

Graduate Theses, Dissertations, and Problem Reports

2016

Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

Alhassan Salman Yasin

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Yasin, Alhassan Salman, "Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework" (2016). *Graduate Theses, Dissertations, and Problem Reports.* 7001. https://researchrepository.wvu.edu/etd/7001

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.

Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

Alhassan Salman Yasin

Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical and Aerospace Engineering

> Terence Musho, Ph.D., Chair Konstantinos Sieros, Ph.D. Nianqiang Wu, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia April, 2016

Keywords: Metal-Organic Framework (MOF), UiO-66, Band Gap Modulation Copyright 2016 Alhassan Salman Yasin

ABSTRACT

Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

Alhassan Salman Yasin

Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF.

This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH₂), a nitro group (NO₂), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti₅Zr₁)-NH₂ resulting in 2.60eV. Theoretical findings support that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

TABLE OF CONTENTS

Chapter

1. IN	TRODUCTION
	1.1 Background of MOF 1
	1.2 Catalog of Common MOFs 3
	1.3 Catalog of Known Catalytic MOFs 4
	1.4 Photocatalytic MOFs 5
2. CO	OMPUTATIONAL AND EXPERIMENTAL DETAILS 7
	2.1 Material Design
	2.2 Computational Details
4	2.3 Experimental Details 10
	2.3.1 Experimental Synthesis
3. RI	ESULTS AND DISCUSSION
	3.1 Results and Discussion
4. CO	$ONCLUSION. \dots 23$
REFE	RENCES
Appen	dix
APPE	NDIX A
APPE	NDIX B

LIST OF FIGURES

Figure 2.1	Primitive Unit Cell and Linker Designs	8
Figure 2.2	Cumulative UV-Vis Spectrum Plot	11
Figure 2.3	Exchange UV-Vis Spectrum Plot	13
Figure 2.4	XPS Spectra Plot	14
Figure 3.1	Ternary Plots	17
Figure 3.1 Figure 3.2	Ternary Plots Density of State (DOS) Plots	17 18
Figure 3.1 Figure 3.2 Figure 3.3	Ternary PlotsDensity of State (DOS) PlotsPartial Density of State (PDOS) PlotsDensity	17 18 19
Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4	Ternary Plots Density of State (DOS) Plots Partial Density of State (PDOS) Plots Density of State (PDOS) Plots Integrated Local Density of State Plots Density of State Plots	 17 18 19 22

LIST OF TABLES

Table 2.1	Atomic Concentration Values	12
Table 3.1	Calculated and Experimental Values	16
Table A.1	MOFs as Catalyst	32
Table A.2	Common Photocatalytic MOFs	37
Table A.3	UiO-66 MOF	42
Table A.4	Replacement of Zr/BDC in UiO-66 MOF	48
Table B.1	Known Catalytic MOFs	55
Table B.2	Reference Material	58

CHAPTER 1

INTRODUCTION

1.1 Background of MOF

MOF based materials have received considerable attention and achieved fast development due to their wide applications in gas adsorption [1, 2], storage [3], separation [4, 5, 6, 7], catalysis, sensing, molecular recognition, drug delivery, and more recently the application for photocatalysis.[8, 6] While the task of synthesizing a stable MOF proves difficult, the task of designing a MOF material that embodies several optimized material characteristics proves even more daunting. The attributes of interest for this research is centered around the application of the proposed MOF materials as a photocatalyst.[8, 6, 9] More specifically, this study has narrowed the focus to the influence of the inorganic portion of the MOF design on the light absorption properties of the MOF material. This study will use a combination of experimental and first principle computational techniques to explore the continuous design space of three inorganic substitutions in a UiO-66 MOF. The design space was limited to a UiO-66(M)-R, [M=Zr, Ti, Hf; R=BDC, BDC+NO₂, BDC+NH₂] material system, which the Zr and Ti elements have been experimentally determined and the Hf was only computationally determined.

MOFs are functional inorganic-organic hybrid materials, are very interesting family of crystalline porous solids. They are constructed from inorganic metal ions and multiconnected organic bridging ligands to form infinitely uniform networked architectures in space.[10] MOFs have high surface area, tunable pore size, great chemical variation, with limited thermal stability. The objective in the development of a MOF based photocatalyst is to tailor several, often competing attributes. These attributes, which include high areal density of reaction sites, large utilization of the solar spectrum, and chemical selectivity are a few of the limiting attributes that required optimization. Compounding these multifaceted attributes with an nearly endless design space the task of optimizing a MOF structure becomes a daunting task. To aid in the design task the following study employs a computational first principle techniques in conjunction with experimental validation at key design points.

The zirconium and titanium based MOF (UiO-66(Zr) and UiO-66(Ti)) have been demonstrated previously in the literature [11, 12] in a diverse range of applications. This is attributed to higher thermo and chemical stability of the underlying framework, as well as electrically conductive compared to other types of MOFs. [6, 7, 12] These MOF's have been extensively studied for the applications of photocatalysis, hydrogen generation, gas storage, drug delivery, etc. [6] However, solar energy utilization requires thermally stable [13] and electrically conductive [14] material. Furthermore, the proposed material must utilize as much of the visible region of the electromagnetic spectrum for efficient carrier ionization. By decreasing the band gap the electrons require less energy to overcome the band gap spanning from the LUMO to the HOMO. This is because the proposed MOF material is semiconductive in nature it is hypothesized that techniques used for inorganic substitution, such as substitutional doping, should also apply to MOF materials. That being said, the mechanism for modulating the band gap is also hypothesized to be different due to the inorganic-organic bonding inherit to these MOF materials. Understanding the importance of minimizing the band gap of the structure to achieve a more desirable result is what this study will investigate to a great extent.

The open structure of the MOF results in an increased surface area for unique uniaxial bonding of organic linkers, which provides an avenue to modulate the band structure. The MOF structure chosen for this study is based on the well established UiO-66(Zr) [11]. To tailor the band gap of the structure, most research approaches have modulate and modify the ligand coordination. This is a very effective way and has attained lots of attention in recent years. The most common and effective way to tailor the band gap is where benzenedicarboxylate (BDC) is modified with an amino group (NH₂) and a nitro group (NO₂) resulting with UiO-66(Zr)-R, [R = H, NH₂, NO₂].[8, 15, 3, 4] This study will explore similar techniques, however, will focus on substitution of the inorganic ions situated at the corners in the UiO-66 MOF. The approach will be to substitute Zr ions in the host MOF with a compatible ion with a similar oxidation state. Using the guidance of previous experimental synthesis this study will also explore every variation of Zr, Ti, Hf elements in combination (substitutional doping of the structure) to explore all possible outcomes for the band gap. This study will implement the first principle density functional theory (DFT) predictions [16] that will be verified and validated with available experimental [17, 18, 19, 20] results and results synthesized for this study.

1.2 Catalog of Common MOFs

These MOFs have drawn considerable awareness because of the potential exploiting properties of both organic and inorganic components within a single material. As well as their modulating nature and synthesis conditions, these organic/inorganic molecules offer tunable properties based on shape, size, and functionality.[21, 22, 23] These common MOFs tend to have features that allow for the ability to target structures of particular typologies that tend to be appropriate in certain applications by using a molecular building block approach. This approach is a design strategy for the construction of solid materials. These material's metal ions, coordination clusters, and organic ligands are pre-designed to have very specific geometry and directionality upon coordination to assist as building blocks to target structures.[21]

The study of MOF is a field of research that has rapidly risen to in modern chemistry. This field has grown from the initial to the very influential reports toward advanced design strategies, structural appreciation, and topological analysis in which has depicted a range of interesting material properties. Thus combines together diverse scientific disciplines in conjunction with synthetic methodologies and structural analysis with the sole purpose of making new generations of MOFs. This research area has surpassed its original development in coordination and super molecular chemistry to embrace materials that deal in separational science, theory, electronics, magnetism, and catalysis.[21, 22] This is why this investigation aspires to catalog recognized work in this developing new field.

Extensive time was spent on classifying numerous research areas that depict MOFs in their investigations. This yielded over two-hundred different research publications that investigate MOFs to a great degree. This just shows how much attention MOFs have attained in the past few years due to its diverse applications. These various MOFs are classified in Appendix A of this study, which briefly depict the title of the publication, formula, and application of the researched MOFs. These publications are classified under MOF's as catalyst, common photocatalytic MOFs, and more related to this study the publications of UiO-66 MOF, and the replacement of Zr/BDC in UiO-66 MOF. These publications really assisted in understanding and figuring out the relevant data to be derived of this investigation.

The reader should note that most of these publications have been conducted within the past ten years. Although MOF based structures was proposed nearly 20 years ago [24] and experimentally demonstrated 15 years ago, only recently has there been extensive experimental exploration. The reason for the delay is due to the necessity of first developing a substantial foundation of MOF synthetic chemistry.[24] However, with significant amount of such chemistry in place, it has been possible for researchers in this area to envision a variety of strategies that can be evaluated experimentally in a quick manner. Along with diverse applications, MOFs have really gained more attention as catalytic material.

1.3 Catalog of Known Catalytic MOFs

Catalyst material (substance) are known to increase the rate of a chemical reaction. This is referred to as catalysis in which a catalyst material will contribute to the chemical reaction. These reactions happens much faster and require less activation energy. One great aspect of catalytic materials are that they do not get absorbed or consumed in the chemical reaction. Meaning that the material can continue to catalyze the reaction of the reactant, and often small amount of the catalytic material is needed.

However, only a few dozen reports of chemical catalysis by MOF crystalline have appeared to date. In Appendix B Table B.1 are the majority of known cataloged MOF catalytic material taken from the publications in Appendix A Table A.1 (MOFs as Catalyst) as well as provided from the literature.[24, 25, 26, 27] Appendix B Table B.1 also depicts descriptions of the specific catalyzed reaction and what substrate was used for the MOF Material. References to each specific catalog of known catalytic MOF is given as well as reference materials to assist with identification of each chemical formula within Appendix B Table B.2.

One of the earliest proposed applications [28] and demonstration for crystalline MOF materials are as heterogeneous catalysis. These materials are porous and robust, and therefore well suited to catalysis under extreme conditions. This porosity yields internal surface areas that are relatively large which facilitates their catalytic reactivate. The uniformity of their pore and channel sizes accounts for much of the catalytic selectivity.[24] Although these relevant features are shared with other materials, however crystalline MOFs differ in other important ways. For instance, MOFs contain organic components, and MOFs can be synthesized in much greater chemical variety.[23] In addition, to good thermal stability, some MOFs demonstrate stability to substantially above 500°C [24, 29] and many exhibit permanent microporosity. MOFs are superior in comparison to traditional catalysts because of their desirable topology and high surface area which allows for accommodation of guest molecules.

1.4 Photocatalytic MOFs

Additionally, the HOMO-LUMO gap can easily be tuned through modification of the inorganic or organic units of the molecule during its synthesis. Thus, efficient visible light harvesting can be achieved using MOFs. They consist of a microporous structure which has a surface area exceeding traditional porous materials such as zeolites and carbons.[30] Additionally, their pore volume values are associated among the highest reported for any material. This porousness is due to the presence of the strong metal ligand interactions which allow for removal of a solvent molecule without structural collapse of the framework. The influential features of MOFs such as pore size, shape, and chemical environment can be finely tuned by the selection of the metal and ligand building blocks of the MOF.

