P together with c-di-GMP coordinates PF rotation.

Finally, conceivably there is no internal signal that coordinates the motors at both cell ends: Flagellar coordination and chemotaxis are achieved by the attractant binding to either one or both of the MCP clusters at the cell ends. The change in CheY3-P concentration generated by this binding specifically affects the direction of rotation of the motors that are adjacent to those MCPs. For example, if the attractant binds the MCPs at one cell end, it causes the motors only at that end of the cell to change their direction of rotation, and the cell flexes. In contrast, if attractant molecules simultaneously bind to the MCPs at both cell ends, the motors at both ends change directions and the cell runs. In closing, now that specific compounds that serve as attractants are known, and that CheY3 is the functional response regulator, the basis for coordinating PF rotation for chemotaxis can finally be determined.

TRANSCRIPTIONAL AND TRANSLATIONAL REGULATION OF MOTILITY AND CHEMOTAXIS GENES

The genetic map indicating the genes that are involved in motility and chemotaxis is presented in Supplemental Figure 2. Most motility genes are present in single copies (except for fliG, the
motor control protein). As noted above, there are multiple copies of chemotaxis genes. The analysis of mutants described above indicates that the Bb cluster cheA2-cheW3-cheX-cheY3 is involved in chemotaxis under standard laboratory conditions. This cluster is closely related to chemotaxis gene systems in the other spirochetes and is probably inherited from a common ancestor (15, 48, 103). The other cluster consisting of cheW2-bb0566-cheA1-cheB2-bb0569-cheY2 may be a recent gene transfer from the Proteobacteria (48, 103). The function of this second cluster is not known, but it may be involved in chemotaxis under different environmental conditions.

The regulation of the motility and chemotaxis genes of Bb is unique. In other bacteria, there is cascade control of gene regulation of motility gene expression (20). For example, at least 50 genes are involved in the motility and chemotaxis of E. coli and S. enterica, and these genes fall into three classes (class I, II, and III), which are under the tight regulation of a transcriptional hierarchy. Within this regulatory cascade, the class I master regulator (FlhDC), in conjunction with the housekeeping sigma factor (σ70), directs RNA polymerase to initiate the transcription of the class II genes. Class II genes encode the structural proteins involved in the motor-hook complexes, and two regulatory elements: the flagellum-specific sigma factor FliA (σ28) and the antagonist of FliA (anti-σ28), FlgM. Prior to the completion of the hook assembly, FlgM binds to FliA to prevent premature synthesis of the class III genes encoding the flagellin and the chemotaxis proteins. Upon completion of the hook structure, FlgM is excreted by the flagellum-export apparatus, thereby allowing FliA to initiate the transcription of the class III genes. The last step allows for completion of flagellar assembly and chemotaxis gene expression. In contrast, in silico analysis indicates that no FliA, FlgM, or σ28 promoter consensus sequences are present in the genome of Bb (15, 29). All the motility and chemotaxis genes identified thus far fall under the regulation of σ70 (Supplemental Figure 2). These and other results indicate that Bb does not employ a transcription cascade to regulate its motility genes. Instead, these genes are regulated primarily by a posttranscriptional mechanism. Two key studies that lead to this conclusion stand out. First, in a flaB filament mutant, the amount of FlaA synthesized is only 13% of the wild-type level despite equivalent levels of flaA transcript (66). Second, in a flgE mutant, FlaA and FlaB accumulation are decreased by more than 80%, whereas the levels of their respective encoding mRNA are equivalent to those of the wild type (84). Furthermore, although FlaA is slowly degraded in the flgE mutant, there is no turnover of FlaB. The conclusion is that translational control and not protein turnover is responsible for the lack of accumulation of FlaB and possibly that of FlaA in the flgE mutant.

Recent experiments indicate that the Bb carbon storage regulator A (CsrA) is a major regulator of translational control of FlaB (93). The Csr system is present in many bacterial species (3, 80), and its importance in carbon metabolism, virulence, biofilm formation, and motility is well established (2, 56, 80). In E. coli, the Csr system comprises an RNA binding protein, CsrA; two noncoding RNAs, CsrB and CsrC; and a regulatory protein, CsrD. CsrA functions through binding to the consensus sequence RUACARGGAUGU, which is present within the leader region of its targeted transcripts and subsequently regulates gene expression posttranscriptionally (25, 60). In E. coli, CsrA positively regulates flagellar synthesis by serving as an activator of flhDC expression (100). However, in B. subtilis, CsrA has an opposite effect—it negatively regulates flagellin synthesis at a posttranscriptional level by binding to mRNA and inhibiting translation (106). In a similar manner, Bb CsrA is a negative regulator of FlaB. CsrA binds to two sites present in the leader region of the flaB transcript, with one of them overlapping the Shine-Dalgarno sequence. Binding of CsrA to these regions leads to translation inhibition of FlaB, presumably via blocking ribosomes from accessing the Shine-Dalgarno sequence of flaB mRNA. Thus, the amount of FlaB in a cell may be controlled at the translational level by CsrA (93).

The two-component regulatory system called HK2/Rrp2 is involved in motility gene expression in Bb (42, 71, 104). Acetyl-phosphate, an intermediate product from acetate metabolism,
autophosphorylates Rrp2, the response regulator of the HK2/Rrp2, and in doing so activates RpoN, a σ^{54} transcription factor. RpoN in turn upregulates RpoS (the Rrp2-RpoN-RpoS pathway) (104). CsrA serves as a repressor of phosphoacetyltransferase (Pta), one of the key proteins in acetate metabolism, and indirectly modulates the level of acetyl-phosphate in Bb as well as the subsequent activation of the Rrp2-RpoN-RpoS pathway (92). Microarray analysis of rrp2, rpoN, and rpoS mutants has revealed a potential role for the Rrp2-RpoN-RpoS network in the regulation of chemotaxis gene expression (14, 28, 71). For instance, the transcription of eight chemotaxis genes is regulated by the Rrp2-RpoN-RpoS network (71). Interestingly, Rrp2-RpoN-RpoS activity is maximally induced under conditions that mimic the mammalian host environment (108). Regulation of chemotaxis proteins via the Rrp2 pathway may allow the spirochete to modulate its chemotaxis genes expression while being transmitted between different hosts to aid in colonization as well as dissemination.

