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ABSTRACT 

Diamond Bur Cutting Efficiency of Dental Zirconia 

Shelby Allison Alexander, D.D.S 

Objectives: To monitor the rate of diamond bur cutting through sintered yttria stabilized 

zirconia.  Through this observation, we intend to determine which bur(s) exhibit the greatest 

cutting efficiency and if a decline exists over time. 

Methods:  Seven dental diamond burs were used in an air-turbine hand piece to cut sintered 

Yttria Stabilized Zirconia blocks (3Y-TZP) at a constant 0.9N force for five minutes.  The 

distance traveled was measured by a Linear Variable Differential Transformer (LVDT) and 

recorded per time by a data acquisition device. Time was divided into 100-second intervals for 

comparison.  Individual effects of bur, time periods, and depth on cutting efficiency were 

evaluated.  Combined effect of bur and time periods was also evaluated. 

Results:  Statistically significant differences were found between bur, time period and depth on 

bur cutting efficiency of 3Y-TZP.  Combined effect of bur and time period did not demonstrate a 

significant difference.   Burs with medium, coarse, and super coarse diamond particles exhibited 

greater cutting efficiency of sintered 3Y-TZP than burs with fine diamond particles.  Cutting 

efficiency of all burs was significantly greater within the initial 100 second cutting time period. 

Conclusions:  For removal of 3Y-TZP crowns intraorally via sectioning, the results of this study 

suggest it is best to use a diamond bur with medium, coarse or super coarse particle grit size and 

limit its use to 100 seconds in order to maximize cutting efficiency.  The super coarse diamond 

had the greatest cutting efficiency throughout the 5-minute evaluation period.  Future studies are 

needed to evaluate cutting efficiency after low temperature degradation (LTD) and surface 

manipulations on 3Y-TZP in order to duplicate exposure to the oral environment, and expanding 

the testing time beyond 5 minutes to determine if and when a second significant difference in 

cutting efficiency occurs.
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CHAPTER I: INTRODUCTION 

Background 

The dental procedure of replacing missing teeth, tooth structure or providing 

additional support for endodontically treated teeth by means of the full coverage dental 

restoration or fixed dental prosthesis (FDP) is a common practice.  The materials 

available for such restorations have been classified based on strength and fracture 

resistance.  Historically, cast metal and metal ceramic restorations were indicated in 

posterior regions and all ceramic restorations were strictly limited to use in the anterior.  

However, a dynamic shift in the utilization of ceramic restorations has occurred due to 

the recent advancements in material science. 

The move to use ceramic crowns in place of the traditional cast metal or metal 

ceramic crowns is one of the fastest, widespread changes that dentistry has seen in its 

history.   The increased demand for esthetics, introduction of Computer aided Design and 

Computer aided Manufacturing(CAD/CAM), and the rise in gold costs has paved the way 

for development of higher strength ceramics such as yttria-stablilized tetragonal zirconia 

polycrystal ceramics (3Y-TZP).  Due to its favorable qualities of increased fracture 

resistance, esthetics, biocompatibility, decreased time for fabrication and low cost, 3Y-

TZP has become a go-to restoration in anterior and posterior regions for single crowns, 

fixed dental prosthesis and full arch restorations.   

Despite the advancements in dental diagnosis, treatment, and materials, 

restoration failure still occurs.  Failures due to crown fracture, loss of retention, recurrent 

decay, or loss of pulp vitality are just some of the many reasons that may necessitate 

removal and replacement of a prosthesis.  In situations where replacement is necessary, 

the removal of such prostheses should be conservative and efficient. 

A common way to remove a previously placed crown is by placing a slot in the 

crown, extending it onto multiple exposed surfaces, then torqueing the halves using an 

instrument in the slot.  Dental zirconia has posed a problem in removal in this way due to 

its high flexural strength and hardness.  Attempts to section dental zirconia often result in 
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destroying multiple burs, loss of chair time, and frustration by the dentist and patient. 

Statement of the Problem 

 Does the type of diamond dental bur affect the rate of cutting dental zirconia 

restorations? 

Significance of the Problem 

 A marked increase in the clinical application of dental zirconia has occurred over 

the last decade.  Due to its increase in prevalence, the dental literature has been flooded 

with reports validating its use and demonstrating ways to improve its function and 

application as a dental ceramic.  Zirconia restorations have been recommended due to 

their esthetics, biocompatibility, and favorable biomechanical properties that allow their 

use in clinically challenging situations.  In addition, zirconia has favorable industry 

characteristics such as decreased fabrication time, lower costs, and a low number of 

remakes due to fracture.  Monolithic zirconia restorations are recommended as a viable 

solution for bruxers due to their high strength and fracture resistance1. 

A limited number of conflicting articles are available to describe the best 

instrument or technique for removal of zirconia restorations.  A Clinician’s Report 

proposed a technique utilizing a fine grit diamond, high water spray with a light sawing 

motion to remove lithium disilicate or zirconia crowns.  They also stated that this 

technique requires four slots, four diamond burs and four minutes to complete2.  Due to 

the perceived difficulty in zirconia crown removal, several studies have evaluated which 

dental burs have the greatest cutting efficiency.  In 2011, Ohkuma et al. evaluated 

diamond grit size as it relates to zirconia cutting efficiency and found that even with light 

touch a larger diamond grit size of 200µm was more efficient than 100µm3.  This is 

further supported by Nakamura and colleagues who concluded that diamond burs with 

super coarse grains (300µm) were most effective4.  Interestingly, these three reports 

recommended limiting the duration of each bur’s use due to pullout, chipping, and wear 

of the diamond particles, which decreases the bur’s cutting ability2-4.  These studies have 

failed to evaluate cutting efficiency with a dynamic measure over time and provided 



	

3	

insufficient data for clinical application due the limited number of burs used in 

comparison for zirconia crown removal. 

Hypothesis 

 The type of diamond bur will have an effect on cutting efficiency measured by 

rate of 3Y-TZP cutting within 5 minutes.  The type of diamond bur will also affect the 

time at which each bur’s cutting efficiency declines. 

Null Hypothesis 

 Bur type will not have an effect on cutting efficiency over 5 minutes.  The bur 

type will not affect the bur’s cutting efficiency rate of decline. 
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Definition of Terms 

Alloying element- metallic or non-metallic elements added to or retained by a pure metal 

for the purpose of giving that metal special properties5. 

Bruxism: the parafunctional grinding of teeth5. 

CAD/CAM: acronym for Computer Aided Design, Computer Aided Machining.  An 

alternative fabrication process which electronically or digitally records surface 

coordinates to allow digital design of prosthesis.  The coordinates then can be used to 

mill or grind by computer control the prosthesis from a solid block of the chosen 

material6. 

All-ceramic restoration: a ceramic fixed dental prosthesis that restores a clinical crown 

without a supporting metal framework5. 

Crown- an artificial replacement that restores missing tooth structure by surrounding part 

or all of the remaining structure with a material such as cast metal, porcelain, or a 

combination of materials such as metal and porcelain5. 

Fixed dental prosthesis- any dental prosthesis that is luted, screwed, or mechanically 

attached or otherwise securely retained to natural teeth, tooth roots, and/or dental implant 

abutments that furnish the primary support for the dental prosthesis5. 