These MOFs act as a molecular filter, by which molecules can diffuse through its pores. Another means of interaction is that of guest molecule with transition states for the reactions formed within the scope of the pores. Synthesizing MOFs is usually performed by adding the molecular building blocks into solutions or through solvothermal procedures. This possibility for modifying the organic ligands and consequently the pore size and shape allows tailoring the MOF material to suit the needs of various applications. In Appendix A Table A.2 common photocatalytic MOFs are cataloged and expressed with the appropriate application for each specific MOF.

CHAPTER 2

COMPUTATIONAL AND EXPERIMENTAL DETAILS

2.1 Material Design

The material of interest (UiO-66(M)-BDC) has experimentally demonstrated excellent thermal and chemical stability for which can be implemented for various applications.[15, 12, 31] The objective of the study is to investigate how the UiO-66 structure can be modified to allow better conditions for light absorption. More specifically, the objective will be to understand how the inorganic portion can contributes to the modulation of the band gap.

The main structural modification was substitution of the inorganic ion with all possible positions in the unit cell (UiO-66(M)-BDC, M = Ti, Zr, Hf). The MOF structure has inorganic elements at the outer corners and a single length linker (UiO-66). The conventional unit cell has 456-atoms and at the body centered position is a pore; however, to reduce the computational strain, a primitive unit cell consisting of 114-atoms is used for this study (Figure 2.1). The six inorganic positions are clearly illustrated in Figure 2.1 of the primitive unit cell. Also, the functionalized groups that consisted of amino group (NH₂) and the nitro group (NO₂) design is illustrated in Figure 2.1. Part a of Figure 2.1 illustrates the original linker design, part b is the structure with the replacement of one hydrogen atom on the linkers aromatic ring with a nitro group (NO₂), and part c is the replacement of one hydrogen atom with an amino group (NH₂).

Every configuration combination of the three inorganic elements (Zr, Hf, Ti) were calculated in the six positions within the primitive unit cell. Because there are six positions for ion substitution there is a series of sub-cases that must be considered to account for all possible coordination of the substitutional species. For example, if four of the six position are filled with Zr and the remaining two are filled with Ti. The question arises which

Figure 2.1 Top figure illustrates the primitive unit cell of UiO-66(M), (M = Ti, Zr, Hf). Shows the 114-atom primitive unit cell. The six positions that were modified are depicted in the figure and in the center of the cell the linker design is clearly shown. The unit cell is made of inorganic (gray), carbon (dark blue), oxygen (red), hydrogen (white), and nitrogen (light blue). The bottom figure shows the unit cell of the three linker design. Part (a) is UiO-66(M), part (b) is UiO-66(M)-NO₂, and part (c) is UiO-66(M)-NH₂.

two positions within the unit cell should the two Ti occupy. This defines the sub-case for each configuration and for this study the two ions were simulated at every possible combination and the total energy was determined. The sub-case configuration with the lowest configuration was taken as the most favorable configuration. There is a total of 729 trials that had to be executed and analyzed just for one of the three functionalization cases. Once the data was analyzed for the BDC, only the best (lowest gap size) was functionalized for each case and that consisted of 28 trials for the BDC-NO₂ and 28 trials for BCD-NH₂. Also, each trail had various operations that had to be done in sequence to obtain proper data. The reader should note that this is a tremendous amount of computational and analytically challenging process. Typically each trial took approximately 30 hours of computational time, it is noted that 12 trails could be run at a given time due to the allocated time for this project. This is an area that needs to be developed from a statistical point of view to decrease the computational expense for larger design spaces.

2.2 Computational Details

A density functional theory (DFT) approach [16] was implemented to predict the ground state thermodynamic properties (lowest possible energy level) for each of the thermodynamic steps. To reduce the computational expense of the simulations, only a single primitive cell was simulated for each configuration. In addition, a pseudodized wave function approach was used to reduced the computational expense. The functional form of the pseudowave functions were based on Perdew-Burke-Ernzerhof (PBE) ultrasoft potentials with a cut-off wave function energy of 680 eV (50 Ry). Several other functionals such as BLYP and their hybrid counter parts were investigated but the PBE was found to be most accurate and stable for the given unit cell. The k-point mesh was sampled using a Monkhorst Pack 4x4x4 grid with a offset of 1/4, 1/4, 1/4. To account for the Van der Waals interaction a Van der Waals correction term [32, 33] was incorporated, which introduced some empiricism into the calculation. The scaling parameter (S6) were specified to be 0.75 and cut-off radius for the dispersion interaction was 200 angstroms. Both the ion and unit cell geometries were relaxed to a relative total energy less than 1×10^{-10} and overall cell pressure of less than 0.5kBar. The reader should be made aware that pure DFT predictions of band gap are often under predicted due to the over-analyticity of the functionals and exchange-correlation terms. Therefore, the band gaps reported in this study should not be used as absolutes but used to study the trends.

2.3 Experimental Details

Synthesis UiO-66(Zr) MOFs with different side functional groups H, NO₂ and NH₂ were synthesized according to previous paper [11] with a solvothermal method. Synthesis of the UiO-66(Ti-Zr)-R (R=H, NO₂, and NH₂) follows the procedure found in the literature [18]. The UiO-66(Ti-Zr)-NH₂ MOFs were synthesized via a post-exchange method according to the literature [34]. The UV-Vis absorption spectra for all materials were acquired on a Shimadzu 2550 UV-VIS spectrometer under the diffuse-reflection model using an integrating sphere. X-ray photoelectron spectroscopy (XPS) was recorded to determine the chemical status of elements on a PHI 5000 Versa Probe system. The corresponding UV-Vis spectrum for all of the samples synthesized is found in Figure 2.2 and the corresponding band gap values are found in Table 3.1.

2.3.1 Experimental Synthesis

The UiO-66(Zr) MOFs with different side functional groups H, NO₂ and NH₂ were synthesized according to previous paper with a solvothermal method [11] The UiO-66(Ti,Zr)-NH2 MOFs were synthesized via a post-exchange method according to the literature [34]. Asprepared UiO-66(Zr)-NH₂ was dispersed in toluene under N2 flow, then appropriate amount of Titanium butoxide was added to yield different Ti substitution ratios. The mixture was stirred at 100C under N₂ protection for different time intervals. The final product was collected with centrifuge and washed with toluene for multiple times, and dried under vacuum at 120C.

The four atomic concentrations for the titanium substitution are provided in Table 2.1. Notice that on the fourth trial all of the inorganic ions were substituted except one results in a Ti_5Zr_1 . The inability to fully substitute Ti on the lattice is a result of the experimental techniques and the binding energy of the final Ti ion. However, the fully substituted Ti can be synthesized based on the theoretical calculation, which predict a stable configuration.

Figure 2.2 Plot of the experimental UV-Vis spectrum for UiO-66(Zr) and UiO-66(Zr,Ti)-R (R=H, NO₂, and NH₂). The fraction of $\text{Ti}_x \text{Zr}_{x-1}$ correspond to the six ion positions available in a single primitive. Complete experimental substitution of Ti was not experimentally demonstrated (only five of the six position on the primitive cell were substituted) but theoretically calculated, this suggest that full substitution should be possible. The corresponding experimental band gap values can be found in Table 3.1.

Table 2.1 Atomic concentrations of Ti and Zr in four representative samples for the UiO- $66(\text{Ti}_x\text{Zr}_{1-x})$ -NH₂. The last two columns correspond to the number of inorganic position fill in the primitive unit cell, which had six positions. Note, the fourth trial did not reach full substitution due to experimental limitations.

Trial	Ti Concentration	Zr Concentration	Ti/Zr	η_{Zn}	η_{Ti}
1	0	-	0	6.00	0.00
2	3.37	4.01	0.84	3.26	2.74
3	8.41	2.99	2.81	1.57	4.42
4	11.63	1.95	5.96	0.86	5.14

The UV-Vis absorption spectra for all materials were acquired on a Shimadzu 2550 UV-VIS spectrometer under the diffuse-reflection model using an integrating sphere. The UV-Vis for all samples can be found in the main article and the UV-Vis for the four Ti exchange trials that correspond to Table 2.1 can be found in Figure 2.3.

After the Ti-Zr exchange, clear Ti2p peaks were detected with XPS for all samples, as shown in Figure 2.4. As demonstrated in paper [34], Ti has been successfully partially substituted Zr in UiO-66-NH₂. The substitution ratio was dependent on the Ti precursor concentration and the exchange time period.

Figure 2.3 Plot of the UV-Vis for four different Ti exchanges on the UiO-66(Zr) lattice. This plot corresponds to Table 2.1.

Figure 2.4 Plot of the XPS spectra for Ti2p after Ti-Zr exchange.

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Results and Discussion

The substitutional exchange of the inorganic ions was carried out for a single unit cell by substituting the inorganic ion for one of three ions, which include Zr, Hf, Ti. The band gaps were then predicted using DFT calculation and compared to experimental values at the end point of the design space. It has been confirmed in previous studies [15] that this particular metal-organic (UiO-66) structure exhibits semiconductor type band gaps. This is reasoned based on the moderate band gap size and the electron charge transfer behavior. Under this assumption it is accepted that this particular structure should be able to be subsitutionally doped. However, it is uncertain how the substitutional doping will manifest itself in modulation of the band structure. It has been well demonstrated that functionalization of the organic linkers provides a profound influence on the band gap by introducing mid gap states. Using the aid of DFT predictions in conjunction with validation with experimental findings the following discussion will elaborate on the exchange of the inorganic ion on the modulation of the band gap.

A summary of the band gap prediction can be found in Figure 3.1, which illustrates the band gap modulation for three inorganic ions and three functionalizations. In all three of the functionalization cases the smallest band gap was realized for a titanium inorganic ion. It is noted though comparison of the contours across each of the ternary plots of Figure 3.1 that the modulation trends are not consistent for each functionalization case (note the independent contours). The most noticeable deviation out of all three ternary is the BDC functionalization case. Here this incorporation of Zr results in slight increase of 0.2eV over the pure Hf case. This is not the case for the other two functionalization

Table 3.1 Calculated and experimentally determined band gap energies for the three MOF linker designs and three functionalizations. The DFT values in parentheses are the band gap energies ignoring a mid-gap impurity band. The experimental data was determined using UV-Vis spectrometer, see Figure 2.2. The asterisk (*) next to the experimental values denotes only partial substitution of Ti on the Zr host sites, Ti_5Zr_1 .

Design	DFT (eV)	Experimental UV-Vis (eV)
Zr-BDC	2.96(3.15)	3.76
$Zr-BDC+NO_2$	2.62(3.19)	2.93
$Zr-BDC+NH_2$	1.94(3.10)	2.75
Ti-BDC	2.67(2.80)	-
$Ti-BDC+NO_2$	2.35(2.87)	-
$Ti-BDC+NH_2$	1.62(2.77)	2.60^{*}
Hf-BDC	2.74(3.11)	-
$Hf-BDC+NO_2$	2.66(3.17)	-
$Hf-BDC+NH_2$	1.98(2.96)	-

where the fully doped Hf case results in the largest band gap. This provides an overview of the very essence of this study and this is evident that the inorganic portion of the MOF is changing the charge state of aromatic ring or light sensitive portion of the MOF structure. Fortunately, through the use of DFT modeling it is possible to ascertain information about the nature of the inorganic ion that is not readily available from a pure experimental point of view.