Recent studies in Bb indicate a link between the signaling molecule second-messenger c-di-GMP and cell motility (42, 75, 90, 91). In Bb, the c-di-GMP metabolism pathway consists of Rrp1, a sole diguanylate cyclase (42, 83); two phosphodiesterases, PdeA and PdeB (90, 91); and PlzA (30, 75), a c-di-GMP binding protein. A mutation in any of the genes of the c-di-GMP pathway alters both cell motility and chemotaxis, but many different phenotypes are generated. For example, disruption of Rrp1 causes cells to constantly run and have an attenuated chemotactic response (42). Mutations in the phosphodiesterase genes result in two different phenotypes: A pdeA mutant runs and pauses but fails to reverse, and a pdeB mutant has increased flexing frequency (90, 91). A plzA mutant has a defect in motility in agar but has the wild-type swimming behavior (75). Remarkably, the plzA pdeB double mutant constantly flexes (90). Taken together, c-di-GMP clearly affects motor function in Bb, but as previously stated, how this occurs is unclear.

In summary, our understanding of the regulation of chemotaxis and motility gene expression in Bb is still in its infancy. Translational control of motility gene expression appears to be crucial, with CsrA and c-di-GMP emerging as major regulators of chemotaxis and motility. Many questions remain unanswered. What is the interplay between the identified regulatory elements in modulating gene expression? How do environmental cues play a role in differential gene expression within the two hosts, and what are those cues?

VIRULENCE AS RELATED TO CHEMOTAXIS AND MOTILITY

The role of motility and chemotaxis during the infection and disease processes has been examined in several species of pathogenic bacteria. In many species, mutant analysis indicates that motility and chemotaxis are essential for infection and invasion (13, 40, 59, 109). Among the spirochetes, motility-deficient mutants of Brachyspira hyodysenteriae are attenuated in a mouse model of swine dysentery (82). In Treponema denticola, motility- and chemotaxis-deficient mutants are less invasive than their parent in a human gingival keratinocyte monolayer cell penetration model (57). Recent results suggest that motility is essential for L. interrogans to cause disease in the hamster model for leptospirosis (45; E. Wunder & A. Ko, unpublished data).

Motility and chemotaxis are likely to be important factors for Bb to survive in nature. Genomic analysis suggests that over 50 genes (5–6% of the genome) are potentially involved in motility and chemotaxis (15, 29). In addition, approximately 10% of the total cellular protein is FlaB (66). These results imply Bb dedicates a significant proportion of its energy to motility and chemotaxis, and they further support the concept that these processes are necessary for the survival of the spirochete. In addition, during mammalian infection, and when growing Bb under conditions that mimic in vivo conditions, motility and chemotaxis proteins are upregulated and some are among
the most potent immunogens (5, 79, 96). Evidently the synthesis of these proteins is not turned off soon after infection as in some species of bacteria (1).

Motility and chemotaxis are likely to be important for Bb to participate in several steps in completing the host-vector cycle. First, after transmission from the tick to a vertebrate host, Bb disseminates through skin and migrates to an appropriate target tissue such as the joint. These sites allow for persistence and evasion of the expanding adaptive immune response. Second, after residing in the vertebrate host for weeks to years, Bb possibly detects the presence of feeding ticks, and then migrates to those sites to enter the blood meal of those ticks. Finally, during the blood meal of an infected tick, the spirochetes need to migrate from the tick gut to the salivary glands to restart the cycle.

Although using a genetic approach to determine the contribution of motility and chemotaxis to the life cycle of Bb is difficult (15, 65), significant progress is being made. One key study focused on the presumed motor protein fliG1 gene from a virulent strain of Bb (11, 50). Mutations in this gene result in motility-deficient cells and are unable to establish an infection in mice. These studies are the first to show that motility is involved in the virulence of Bb. In another ongoing study, targeted flaB mutants from a virulent strain of Bb are nonmotile as expected, but they are also noninfectious in mice (S. Sultan, M.A. Motaleb, P. Stewart, P. Rosa & N. Charon, unpublished data). These preliminary results, coupled with those with the fliG1 mutant, suggest that motility plays a critical role in the disease process.

Recent results suggest that chemotaxis may also be involved in Bb virulence. Bb is attracted to tick salivary extract (87). In a recent study, a nonchemotactic cbcA2 mutant failed to infect either immunocompetent or immunodeficient mice and was quickly eliminated from the initial inoculation sites. Furthermore, tick-mouse infection studies revealed that although the mutant was able to survive in ticks, it failed to establish a new infection in mice via tick bites (94). The altered phenotypes were restored when the mutant was complemented. In addition, both a nonchemotactic cbcY3 mutant (M.A. Motaleb, unpublished data) and a c-di-GMP pdeA mutant that constantly runs were unable to infect mice (91). Collectively, these data demonstrate that Bb needs chemotaxis to establish mammalian infection and to accomplish its natural enzootic cycle. We expect that the analysis of other motility and chemotaxis mutants will lead to a better understanding of these processes with respect to tick transmission and mammalian infection and disease.

CONCLUSION

In this review we summarize the developments made in understanding spirochete motility and chemotaxis with Bb chosen as the model. Significant progress has been made since the times of Dobell and Weibull, but many questions still remain. Spirochetes cause dreadful diseases prevalent throughout the world including syphilis, leptospirosis, relapsing fever, and Lyme disease. The tragedy is that so little is known about these terrifying bacteria: We cannot even grow the syphilis spirochete in the laboratory, and only a handful of laboratories in the world are doing basic studies on Treponema pallidum. We can only hope that in another half century (or sooner!) sufficient progress in our understanding of the biology of these enigmatic pathogens will lead to new means of disease prevention and treatment such that these diseases are eliminated.

SUMMARY POINTS

1. Cryo-ET allows for exquisitely detailed analysis of the Bb flagellar motor.
2. When Bb swims in one direction in the absence of the response regulator CheY3-P, it rotates the PFs of the polar ribbons asymmetrically.
3. *Bb* is so long that chemotaxis models as described in other bacteria do not directly apply.
4. *Bb* lacks the cascade control of motility and chemotaxis gene expression and relies on translational control.
5. Initial gene targeting experiments indicate that motility and chemotaxis play important roles in the life cycle of *Bb* in both tick and mammalian hosts.