Fracture toughness- is a mechanical property that describes the resistance of brittle 

materials to the catastrophic propagation of flaws under an applied stress.  It is given in 

units of stress times the square root of crack length (MPa⋅m1/2) 6. 

Metal ceramic restoration- a tooth or implant retained fixed dental prosthesis that uses a 

metal substructure upon which a ceramic veneer is fused5. 

Modulus of elasticity (Young’s)- describes the relative stiffness or rigidity in a 

material6.  It is a ratio of stress to strain.  As the modulus of elasticity rises, the material 

becomes more rigid5. 
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Sinter- to cause to be come a coherent mass by heating without melting5. 

Transformation toughening- the resistance created against an advancing crack due to 

the production of compressive stress in partially stabilized zirconia (PSZ).  This occurs 

when the crystalline form of zirconia transforms from the metastable tetragonal phase to 

the stable monoclinic phase6. 

	

Assumptions 

1. It is assumed the sintered 3Y-TZP blocks are homogenous and structurally 

identical to sintered 3Y-TZP crowns. 

 

2. It is assumed each bur type is consistent with the manufacturer’s defined 

dimensions and diamond particle size. 

Limitations 

1. An air turbine handpiece was used for the study, which limited the ability to 

have a constant RPM by controlling torque.  Use of electric handpiece was not 

possible due to it over heating at 90 seconds. 

 

2. Coolant flow rate of 16 ml/min was used due to the dental unit’s limited 

adjustment ability. 

Delimitations 

1. Limited cutting time to 5 minutes due to zirconia block length. 

 

2. Limited test burs based on shank design; included only those that were 

parallel sided and round-ended.  
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Chapter II: LITERATURE REVIEW 

History of Zirconium as a Ceramic Biomaterial 

Zirconium is an elemental metal with an atomic number of 40; its name is derived 

from the Arabic term Zargon meaning golden in color.  Zirconia (ZrO2) is the crystalline 

dioxide of zirconium which was identified in 1789 by a German chemist and was utilized 

as a pigment for ceramics7,8.   Zirconia has been observed to have unique temperature-

dependent phase transformations.  Unalloyed zirconia can assume three crystalline forms 

depending on the temperature; monoclinic (room temperature to 1170oC), tetragonal 

(1170 oC to 2370oC), and cubic (above 2370oC) 7-9. 

Zirconia’s unique mechanical properties are the result of a volumetric increase 

when transforming from tetragonal to monoclinic phase during cooling.  Catastrophic 

failure of the material can occur during transformation in pure zirconia, but can be 

stabilized with the addition of other metallic oxides such as CaO, MgO, CeO2, or Y2O3 to 

create partially stabilized zirconia (PSZ).  The supplementation of other metal oxides 

allows a partial retention of the tetragonal structure at room temperature.  This process 

results in transformation toughening9. 

Crack formation is a process that occurs when stress is applied to the surface of 

PSZ.  The energy created by the stress on the forming crack stimulates a phase 

transformation from the tetragonal to the monoclinic crystalline structure in the material 

leading the fracture.  This phase shift results in volumetric expansion which places 

pressure on the crack, making it harder to propagate and contributes to PSZ’s toughness 

and fracture resistance7-10.   The discovery of PSZ’s transformation toughening expanded 

its use to the machining industry due to its mechanical properties such as favorable 

chemical and dimensional stability, mechanical strength and toughness, and Young’s 

modulus similar to stainless steel alloys7,8.  

In 1969, orthopedics research and development began to look at zirconia as a 

potential replacement for titanium and alumina ball heads in Total Hip Replacements7.  

Such use as a biomaterial launched studies to investigate its biocompatibility and 
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potential cytotoxic properties.  In vitro studies since the 1990s have demonstrated the 

biocompatibility of zirconia when implanted into bone or muscles of various animal 

species.  Those studies have confirmed ZrO2 is not only non-cytotoxic, but creates less 

inflammatory infiltrate, microvessel density, and vascular endothelial growth factor 

expression than titanium7,11.   

Some caution was given to the utilization of ZrO2 in an acidic environment, such 

as the oral cavity, due to the release of zirconium and yttrium ions8.  Further 

investigations have determined the ion release was due to zirconium hydroxide, which is 

eliminated after sintering and allowing the safe application of solid zirconia’s use in 

dentistry7. 

Dental Zirconium Oxide 

 Although PSZ had been used as a ceramic biomaterial in medicine starting in the 

1970s, its utilization in dentistry did not start until the early 1990s and has since been 

limited to two zirconia-containing ceramic systems12.  They include zirconia-toughened 

alumina (ZTA) and yttrium stabilized tetragonal zirconia polycrystals (3Y-TZP) 9.   Due 

to its 8-11% porosity and decreased mechanical properties, ZTA is much less commonly 

used compared to 3Y-TZP9.   3Y-TZP gets its name from the addition of 3 mole % Y2O3 

which stabilizes the tetragonal structure at room temperature11.  3Y-TZP, with a fracture 

toughness from 5 to 10MPa⋅m½ and a flexural strength of 900-1400MPa, exhibits better 

fracture resistance compared to all other dental ceramics 13,14. 

 The stability of 3Y-TZP at room temperature and maintaining the desired 

tetragonal phase is a delicate science.  Particular attention must be paid not only to the 

composition, size, and shape of zirconia particles, but also the type and amount of metal 

oxide, final heat processing, and interphase interactions within the zirconia13.  For 

example, above a critical grain size 3Y-TZP becomes less stable and more susceptible to 

spontaneous tetragonal to monoclinic transformation.  Below a certain grain size phase 

transformation is impossible, eliminating transformation toughening and resulting in 

greatly decreased fracture resistance.  The sintering process has been shown to affect the 
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grain size, with higher temperatures and longer sintering times resulting in larger grain 

size9,15. 

 The use of 3Y-TZP in dentistry has been made possible by CAD/CAM 

technology and a milling machine’s ability to cut a zirconia block into the desired final 

form.  Milling of zirconia is routinely done in one of three block states: green, presintered 

and fully sintered.  The green state describes the zirconia in a chalk-like form by which 

the 3Y-TZP powder has been added to a binder and condensed by cold isostatic pressing 

into the form of a block9.  This block can then be presintered, where heat is applied 

slowly, eliminating the binder and enhancing the hardness and machinability9.  A final 

heat treatment develops the definitive mechanical properties and dimension of the 3Y-

TZP9. 

The fabrication of a full contour restoration or coping can be completed in two 

ways using CAD/CAM technology: soft milling or hard milling.  Soft milling involves 

either machining an enlarged form of the final product from a homogenous green block 

or a partially sintered block.  3Y-TZP shrinks 20-25% during the sintering process, this 

shrinkage must be accurately predicted and accounted for during the initial milling to 

assure an accurate fit7,10,16,17.  Hard milling is machining of the final product from a fully 

sintered zirconia block.  The drawback of hard milling is the wear and tear on the milling 

tools and potential for incorporation of unwanted defects in the zirconia during 

machining18. 