To better understand how the band gap energy is modulated for different configurations, the density of states (DOS) allows visual inspection of the number of states as a function of energy level. Figure 3.2 are plots of the DOS along the outer edge of each ternary plot. These surface plots of the total density of states permit the inspection of each state as different inorganic ions are substitutionally doped into the structure. Note, these are DFT predictions of the band gap energies and the band gap is typically under predicted with DFT modeling, however, the relative comparison of the band gap energy is still permitted. As can be seen in Figure 3.2, Ti proves to have the lowest overall band gap. It is evident that the Ti has a strong influence on the valance band edge and subsequently the band gap

Figure 3.1 Illustration of three ternary plots for all possible combinations of the three inorganic elements (Zr, Ti, Hf) for three functionalizations (BDC-R, $[R = H, NO_2, NH_2]$). The contour colors of each ternary plot corresponds to the predicted band gap, which was determined from the DFT predictions. The implemented Ti structures proved to have the lowest band gap for all three functionalizations. A UiO-66(Ti)-NH₂ proved to have the lowest band gap with a corresponding value of 1.61eV considering a impurity band. Experimental values were determined a the corners and are provided in Table 3.1. Note, these band gaps are known to be under predicted when compared to experimental values due to inherent approximations of DFT.

(Fermi energy across all configurations has been aligned in Figure 3.2). One aspect that is noted when comparing across the three functionalization is the mid-gap states, which are a result of the functionalization. It is noted that the NH_2 results in a significant mid-gap state. More interesting, for the NO_2 functionalized case there is a mid-gap state introduced near the valance band edge, which is shifted in the positive energy direction for the Ti case. Again this provide some evidence that the Ti ions are influencing the charge states of the aromatic carbon, which the functionalization are bonded.

Figure 3.3 are the molecular density of states for the all of the functionalizations cases at the end points of the design space. It becomes apparent from Figure 3.3 which molecular orbitals contribute to the total band gap energy, the lines designated by total is the total density of states (as provided in Figure 3.2). Figure 3.3 permits considerable insight of the molecular orbital states that is not readily accessible from a pure experimental point of view. Figure 3.3a-c correspond to the three different functionalizations. In Figure 3.3a and the

Figure 3.2 Plot of the density of states (DOS) along outer edge of composition along the ternary plot provided in Figure 3.1. Part a is UiO-66(M), Part b is UiO-66(M)-NO₂, and Part c is UiO-66(M)-NH₂. The Fermi energy is aligned for each of the figures. The lowest band gap is associated with titanium inorganic ion, UiO-66(Ti)-R. The inorganic ion significantly modulates the HOMO, which is associated with the p-orbitals of the aromatic carbon atoms.

Figure 3.3 Plot of the partial density of states (PDOS) of the molecular orbitals for the three MOF designs. Part a is UiO-66(M), part b is UiO-66(M)-NO₂, and part c is UiO-66(M)-NH₂. The Ti ion modifies the C-O pi-pi bond state, which results in modulation of the HOMO C and O states.

Ti case, the HOMO level is attributed to the Ti ion (inorganic) orbitals. There is also a noticeable modification of the oxygen and carbon states, in the case of Ti. This behavior confirms that the Ti is modifying the oxygen and aromatic carbon states and ultimately the band gap. However, based on the total density of states, it is the HOMO that is undergoing the most modulation as a result of the inorganic substitution. In Figure 3.3a for the Ti case there is a considerable modulation of the HOMO oxygen and carbon states. This is apparent in all three functionalization cases, Figure 3.3a-c.

The inorganic ion (Ti, Hf, Zr) within the structure is bound by an oxygen and then to the aromatic carbon, as seen in Figure 2.1. The binding of the titanium with oxygen is a more complicated interaction when compared to Hf and Zr because of the hybridization bonding of Ti with oxygen. The binding with Ti-O is greater than the binding between Hf-O and Zr-O as illustrated in Figure 3.4 with decreased bond length. This is to be expected as a result of lower atomic number of Ti. However, this increased binding leads to a change in the state nearest the HOMO level as shown in Figure 3.3. The sp³d hybrid bonding(evident from the directional bonding) of titanium with oxygen is reasoned to be the indirect influence of the photosensitive aromatic carbon resulting in modulation of the band gap. Similar bonding interactions are evident in simple inorganic configuration of titanium oxides. However, in this case the Ti-O, bonds acts to influence a neighboring binding of the organic linker. More specifically, the Ti-O cluster act like the sp2 pi-pi binding of aromatic carbon and can be visually confirmed through inspection of the local density of states (Figure 3.4). The pi-pi electron clouds are slightly distorted by the Ti-O cluster, confirming a change in the charge state of the photosensitive aromatic carbon. This similar influence is also induced by the functional groups that bond with the pi orbitals of the aromatic ring, which also induce a band gap modulation. Similar agreement can be found in the literature [35]. Interestingly, the functional induced band modulation depends on the nature of the functional group and the type of functional group and not on the number of functional groups on the linker. The linker's pi orbitals contribute to the top levels of the HOMO, however, functional groups seem to have no effect to the LUMO [35].

The functionalized cases play a critical role in contributing to the band gap modulation. In the UiO-66(Zr)-BDC structure, upon Ti substitution and subsequent functionalization there is further modulation of the band gap. A visual confirmation of the change in local density for the three inorganic substitutions are depicted in Figure 3.4 for the amino functionalization. This density plots corresponds to the grayed region of the partial density of states plot, Figure 3.3c. At first glance the density distribution for the three structures look similar, however, after close inspection of the inorganic ions, it is apparent that Ti has an influence on the HOMO level. As shown in Figure 3.4 the ion distance between the inorganic ion and the oxygen results in an in-direct influence to the photosensitive aromatic carbon. The Zr has the larger distance followed by Hf and Ti, which is a similar trend to the band gap with Ti having the lowest.

A summary of the predicted DFT and the experimental band gap values are provided in Table 3.1. The predicted band gaps in this study are corroborable with other studies[8, 7, 9, 15] and the experimental values conducted in this study. The lowest band gap was UiO-66(Ti)-NH₂. This is a results of both a mid gap state as a results of the functionalization and modulation of the HOMO level as a results of the Ti-O-C interaction. While, the full exchange of Ti within UiO-66(Zr) was not feasible experimentally there is reason to belive a fully exchanged UiO-66(Ti) should be able to be synthesized based on stability of structure from a theoretical point of view. However, the post-exchange method demonstrated in this study demonstrates the possibility to apply this method to other stable MOF design to further modulate their optical properties.

Figure 3.4 Plot of the integrated local density of state for UiO-66(M)-NH₂ [M=Hf,Zr,Ti]. Top figure a illustrates Zr unit cell, b illustrates Ti unit cell, and c illustrates Hf unit cell. These figures shown correspond to the grayed region in Figure 3.3c. The Ti substitution is associated with decreased bond length between Ti-O and associated decrease in the band gap.

CHAPTER 4

CONCLUSION

This thesis catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of a UiO-66(M) [M = Ti, Zr, Hf] MOF structure with three linker designs of BDC, BDC-NO₂, and BDC-NH₂. There appeared trends in the catalog of certain MOF materials for certain applications. For instance, cataloged UiO-66 and MIL structured MOFs appeared more commonly in catalyst and photocatalytic applications due to their high porosity. The in-depth study of MOF structure was analyzed from a computational and experimental perspective, DFT calculations confirmed a reduction of band gap with increased exchange of inorganic Zr ion with a Ti. The resulting band gap size, which was smallest for the fully substituted Ti-BDC-NH₂ functionalized yielding a band gap of 1.62(2.77) eV. The decrease in band gap was reasoned to be a result of the increased deformation of Ti-O bonding resulting in a modulation of the aromatic carbon O-C binding and ultimately a modulation of the band gap. The amino functionalization proved to introduce a mid gap state the band that further reduced the band gap. While experimental synthesis only resulted in partial exchange of Zr and Ti (approximate experimental structure $UiO-66(Ti_5Zr_1)-NH_2$ the theoretical results suggest that full substitution should result in a stable structure. Furthermore, the experimental ion exchange method employed in this study has potential in other MOF structures for further band gap modulation through inorganic ion exchange.

BIBLIOGRAPHY

- [1] Wu Hui, Chua Yong Shen, Krungleviciute Vaiva, Tyagi Madhusudan, Chen Ping, Yildirim Taner, and Zhou Wei. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework uio-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 135(28):10525–10532, 2013.
- [2] Yang Qingyuan, Wiersum Andrew D., Llewellyn Philip L., Guillerm Vincent, Serre Christian, and Maurin Guillaume. Functionalizing porous zirconium terephthalate uio-66(zr) for natural gas upgrading: a computational exploration. *Chem. Commun.*, 47:9603–9605, 2011.
- [3] Chi-Kai Lin, Dan Zhao, Wen-Yang Gao, Zhenzhen Yang, Jingyun Ye, Tao Xu, Qingfeng Ge, Shengqian Ma, and Di-Jia Liu. Tunability of band gaps in metal-organic frameworks. *Inorganic Chemistry*, 51(16):9039–9044, 2012.
- [4] Pieremanuele Canepa, Nour Nijem, Yves J. Chabal, and T. Thonhauser. Diffusion of small molecules in metal organic framework materials. *Phys. Rev. Lett.*, 110:026102, Jan 2013.
- [5] Kui Tan, Pieremanuele Canepa, Qihan Gong, Jian Liu, Daniel H. Johnson, Allison Dyevoich, Praveen K. Thallapally, Timo Thonhauser, Jing Li, and Yves J. Chabal. Mechanism of preferential adsorption of so2 into two microporous paddle wheel frameworks m(bdc)(ted)0.5. *Chemistry of Materials*, 25(23):4653–4662, 2013.
- [6] Lijuan Shen, Ruowen Liang, Mingbu Luo, Fenfen Jing, and Ling Wu. Electronic effects of ligand substitution on metal-organic framework photocatalysts: the case study of uio-66. *Phys. Chem. Chem. Phys.*, 17:117–121, 2015.
- [7] Sibo Wang and Xinchen Wang. Multifunctional metalorganic frameworks for photocatalysis. Small, 11(26):3097–3112, 2015.