FUTURE ISSUES

1. What are the functions of each motor protein in generating flagellar rotation?
2. What is the molecular basis for asymmetrical flagellar rotation in the absence of CheY3-P?
3. What is the molecular mechanism of chemotaxis in *Bb* and how is the direction of flagellar rotation controlled?
4. What are the details of motility and chemotaxis gene expression in *Bb*, and how do CsrA and c-di-GMP exert their activities?
5. What are the precise points of involvement of motility and chemotaxis in the life cycle of *Bb*?

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

The authors dedicate this review to Professor Stuart F. Goldstein in honor of his forthcoming retirement from the University of Minnesota. His contributions have been crucial in understanding spirochete motility and in moving the field forward. We appreciate the comments and suggestions by J. Coburn, S. Goldstein, M. James, R. Silversmith, V. Sourjik, and M. Wooten. The research in this review was supported by Public Health Service grants AI078958 to C.L., GM0072004 to C.W., AR060834 to M.A.M., AI29743 and AI093917 to N.W.C. and M.R.M., and AI087946 and a Welch Foundation grant (AU-1714) to J.L. K.A.M. is supported by an American Heart Association graduate fellowship and WVNano.

LITERATURE CITED

RELATED RESOURCES

Contents

A Fortunate Journey on Uneven Grounds
Agnes Ullmann ... 1

Memories of a Senior Scientist: On Passing the Fiftieth Anniversary
of the Beginning of Deciphering the Genetic Code
Peter Lengyel .. 27

Yeast ATP-Binding Cassette Transporters Conferring
Multidrug Resistance
Rajendra Prasad and Andre Goffeau 39

‘Gestalt,’ Composition and Function of the
Trypanosoma brucei Editosome
H. Ulrich Göringer ... 65

Physiology and Diversity of Ammonia-Oxidizing Archaea
David A. Stahl and José R. de la Torre 83

Bacterial Persistence and Toxin-Antitoxin Loci
Kenn Gerdes and Etienne Maisonneuve 103

Activating Transcription in Bacteria
David J. Lee, Stephen D. Minchin, and Stephen J.W. Busby 125

Herpesvirus Transport to the Nervous System and Back Again
Gregory Smith ... 153

A Virological View of Innate Immune Recognition
Akiko Iwasaki .. 177

DNA Replication and Genomic Architecture in Very Large Bacteria
Esther R. Angert .. 197

Large T Antigens of Polyomaviruses: Amazing Molecular Machines
Ping An, Maria Teresa Sáenz Robles, and James M. Pipas 213

Peroxisome Assembly and Functional Diversity
in Eukaryotic Microorganisms
Laurent Pieuchot and Gregory Jedd 237
Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities
 James D. Bever, Thomas G. Platt, and Elise R. Morton ... 265

Bacterial Chemotaxis: The Early Years of Molecular Studies
 Gerald L. Hazelbauer .. 285

RNA Interference Pathways in Fungi: Mechanisms and Functions
 Shwu-Shin Chang, Zhenyu Zhang, and Yi Liu ... 305

Evolution of Two-Component Signal Transduction Systems
 Emily J. Capra and Michael T. Laub .. 325

The Unique Paradigm of Spirochete Motility and Chemotaxis
 Nyles W. Charon, Andrew Cockburn, Chunbao Li, Jun Liu, Kelly A. Miller, Michael R. Miller, Md. A. Motaleb, and Charles W. Wolgemuth ... 349

Vaginal Microbiome: Rethinking Health and Disease
 Bing Ma, Larry J. Forney, and Jacques Ravel .. 371

Electromicrobiology
 Derek R. Lovley ... 391

Origin and Diversification of Eukaryotes
 Laura A. Katz ... 411

Genomic Insights into Syntrophy: The Paradigm for Anaerobic Metabolic Cooperation
 Jessica R. Sieber, Michael J. McInerney, and Robert P. Gunsalus 429

Structure and Regulation of the Type VI Secretion System
 Julie M. Silverman, Yannick R. Brunet, Eric Cascales, and Joseph D. Mougous 453

Network News: The Replication of Kinetoplast DNA
 Robert E. Jensen and Paul T. Englund .. 473

Pseudomonas aeruginosa Twitching Motility: Type IV Pili in Action
 Lori L. Burrows ... 493

Postgenomic Approaches to Using Corynebacteria as Biocatalysts
 Alain A. Vertès, Masayuki Inui, and Hideaki Yukawa .. 521

Index

Cumulative Index of Contributing Authors, Volumes 62–66 .. 551

Errata

An online log of corrections to Annual Review of Microbiology articles may be found at
http://micro.annualreviews.org/
Visualizing the Sequential Assembly of Bacterial Flagella in *Borrelia burgdorferi* by Cryo-Electron Tomography

Xiaowei Zhao\(^1\#\), Kai Zhang\(^2\#\), Tristan Boquoi\(^3\), Bo Hu\(^1\), Md A. Motaleb\(^3\), Kelly A. Miller\(^4\), Milinda E. James\(^4\), Nyles W. Charon\(^4\), Michael D. Manson\(^5\), Steven J. Norris\(^1\), Chunhao Li\(^2^*\), and Jun Liu\(^1^*\)

1. Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
2. Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214
3. Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27834
4. Department of Microbiology, West Virginia University, Morgantown, WV 26506
5. Department of Biology, Texas A&M University, College Station, TX 77843

X.Z. and K.Z. contributed equally to this work.