Zirconia versus Metal-ceramic Restorations 

 In 2014, Gordon Christensen published an article describing the trend from using 

metal-ceramic to all ceramics as “one of the fastest and most significant paradigm 

changes in the history of dentistry” 19.   He published data from a commercial laboratory 

which found a 335% increase in all ceramic restorations compared to a 386% decrease of 

metal-ceramic restorations from 2007 to 201319.  At this time, long term evidence is not 

available in the literature to support the broad-spectrum use of all ceramic restorations, 

however short-term studies have shown positive results and tentatively support its 
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growing use20-23.  Studies are available which compare zirconia and metal ceramic 

restorations in regards to marginal fit and accuracy of CAD/CAM technology, esthetics, 

failure and complication rates, maintenance of strength at reduced thickness and 

biocompatibility23-39. 

Common dental indications for 3Y-TZP include anterior and posterior single unit 

crowns and fixed dental prosthesis.  Clinical acceptability for such uses has been 

supported by studies evaluating marginal fit and internal adaptation, not only to evaluate 

3Y-TZP as a dental ceramic but also the accuracy of the CAD/CAM fabrication 

process24,26,27,29,31.  Three studies evaluated the marginal discrepancies of three 3Y-TZP 

systems using CAD/CAM technology for fabrication compared to metal-ceramic 

fabricated by the lost wax casting technique.  Not only were the 3Y-TZP systems within 

the 100µm clinical acceptable range for marginal adaption, but the discrepancies were 

also lower than the metal ceramic group24,26,27.  This is further supported by the findings 

of Vigolo and Fonzi and Lins et al., which examined three 3Y-TZP systems evaluating 

marginal fit before and after porcelain firing cycles of 4-unit FDPs.  They reported the 

firing cycles did not affect the marginal fit and showed the marginal adaptation of FDPs 

to be within a clinically acceptable range29.  Furthermore, Lins et al. evaluated the 

marginal and internal fit of CAD/CAM zirconia copings and found all were within 

clinically acceptable ranges31.  These studies demonstrate the viability of CAD/CAM 

technology for fabricating 3Y-TZP single crowns or fixed dental prosthesis with 

clinically acceptable marginal fit and internal adaptation. 

As stated earlier, 3Y-TZP restorations can be fabricated as monolithic restorations 

or as a coping to which ceramic is applied to enhance esthetics.  The decision of which to 

fabricate is dependent on the desired strength and esthetics of the final restoration.  A 

monolithic 3Y-TZP crown maintains its mechanical properties and like metal-ceramic 

restorations, has significant limitations in esthetics due to its opacity.  The addition of 

ceramic to either a 3Y-TZP or metal coping increases the esthetics of the restoration but 

subjects the restoration to fracture based on the mechanical properties inherent to the 

ceramic used and the strength of the ceramic to 3Y-TZP interface.  Unlike metal ceramic, 

zirconia copings have an advantage in being white in color.  In situations of gingival 
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recession or thin gingiva, metal ceramic restorations often present with a gray hue at the 

margin, which is not present in similar zirconia restorations.  Such situations make 

zirconia more desirable in highly esthetic areas that demand high core strength. 

Multiple studies have reported the survival and complication rates of 3Y-TZP 

crowns or FDPs compared to metal ceramic.  A 2013 evaluation by Koeing et al. reported 

risk factors for failure of zirconia-based restorations.  The reported success rate was 

81.6% after a mean observation period of 3.5 years, where fracture of the veneering 

ceramic was the most common complication32.  Chipping and fracture of the veneering 

ceramic for 3Y-TZP was also reported by Sailer et al. and Pjetursson et al. in a 2015 

systematic review of the literature.  They reported the 5 year complication rate of veneer 

ceramic chipping or fracture of single unit crowns and multiple unit fixed restorations to 

be 6.3% and 14.5% respectively23,33.  Based on these reports, chipping and fracture of the 

veneering ceramic seems to be a limiting factor to the survival rates of 3Y-TZP single 

crowns and multiple unit FDPs. 

In light of the apparent evidence of increased fracture of the veneered ceramic on 

3Y-TZP compared to metal ceramic, further studies were undertaken to determine the 

nature and cause of the fractures.  Two theories were developed: the coefficient of 

thermal expansion between the materials was not compatible or the framework design 

was insufficient to provide adequate support to the veneered ceramic.  It was found in 

multiple reports that using a veneering ceramic with a closer coefficient of thermal 

expansion to 3Y-TZP in conjunction with a slower cooling cycle after the last glaze firing 

minimized the thermal residual stress within the veneer and delays failure of the zirconia-

veneer crowns30,34-36.  One report published 5-year results comparing the survival of 

metal ceramic crowns to zirconia-veneered crowns fabricated by controlling the coping 

design and allowing for slower cooling of the veneer ceramic.  They found no significant 

differences in the incidence of ceramic fracture between metal ceramic crowns and 

ceramic-veneered zirconia with estimated cumulative five-year survival rates of 97.6% 

and 94% respectively28.  In support of those findings, a systematic review in 2014 by 

Larsson and Wennerberg evaluated the clinical success of implant and tooth supported 

zirconia based single crowns and found cumulative 5-year survival rates of 97.1% and 
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95.9% respectively.  Given that the five-year survival rate of metal ceramic restorations 

to exceed 95%, they concluded the survival of ceramic veneered zirconia and metal 

ceramic restorations to be comparable.  Although ceramic fracture and chipping has been 

seen as a common complication of 3Y-TZP veneered crowns, the evidence supplied by 

Rinke et al. and Larsson and Wennerberg attributes this to inappropriate ceramic 

selection and firing when using 3Y-TZP as the coping.   Controlling the laboratory 

fabrication of such prostheses can result in similar long-term results for 3Y-TZP 

prostheses compared with metal ceramics. 

In the posterior region of the mouth adequate reduction for crown preparation is 

often a challenge and needs to be a balance between required thickness of the planned 

restoration and preservation of tooth structure.  This can be complicated by the need to 

create adequate axial wall height for resistance and retention form.  In 2001, Goodacre 

and colleagues suggested to maintain a minimum of 4 mm of occlusal-cervical dimension 

when preparing molars for full coverage restorations for proper resistance and retention 

of the prosthesis40.  Occlusal reduction has been suggested by multiple authors for metal 

ceramic crowns to be at least 1.5-2 mm to allow for adequate restorative material 

thickness40,41.  An advantage of monolithic zirconia relative to traditional metal ceramic 

restorations is reduced minimal thickness, due to not requiring space for both a coping 

and veneering material.  Three recently published articles found monolithic zirconia 

restorations have adequate strength with reduced occlusal thickness.  Nakamura et al. 

showed occlusal thickness has a significant affect on failure of monolithic zirconia 

crowns during load to fail tests.  However, even at a thickness of 0.5mm its fracture load 

was recorded over 5500N38.  Using the same protocol, Nakamura et al. conducted another 

study evaluating the effect of low temperature degradation and cyclic loading on fail to 

load39.  They found after 100 hours of autoclaving and cyclic loading of 5-300N over 

24,000 cycles (simulated 1 year of function) the fail to load value of monolithic zirconia 

crowns with an occlusal thickness of 0.5mm was over 4,000N39.  Another study by 

Nordahl and colleagues evaluated the load to failure of 0.3mm and 0.5mm zirconia 

crowns after thermocycling and 10,000 cycles of 30-300 N of preload to be 450N and 

787N respectively37.  These studies suggest monolithic zirconia crowns can withstand 
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forces in the molar region and can be utilized in situations where decreased occlusal 

thickness of the restoration is indicated38. 