- [8] Li-Ming Yang, Eric Ganz, Stian Svelle, and Mats Tilset. Computational exploration of newly synthesized zirconium metal-organic frameworks uio-66, -67, -68 and analogues. J. Mater. Chem. C, 2:7111-7125, 2014.
- [9] Yeob Lee, Sangjun Kim, Jeung Ku Kang, and Seth M. Cohen. Photocatalytic co2 reduction by a mixed metal (zr/ti), mixed ligand metal-organic framework under visible light irradiation. *Chem. Commun.*, 51:5735–5738, 2015.
- [10] Zhou Sha, Jiulong Sun, Hardy Sze On Chan, Stephan Jaenicke, and Jishan Wu. Bismuth tungstate incorporated zirconium metal-organic framework composite with enhanced visible-light photocatalytic performance. RSC Adv., 4:64977–64984, 2014.
- [11] Terence Musho, Jiangtian Li, and Nianqiang Wu. Band gap modulation of functionalized metal-organic frameworks. *Phys. Chem. Chem. Phys.*, 16:23646–23653, 2014.
- [12] Christopher H. Hendon, Davide Tiana, Marc Fontecave, Clment Sanchez, Loc Darras, Capucine Sassoye, Laurence Rozes, Caroline Mellot-Draznieks, and Aron Walsh. Engineering the optical response of the titanium-mil-125 metalorganic framework through ligand functionalization. Journal of the American Chemical Society, 135(30):10942– 10945, 2013.
- [13] Li Hailian, Eddaoudi Mohamed, M. O'Keeffe, and O. M. Yaghi. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. *Nature*, 402(6759):279, 1999.
- [14] Christopher H. Hendon, Davide Tiana, and Aron Walsh. Conductive metal-organic frameworks and networks: fact or fantasy? *Phys. Chem. Chem. Phys.*, 14:13120–13132, 2012.
- [15] Terence Musho and Nianqiang Wu. Ab initio calculation of electronic charge mobility in metal-organic frameworks. *Phys. Chem. Chem. Phys.*, 17:26160–26165, 2015.

- [16] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M Wentzcovitch. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39):395502, 2009.
- [17] Jin-Liang Wang, Cheng Wang, and Wenbin Lin. Metal-organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2(12):2630–2640, 2012.
- [18] Maxim A. Nasalevich, Maarten G. Goesten, Tom J. Savenije, Freek Kapteijn, and Jorge Gascon. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. *Chem. Commun.*, 49:10575–10577, 2013.
- [19] Yang Peng, Vaiva Krungleviciute, Ibrahim Eryazici, Joseph T. Hupp, Omar K. Farha, and Taner Yildirim. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. *Journal of the American Chemical Society*, 135(32):11887–11894, 2013.
- [20] Qingyuan Yang and Chongli Zhong. Understanding hydrogen adsorption in metalorganic frameworks with open metal sites: a computational study. *The Journal of Physical Chemistry B*, 110(2):655–658, 2006.
- [21] Mohamed Eddaoudi, David B. Moler, Hailian Li, Banglin Chen, Theresa M. Reineke, Michael O'Keeffe, , and Omar M. Yaghi. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metalorganic carboxylate frameworks. Accounts of Chemical Research, 34(4):319–330, 2001.

- [22] Andrew R. Millward, and Omar M. Yaghi. Metalorganic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. *Journal of the American Chemical Society*, 127(51):17998–17999, 2005.
- [23] Stuart L. James. Metal-organic frameworks. Chem. Soc. Rev., 32:276–288, 2003.
- [24] JeongYong Lee, Omar K. Farha, John Roberts, Karl A. Scheidt, SonBinh T. Nguyen, and Joseph T. Hupp. Metal-organic framework materials as catalysts. *Chem. Soc. Rev.*, 38:1450–1459, 2009.
- [25] Ugo Ravon, Marcelo E. Domine, Cyril Gaudillere, Arnold Desmartin-Chomel, and David Farrusseng. Mofs as acid catalysts with shape selectivity properties. New J. Chem., 32:937–940, 2008.
- [26] Michael J. Ingleson, Jorge Perez Barrio, John Bacsa, Calum Dickinson, Hyunsoo Park, and Matthew J. Rosseinsky. Generation of a solid bronsted acid site in a chiral framework. *Chem. Commun.*, pages 1287–1289, 2008.
- [27] Franesc X. Llabrs i Xamena, Alberto Abad, Avelino Corma, and Hermenegildo Garcia.
 {MOFs} as catalysts: Activity, reusability and shape-selectivity of a pd-containing
 {MOF}. Journal of Catalysis, 250(2):294 298, 2007.
- [28] Makoto Fujita, Yoon Jung Kwon, Satoru Washizu, and Katsuyuki Ogura. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(ii) and 4,4'-bipyridine. Journal of the American Chemical Society, 116(3):1151–1152, 1994.
- [29] So-Hye Cho, Baoqing Ma, SonBinh T. Nguyen, Joseph T. Hupp, and Thomas E. Albrecht-Schmitt. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. *Chem. Commun.*, pages 2563–2565, 2006.

- [30] Bo Xiao, Hongwei Hou, and Yaoting Fan. Catalytic applications of cuii-containing {MOFs} based on n-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol. Journal of Organometallic Chemistry, 692(10):2014 – 2020, 2007.
- [31] Loredana Valenzano, Bartolomeo Civalleri, Sachin Chavan, Silvia Bordiga, Merete H. Nilsen, S. Jakobsen, Karl Petter Lillerud, and Carlo Lamberti. Disclosing the complex structure of uio-66 metal organic framework: A synergic combination of experiment and theory. *Chemistry of Materials*, 23(7):1700–1718, 2011.
- [32] Stefan Grimme. Semiempirical gga-type density functional constructed with a longrange dispersion correction. Journal of Computational Chemistry, 27(15):1787–1799, 2006.
- [33] Vincenzo Barone, Maurizio Casarin, Daniel Forrer, Michele Pavone, Mauro Sambi, and Andrea Vittadini. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. *Journal of Computational Chemistry*, 30(6):934–939, 2009.
- [34] Aoning Wang, Yingjie Zhou, Zhoulu Wang, Miao Chen, Luyi Sun, and Xiang Liu. Titanium incorporated with uio-66(zr)-type metal-organic framework (mof) for photocatalytic application. RSC Adv., 6:3671–3679, 2016.
- [35] Kevin Hendrickx, Danny E. P. Vanpoucke, Karen Leus, Kurt Lejaeghere, Andy Van Yperen-De Deyne, Veronique Van Speybroeck, Pascal Van Der Voort, and Karen Hemelsoet. Understanding intrinsic light absorption properties of uio-66 frameworks: A combined theoretical and experimental study. *Inorganic Chemistry*, 54(22):10701–10710, 2015.
- [36] Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita, and Susumu Kitagawa. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective

sorption and catalysis. Journal of the American Chemical Society, 129(9):2607–2614, 2007.

- [37] Chuan-De Wu, Aiguo Hu, Lin Zhang, and Wenbin Lin. A homochiral porous metalorganic framework for highly enantioselective heterogeneous asymmetric catalysis. *Journal* of the American Chemical Society, 127(25):8940–8941, 2005.
- [38] Ying Lu, Markus Tonigold, Bjrn Bredenktter, Dirk Volkmer, Julia Hitzbleck, and Gerhard Langstein. A cobalt(ii)-containing metal-organic framework showing catalytic activity in oxidation reactions. Zeitschrift fr anorganische und allgemeine Chemie, 634(12-13):2411–2417, 2008.
- [39] YoungKyu Hwang, Do-Young Hong, Jong-San Chang, SungHwa Jhung, You-Kyong Seo, Jinheung Kim, Alexandre Vimont, Marco Daturi, Christian Serre, and Grard Frey. Amine grafting on coordinatively unsaturated metal centers of mofs: Consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 47(22):4144–4148, 2008.
- [40] N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Yu.A. Chesalov, D.N. Dybtsev, V.P. Fedin, and O.A. Kholdeeva. Heterogeneous selective oxidation catalysts based on coordination polymer mil-101 and transition metal-substituted polyoxometalates. *Journal of Catalysis*, 257(2):315 – 323, 2008.
- [41] F.X. Llabrs i Xamena, O. Casanova, R. Galiasso Tailleur, H. Garcia, and A. Corma. Metal organic frameworks (mofs) as catalysts: A combination of cu2+ and co2+ {MOFs} as an efficient catalyst for tetralin oxidation. *Journal of Catalysis*, 255(2):220 - 227, 2008.
- [42] Dongmei Jiang, Tamas Mallat, Frank Krumeich, and Alfons Baiker. Copper-based metal-organic framework for the facile ring-opening of epoxides. *Journal of Catalysis*, 257(2):390 – 395, 2008.

- [43] Avijit Pramanik, Srinivas Abbina, and Gopal Das. Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives. *Polyhedron*, 26(18):5225 – 5234, 2007.
- [44] Luc Alaerts, Etienne Sguin, Hilde Poelman, Frdric Thibault-Starzyk, Pierre A. Jacobs, and Dirk E. De Vos. Probing the lewis acidity and catalytic activity of the metalorganic framework [cu3(btc)2] (btc=benzene-1,3,5-tricarboxylate). Chemistry A European Journal, 12(28):7353-7363, 2006.
- [45] Salvatore De Rosa, Girolamo Giordano, Teresa Granato, Andrea Katovic, Alessio Siciliano, and Francesco Tripicchio. Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst. Journal of Agricultural and Food Chemistry, 53(21):8306–8309, 2005.
- [46] Klaus Schlichte, Tobias Kratzke, and Stefan Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound cu3(btc)2. *Microporous and Mesoporous Materials*, 73(12):81 – 88, 2004. Metal-Organic Open Frameworks.
- [47] F. Gndara, B. Gomez-Lor, E. Gutirrez-Puebla, M. Iglesias, M. A. Monge, D. M. Proserpio, and N. Snejko. An indium layered mof as recyclable lewis acid catalyst. *Chemistry* of Materials, 20(1):72–76, 2008.
- [48] B. Gomez-Lor, E. Gutirrez-Puebla, M. Iglesias, M. A. Monge, C. Ruiz-Valero, and N. Snejko. In2(oh)3(bdc)1.5 (bdc = 1,4-benzendicarboxylate): an in(iii) supramolecular 3d framework with catalytic activity. *Inorganic Chemistry*, 41(9):2429–2432, 2002.
- [49] Mohamed H. Alkordi, Yunling Liu, Randy W. Larsen, Jarrod F. Eubank, and Mohamed Eddaoudi. Zeolite-like metalorganic frameworks as platforms for applications: On metalloporphyrin-based catalysts. *Journal of the American Chemical Society*, 130(38):12639–12641, 2008.