*Corresponding authors:

Jun Liu, Ph.D., Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA; Tel: 713-500-5342; Email: Jun.Liu.1@uth.tmc.edu

Chunhao Li, M.D., Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214, USA; Tel: 716-829-6014; Email: cli9@buffalo.edu

Running Title: Cryo-electron tomography captures flagellar assembly in intact cells
ABSTRACT

Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete *Borrelia burgdorferi*. Here, we report work in which we genetically trapped intermediates in flagellar assembly and determined three-dimensional structures of the intermediates to 4 nm resolution by cryo-electron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves both as a gateway and template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly upon completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryo-electron tomography and mutational analysis thus combine synergistically to provide the first structural blueprint of the assembly process of this intricate molecular machine in intact cells.
INTRODUCTION

Borrelia burgdorferi, the causative agent of Lyme disease, is a highly motile and invasive spirochete pathogen (1). Seven to eleven periplasmic flagella (PFs) are inserted near both cell poles (Fig. 1A). The PFs are essential for the flat-wave morphology, distinct motility, and infectious life cycle of *B. burgdorferi* (2-6). They are strikingly different from external flagella (e.g., in *Escherichia coli*) in that both the hook and the filament are located in the periplasmic space. Nevertheless, the major components are remarkably similar among different bacterial species [Figs. 1B, C; see also (7-9)].

The flagellum is a sophisticated self-assembling molecular machine (10, 11). It contains at least 25 different proteins that form a rotary motor, a hook, and a helical filament (Fig. 1B, C) (11-13). The morphogenetic pathway for flagellar biosynthesis has been extensively studied in *E. coli* and *Salmonella enterica* serovar Typhimurium, in which a highly regulated expression of motility genes is coordinated with flagellar assembly (10, 11). Assembly is initiated by the insertion of the MS ring (consisting of FliF) into the cytoplasmic membrane. The MS ring then acts as a platform for assembly of the C ring (the switch complex), the stator (the torque generator), and the flagellum-specific type III secretion (T3S) apparatus. Most flagellar proteins are secreted by the T3S system, which is powered by the transmembrane ion-motive force (14, 15). The secretion and assembly of each substrate is highly ordered; flagellar assembly proceeds in a linear fashion from proximal rod to distal filament (10, 11). However, this progressive assembly process has not been visualized in detail in intact cells.

The flagellar rod is the first structure secreted by the T3S system, and it functions both as a hollow secretion channel and a drive shaft that transmits torque. The structure of the intact rod of *S. Typhimurium* was deduced by comparing electron microscopy images of purified flagellar basal bodies with MS ring complexes (16, 17). Five proteins (FliE, FlgB, FlgC, FlgF, and FlgG) are involved
in assembly of the flagellar rod. FliE is postulated to be a structural adaptor between the MS ring and the rod (18, 19). Moreover, assembly of FliE is required for exporting other substrates (20). It is generally thought that the rod proteins assemble cooperatively to build a stable rod (21, 22). However, no direct structural evidence has been reported, because rod mutations in *S. Typhimurium* result in structural instability (22) and because it has been a technically formidable challenge to visualize the rod assembly, either in *vivo* or *in vitro*, in any bacteria.

Upon completion of the rod, a cap protein is required for hook assembly. The hook-cap protein, FlgD, has been detected at the distal end of the hook (23). Hooks are thought to assemble at their distal ends by inserting FlgE subunits underneath the hook cap. After the hook reaches its mature length (~55 nm), two junction proteins, FlgK and FlgL, and a filament cap protein, FliD, are added sequentially to the distal end of the hook (24). The filament cap is predicted to stay at the end of the growing filament to facilitate polymerization of filament proteins (25). Understanding the intermediates in this complex process will shed light on the polymerization activity that yields a functional assembly.

Given the high degree of conservation among flagellar proteins (Table S3), T3S-mediated flagellar assembly in *B. burgdorferi* likely resembles that of other bacterial species. The multiple flagellar motors of *B. burgdorferi* are located close to both of its narrow (diameter ≤0.3 µm) cell poles, locations optimal for cryo-electron tomography (cryo-ET) determination of the molecular architecture of the flagellar motor in intact cells (7-9, 26, 27). In this study, we selectively deleted individual genes whose products play key roles in flagellar assembly and then used cryo-ET and subvolume averaging to determine intermediate structures. This approach permitted a molecular characterization of the nascent structures of flagellar intermediates, thereby providing detailed insights into the sequential processes of T3S-mediated flagellar assembly.
RESULTS

Structural differences between the intact flagellar motor in situ and purified flagella

In *B. burgdorferi*, multiple flagellar motors are embedded in the inner membrane (IM) (Fig. 1A, D; Movie S1). A 3.5 nm resolution structure of the intact flagellar motor (Fig. 1E) clearly shows the straight rod with a channel in the middle. The rod also adopts a tilted conformation (Fig. S9), suggesting that it is either intrinsically flexible or has at least two fixed orientations. The MS ring is associated with the export apparatus, the rod, the C ring, and the collar (Fig. 1B, E). To define the MS ring from the intact motor of *B. burgdorferi*, we purified PFs (Fig. 1G) and determined the 3-D structure of the basal body (Fig. 1H, I). The purified basal body was significantly smaller than the intact motor (Fig. 1E, F). Many membrane-associated and periplasmic structures of the intact motor were removed during PF purification (Fig. 1E, F). The remaining basal body is structurally comparable to the MS ring and rod of the *S. Typhimurium* basal body (16; Fig. S1). On this basis, we propose a model of the MS ring-rod complex in *B. burgdorferi* (Fig. 1F, J).

Flagellar motor structure in a Δ*fliE* mutant

To define the boundary between the rod and the MS ring, we constructed a *fliE* deletion mutant (Δ*fliE*) using recently reported gene-inactivation system that does not impose a polar effect on downstream gene expression (28). The Δ*fliE* cells are rod-shaped and non-motile (Table S1), and there is no filament or hook in the periplasmic space (Fig. 2A; Movie S2). However, multiple flagellar motors are clearly visible at the cell poles (Fig. 2B, C). The motor structure from the Δ*fliE* mutant (Fig. 2D-F) is significantly different from that of the wild-type motor, as the mutant lacks the rod, the hook, and the filament. Other components of the motor (the MS ring, the C ring, the stator, the export apparatus, and the collar) remain unaffected, suggesting that those motor components assemble independently of the T3S-mediated pathway.
In the absence of the rod, a socket-like domain of the MS ring is clearly visible (Fig. 2E, G, white arrows). It forms a well-defined pocket for anchoring the rod. Notably, the central channel of the MS ring is closed in the ΔfliE motor (Fig. 2D, G), whereas it is open in the wild-type motor (Fig. 1K, 2H). The outer diameter of the channel is 6 nm (Fig. 2H). Apparently, the rod assembles on top of the open channel and forms an integrated complex with the MS ring (Fig. 1K, 2H).