Biocompatibility has been seen as an additional benefit 3Y-TZP has over metal 

ceramic prosthesis.  Although rare, noble and high noble alloys used for fixed 

restorations have been shown to stimulate hypersensitivity reactions in patients42.  A 

report in 2010 investigated replacing metal ceramic FDPs with zirconia prostheses in an 

attempt to alleviate mucosal irritations related to a metal allergy.  Fourteen patients with 

oral hypersensitivity lesions tested positive in epicutaneous allergy tests for nickel and 

over half also tested positive to palladium, cobalt and gold25.  The metal-ceramic FDPs 

were removed and replaced with zirconia-based restorations and within three weeks, the 

oral signs and symptoms of allergy resolved.  Furthermore, after 3 years in place, no 

hypersensitivity reactions were observed, supporting the use of 3Y-TZP in patients with 

metal hypersensitivity25. 

3Y-TZP based restorations may serve as a suitable alternative to conventional 

metal ceramics32,43,44.  Due to the marginal fit and accuracy of CAD/CAM technology, 

improved esthetics, comparable survival rates, maintenance of strength at reduced 

occlusal thickness and increased biocompatibility, their numbers could increase and 

potentially replace the traditional metal ceramics in the future. 

Indications for Placement/Replacement of Crowns and FDPs 

The use of full coverage crowns or fixed dental prosthesis is widespread and 

largely due to identification of a patients need for eliminating existing disease, prevention 

of future disease, restoration of function, improving appearance, or in posterior 

endodontically treated teeth to prevent fracture41.   The indication for a crown or FDP 

could also be to replace a previously failed restoration.  Studies from the United 

Kingdom have evaluated the prevalence of dental crowns and the frequency of 

replacement to shed some light on how often such procedures are executed by dental 

professionals.  In 1998 Pine et al. found one-third of the adult population had at least one 

dental crown45.  In a 2003 survey of 92 general dentists, it was found within a twelve-
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week period one-third of the crowns fabricated were replacements46.  The most common 

cause for the replacements were previous restoration failure, esthetic issues, and recurrent 

decay46.  Due to the reported high prevalence in the population and high incident of 

replacement, the removal of dental prosthesis is a continual problem and expected to 

continue.  Ways of making the procedure efficient and effective are applicable to current 

daily practice.  

The cause for replacement of crowns or fixed dental prosthesis has been evaluated 

through the years by multiple authors.  Schwartz and colleagues in 1970 found the most 

common cause was due to caries47.  As a follow-up in 1986, J. E. Walton et al. reported 

that after a mean time of 8.3 years, caries was still the most common reason for failure 

(22%) followed by porcelain fracture (16%)48.  More recent publications have supported 

these findings for fixed dental prostheses23,49,50.  For single crowns, the most common 

complication has been associated with the need for endodontic therapy, abutment tooth 

fracture followed by ceramic fracture49,51.  

Reviews of the literature have also reported the longevity of crowns and FDPs.  

Scurria et al. in 1998 reported the 10 and 15 year survival rate of fixed dental prosthesis 

to be 87% and 69% respectively52.  A meta-analysis in 2008 by Pjetursson reported 

higher survival with an estimated 5-year and 10-year survival of tooth supported FDPs to 

be 93.8% and 89.2% respectively53.  When comparing survival rates with different 

materials, similar results were found22,23.  A systematic review in 2014 found a 

cumulative 5-year survival of tooth supported and implant supported zirconia crowns to 

be 95.9% and 97.1% respectively22.  A meta-analysis in 2015 reported the estimated five-

year survival of zirconia FDPs compared to metal-ceramic FDPs to be 90.4% and 94.4% 

respectively23.  The lower survival rate for the FDPs was in part due to a higher incidence 

of veneering ceramic fractures on the zirconia framework.  As explained previously, this 

issue has since been better understood and controlled in the fabrication of such 

restorations. 

Based on the above reports, the replacement of crowns is common due to biologic 

and technical complications.  With comparable expected survivability of metal ceramic 
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and zirconia prostheses, the use of such restorations by dental professionals is supported 

in the short term.  In the future it can be expected that a large number of zirconia-based 

restorations will need to be replaced. 

Cutting Efficiency in Dentistry 

 Many factors play a role when determining cutting efficiency in dentistry.  These 

include the bur used, the force applied, substrate hardness, handpiece type and coolant 

flow rate3,4,54-60.   All have been shown to affect the cutting efficiency alone or in 

combination and efforts have been made to determine which combination is most 

effective.  As new technology is available, studies attempt to guide practitioners to the 

best instruments to use for the clinical situation. 

 The selection of a dental bur for a procedure is largely due to preference and not 

science.  A survey conducted by Siegel and von Fraunhofer in 1999 reported US dentist 

favor diamond burs for extracoronal tooth preparation and carbide burs for intracoronal 

restorations.   It was also found that the prosthodontic faculty preferred dental students to 

use medium grit diamonds for gross tooth reduction and coarser grit diamonds for 

postgraduate programs61.  In 2014, Sharma and colleagues recognized a lack of direction 

given to practitioners regarding bur selection and conducted a survey of private dentists62.  

A total of 131 general dental practitioners in India responded to the survey and 75% 

preferred diamond burs over tungsten carbide or steel for tooth reduction62.  They also 

reported a generalized belief that diamond cutting efficiency was a factor of their 

coarseness62.  The information from these studies indicates a perception that cutting rates 

are higher with coarser diamond burs.   

In an attempt to test the cutting efficiency as it relates to diamond grit size, Siegel 

and von Fraunhofer measured the cutting efficiency of three diamond bur grit sizes over 

three separate cuts into a substitute enamel material.  They found no difference between 

the medium, coarse or super coarse burs during the first cut.   When evaluating the total 

over the three cuts significant differences were seen between the medium and super 

coarse burs indicating a change in the cutting rate over time54.  Their work supports the 
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conclusion that medium, coarse and super coarse diamond burs have comparable cutting 

rates over short cutting periods, but when longer cutting times are used coarse and super 

coarse burs may be more efficient.  A recent study verifies this conclusion when using 

diamond burs on dental zirconia3.  In 2011, Ohkuma et al. compared diamond burs of two 

diameters and two particle grit sizes using a constant force to cut 3Y-TZP3.  They found 

significant differences when comparing diamond bur particles of 100µm and 200µm as it 

related to depth of cut and weight of material removed over 120 seconds3. They also 

found a time-dependent decrease in cutting efficiency.   The 100µm and 200µm particle 

burs had a drop in cutting efficiency after 30 and 60 seconds respectively, indicating the 

larger diamond particle bur maintained its cutting efficiency over a longer period of 

time3.  These studies suggest diamond bur particle size has a time-dependent effect on 

cutting efficiency.    