- [50] Felipe Gndara, Alberto Garca-Corts, Concepcin Cascales, Berta Gmez-Lor, Enrique Gutirrez-Puebla, Marta Iglesias, Angeles Monge, and Natalia Snejko. Rare earth arenedisulfonate metalorganic frameworks: an approach toward polyhedral diversity and variety of functional compounds. *Inorganic Chemistry*, 46(9):3475–3484, 2007.
- [51] Kenneth S. Suslick, P. Bhyrappa, J.-H. Chou, Margaret E. Kosal, Shirley Nakagaki, Dennis W. Smithenry, and Scott R. Wilson. Microporous porphyrin solids. Accounts of Chemical Research, 38(4):283–291, 2005.
- [52] Satoshi Horike, Mircea Dinc, Kentaro Tamaki, and Jeffrey R. Long. Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed mn2+ coordination sites. *Journal of the American Chemical Society*, 130(18):5854–5855, 2008.
- [53] Ru-Qiang Zou, Hiroaki Sakurai, and Qiang Xu. Preparation, adsorption properties, and catalytic activity of 3d porous metalorganic frameworks composed of cubic building blocks and alkali-metal ions. Angewandte Chemie International Edition, 45(16):2542– 2546, 2006.
- [54] Jong Woo Han and Craig L. Hill. A coordination network that catalyzes o2-based oxidations. Journal of the American Chemical Society, 129(49):15094–15095, 2007.
- [55] Abraham M. Shultz, Omar K. Farha, Joseph T. Hupp, and SonBinh T. Nguyen. A catalytically active, permanently microporous mof with metalloporphyrin struts. *Journal* of the American Chemical Society, 131(12):4204–4205, 2009.
- [56] Jung Soo Seo, Dongmok Whang, Hyoyoung Lee, Sung Im Jun, Jinho Oh, Young Jin Jeon, and Kimoon Kim. A homochiral metal-organic porous material for enantioselective separation and catalysis. *Nature*, 404:982 986, 2000.

APPENDIX A

Cataloged Research of MOFs

No.	Title of Publication	MOF Formula Name	Application of MOF
1	Elucidating Molecular Iridium Water Oxida-	MOF 1 and 2	water oxidation activity,
	tion Catalysts Using Metal-Organic Frame-		catalyst
	works: A Comprehensive Structural, Cat-		
	alytic, Spectroscopic, and Kinetic Study		
2	Porous Metall organic Frameworks Con-	ZJU-18, ZJU-19, ZJU-20	Highly Efficient and Selec-
	structed from Metal $5,10,15,20$ -Tetrakis $(3,5-$		tive Catalytic Oxidation
	biscarboxylphenyl)porphyrin for Highly Effi-		of Alkylbenzenes
	cient and Selective Catalytic Oxidation of		
	Alkylbenzenes		
3	Lab-in-a-Shell: Encapsulating Metal Clusters	Pd/Silica nanoparticles	catalysis in allylic oxida-
	for Size Sieving Catalysis		tion's of substrates
4	Engineering Chiral Polyoxometalate Hybrid	Ni-PYI1 and Ni-PYI2	amphipathic catalyst to
	Metal-Organic Frameworks for Asymmetric		prompt the asymmetric
	Dihydroxylation of Olefins		dihydroxylation of aryl
			olefins
5	Isoreticular Chiral Metal-Organic Frameworks	Zn4(-4-O)(O2CR)6	highly effective catalysts
	for Asymmetric Alkene Epoxidation: Tuning		for asymmetric epoxida-
	Catalytic Activity by Controlling Framework		tion of a variety of unfunc-
	Catenation and Varying Open Channel Sizes		tionalized olefins
6	Template-Directed Synthesis of Nets Based	M(II)Cl2 (M = Fe, Co,	serve as size-selective het-
	upon Octahemioctahedral Cages That Encap-	Mn) with BTC and	erogeneous catalysts for
	sulate Catalytically Active Metalloporphyrins	TMPyP in DMF and	oxidation of olefins
		H2O	

Table A.1 MOFs as Catalyst

7	Zeolite-like Metal-Organic Frameworks	H2TMPyP4+	catalytic activity toward
	as Platforms for Applications: On		the oxidation of cyclohex-
	Metalloporphyrin-Based Catalysts		ane
8	NH2- Dianion Entrapped in a Nanoporous	[Ca24Al28O64]4+(e-	hydrogen storage and
	12CaO7Al2O3 Crystal by Ammonothermal)4 and	base-catalyzed reactions
	Treatment: Reaction Pathways, Dynamics,	[Ca24Al28O64]4+(O2-	
	and Chemical Stability)2	
9	Adsorption/catalytic properties of MIL-125	MIL-125 and NH2-MIL-	catalytic properties
	and NH2-MIL-125	125	
10	Applications of metal-organic frameworks in	MOFs	heterogeneous
	heterogeneous supramolecular catalysis		supramolecular catal-
			ysis
11	Zeolitic Imidazole Framework-67 (ZIF-67) as	ZIF-67	heterogeneous catalyst to
	a heterogeneous catalyst to activate peroxy-		activate peroxymonosul-
	monosulfate for degradation of Rhodamine B		fate for degradation of
	in water		Rhodamine B in water
12	Photocatalytic CO2 reduction by CdS pro-	Co-ZIF-9/CdS	Photocatalytic CO2 re-
	moted with a zeolitic imidazolate framework		duction
13	Determination of the electronic and structural	MOFs	Homogeneous catalysis
	configuration of coordination compounds by		
	synchrotron-radiation techniques		
14	Photocatalytic CO2 reduction in metal-	NH2-MIL-125(Ti)	Photocatalytic CO2 re-
	organic frameworks: A mini review		duction
15	Metal-organic frameworks in fuel cell tech-	(Zn4O(bdc-	photocatalysts, electro-
	nologies	NH2)3,IRMOF-3	catalysts
16	Heteroatoms ternary-doped porous carbons	NPS-C-MOF-5	electrocatalysts for oxy-
	derived from MOFs as metal-free electrocat-		gen reduction reaction
	alysts for oxygen reduction reaction		
17	Metal organic framework-mediated synthesis	(-Fe(BTC), C9H3FeO6	highly active and stable
	of highly active and stable Fischer-Tropsch		Fischer-Tropsch catalysts
	catalysts		

18	Iron-based cathode catalyst with enhanced	zeolitic-imidazolate	cathode catalyst with en-
	power density in polymer electrolyte mem-		hanced power density
	brane fuel cells		
19	Catalysis by metal-organic frameworks in wa-	MIL-101(Cr), MIL-53(Al)	Catalysis
	ter	and ZIF-8	
20	Towards acid MOFs - catalytic performance	MIL-101(Cr), HSO3-MIL-	catalytic performance of
	of sulfonic acid functionalized architectures	101(Cr)	sulfonic acid functional-
			ized architectures
21	Enhancing the hydrostability and catalytic	MOF-5 $[Zn4O(BDC)3]$	Enhancing the hydrosta-
	performance of metal-organic frameworks by		bility and catalytic perfor-
	hybridizing with attapulgite, a natural clay		mance
22	Hydrogen adsorption in Pt catalyst/MOF-5 $$	MOF-5	Hydrogen adsorption in
	materials		Pt catalyst/MOF-5 mate-
			rials
23	Multifunctional Metal-Organic Frameworks	MOF	Photocatalysis
	for Photocatalysis		
24	Lipase-Supported Metal-Organic Framework	UiO-66, MlL-53, SBA-15	Bioreactor Catalyzes War-
	Bioreactor Catalyzes Warfarin Synthesis		farin Synthesis
25	Porous crystals as active catalysts for the syn-	MOF	active catalysts
	thesis of cyclic carbonates		
26	Engineering Homochiral Metal-Organic	MOF	Heterogeneous Asymmet-
	Frameworks for Heterogeneous Asymmetric		ric Catalysis and Enan-
	Catalysis and Enantioselective Separation		tioselective Separation
27	Pt@MOF-177: Synthesis, Room-Temperature	Pt@MOF-177	Hydrogen Storage and
	Hydrogen Storage and Oxidation Catalysis		Oxidation Catalysis
28	Catalytic Transesterifications by a Zn-	Zn-BisSalen MOF	active catalyst for transes-
	BisSalen MOF Containing Open Pyridyl		terifications
	Groups Inside 1D Channels		
29	Structure and Catalytic Activity of New	Copper Cyanide and	Structure and Catalytic
	Metal-Organic Frameworks Based on Copper	Quinoline Bases MOF	Activity
	Cyanide and Quinoline Bases		

30	Poly(ethylene glycol) Stabilized Mesoporous	Cu3(BTC)2	Efficient and Durable Cat-
	Metal-Organic Framework Nanocrystals: Effi-		alysts for the Oxidation of
	cient and Durable Catalysts for the Oxidation		Benzyl Alcohol
	of Benzyl Alcohol		
31	Structure, photoluminescent properties and	[Cd(TDC)(bix)(H2O)]n	photoluminescent proper-
	photocatalytic activities of a new Cd(II)		ties and photocatalytic
	metal-organic framework.		
32	Pd-grafted porous metal-organic framework	Pd(0)/MCoS-1	catalytic
	material as an efficient and reusable hetero-		
	geneous catalyst for C-C coupling reactions in		
	water		
33	Efficient Suzuki-Miyaura coupling reaction in	Pdo-Montmorillonite	catalyzed reaction
	water: Stabilized Pdo-Montmorillonite clay		
	composites catalyzed reaction		
34	Magnetically recyclable Fe@Pd/C as a highly	Fe@Pd/C	active catalyst for Suzuki
	active catalyst for Suzuki coupling reaction in		coupling
	aqueous solution		
35	Metal-organic framework templated synthesis	Fe(2)O(3)/TiO(2)	interesting photophysical
	of Fe2O3/TiO2 nanocomposite for hydrogen		properties
	production.		
36	Metal-organic framework based upon the syn-	Metal-organic framework	high catalytic activity
	ergy of a Br-nsted acid framework and Lewis	based upon the synergy of	
	acid centers as a highly efficient heterogeneous	a Br-nsted acid framework	
	catalyst for fixed-bed reactions.	and Lewis acid centers as	
		a highly efficient hetero-	
		geneous catalyst for fixed-	
		bed reactions.	
37	Chelating agent-free, vapor-assisted crystal-	MIL-125 (Ti)	heterogeneous catalysts
	lization method to synthesize hierarchical mi-		
	croporous/mesoporous MIL-125 (Ti).		