Flagellar motor structures in the rod mutants ΔflgB, ΔflgC, and ΔflhO

To investigate assembly of the rod in detail, we introduced non-polar mutations into each of the rod genes (flgB, flgC, flhO [a flgF homolog], and flgG). We also generated the double knockout mutation ΔflgBC (Table S1). All of the mutant cells were rod-shaped and non-motile, and no flagellar filament or hook was assembled in the periplasmic space of any of these rod mutants. As in the ΔfliE mutant, multiple motors were readily visible at the cell poles (Fig. S7).

The central channel of the ΔflgB flagellar motor remains in a closed conformation (Fig. 3A, D, G). In contrast, the channel is in an open conformation in the ΔflgC mutant (Fig. 3B, E, H). An additional globular density is also evident in the ΔflgC mutant, suggesting that FlgB is secreted and accumulates in that region. The globular density is more pronounced and extends beyond the MS-ring socket in the ΔflhO mutant (Fig. 3C, F, I), suggesting that FlgC also locates to the globular density. Together, secretion of FlgB and FliE appears to trigger opening of the channel, which then permits the secretion of other substrates.

Proximal rod and distal rod structures in the ΔflgG and ΔflgE mutants

The flagellar motor structure in the ΔflgG mutant (Fig. 4A, B) differs from those of the previous mutants (Fig. 2, 3). Notably, a 13 nm-long tube-shaped structure extends from the apex of the central channel in the MS ring. It is significantly longer than the globular densities observed in the
ΔflgC and ΔflhO mutants (Fig. 3B, C). The 3-D structure of the proximal rod (Fig. 4C) is derived from the difference map between the ΔflgG motor and the ΔflIE motor. Evidently, the rod undergoes a transformative change from a globular density in the ΔflhO mutant into a tube-like structure in the ΔflgG mutant, suggesting that FlhO is essential for the construction of a stable, tube-like proximal rod (Fig. 4A).

To reveal the structure of the distal rod, we determined the motor structure from a mutant deleted for the flgE gene, which encodes the major hook subunit (Fig. 4D, E). Comparative analysis of the intact motor (Fig. 1K) and the ΔflgG and ΔflgE motors (Fig. 4) reveals that the intact rod is ~17 nm long, meaning that the distal rod is ~4 nm in length (Fig. 4F). The torus-shaped P ring (9) is present in the ΔflgE mutant (Fig. 4D) but not in the ΔflgG mutant (Fig. 4A), demonstrating that the distal rod is a necessary substrate for the assembly of the P ring. The intact rod is completely bracketed by the MS ring at the bottom and by the P ring at the top (Fig. 4E). The diameter and density of the intact rod vary along its length. Therefore, the rod is not a simple cylindrical structure with a uniform diameter. Instead, it is composed of modular cylinders, each with well-defined but variable diameters (Fig. 4F).

A plug-like structure is inserted into the distal rod in the ΔflgE motor (Fig. 4D, E). There is no similar structure in either the intact motor (Fig. 1K) or the ΔflgG motor (Fig. 4A). In the absence of the hook subunit FlgE, the assembly process presumably terminates right before the initiation of hook assembly. Therefore, we hypothesize that the plug-like structure represents the hook cap, a structure that is predicted to be required for hook assembly (23).

Flagellar hook and hook-filament junction structures revealed in a flaB mutant

The flagellar filament of B. burgdorferi contains the major filament protein FlaB and the minor filament protein FlaA (29, 30). B. burgdorferi flaB mutant cells are non-motile and rod-shaped, and they are completely deficient in filament assembly (2, 6). Both flagellar motors and hooks are visible near the cell poles in flaB cells (Fig. 5A). A ~62 nm tube-like structure and a ~14 nm cap-like structure
are evident in the *flaB* mutant (Fig. 5B, C) and probably represent an assembly intermediate that contains a mature hook and hook-filament junction associated with the filament cap, respectively.

The mature hook is ~50 nm long (Fig. 5B), a length similar to that of the hook in *S. Typhimurium* (~55 nm; 31). At the distal end of the hook, an additional ~12 nm long structure differs slightly from the hook in density and diameter (Fig. 5B and C); we postulate that this region represents the hook-filament junction. Furthermore, a cap-like structure is connected to the distal end of the hook-filament junction (Fig. 5C, D). The observed density of the cap is structurally similar to the filament cap of *S. Typhimurium* (25). The filament cap is absent at the hook-filament junction in wild-type cells (Fig. 5E-H), supporting the idea that the filament cap remains at the distal end of the growing filament (24, 25).

DISCUSSION

The periplasmic flagellum is a sophisticated molecular machine that plays critical roles in the distinct morphology, motility and infectivity of the Lyme disease spirochete *B. burgdorferi* and other spirochetes (such as *Treponema pallidum*, the causative agent of syphilis (26)). Because *B. burgdorferi* is genetically tractable, it has proven to be an excellent model for visualizing the sequential assembly of flagella in intact spirochetes (Fig. 6A; Movie S3). The PFs of spirochetes have enough in common with external bacterial flagella to serve as a global model for flagellar assembly.

MS ring assembly

The MS ring is the first stage in the assembly of the C ring, the export apparatus, the collar, and the stator. Those components all assemble independently of the T3S-mediated export pathway (Fig. 6A). A socket and a central channel in the MS ring are well defined in the absence of any rod components (Fig. 2). The socket appears similar in all motor structures, suggesting that it provides a
compact and stable platform for rod assembly. A unique segment of FliF (residues 280-360 in E. coli) has been proposed to form the socket domain, and mutations targeting this region cause release of the filament and the rod from the basal body (17, 32, 33).