Authors have also demonstrated that cutting efficiency can be increased with an 

increase in the force applied during cutting on some substrates.  Siegel and von 

Fraunhofer in 1999 evaluated the effect different loads had on the cutting efficiency using 

diamond burs of varying grit size when cutting an enamel-like substance.  They found 

that the clinical norm of about 100g of force was also the optimum pressure to apply for 

medium grit burs.  Interestingly where less pressure resulted in a decreased cutting 

efficiency, application of more pressure did not produce an increased cutting efficiency 

with medium grit burs.   This is in contrast to coarse grit burs, which did demonstrate an 

increase cutting efficiency when applying greater force55.  It should be noted when 

cutting harder materials such as Y3-TZP, different results were found by Nakamura and 

colleagues4.  As the cutting force increased on Y3-TZP, they also noticed an increase in  

damage to the larger grit diamond burs resulting in decreased cutting efficiency over 

time4.  They found that within the first thirty seconds, super coarse diamond burs cut 

more when a higher force was applied.  However, over a five-minute time period, the 

coarse bur was more efficient and removed more material.  They concluded that although 

larger diamond grit burs showed significantly greater cutting efficiency, higher force may 

cause more damage to super coarse burs, which may decrease their cutting efficiency 

over time4. 
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Two dental handpieces are used in modern dental practice; the electric and air-

turbine.  Ercoli et al. in 2009 noticed a trend toward increasing use of electric handpieces 

in dental offices and wanted to test both handpieces cutting efficiency.  They found the 

two handpieces performed differently within the first millimeter and second millimeter of 

cut.  The turbine advanced faster with less force in the first millimeter before the cutting 

instrument was completely engaged into the substrate.  They speculated the “free-running 

speed” of the air turbine might produce greater kinetic energy and power.  By contrast, 

the electric handpiece surpassed the air turbine in the second millimeter of cut when fully 

immersed in the substrate.  This observation was thought to be due to the high consistent 

torque of the electric handpiece which allows it to run at a constant RPM under load56.  

These findings are supported by Eikenberg, who in 2001 found the efficiency of electric 

handpiece surpassed the air turbine with increased pressure due to inability for the turbine 

to have torque control57. 

In 2010, Choi et al. evaluated the effect of handpiece type and cutting efficiency 

on different commonly used dental materials.  Significant differences were found in 

cutting efficiency based on handpiece type with some of the materials tested such as high 

noble metal alloys, silver amalgam and Macor (an enamel-like substance) but not 

aluminum oxide, base metal alloys, or zirconium oxide58.  They concluded, “the harder 

the material, the harder it will be to cut” and the 91 gram force (.9N) used in their study 

may have been insufficient to generate difference in cutting efficiencies between 

handpieces when cutting hard substrates58.  Consistent with these findings, Rotella and 

colleagues found no difference between the use of electric or air turbine hand pieces 

when evaluating the cutting performance of single use versus multiple use diamond 

burs59.  At this time, it appears air turbine and electric handpieces do not differ in cutting 

efficiency when cutting zirconium oxide at a force of 91 grams. 

The last variable shown to affect cutting efficiency is coolant flow rate.   The 

application of a coolant spray during tooth preparations keep temperatures low, removes 

debris being cut, and keeps the bur clean.  In an attempt to evaluate the optimum coolant 

spray volume, von Fraunhofer and colleagues evaluated five different flow rates with the 

use of a medium grit diamond bur when cutting an enamel-like substance.  They found as 
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the flow rate increased, so did the cutting efficiency.  They reported the normal coolant 

spray rate for dentists was 15 ml/min and increasing it to 25 ml/min increased the rate of 

material removal.  Interestingly, upon evaluation of the burs, no difference in debris 

accumulation was found, indicating the effect was not on the bur but on the substrate60.  

Changing the substrate may vary the effect the coolant spray has on cutting efficiency but 

no evidence to support this is available in the literature. 

Based on previous cutting efficiency studies, it appears either electric or air 

turbine handpieces can be used to cut 3Y-TZP with a force of 91 grams.  A coolant water 

spray of at least 15ml/min is advocated and it has been suggested that an increase may 

also increase the cutting efficiency, however this has not been demonstrated with 3Y-

TZP.  The selection of diamond bur to use for efficient cutting of 3Y-TZP has not been 

determined.  It has been suggested larger particle size diamond burs are more efficient 

but those studies only compared two burs and such is insufficient to determine a 

correlation.  Since the development of zirconia removal diamond burs no studies have 

been conducted to compare those with conventional diamond burs.  Lastly, it has been 

suggested that a diamond bur’s cutting efficiency is time-dependent and such time-

dependent change may also be related to the bur’s diamond particle size, however these 

studies have utilized a stop measure technique which may hide the character of the 

decrease in cutting efficiency over time or between bur types.  At this time it is unclear 

which diamond bur is most efficient in cutting 3Y-TZP as it relates to diamond particle 

size and it has not been demonstrated how the rate changes as a dynamic measure over 

time. 
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Chapter III: 

MATERIALS AND METHODS 

Apparatus Construction 

 Two custom made experimental devices were built and stabilized on a 10” x 20” 

plywood base.  One device statically held a high-speed air turbine handpiece (W&H 

Synea TA-97 LED+, Austria) and was rigidly fixed to the wooden base.  The other was a 

6” x 6” wooden platform equipped with an aluminum angle to hold the 3Y-TZP specimen 

and an extension in the posterior to support the Linear Variable Differential Transformer 

(LVDT) core.  Four aluminum wheels were attached to the underside of the platform, 

which enabled linear movement along two aluminum tracks rigidly fixed to the wooden 

base.   The LVDT coil assembly was positioned in a cradle attached to the wooden base, 

allowing the extension on the platform to move within the coil without interference 

(Figure 1). 

The wooden platform and base were treated with polyurethane to reduce 

dimensional change from water absorption.  The aluminum wheels and tracks were 

treated one time with a petroleum-based lubricant (WD-40, San Diego, CA) immediately 

after fabrication to decrease friction. 
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Figure 1. Experiment Apparatus.  
(A) Handpiece, (B) Handpiece Stand, (C) Weights, (D) Pulley and Line, (E) Platform, (F) 
Aluminum Track, (G) Aluminum wheels, (H) Aluminum angle, (I) YSZ block, (J) 
Support for core, (K) LVDT Core, (L) LVDT Coil Assembly, (M) Leads to Signal 
Conditioner (Illustrated by Ryan Alexander). 
 

 

Data Recording Instrumentation and Configuration 

A Lucas Schevitz 503XS-A LVDT with an ATA-2001 Signal Conditioner 

(Measurement Specialties, Hampton, VA) was used to measure the linear displacement of 

the platform with an output in voltage.  The signal conditioner was calibrated with the 

LVDT according to the manufacturer’s instructions for unipolar voltage output and 

operated at the manufacturer’s default settings of 3.5 V at 2.5 kHz.  The LVDT stroke is 

1 inch or 10 volts and the voltage output can be converted to distance as 1volt= 0.1inch 

=2.54mm. 

A Personal Daq/3000 series data acquisition device (Measurement Computing, 

Norton, MA) received the real-time output generated by the LVDT conditioner and 

plotted the measured voltage over time according to custom programmed specifications 

in the Daq software.  Set-up of data recording instrumentation and apparatus can be seen 

in Figure 2. 
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Figure 2. Experiment Assembly 
From left to right: LVDT signal conditioner, Personal Daq/3000, laptop used to run 
Daq/3000 software, experiment apparatus. 