38	Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an effi- cient heterogeneous catalyst for aerobic epoxi- dation of olefins and oxidation of benzylic and allylic alcohols.		heterogeneous catalyst
39	Highly functionalized biaryls via Suzuki- Miyaura cross-coupling catalyzed by Pd@MOFunder batch and continuous flow regimes.	Pd@MIL-101(Cr)-NH2	cross-coupling catalyzed
40	A Ni(II)-MOF: reversible guest adsorption and heterogeneous catalytic properties for silylcyanation of aromatic aldehydes.	Ni(II)-MOF	reversible guest adsorp- tion and heterogeneous catalytic properties
41	Reversible conversion of valence-tautomeric copper metal-organic frameworks depen- dent single-crystal-to-single-crystal oxida- tion/reduction: a redox-switchablecatalyst for C-H bonds activation reaction.	zeolite-like Cu	redox-switchablecatalyst for C-H bonds activation reaction
42	A bifunctional, site-isolated metal-organic framework-based tandem catalyst.	Zn(II)-based IRMOF-9- Irdcppy-NH2	andem catalyst
43	Coordinated assembly of a new 3D meso- porous Fe-O-@Cu-O-graphene oxideframe- work as a highly efficient and reusable catalyst for the synthesis of quinoxalines.	Fe-O-@Cu-O	highly efficient and reusable catalyst for the synthesis of quinoxalines
44	The synthesis, structure, topology and cat- alytic application of a novel cubane-based cop- per(ii) metal-organic framework derived from a flexible amido tripodal acid.	[Cu4(HL)2 (H2O)4(MeO)4]n	synthesis, structure, topology and catalytic application
45	A polyoxometalate-encapsulating cationic metal-organic framework as a heterogeneous- catalyst for desulfurization.	Co(BBPTZ)3] [HPMo12O40]-24-H2O	heterogeneouscatalyst for desulfurization

No.	Title of Publication	MOF Formula Name	Application of MOF
1	Doping Metal-Organic Frameworks for Water	Zr6O4(OH)4(bpdc)6,	developing highly active
	Oxidation, Carbon Dioxide Reduction, and	UiO-67	heterogeneous catalysts
	Organic Photocatalysis		for solar energy utilization
2	Light Harvesting in Microscale Metal-Organic	photoactive Ru(II)-bpy	light absorption
	Frameworks by Energy Migration and Inter-		
	facial Electron Transfer Quenching		
3	Photoactive Chiral Metal-Organic Frame-	Zn-PYI1 and Zn-PYI2	light absorption
	works for Light-Driven Asymmetric -		
	Alkylation of Aldehydes		
4	Anthropogenic Chemical Carbon Cycle for a	MOF 177 Zinc	sun-s energy with chloro-
	Sustainable Future		phyll in plants as a cat-
			alyst to recycle carbon
			dioxide and water into
			new plant life
5	Iron(III)-Based Metal-Organic Frameworks	Fe3–3-oxo clusters	visible light photocata-
	As Visible Light Photocatalysts		lysts
6	Versatile, High Quality and Scalable Continu-	UKUST-1, UiO66,	light absorption
	ous Flow Production of Metal-Organic Frame-	NOTT-400	
	works		
7	An experimental and simulation study of bi-	$\rm CO2/N2$ and $\rm CO2/CH4$	binary adsorption
	nary adsorption in metal-organic frameworks		
8	X-ray absorption spectroscopies: useful	MOF	X-ray absorption spectro-
	tools to understand metallorganic frameworks		scopies
	structure and reactivity		
9	Tunable Two-color Luminescence and Host-	stilbene-MOF,	Two-color Luminescence
	guest Energy Transfer of Fluorescent Chro-	DCM@IRMOF-8	and Host-guest Energy
	mophores Encapsulated in Metal-Organic		Transfer
	Frameworks		

Table A.2 Common Photocatalytic MOFs

10	A synthetic route to ultralight hierarchically	Al(lll)-carboxylate	ultralight hierarchically
	micro/mesoporous Al(III)-carboxylate metal-		
	organic aerogels		
11	Fluorocarbon adsorption in hierarchical	MDOBDC , MIL-100(Fe),	Fluorocarbon adsorption
	porous frameworks	MlL-101	
12	Enhanced photovoltaic performance of Cu-	CU MOF(l),	Enhanced photovoltaic
	based metal-organic frameworks sensitized so-	TiO2+MWCNT,	performance of CU MOF
	lar cell by addition of carbon nanotubes	TiO2(HBL)	
13	Metal-organic framework composites	M/MIL-	light adsorption
		101(M=Pt,Pd,PtPd)	
14	Construction of a supported Ru complex on	MOF-253, MOF-253-	photocatalytic CO2 re-
	bifunctional MOF-253 for photocatalytic CO2 $$	Ru(CO)2Cl2	duction under visible light
	reduction under visible light		
15	Cu(II)-and $Co(II)$ -containing metal-organic	Cu-MOF and Co-MOF	cyclohexene oxidation
	frameworks (MOFs) ascatalysts for cyclohex-		with oxygen under
	ene oxidation with oxygen under solvent-free		solvent-free conditions
	conditions		
16	A novel acylamide MOF showing self-	Zn(L) (tdca)1.5 DMF	nterpenetration and
	catenated hxg-d-4-Fddd nets with 3-fold in-		highly selective adsorp-
	terpenetration and highly selective adsorption		tion of CO2 over N2,
	of CO2 over N2, CH4, and CO		CH4, and CO
17	Adsorption of volatile organic compounds by	MOF-177	Adsorption of volatile or-
	metal-organic frameworks MOF-177		ganic compounds
18	Pressure swing adsorption process for the sep-	MIL-100(Fe)	adsorption process for the
	aration of nitrogen and propylene with a MOF		separation of nitrogen and
	adsorbent MIL-100(Fe)		propylene
19	Magnetic $Fe3O4@C/Cu$ and $Fe3O4@CuO$	Fe3O4@C/Cu and	photocatalytic properties
	core-shell composites constructed from MOF-	Fe3O4@CuO	under visible light
	based materials and their photocatalytic prop-		
	erties under visible light		

20	A 3D porous zinc MOF constructed from a	zinc MOF	Synthesis, structure, and
	flexible tripodal ligand: Synthesis, structure,		photoluminescence prop-
	and photoluminescence property		erty
21	Metal-Organic Frameworks with Exception-	HKUST-1, PCN-11, and	Mathane Adsorption
	ally High Methane Uptake: Where and How	PCN-14	
	is Methane Stored-		
22	Metal organic framework membranes for car-	Various MOF	CO2 adsorption
	bon dioxide separation		
23	MOF-derived ZnO and ZnO@C composites	ZnO and ZnO@C, MOF-5	photocatalytic
	with high photocatalytic activity and adsorp-		
	tion capacity		
24	New photocatalysts based on MIL-53 metal-	MIL-53	photocatalytic
	organic frameworks for the decolorization of		
	methylene blue dye		
25	MIL-53(Al) mesostructured metal-organic		Nitrogen adsorption
	frameworks		
26	Thermodynamic analysis of the breathing of	MIL-53(Al)	hermodynamic analysis
	amino-functionalized MIL-53(Al) upon CO2 $$		upon CO2 adsorption
	adsorption		
27	Structures and photocatalytic activities of	Cd(3-NO2-bdc)(bbi)	Structures and photocat-
	metal-organic frameworks derived from rigid		alytic activities
	aromatic dicarboxylate acids and flexible		
	imidazole-based linkers		
28	The ionothermal synthesis of a 3D indium	${[EMIM]2[InK(1,2,4,5-$	photoluminescence prop-
	metal-organic framework: Crystal structure,	BTC)1.5(H2O)2]n	erty and photocatalytic
	photoluminescence property and photocat-		activity
	alytic activity		
29	Synthesis, structure and photocatalytic prop-	[Cu5(H2L)2(btb)2	structure and photocat-
	erty of a novel 3D $(3,8)$ -connected metal-	(OH)2]3H2O	alytic property
	organic framework based on a flexible triphos-		
	phonate and a pentanuclear Cu(II) unit		

30	Structure, photoluminescent properties and	Cd(II)	photoluminescent proper-
	photocatalytic activities of a new Cd(II)		ties and photocatalytic ac-
	metal-organic framework		tivities
31	An Amine-Functionalized Titanium Metal-	MIL-125(Ti)	Photocatalyst with
	Organic Framework Photocatalyst with		Visible-Light-Induced Ac-
	Visible-Light-Induced Activity for CO2		tivity for CO2 Reduction
	Reduction-		
32	Fixed distance photoinduced electron transfer	Zn HKUST-1	Fixed distance photoin-
	between Fe and Zn porphyrins encapsulated		duced electron transfer
	within the Zn HKUST-1 metal organic frame-		
	work.		
33	Construction of a supported Ru complex on	MOF-253-Ru(CO)2Cl2	photocatalyticCO2 reduc-
	bifunctional MOF-253 for photocatalytic CO2 $$		tion under visible light
	reduction under visible light.		
34	Photocatalytic metal-organic framework from	CdS@ZAVCl)	Photocatalytic MOF
	CdS quantum dot incubated luminescent		
	metallic hydrogen.		
35	Incorporation of iron hydrogenase active sites	[FeFe]@ZrPF	photocatalytic hydrogen
	into a highly stable metal-organic framework		generation
	for photocatalytic hydrogen generation.		
36	Noble metals can have different effects on	M/NH2-MIL-125(Ti)	photocatalysis
	photocatalysis over metal-organic frameworks	(M=Pt and Au)	
	(MOFs): a case study on M/NH–MIL-125(Ti)		
	(M=Pt and Au).		
37	Metal-organic frameworks MIL-88A hexago-	MIL-88A	new photocatalyst for ef-
	nal microrods as a new photocatalyst for ef-		ficient decolorization of
	ficient decolorization of methylene blue dye.		methylene blue dye
38	Chemical adsorption enhanced CO2 capture	C20H14CuN4	Chemical Adsorption En-
	and photoreduction over a copper porphyrin		hanced CO2 Capture and
	based metal organic framework.		Photoreduction

39	A Zn4O-containing doubly interpenetrated	Zn4O	photocatalytic decomposi-
	porous metal-organic framework for photocat-		tion of methyl orange
	alytic decomposition of methyl orange.		
40	A Sn(IV)-porphyrin-based metal-organic	Sn(IV)-porphyrin	selective photo-
	framework for the selective photo-oxygenation		oxygenation of phenol
	of phenol and sulfides.		and sulfides.
41	Photocatalytic CO2 reduction by a mixed	(PSE) of Ti(IV) into a	Photocatalytic CO2 re-
	metal (Zr/Ti), mixed ligand metal-organic	m Zr(IV)	duction
	framework under visible light irradiation		
42	A clean and general strategy to decorate a ti-	MIL-125(Ti)	versatile photocatalytic
	tanium metal-organic framework with noble-		applications
	metal nanoparticles for versatile photocat-		
	alytic applications.		
43	A bismuth-based metal-organic framework as	Bi-mna	visible-light-driven photo-
	an efficient visible-light-driven photocatalyst.		catalyst
44	Metal-organic frameworks based on 1,3,5-	1,3,5-triazine-2,4,6-	photo luminescence and
	triazine-2,4,6-triyltrithio-triacetate: struc-	triyltrithio-triacetate	photocatalytic properties
	tures, typologies, photo luminescence and		
	photocatalytic properties.		
45	An amine-functionalized titanium metal-	NH(2)-MIL-125(Ti)	photocatalyst with
	organic framework photocatalyst with visible-		visible-light-induced ac-
	light-induced activity for CO2 reduction.		tivity for CO2 reduction