Prior to rod assembly, the channel of the MS ring is closed, providing an explanation for observation that substrate secretion is very low in the absence of FliE (20). When the rod substrates FliE and FlgB are secreted, the central channel adapts an open conformation that also serves as a template for the initiation of the rod assembly (34). The open channel of the MS ring and the rod forms a tightly integrated structure with no distinguishable boundary (Fig. 1K). The presence of heptad repeats of hydrophobic residues in the terminal regions of the rod proteins (Table S3) may mean that an α-helical coiled-coil is the motif required to form a continuous mechanically stable axial structure (35, 36). The sequence of residues 130 to 230 of FliF is highly conserved and contains hydrophobic residues at several heptad positions (Table S4). Therefore, the rod proteins apparently assemble on top of the open channel, probably through hydrophobic α-helical coiled-coil interactions.

Rod assembly

The flagellar rod is a multi-component complex that functions as an export channel and drive shaft. It has been suggested that rod proteins assemble cooperatively in order to form an intact rod but that rod intermediates are unstable (22). Here, we were able to determine structures of corresponding to intermediate stages of rod assembly. The rod elongates sequentially in ΔflgB, ΔflgC, ΔflhO, ΔflgG and ΔflgE mutants, implying that the rod assembles in the order FliE-FlgB-FlgC-FlhO-FlgG. The proximal rod forms a tube-like structure (Fig. 4A), whereas the intermediate structures visible in the ΔflgB, ΔflgC, and ΔflhO mutants do not show any tube-like character (Fig. 3). Therefore, we conclude that the proximal rod forms sequentially and cooperatively and that the distal rod can be added subsequently and independently.
Hook and filament assembly

Hook assembly (23) and filament assembly (24, 25) are mediated by the hook-cap protein (FlgD) and the filament-cap protein (FliD), respectively. Assembly is blocked right before hook formation in the ΔflgE mutant and before filament formation in the flaB mutant. Consequently, we were able to capture intermediates containing the hook cap (Fig. 4D) and the filament cap (Fig. 5B), respectively. Both the structures can be divided into cap and leg domains (Fig. 4D and Fig. 5B); a similar cap-leg architecture was seen in a high-resolution structure of the filament cap (25). We therefore suggest that the hook cap facilitates assembly of the hook by a rotational mechanism similar to the one utilized by the filament cap to promote assembly of the filament (25).

Modular architecture of the flagellar rod

The flagellar rod is formed by five proteins, which interact through α-helical coiled coils that join the N-terminus of one subunit to the C-terminus of the adjacent subunit (35-38). The rod assembles on top of the open channel in the MS ring, likely through similar hydrophobic interactions. The rod is further reinforced by strong interactions with the socket of the MS ring and with the P ring (Fig. 6B). This organization of rod components differs from that of external flagella (Fig. 6C). The distal rod of external flagella is estimated to consist of four turns containing 26 FlgG subunits (~15 nm in S. Typhimurium) (11, 39). In contrast, the distal rod (~4 nm) of PFs is too short to penetrate the outer membrane (Fig. 6B). We conjecture that FlgG and the three other rods proteins (FlgB, FlgC, FlhO) in *B. burgdorferi* polymerize for only one turn. The underlying mechanism for control of the length of the distal rod must therefore be different during the formation of external flagella and PFs.

The flagellum and the virulence-associated injectisome share an analogous architecture and homologous T3S components (40). However, the structure and function of the rod are quite different in the two systems. The rod of the injectisome is formed by one protein (PrgJ in *S. Typhimurium*). Rod assembly is required for proper anchoring of the needle structure (41). The function of the injectisome
rod is to provide a conduit for protein transport from the bacterial cytoplasm to the host cell (Fig. 6D). In contrast, the flagellar rod and its complex interactions with the MS and P rings (Fig. 6B) provide dual functions: a hollow channel for protein secretion and a drive shaft to transmit torque between the motor and filament.

In summary, high-throughput cryo-ET, coupled with mutational analysis, revealed a complete series of high-resolution molecular snapshots of the periplasmic flagella in the Lyme disease spirochete. The resulting composite picture provides the first set of structural blueprints depicting the assembly process of this intricate molecular machine. This approach should be applicable in determining the sequence of events in intact cells that generate a broad range of molecular machines.

EXPERIMENTAL PROCEDURES

Bacterial strains

High-passage avirulent *Borrelia burgdorferi sensu stricto* strain B31A (wild type) and its isogenic mutants (Table S1) were grown in BSK-II liquid medium supplemented with 6 % rabbit serum or on semi-solid agar plates at 34 °C in the presence of 3-5 % carbon dioxide as previously described (42). Genes *flgB* [bb0294], *flgC* [bb0293], *fliE* [bb0292], and *flgE* [bb0283] are located in the *flgB* operon (Figure S2), consisting of approximately 26 motility genes (43); *flhO* [bb0775, a homolog of FlgF] and *flgG* [bb0774] are located within the *flhO* motility gene operon (42). To avoid potential polar effect on a downstream gene expression, our recently reported gene replacement *in-frame* deletion method (28) was used to construct the targeted mutagenesis in *flgB*, *flgC*, *flgBC* (deleting both *flgB* and *flgC*), *fliE*, *flgE* and *flhO* genes.

Cryo-electron tomography
Frozen-hydrated specimens were prepared as described previously (9). Briefly, the *B. burgdorferi* culture was centrifuged at 5,000 × g for 5 min and the resulting pellet were rinsed gently with 1 ml PBS. The cells were centrifuged again and were finally suspended in 30~50 µl PBS. The cultures were mixed with 10 nm (or 15 nm) colloidal fiducial gold markers and were then deposited onto freshly glow-discharged, holey carbon grids for 1 min. Grids were blotted with filter paper and then rapidly frozen in liquid ethane, using a homemade gravity-driven plunger apparatus.

Frozen-hydrated specimens were imaged at -170° C using a Polara G2 electron microscope (FEI) equipped with a field emission gun and a 16 megapixel CCD camera (TVIPS). The microscope was operated at 300 kV with a magnification of 31,000 ×, resulting in an effective pixel size of 5.7 Å after 2x2 binning. Using the FEI “batch tomography” program, low-dose, single-axis tilt series were collected from cell poles at -6 to -9 µm defocus with a cumulative dose of ~100 e/Å² distributed over 87 images and covering an angular range of -64° to +64°, with an angular increment of 1.5°. Tilt series were automatically aligned and reconstructed using a combination of IMOD (44) and RAPTOR (45). In total, 234,552 CCD images and 2,696 tomographic reconstructions were generated and used for further processing (Table S2).