 

A Draper dial caliper (Hampshire, UK) with graduations of 0.02mm was used to 

measure the depth of each cut and recorded in the nearest tenth of a millimeter.  

 

 

Materials 

Three rectangular IPS e.max ZirCAD B40L blocks with a dimension of 

39x19x15.4mm were sintered according to the manufacturer’s instructions (Ivoclar 

Vivadent, Buffalo, NY).  Seven diamond burs were selected from two companies based 

on diamond particle size and dimension of the bur shank (Table 1).  All burs were 

reported to be 1.4 mm in diameter, parallel sided and chamfer ended.  Ten replicates of 

each bur type were used to equal 70 total test burs. 
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Table 1. Bur Characteristics. 
Letter 

assignment 
Manufacturer Name Diamond grit size 

A Brasseler KS2 Super Coarse (150 µm) 
B Brasseler 8881 Fine (30 µm) 
C Brasseler BRKS2 Coarse (125 µm) 
D Komet 4 ZRa - 
E Komet 6881 Coarse (151 µm) 
F Komet 881 Medium (107 µm) 
G Komet 2979 Super Coarse (181 µm) 

a Recommended by Komet for cutting 3Y-TZP, no information provided  
regarding diamond particle size. 
 

Protocol 

 The sequence of bur testing was determined by block randomization.  Before the 

start of each run the bur was paralleled to the 3Y-TZP block, adjusted to a 1.5mm depth, 

and the 3Y-TZP on the platform was positioned to be in contact with the bur.  A 0.9 N 

force was then exerted on the 3Y-TZP in the direction of the bur by vertically suspending 

91 grams of fishing weights over a pulley at the end of the wooden base.  An additional 

1.25 grams of weight was added to overcome breakaway friction of the platform. 

The Daq was initiated and data recording occurred for a two second count before 

pressure was exerted on the rheostat.  The two-second delay allowed a recording of a zero 

position of the LVDT.  Maximal pressure was exerted on the rheostat with a measured 

coolant spray rate of 16mL/min for a continuous 5 minutes.  At the end of each five-

minute test interval, the data file was saved, the depth of the slot created in the 3Y-TZP 

was recorded with a dial caliper, the next bur in series was placed, the zirconia block was 

adjusted to expose an uncut surface and the process was repeated. 



	

22	

Statistical Analysis 

 The data consists of recorded voltages measured from time zero to 5 minutes with 

measurements taken every tenth of a second for ten replicates of seven bur types.  

Average voltages were computed for each bur per second.  The slope of the best fit lines 

for each bur replicate was computed for 4 time intervals.  The slope of the line was used 

for comparison between and within test variables and can be interpreted as the steeper the 

slope then the greater the cutting efficiency.  Time was divided into periods: Period 0 (0-

2 seconds), Period 1 (2-100 seconds), Period 2 (100-200 seconds), and Period 3 (200-300 

seconds).   Period 0 reflects a two second lapse before cutting to verify a true start 

position with the LVDT, thus will not be included in analysis.  The depth of cut for each 

bur was used as a confounder. 

 The slopes of the lines were compared using a mixed-effects ANOVA to define 

the variables’ effect on cutting efficiency.  The variables showing significance were 

further evaluated using a post-hoc Tukey-Kramer Honestly Significant Difference (Tukey-

Kramer HSD) or Fisher Least Significant Difference (LSD) to assess differences between 

pairs of means.  The statistic software used to evaluate the data was JMP® Pro Version 

12 (Cary, NC).  
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Chapter IV 

RESULTS 

 Averaged distance each bur traveled can be seen in Figure 3 as a function of time 

depicting the overall trends in the cutting efficiency.  Mean distance cut by each bur over 

5 minutes can be seen in Figure 4.  Statistically significant effects on cutting efficiency 

were seen among the seven diamond burs, the periods, and depths in cutting the 3Y-TZP.   

When evaluating the interaction between the effects of burs and periods on cutting 

efficiency, no significant difference was found (Table 2).   

 

 
Figure 3.  Cutting efficiency of test burs over 5 minutes (JMP/Pro Ver12, SAS 
Inst. Inc., Cary, NC). 
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Figure 4. Mean distance cut of each bur group after 5 minutes (JMP/Pro  
Ver12, SAS Inst. Inc., Cary, NC). 

 
 
 
 

 
Table 2.  Mixed Effects ANOVA.  
Variables DF DFDen F Ratio Prob > F 

Bur 6 62 4.8157 0.0004a 
Period 2 126 89.4878 <.0001 a 
Period*Bur 12 126 0.8813 0.5676 

a Represents significant differences at the P <0.05 interval (JMP/Pro  
Ver12, SAS Inst. Inc., Cary, NC). 
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 To define the significance between the seven diamond burs, a Tukey-Kramer HSD 

was completed (Table 3).  In descending order bur types G (2979/super coarse/181µm), E 

(6881/coarse/151 µm), F (881/medium/107 µm), A (KS2 /super coarse/150µm) and D (4 

ZR) were significantly more efficient in cutting the 3Y-TZP in 5 minutes compared to 

bur types C (BRKS2/coarse/125µm) and B (8881/fine/30µm). 

 

Table 3. Tukey-Kramer HSD defining significance between  
burs. 
Bur    Least Sq Mean Rate  

(mm/sec)  
G A   0.0118 
E A B  0.0112 
F A B  0.0109 
A A B C 0.0102 
D A B C 0.0078 
C  B C 0.0069 
B   C 0.0062 

Burs not connected by the same letter showed significant  
differences (JMP/Pro Ver12, SAS Inst. Inc., Cary, NC). 

 

Significant differences were found between time periods.  A Tukey-Kramer HSD 

further defined the significance.  All burs were significantly more efficient in cutting 3Y-

TZP in Period 1 compared to Periods 2 and 3 (Table 4). 

 
  Table 4.  Tukey-Kramer HSD defining significance  
  between periods. 

Period   Least Sq Mean Rate 
(mm/sec) 

1 A  0.0116 
2  B 0.0082 
3  B 0.0081 

  Periods not connected by the same letter show significant  
  differences (JMP/Pro Ver12, SAS Inst. Inc., Cary, NC). 
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The depth of cut for each bur was used as a confounder and a Tukey-Kramer HSD 

was completed to evaluate the differences between bur types.  No significant difference 

was found between bur types when averaging the depths for each bur type. 

Comparison of burs and periods simultaneously did not result in significant 

differences; meaning no significant difference was found when comparing bur-to-bur 

change between periods (Figure 5). 

 

 
Figure 5.  Cutting efficiency average for bur groups in each Period (JMP/Pro Ver12, 
SAS Inst. Inc., Cary, NC). 
 
 
 The averaged distance for each bur in Period 1 can be seen in Figure 6.  A oneway 

ANOVA was used to evaluate the significance which was found in Period 1 as it relates 

to cutting efficiency (Figure 7). Significant differences between burs were found at a 

p=0.0162 (Figure 7).  The post-hoc Fisher LSD, as seen in Table 5, defined the 

significance.  The four burs displaying a significantly greater cutting efficiency in Period 

1 in descending order were G (2979/super coarse/181µm), F (881/medium/107 µm), E 

(6881/coarse/151 µm), and A (KS2 /super coarse/150µm). 
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       Figure 6. Cutting efficiency of test burs in Period 1(JMP/Pro Ver12, SAS Inst.  
       Inc., Cary, NC). 
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Figure 7.  Oneway ANOVA depicting cutting efficiency in Period 1(JMP/Pro  
Ver12, SAS Inst. Inc., Cary, NC). 
 