No.	Title of Publication	MOF Formula Name	Application of MOF
1	Synthesis and Stability of Tagged UiO-66 Zr-	UiO-66 Zr	catalysis
	MOFs		
2	Metal-organic framework based highly selec-	UiO-66 Zr	selective fluorescence
	tive fluorescence turn-onprobe for hydrogen		
	sulphide		
3	Structure and Dynamics of the Functionalized	UiO-66 Zr	gas purification purpose
	MOF Type UiO-66(Zr): NMR and Dielectric		
	Relaxation Spectroscopies Coupled with DFT		
	Calculations		
4	Concentration-Dependent Binding of CO2and	UiO-66 Zr	Capture of CO2 and sepa-
	CD4in UiO-66(Zr)		ration from methane
5	Improving photocatalytic hydrogen produc-	UiO-66 Zr	Improving Photocatalytic
	tion of metal-organic framework UiO-66 oc-		Hydrogen Production
	tahedrons by dye-sensitization		
6	Selective adsorption of cationic dyes by UiO-	Zr-UiO66-BDC-NH2	Selective adsorption of
	66-NH2		cationic dyes
7	Adsorption and Diffusion of Light Hydrocar-	UiO-66 Zr	Adsorption and Diffusion
	bons in UiO-66 (Zr): A Combination of Exper-		of Light Hydrocarbons
	imental and Modeling Tools		
8	Tuning the Adsorption Properties of UiO-66	UiO-66 Zr	Tuning the Adsorption
	via Ligand Functionalization		Properties
9	Reverse Shape Selectivity in the Liquid-Phase	UiO-66 Zr	Adsorption of Xylene Iso-
	Adsorption of Xylene Isomers in Zirconium		mers
	Terephthalate MOF UiO-66		
10	Catalytic behavior of metal-organic frame-	Zr-UiO66-BDC-NH2	Studie for Catalytic prop-
	works in the Knoevenagel condensation reac-		erties and aggects of basic-
	tion		ity for UiO-66-NH2

Table A.3 UiO-66 MOF

11	Hexane isomers sorption on a functionalized metal-organic framework On the development of Vacuum Swing adsorp- tion (VSA) technology for post-combustion CO2capture	UiO-66 Zr UiO-66 Zr	investigating the influence of functionalization on the separation of hexane iso- mers CO2 capture
13	Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs	UiO-66, UiO-66-NH2	acid catalyzed esterifica- tion of levulinic acid
14	Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine	UiO-66, UiO-66-NH2	Highly selective adsor- bents for removal of phosphate from water and urine
15	Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4Gas Mixture within the Porous Zirconium TerephthalateUiO-66(Zr): A Joint Experi- mental and Modeling Approach	UiO-66 Zr	modeling was employed to understand the coadsorp- tion of CO2and CH4 from both the thermodynamic and kinetic points of view
16	Functionalization ofUiO-66Metal-Organic Framework and Highly Cross-Linked Polystyrene with Cr(CO)3: In Situ For- mation, Stability, and Photoreactivity	UiO-66 Zr-Cr(CO)3	Situ Formation, Stability, and Photoreactivity
17	Stability of UiO-66 under acidic treat- ment: Opportunities and limitations for post- synthetic modifications	UiO-66	stable under acidic con- ditions but not in the presence of electrophilic cationic species
18	Synthesis and hydrogen storage studies of metal-organic framework UiO-66	UiO-66	Synthesis and hydrogen storage studies
19	Nanosize Zr-metal organic framework (UiO- 66) for hydrogen and carbon dioxide storage	UiO-66	hydrogen and carbon dioxide storage

20	Effects of linker substitution on catalytic	UiO-66	linker ligands on acid-base
	properties of porous zirconium terephthalate		and catalytic properties
	UiO-66 in acetalization of benzaldehyde with		was studied
	methanol		
21	Amino-functionalized Zr(IV) metal-organic	UiO-66-NH2	catalyst for Knoevenagel
	framework as bifunctional acid-base catalyst		condensation
	for Knoevenagel condensation		
22	Disclosing the Complex Structure of UiO-66	UiO-66	Synergic Combination of
	Metal OrganicFramework: A Synergic Com-		Experiment and Theory
	bination of Experiment and Theory		
23	Superprotonic Conductivity of a UiO-66	UiO-66(SO3H)2	conductivity exceeds that
	Framework Functionalized with Sulfonic Acid		of any proton-conducting
	Groups by Facile Postsynthetic Oxidation-		MOF reported to date
24	Studies on Photocatalytic CO2Reduction over	NH2-Uio-66(Zr)	Photocatalysis
	NH2-Uio-66(Zr) and Its Derivatives: Towards		
	a Better Understanding of Photocatalysis on		
	Metal-Organic Frameworks		
25	A Family of Metal-Organic Frameworks Ex-	Pt/UIO-66	Size-Selective Catalysis
	hibiting Size-Selective Catalysis with Encap-		
	sulated Noble-Metal Nanoparticles		
26	Development of a SO3H-Functionalized UiO-	UiO-66-NH2	Postsynthetic Modifica-
	66 Metal-Organic Framework by Postsyn-		tion and Studies of Its
	thetic Modification and Studies of Its Cat-		Catalytic Activities
	alytic Activities		
27	A General Strategy for the Synthesis of Func-	UiO-66-X $[X = H, F,$	Stability and
	tionalised UiO-66 Frameworks: Characterisa-	F2, Cl, Cl2, Br, Br2,	CO2Adsorption Prop-
	tion, Stability and CO2Adsorption Properties	I, CH3, (CH3)2, CF3,	erties
		(CF3)2, NO2, NH2, OH,	
		(OH)2, OCH3, (CO2H)2,	
		SO3H, C6H4]	

28	Water Stable Zr-Benzenedicarboxylate Metal-	UiO-66	Photocatalysts for Hydro-
	Organic Frameworks as Photocatalysts for		gen Generation
	Hydrogen Generation		
29	Photoinduced Postsynthetic Polymerization	UiO-66-NH2	Flexible Stand-Alone
	of a Metal-Organic Framework toward a Flex-		Membrane
	ible Stand-Alone Membrane-		
30	Probing the Dynamics of CO2and CH4within	UiO-66(Zr)	Neutron Scattering Mea-
	the Porous Zirconium Terephthalate UiO-		surements and Molecular
	66(Zr): A Synergic Combination of Neutron		Simulations
	Scattering Measurements and Molecular Sim-		
	ulations		
31	Deep desulfurization by oxidation using an ac-	UiO-66(Zr)	catalyst
	tive ionic liquid-supported Zr metal-organic		
	framework as catalyst		
32	Kinetics study and crystallization process de-	UiO-66-NH2	Kinetics Study and Crys-
	sign for scale-up of UiO-66-NH2synthesis		tallization Process Design
33	Phosphotungstic acid encapsulated in metal-	HPWs@UiO-66	catalyst for the selective
	organic framework UiO-66: An effective cata-		oxidation of cyclopentene
	lyst for the selective oxidation of cyclopentene		to glutaraldehyde
	to glutaraldehyde		
34	Pilot-scale synthesis of a zirconium-	UiO-66	CO2adsorption and catal-
	benzenedicarboxylate UiO-66 for		ysis
	CO2adsorption and catalysis		
35	Selective adsorption of cationic dyes by UiO-	UiO-66-NH2	Selective adsorption of
	66-NH2		cationic dyes
36	Efficient alkene epoxidation catalyzed by	UiO-66-NH2	alkene epoxidation cat-
	molybdenyl acetylacetonate supported on am-		alyzed
11			

37	Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2framework and their impact on hydrogen sorption prop- erties	UiO-66-NH3	impact on hydrogen sorp- tion properties
38	pacity of UiO-66/graphene oxide composites	010-66	ennanced CO2adsorption capacity
39	Adsorption Behavior of Rhodamine B on UiO- 66	UiO-66	Adsorption, kinetics, ther- modynamic, isotherm, re- generation study
40	Adsorption and separation of n-hexane and cy- clohexane on the UiO-66 metal-organic frame- work	UiO-66	Adsorption and separa- tion of n-hexane and cyclo- hexane
41	Exceptional Mechanical Stability of Highly Porous Zirconium Metal-Organic Framework UiO-66 and Its Important Implications	UiO-66 (Zr,Hf,Ti)	high mechanical stabilitie
42	A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs.	UiO-66	high water stability
43	Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanopar- ticles Embedded in Nanocrystalline Metal- Organic Frameworks.	UiO-66	Enhanced Catalytic Per- formance
44	Highly WaterStableZirconiumMetal-OrganicFrameworkUiO-66MembranesSupported onAluminaHollowFibers forDesalination.	UiO-66	Highly Water Stable
45	Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- andUiO-66-supported iridium complexes.	UiO-66and NU-1000	molecular catalysts

46	Impact of the Nature of the Organic Spacer	UiO-66(Zr)	crystallization kinetics
	on the Crystallization Kinetics of UiO-66(Zr)-		
	Type MOFs.		
47	Electronic effects of ligand substitution on	UiO-66-X (X = H, NH2,	photocatalytic activity in
	metal-organic framework photocatalysts: the	NO2, Br)	water treatment
	case study of UiO-66.		
48	Direct photo-hydroxylation of the Zr-based	UiO-66	photo-hydroxylation
	frameworkUiO-66.		
49	Water adsorption inUiO-66: the importance	UiO-66	Water adsorption
	of defects.		
50	Inherent anchorages inUiO-66nanoparticles	UiO-66	capture of alendronate
	for efficient capture of alendronate and its me-		and its mediated release
	diated release.		

No.	Title of Publication	MOF Formula Name	Application of MOF
1	Post-synthetic Ti Exchanged UiO-66 Metal-	UiO-66(Ti)	Gas seperation
	Organic Frameworks that Deliver Exceptional		
	Gas Permeability in Mixed Matrix Membranes		
2	Correlated defect nanoregions in a metal-	Uio-66(Hf)	storage, transport, optical
	organic framework		and mechanical responses
3	Reusable Oxidation Catalysis Using Metal-	Uio-	recyclable and reusable
	Monocatecholato Species in a Robust Metal-	66(CAT,K2CrO4,CrCAT)	oxidation catalysis
	Organic Framework		
4	Enhanced Photochemical Hydrogen Produc-	UiO-66-	Enhanced Photochemical
	tion by a Molecular Diiron Catalyst Incorpo-	[FeFe](dcbdt)(CO)6	Hydrogen Production
	rated into a Metal-Organic Framework		
5	Photoinduced Postsynthetic Polymerization	UiO-66-NH2	Enhanced Photochemical
	of a Metal-Organic Framework toward a Flex-		Production
	ible Stand-Alone Membrane		
6	The effect of pore shape on hydrocarbon se-	UiO-66(Zr), HKUST-1	Hydrocarbon selectivity
	lectivity on UiO-66(Zr), HKUST-1 and MIL-	and MIL- $125(Ti)$	
	125(Ti) metal organic frameworks: Insights		
	from molecular simulations and chromatogra-		
	phy		
7	Noble-metal-free MoS2co-catalyst decorated	MoS2/UiO-66/CdS	efficient photocatalytic
	UiO-66/CdS hybrids for efficient photocat-		H2production
	alytic H2production		
8	Adsorption Behavior of Rhodamine B on UiO-	Uio-66+Benzoic acid	Light adsorption
	66		
9	Insights on the physical adsorption of hydro-	UiO-66, UiO-67 and UiO-	adsorption of hydrogen
	gen and methane in UiO series of MOFs using	68	and methane
	molecular simulations		
10	Doping Metal-Organic Frameworks forWater	Zr-Uio-67-bpdc	developing highly active
	Oxidation, Carbon Dioxide Reduction, and		heterogeneous catalysts
	Organic Photocatalysis		for solar energy utilization