Subvolume analysis

Conventional imaging analysis, including 4x4x4 binning, contrast inversion, and low-pass filtering enhanced the contrast of binned tomograms (46). The subvolumes (256×256×256 voxels) of the flagellar motors were extracted computationally from the tomograms and were further aligned as previously described (9, 26, 47, 48). A total of 15,380 flagellar motor subvolumes were manually selected from 2,696 reconstructions (Table S2). Class averages were computed in Fourier space, so the missing wedge problem of tomography was minimized (46, 48). Fourier shell correlation coefficients with a threshold of 0.5 were estimated by comparing the correlation between two randomly divided halves of the aligned images used to generate the final maps (Table S2).
3-D visualization

Segmentation of 3-D flagellar structure is based on the density maps and the difference maps (as shown in Fig. S10). The software package UCSF Chimera (49) was mainly used for 3-D visualization and surface rendering. Segmentations of cryo tomographic reconstructions from a wild type cell and a Δflip cell were constructed using the 3-D modeling software Amira (Visage Imaging). The filaments, the outer and inner membranes, and the peptidoglycan layer were manually segmented (Movies S1 and S2). The isosurface maps from the flagellar motor were computationally mapped back into the original cellular context.

ACKNOWLEDGMENTS

We thank Drs. Ken Taylor and Jeff Actor for comments. This work was supported by grants R01AI087946 from the NIAID and AU-1714 from the Welch Foundation. KZ and CL were supported by grant R01AI078958 from the NIAID. KM, MJ, and NC were supported by the American Heart Association and grant R21AI093917 from the NIAID. TB and MAM were supported by grant R01AR060834 from the NIAMS. EM maps have been deposited in the EM Data Bank (http://www.ebi.ac.uk/pdbe/emdb/) with Accession Numbers EMD-5627, EMD-5628, EMD-5629, EMD-5630, EMD-5631, EMD-5632, and EMD-5633.
REFERENCES

Fig. 1. Structural differences between the intact flagellar motor and the purified flagella.

(A) Model of a *B. burgdorferi* cell: outer membrane (OM), inner membrane (IM), and periplasmic flagella (PFs). (B and C) Models of a PF and an external flagellum. (D) A section from a wild-type cell tomogram. A central section (E) and an outline overlapping onto the map (F) of the intact motor. The MS ring is colored green; the rod and hook are colored orange; the P ring (P), the export apparatus
(EXP), the stator and the collar are labeled accordingly. (G) A section from a purified PFs tomogram.

A section (H) and an outline (I) of the basal body. The MS ring-rod complex remains in both the basal body (I) and the intact motor (F). (J) A 3-D surface rendering of the intact motor (F).

Fig. 2. The flagellar motor structure of the ΔfliE mutant reveals a closed conformation.

(A) Multiple flagellar motors are embedded in the IM. Enlarged image (B) and 3-D surface rendering (C) of the region outlined in (A). A central section (D) and 3-D surface rendering in top (E) and side views (F) of the ΔfliE motor. (G) A central channel domain (light green) is closed in the ΔfliE mutant. (H) Outline of the rod (orange), the MS ring (green) and 3-D surface rendering (I) of the wild-type motor. The channel domain of the MS ring is in an open conformation, and the rod is assembled on top of the channel domain.
Fig. 3. Intermediate structures of the flagellar rod.

(A-C) 3-D maps of ΔflgB, ΔflgC, and ΔflhO flagellar motors. (D-F) Enlarged images of the regions outlined in (A-C). In the ΔflgB mutant, the channel in the MS ring remains closed (D). In the ΔflgC mutant, the channel is in an open conformation, and a globular density is visible (E). In the ΔflhO mutant, the globular density is larger and extends beyond the MS ring (F). (G-I) 3-D surface rendering of the motors from ΔflgB, ΔflgC, and ΔflhO mutants.
Fig. 4. 3-D structures of the proximal rod and fully assembled rod.

A section (A) and 3-D surface rendering (B) of the ΔflgG motor. A flanged tube structure is readily observed above the channel domain of the MS ring. (C) 3-D map of the proximal rod. A section (D) and 3-D surface rendering (E) of the ΔflgE motor. The fully assembled rod, the P ring, and a cap structure (probably the hook cap) are revealed (F).
Fig. 5. 3-D structures of the hook and the hook-filament junction.

(A) Cryo-tomogram of a *flaB* mutant cell. The flagellar hook complex in two different orientations (B, C). The hook length is estimated to be ~50 nm, and another ~12 nm density is probably the hook-filament junction, as labeled in B and C. (D) 3-D surface rendering of the *flaB* flagellar structure. The hook (together with the hook-filament junction) and the filament cap are segmented. (E) Cryo-tomogram of a wild-type cell showing the flagellar motor with a hook and filament. (F and G) 3-D structures of the flagellar hook and filament in wild-type cells. The diameter of the axial structure gradually becomes larger at the junction region. (H) 3-D surface rendering of an intact flagellum.
Fig. 6. Modular architecture and assembly blueprint of bacterial flagellum.

(A) A model of flagellar assembly in *B. burgdorferi*. In the pre-T3S assembly state, many flagellar components assemble, including the MS ring, the C ring, the stators, the export apparatus, and the collar. The secretion channel in the MS ring is closed (panel 1). In the presence of FliE, FlgB, rod substrates can be secreted but are unable to form a stable structure (panel 2) until all the proximal rod substrates (FliE, FlgB, FlgC, and FlhO) are present (panel 3). The distal rod protein FlgG adds onto the proximal rod and polymerizes until it reaches a determined length (panel 4). A hook cap, composed of FlgD, forms at the distal end of the rod (panel 4) and promotes hook assembly (panel 5). Assembly of the filament (FlaA, FlaB) is promoted by the filament cap (FliD) (panel 6). (B) A cartoon model of a periplasmic flagellum. Five rod proteins assemble sequentially on top of the channel domain of the MS ring and are enclosed by the socket domain of the MS ring and the P ring. The FlgG distal rod in the PF is shorter than that in the external flagellum (C). (D) A cartoon model of Type III injectisome shows that the rod is anchored on a structure similar to the channel domain of the flagellar motor. The rod is a straight tube formed by one protein, PrgJ.
Kelly Ann (Heintzelman) Miller
570-898-4540
kamiller@hsc.wvu.edu