 
 
 

 
Table 5. Fisher LSD defining differences between burs in  
Period 1. 
Bur    Mean Rate (mm/sec) 

G A   0.0144 

F A B  0.0134 

E A B  0.0132 

A A B  0.0124 

B  B C 0.0097 

C  B C 0.0095 

D   C 0.0083 

Burs not connected by the same letter show significant  
differences (JMP/Pro Ver12, SAS Inst. Inc., Cary, NC). 
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Chapter V  

DISCUSSION  

The present study investigated the cutting efficiency of diamond burs on sintered 

3Y-TZP.  Based on the results the null hypothesis that bur type will not affect cutting 

efficiency was rejected.  However, the null hypothesis that the type of bur would not 

affect the time at which bur cutting efficiency declined during the five-minute 

observation was accepted.  All burs had a decline after the first 100 seconds, but the bur-

to-bur decline comparison was not significantly different. 

The top two performers with regards to cutting efficiency over 5 minutes were the 

2979 (bur G) and 6881 (bur E), which also have the largest reported diamond grit size of 

the burs sampled as 181µm and 151µm respectively.  However, when evaluating the 

degree of efficiency of each bur to cut 3Y-TZP with regards to manufacturer reported grit 

size, inconsistencies were noticed in the data.  In descending order burs G (2979/super 

coarse/181µm), E (6881/coarse/151µm), F (881/medium/107µm), A (KS2 /super 

coarse/150µm) and D (4 ZR) were found to have significantly greater cutting efficiency 

in comparison to burs C (BRKS2/coarse/125µm) and B (8881/fine/30µm).   An 

interesting finding is bur F (881) is reported to be medium grit with diamond particles of 

107µm and C (BRKS2) is a coarse grit diamond with particle size of 125µm.  If particle 

size alone was the determining factor for cutting efficiency bur H should not have 

outperformed bur C.  One possible cause for the discrepancy is the design of bur C.  The 

manufacturer promotes this bur to cut enamel more efficiently by incorporating free 

space between the diamond particles to reduce bur clogging with debris63.  Problems may 

arise when cutting harder surfaces such as 3Y-TZP.  The determining factor for cutting 

efficiency may be more dependent on diamond surface area available to contact the 

substrate rather than space for debris to escape. 

When evaluating the decline of cutting efficiency over time, no significant 

difference was noted in a bur-to-bur comparison.  All burs seem to decline at a similar 

rate after the first 100 seconds of use/Period 1 (Figure 5).  In addition, the performance in 
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the subsequent time periods appears to be similar and follow a linear pattern.  These 

results suggest a significant decline in bur cutting efficiency occurs after the first 100 

seconds, which then stabilizes for the remaining 5-minute observation.  In contrast, a 

study by Nakamura in 2015 reported observing a linear pattern of cutting through the first 

5 minutes when using coarse and super coarse diamonds on 3Y-TZP.  They reported a 

decline in efficiency only during the evaluation from 5 to 10 minutes of cutting.  A 

possible cause for the difference may be due to the differences in data collection.  In the 

present study the data was collected continually as a dynamic process.  The other study 

stopped at each 30-second time interval to collect measurements.  Cause of error in that 

study could be due to inconsistent data collection between and among samples in addition 

to not being able to visualize trends that may be occurring within the 30-second time 

interval.  Their data reflects a start and a stop point, leaving out all the information 

regarding the nature of the cutting in-between those data points.  Although the time when 

the burs decreased efficiency was not consistent between studies, the cause for the 

decrease may be the same.  A SEM evaluation of the diamond burs used by Nakamura et 

al. revealed damage to the diamond burs including chipping, pull out and wear of the 

diamond particles and was indicated as the cause for the decrease in cutting efficiency4.  

In an attempt to investigate the differences between the studies, future evaluations could 

expand the cutting time beyond 5 minutes to determine if and when a second significant 

difference in cutting efficiency occurs. 

The error introduced by the inability to control for bur depth seems to be evenly 

distributed among the burs.  Reporting the data as a mean for each bur reduces the 

variability and allows a summative evaluation of bur-to-bur comparison. Although 

significant differences were not found between the mean depths of each bur, Figure 2 

shows a trend toward bur D (4 ZR) used at a greater depth.  This may have caused bur D 

to be less efficient in the given results than if the depth had been more accurately 

controlled.  Based on the results in Table 3, bur D’s cutting efficiency represented a 

“middle-of-the-road” performance compared to the other burs.  Based on evaluations by 

Nakamura et al., diamond bur cutting efficiency is significantly affected by the cutting 

depth of zirconia, thus the results in the present study may underestimate bur D’s actual 
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cutting efficiency when compared to the other burs4.  The 4 ZR, “fo(u)r zirconia”, is 

marketed as a zirconium oxide crown remover by having characteristics of long 

serviceability, superior zirconia substance removal, and improved adhesion of the 

diamond grains64.  The question remains, if the depth was controlled more accurately 

would this zirconia cutting bur out performed the rest of the burs in this study? 

The results of this study show bur G, having the largest diamond particle size of 

the seven burs, to be the most efficient cutting of 3Y-TZP in both Period 1 and across all 

Periods.  These results support the work of others in relation to diamond grit size and 

cutting efficiency of 3Y-TZP.  Two other studies found larger grit diamond burs to be 

capable of greater cutting depths over time compared to smaller grit diamond burs when 

comparing particle sizes of 100µm and 200µm in one study and 187µm and 305µm in the 

other3,4.  In contrast, an article by Blue et al. failed to find a significant difference in 

diamond bur particle size and zirconia substrate removal when evaluating which bur is 

most effective when preparing 3Y-TZP implant abutments65.  The burs tested had particle 

sizes 150µm (KS2), 100µm(881) and 30µm(8881), were used in air turbine handpieces, at 

a force of 0.9N, and with a cutting time of 34 seconds65.  A possible cause for their 

conflicting results could be due to the particle size of the burs they used and the limited 

application time.  The KS2, 881 and 8881 burs were also used in the present study with 

reference names of burs A, F, and B respectively.  As seen in Table 5, this study had 

similar results of no significant difference between those burs when evaluating bur-to-bur 

comparisons within Period 1.  If they included burs with larger particle size such as bur 

G, with particle size of 181µm or the super coarse used by Nakamura et al. of 305µm the 

results of their study may have produced significant differences between burs4.  

Furthermore, they only allowed the cutting time to be 34 seconds and measured 

efficiency by material removal by change in weight.  Given the material is very difficult 

to cut and the amount of measurable material lost is minute, the validity of their results 

are strictly dependent on the accuracy of the measuring device and meticulous cleaning 

and drying the samples before each weighing.  Additionally to complicate the validity of 

their results, as described by Siegel and von Fraunhofer in 2000, cutting efficiency is 

dependent on diamond particle size and duration of use54.  Their work supports that 
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medium, coarse and super coarse diamond burs have comparable cutting rates over short 

cutting periods but when longer cutting times are used coarse and super coarse burs may 

be more efficient54.  Despite Blue et al.’s findings being inconsistent with those of the 

present study, aspects of the experimental design may be the cause for the inability to 

define significance in their results. 