Education/Training

<table>
<thead>
<tr>
<th>Institution and Location</th>
<th>Degree</th>
<th>MM/YY</th>
<th>Field of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Haven University of Pennsylvania</td>
<td>BA</td>
<td>05/03</td>
<td>Clinical Psychology</td>
</tr>
<tr>
<td>Lock Haven University of Pennsylvania</td>
<td>BS</td>
<td>05/07</td>
<td>Molecular and Environmental Biology</td>
</tr>
<tr>
<td>West Virginia University, Morgantown, WV</td>
<td>PhD</td>
<td>Current</td>
<td>Microbial Pathogenesis and Immunology</td>
</tr>
</tbody>
</table>

Research Interests
Microbial pathogenesis: mechanisms by which bacteria cause disease and the host immune response to infection.

Positions and Honors

Positions

Undergraduate Independent Study, Lock Haven University of PA Department of Psychology, Fall 2002-Spring 2003. Evaluated number discrimination and counting in the squirrel monkey (*Saimiri sciureus*).

Undergraduate Independent Study, Lock Haven University of PA, Microbiology, Spring 2006. Investigated the application of constructed greenhouse model wetlands for the treatment of high nitrogen-load groundwater leachate from Clinton County landfill.

Microbiology Laboratory Assistant, Lock Haven University of PA Department of Biology, Fall 2006-2007. Provided students with hands on instruction during labs and set up labs for classes.

Predoctoral Trainee, WVU School of Medicine, 2007- present. Investigated the complex structure of the flagellar hook protein, FlgE, in *Borrelia burgdorferi* and *Treponema denticola*. Trained, supervised, and served as a mentor to 3 undergraduates and the laboratory technician.

Technical Experience: Mass spectrometry analysis, flow cytometry analysis, electron microscopy, recombinant DNA techniques, protein expression and purification.
Teaching Experience

Teaching Assistant, WVU School of Medicine, Microbiology 323 (Medical Technology Course), Spring 2009 and Spring 2011. Provided laboratory lectures, assisted students with completing laboratory experiments and exercises, graded exercises and exams.

Mentor, WVU Nano Summer Undergraduate Research Experience, Summer 2009. Served as a mentor to an undergraduate student conducting an independent research project.

Teaching Assistant, WVU School of Medicine, Microbiology 701 (Medical Student Course), Fall 2009. Provided laboratory lectures, assisted students with completing laboratory experiments and exercises, graded exercises and exams.

Honors

Lock Haven University, Honors Scholarships, 2000-2002.
Lock Haven University of PA, Presidential Honors Scholarship, 2002-2003.
Highest cumulative GPA graduating with a B.A., Lock Haven University of PA, Spring 2003.
Psychology Student of the year, Lock Haven University of PA, 2003.
Paul and Shirley Klens Scholarship Award for academic excellence in the biological sciences and community service, Lock Haven University of PA, 2006.
West Virginia University, STEM (Science Technology, Engineering, and Math) graduate fellowship, Spring, 2010 and Fall 2012.
American Heart Association Graduate Award, Summer 2010 to Summer 2012.

Invited Seminars/Lectures

West Virginia University Van Lier annual research symposium, February 28, 2013.

West Liberty University Biological Sciences Research Seminar Series, May 1, 2013.
Annual Meeting American Society for Microbiology, May 2013.

Professional Societies
Phi Kappa Phi, National Honorary Society, 2002- present.
American Society for Microbiology, 2009- present.

C. Presentations/Publications

Manuscript under Review

Publications

Invited Review Article

Abstracts/Presentations at regional, national, and international scientific meetings

form a high molecular weight complex. Kelly Ann Miller (oral presentation awarded first place), Michael Miller, Milinda James, and Nyles W. Charon. West Virginia University.

Mid-Atlantic Microbial Pathogenesis Meeting. January 2013. Wintergreen, VA. "The flagellar hook structure of the spirochetes Borrelia burgdorferi and Treponema denticola is unique from the hook of bacteria with external flagella; the FlgE proteins form a high molecular weight complex." Kelly Ann Miller (Poster Presenter), Michael R. Miller, Milinda James, Justin M. Hettick, MD Motaleb, and Nyles W. Charon.

Van Lier Convocation. February 28, 2013. Morgantown, WV. "Mass spectrometry suggests that the flagellar hook proteins of the spirochetes Borrelia burgdorferi and Treponema denticola are covalently cross-linked." Kelly Ann Miller (selected by committee to give an oral presentation), Michael R. Miller, Milinda James, and Nyles W. Charon.

PBM (Pittsburgh Bacterial Meeting). March 9, 2013. Pittsburgh, PA. "Mass spectrometry suggests that the flagellar hook proteins of the spirochetes Borrelia burgdorferi and Treponema denticola are covalently cross-linked." Kelly Ann Miller (Poster Presenter), Michael R. Miller, Milinda James, Justin M. Hettick, MD Motaleb, and Nyles W. Charon.

ASM (American Society Microbiology) General Meeting. May 2013. Denver, CO. "Mass spectrometry suggests that the flagellar hook proteins of the spirochetes Borrelia burgdorferi and Treponema denticola are covalently cross-linked." Kelly Ann Miller (selected for oral presentation), Michael R. Miller, Milinda James, Justin M. Hettick, MD Motaleb, and Nyles W. Charon.

D. Research Support
Pre-doctoral Fellowships

WVU STEM fellowship. January 2010- July 2010 and July 2012-January 2013. The complex hook basal body structure of *Borrelia burgdorferi* and *Treponema denticola*. The goal of this study is to characterize the FlgE high molecular weight complex formation in order to better understand how spirochete motility relates to pathogenesis.

American Heart Association, 10PRE4170060. Role: PI. 2010-2012. July 2010-June 2012. *Borrelia burgdorferi* flagellar protein FlgE role in virulence of Lyme disease. The goal of this proposal is to characterize the covalent cross-linking that comprises the flagellar hook of *Borrelia burgdorferi*.