An advantage of this study design compared to previous studies of cutting 

efficiency is the dynamic recording of cutting depth over time.  The utilization of the 

LVDT and Daq allowed real-time data collection as the diamond bur advanced through 

the 3Y-TZP specimens and may provide fewer inconsistencies throughout the data 

collection.  Most studies of cutting efficiency use weight or calipers to determine material 

lost or depth of cut, which requires planned stopping points to provide opportunities to 

collect data over time.  The current design allowed a more consistent data collection 

method across samples and eliminated multiple stopping points necessary, which could 

act as a source of error.  

One disadvantage of this study was not exposing the 3Y-TZP blocks to conditions 

similar to the oral environment.  Multiple authors have investigated the detrimental effect 

the oral environment can have on the transformation toughening nature of 3Y-TZP66-71.  

This is the result of low-temperature degradation (LTD) and cyclic loading which can 

decrease the fracture resistance of zirconia by causing spontaneous phase transformations 

at the surface.  In a meta-analysis of the literature, Pereira et al. evaluated LTD and the 

effect time, temperature, pressure and m-phase content have on the decrease in flexural 

strength.  They found the greatest resultant decrease in flexural strength with LTD occurs 

when the time of LTD is increased to or beyond 20 hours and the quantity of monoclinic 

phase reaches 50% or more70.  They reported it results in a decrease in the flexural 

strength of 3Y-TZP by 231N and 212N respectively70.  Kvam and Karlsson in 2013 

compared the flexural strength of 3 different zirconia materials after LTD for one week in 

hot 4% volume acetic acid and found a decrease of 100-200MPa in a load to fail 

evaluation.  Even if or when this decrease occurs, Nakamura et al. determined it still 

allowed zirconia molar crowns to have sufficient strength39.  The effect however has not 

been evaluated as it regards to cutting efficiency and removal of zirconia prosthesis and 
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could be investigated in future studies to accurately simulate changes which may occur to 

3Y-YZP in the oral environment.  

Another disadvantage of this study was the lack of surface manipulations applied 

to the 3Y-TZP.  During prosthesis fabrication and delivery it is common for the 

laboratory to sandblast the inner surface for cementing purposes and/or grinding to occur 

chair-side during the fitting of the prosthesis in the patient’s mouth.  When stress is 

applied to the surface of zirconia, phase transformations can occur.  The affect those 

transformations have on the mechanical properties depends on the amount of 

transformations that occur and the depth they extend.  Manipulations on 3Y-TZP can 

stimulate the formation of a compressive surface layer which can increase the strength of 

the zirconia18.  However, aggressive grinding can introduce deep surface flaws that 

extend beyond the compressive surface layer.   The deep flaws act as stress concentrators 

and decrease the strength18.  Kosmac and colleagues demonstrated this phenomenon 

when evaluating sandblasting and surface grinding effects on 3Y-TZP.  Sandblasting 

increased the strength of 3Y-TZP by formation of a compressive layer but surface 

grinding did not.  The authors attributed these findings to heat generation and the more 

aggressive nature of grinding, which may produce deeper flaws extending beyond the 

formed compressive layer72.  Application of sandblasting and surface grinding to test 

specimens may assist in replicating possible changes to the mechanical properties of 3Y-

TZP that occur during prosthesis fabrication and clinical delivery.  

In order to determine which bur will maximize cutting efficiency, one has to 

evaluate not only the bur(s) in question but also the technique employed and the goal to 

be accomplished.  As demonstrated by Nakamura et al., when using a super coarse 

diamond bur and doubling the force, the initial cutting efficiency can be greatly increased 

but at the expense of bur durability4.  At the end of the 5-minute test run using the higher 

force, the smaller diamond particle bur removed more material, thus demonstrating 

particle size is not the only factor when evaluating cutting efficiency.  Additionally the 

goal is an important factor in choosing diamond bur cutting instruments.  For example a 

study by Ohkuma et al. recognized not only the need to remove bulk 3Y-TZP material to 

cut off failing restorations but also for gross reductions in the laboratory during 
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fabrication3.  They evaluated two diameters of 100 µm and 200 µm diamond particle burs 

to evaluate distance cut into 3Y-TZp substrate and mass of material removed.  They 

found that the narrow diameter 200 µm bur was most efficient to cut a larger distance into 

the zirconia and the larger diameter 200 µm bur produced a greater mass reduction in the 

3Y-TZP sample3.  Based on their results removing a failing prosthesis by cutting multiple 

slots would be best executed by using a smaller diameter large particle diamond bur. 

An alternative technique to remove a non-serviceable zirconia crown has been 

proposed by multiple authors 73,74.  A case study report in a non peer-reviewed article by 

J. Cranska examined the ability to remove ceramic restorations with the application of a 

hard tissue Er:YAG dental laser.  Dr. Cranska demonstrated the removal of monolithic or 

bilayered zirconia crowns by applying laser light energy slowly over all surfaces of the 

crowns.  He reports that within two minutes he can remove the prosthesis with a dental 

instrument and the internal surface of the restorations are cement free73.  Rechmann et al. 

in 2014 conducted a laboratory proof-of-principle study to evaluate the ability to debond 

lithium disilicate and zirconia crowns without damaging the underlying tooth structure74.  

They found zirconia requires significantly more laser energy to debond than lithium 

disilicate due to zirconia transmitting 80% less Er:YAG laser energy to the cement layer.  

They also reported the average time for removal was 312 seconds, and no damage was 

noted to the underlying tooth structure.  They concluded it is possible to remove zirconia 

crowns with an Er:YAG, however additional studies evaluating the effect of the high 

level laser energy need to be conducted before advocating it for clinical use74.  However, 

even if studies are published verifying the safe use of laser energy to remove 3Y-TZP 

crowns, this technique will be limited to those practitioners who have access to such 

technology in their practice. 
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Chapter VI:  

SUMMARY 

The use of 3Y-ZTP as a dental restorative material is increasing due to its 

favorable mechanical properties.  Unfortunately dental technology has not advanced to 

the point of preventing replacement of previously placed restorations.  This study 

attempted to provide information on the best diamond bur to use for removal of a zirconia 

restoration via sectioning.  This study only provides data for one type of 3Y-TZP and 

seven burs from two manufacturers.   The data does give guidance to practitioners for 

which bur(s) are most efficient when cutting dental zirconia in attempt to limit wasted 

time and resources for the dental practitioner and the patient. 

 

CONCLUSIONS 

1) Super coarse, coarse and medium diamond particle burs are more efficient in 

cutting 3Y-TZP than fine diamond burs. 

2) Bur cutting efficiency is maximized for all burs when limiting the cutting time of 

3Y-TZP to 100 seconds with a new diamond bur.  

3) Super coarse diamond particle burs are the most efficient in cutting 3Y-TZP 

throughout the 5-minute testing time. 
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