Table A.4 Replacement of Zr/BDC in UiO-66 MOF

11	A high surface area Zr(IV)-based metal-	UiO-66, UiO-67 and UiO-	Higher surface area for
	organic framework showing stepwise gas ad-	68	stepwise gas adsorption
	sorption and selective dye uptake		
12	Utilizing mixed-linker zirconium based metal-	UiO-66-X-BDC (X=H, F,	visible light photocat-
	organic frameworks to enhance the visible	Cl, Br)	alytic oxidation of alcohol
	light photocatalytic oxidation of alcohol		
13	Zirconium(IV) and hafnium(IV) coordination	Zr(Bisacac)2 and	Synthesis, structure eluci-
	polymers with a tetra-acetyl-ethane (Bisacac)	Hf(Bisacac)2	dation and gas sorption
	ligand: Synthesis, structure elucidation and		behavior
	gas sorption behavior		
14	Acid-functionalized UiO-66(Zr) MOFs and	UiO-66(Zr)-(COOH)x (x	structural features and
	their evolution after intra-framework cross-	= 1, 2)	sorption properties
	linking: structural features and sorption prop-		
	erties		
15	Enhanced visible-light photocatalytic perfor-	BiOBr/UiO-66(Zr)	Enhanced visible-light
	mance of BiOBr/UiO-66(Zr) composite for		photocatalytic perfor-
	dye degradation with the assistance of UiO-		mance
	66		
16	Bismuth tungstate incorporated zirconium	Bi2WO6/UiO-66	enhanced visible-light
	metal-organic framework composite with en-		photocatalytic perfor-
	hanced visible-light photocatalytic perfor-		mance
	mance		
17	Introduction of a mediator for enhancing	Ti-substituted NH2-Uio-	enhancing photocatalytic
	photocatalytic performanceviapost-synthetic	$66(\mathrm{Zr/Ti})$	performance
	metal exchange in metal-organic frameworks		
	(MOFs)		
18	A route to drastic increase of CO2uptake in	Ti-UiO-66	Uptake is almost doubled
	Zr metal organic framework UiO-66		
19	Au@UiO-66: a base free oxidation catalyst	Au@UiO-66	Catalyst

20	One-pot synthesis of UiO-66@SiO2shell-core	UiO-66@SiO2	high performance liquid
	microspheres as stationary phase for high per-		chromatography
	formance liquid chromatography		
21	Computational exploration of newly syn-	UiO-66, -67, -68 and ana-	high surface area and ex-
	thesized zirconium metal-organic frameworks	logues, Substituting TI	ceptional thermal stabil-
	UiO-66, -67 , -68 and analogues	and Hf for Zr	ity, are resistant to water
			and some solvents, acids,
			bases, and remain crys-
			talline at high pressure
22	Synthesis of a flower-like Zr-based metal-	UiO-66-(COOH)2	catalytic performance in
	organic framework and study of its catalytic		the Mannich reaction
	performance in the Mannich reaction		
23	Functionalization of robust $Zr(IV)$ -based	UiO-66-Fe2,CAT	reduced electrochemically
	metal-organic framework filmsviaa postsyn-		
	thetic ligand exchange		
24	Highly dispersed palladium nanoparticles sup-	Pd/Ui0-66-NH2	catalyst
	ported on amino functionalized metal-organic		
	frameworks as an efficient and reusable cata-		
	lyst for Suzuki cross-coupling reaction		
25	Postsyntheticligand exchange as a route to	Zr(IV)-based UiO-66	Ligand exchange
	functionalization of -inert- metal-organic		
	frameworks		
26	Enhanced selectivity of CO2over CH4in	UiO-66-X (X = -SO3H,1;	selectivity of CO2over
	sulphonate-, carboxylate- and iodo-	-CO2H,2; -I;3	CH4
	functionalized UiO-66 frameworks		
27	Postsynthetic modification at orthogonal reac-	UiO-66-(Br)(NH2), UiO-	provides a facile route to a
	tive sites on mixed, bifunctional metal-organic	66-(CN)(AM1)	large number of function-
	frameworks		ally diverse materials
28	Efficient molybdenum(VI) modified Zr-MOF	UiO-66-sal, UiO-66-sal-	catalysts for epoxidation
	catalysts for epoxidation of olefins	MoD	of olefins

29	Direct photo-hydroxylation of the Zr-based framework UiO-66	UiO-66-OH	Catalyst
30	Post-synthetic modification of the metal- organic framework compoundUiO-66	UiO-66-NHCOCH3	exceptional thermal sta- bility
31	Synthesis of zeolite@metal-organic framework core-shell particles as bifunctional catalysts	ZSM-5@UiO-66	cascade reactions
32	An alternative UiO-66 synthesis for HCl- sensitive nanoparticle encapsulation	$\operatorname{Zr}(\operatorname{OnPr}))$	synthesis route for pro- ducing high-quality crys- tals
33	Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs	UiO-66-Mo(CO)3, UiO- 66-Cr(CO)3	Effect of pore sizes on cat- alytic activities
34	Photocatalytic CO2reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation	mixed metal (Zr/Ti) UiO- 66	Photocatalytic CO2 re- duction
35	A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr- MOFs	UiO-66-TCPS	affecting the hydrother- mal stability
36	Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases	UiO-66(tz), UiO-66(dhtz)	optical sensor for oxidizing gases
37	Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit	UiO-67- SBU	susceptible to chemical degradation bywaterand- hydrochloric acid
38	A facile synthesis of UiO-66, UiO-67 and their derivatives	UiO-67	yields exceptional porosi- ties, and works with a range of linkers
39	Zr-based metal-organic frameworks for spe- cific and size-selective enrichment of phospho- peptides with simultaneous exclusion of pro- teins	UiO-68	specific and size-selective enrichment of phospho- peptides with simultane- ous exclusion of proteins

40	Defect-dependent colossal negative thermal	UiO-66(Hf)	strongest isotropic nega-
	work		
41	In situgrowth of CdS nanoparticles on UiO- 66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation	CdS/UiO-66	enhanced photocatalytic H2 generation under visi- ble light irradiation
42	Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic station- ary phase for fast and efficient separation	silica-UIO-66 composite	liquid chromatographic stationary phase for fast and efficient separation
43	Modulated Synthesis of Zr-Based Metal- Organic Frameworks: From Nano to Single Crystals	Zr-bdc (UiO-66), Zr- bdc-NH2(UiO-66-NH2), Zr-bpdc (UiO-67), and Zr-tpdc-NH2(UiO-68- NH2)	first single-crystal struc- tural analysis of a Zr- based MOF
44	Enhancing CO2Separation Ability of a Metal- Organic Framework by Post-Synthetic Ligand Exchange with Flexible Aliphatic Carboxy- lates	UiO-66-ADn:n=4, 6, 8, and 10	enhanced CO2uptake ca- pacity
45	Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Inser- tion of Lithiumtert-Butoxide	UiO-66-Lithium teert- Butoxide	enhancing the operation of next-generation lithium batteries
46	Titration of Zr3(–OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and Their Reaction with [AuMe(PMe3)]	UiO-67	establish the UiO-66 fam- ily as a very stable, well defined, and chemically well behaved set of mate- rials
47	Multifunctional Metal-Organic Frameworks for Photocatalysis	UiO-66-Zr6O4 (BDC,ATA)	Photocatalytic

48	Noble-metal-free MoS2co-catalyst decorated	UiO-66/CdS	efficient photocatalytic
	UiO-66/CdS hybrids for efficient photocat-		H2production
	alytic H2production		
49	Tuning the optical properties of the	UiO-66(AN)	photocatalytic degrada-
	zirconium-UiO-66 metal-organic frame-		tion of methyl orange
	work for photocatalytic degradation of		
	methyl orange		
50	A high surface area Zr(IV)-based metal-	UiO-66(eddb)	stepwise gas adsorption
	organic framework showing stepwise gas ad-		and selective dye uptake
	sorption and selective dye uptake		
51	Programming MOFs for water sorption:	UiO-66(Zr), UiO-67(Zr),	water sorption
	amino-functionalized MIL-125 and UiO-66 for	H2N-UiO-66(Zr) and	
	heat transformation and heat storage applica-	H2N-MIL-125(Ti)	
	tions.		
52	Computational exploration of newly syn-	Ti,Hf,Zr (66,67,68)	gas adsorption, storage,
	thesized zirconium metal-organic frameworks		and separation
	UiO-66, -67 , -68 and analogues		
53	Introduction of a mediator for enhancing	NH2-Uio- $66(Zr/Ti)$	enhancing photocatalytic
	photocatalytic performanceviapost-synthetic		performance
	metal exchange in metal-organic frameworks		
	(MOFs)		
54	A route to drastic increase of CO2uptake in	UiO-66(Ti)	drastic increase of
	Zr metal organic framework UiO-66		CO2uptake
55	Photocatalyticmetal-organic frameworks for	UiO-67-Ru(bpy)3	efficient and recyclable
	the aerobic oxidation of arylboronic acids.		catalytic activity for the
			aerobic oxidation
56	Defect-dependent colossal negative thermal	UiO-66(Hf)	negative thermal expan-
	expansion in UiO-66(Hf) metal-organic frame-		sion
	work.		

57	Superprotonic Conductivity of aUiO-	UiO-66(SH)2	Superprotonic Conductiv-
	66Framework Functionalized with Sulfonic		ity
	Acid Groups by Facile Postsynthetic Oxida-		
	tion.		
58	Pt@UiO-66heterostructures for highly selec-	Pt NPs@UiO-66	highly selective detection
	tive detection of hydrogen peroxide with an		of hydrogen peroxide with
	extended linear range.		an extended linear range.
59	Zr- and Hf-based nanoscale metal-organic	mixed metal (Hf/Ti) UiO-	X-ray computed tomogra-
	frameworks as contrast agents for computed	66	phy
	tomography.		
60	Synthesis and characterization of amine-	UiO-66-(ABDC/BDC)	ultraviolet-visible light
	functionalized mixed-ligand metal-organic		(UV-vis) spectroscopy
	frameworks of UiO-66 topology.		
61	A dye-sensitized Pt@UiO-66(Zr)metal-	Pt@UiO-66(Zr)	visible-
	organicframeworkfor visible-		light photocataly tichydrogen
	lightphotocatalytichydrogen production.		production

APPENDIX B

Catalog of Catalytic MOFs

${\bf Table \ B.1 \ Known \ Catalytic \ MOFs}$

MOF Material	Substrate	Reaction Catalyzed	Ref.
	Benzaldehyde and Malononitrile	Knoevenagel Con-	[36]
[Cd(4 btome)2(NO2)2]		densation	
[Cd(4-btapa)2(NO3)2]	C7H6O and C3H2N2		
	Benzaldehyde and Trimethylsilyl	Cyanosilylation of	[28]
$\left[Cd(harray) 2 \left[(NO2) 2 \right] \right]$	cyanide	Aldehyde	
[Cd(bpy)2](NO3)2)]	C7H6O and C4H9NSi		
	Acrolein and Diethylzinc	Alkylation of Alde-	[37]
		hyde	
	C3H4O and C4H10Zn		
	Cyclohexene	Oxidation of Olefin	[38]
[Co(BPB)]	C6H10		
	Benzaldehyde and Ethyl	Knoevenagel con-	[39]
	cyanoacetate;	densation;	
	Iodobenzene and Acrylic acid		
$\left[\operatorname{Cr3F}(\operatorname{H2O})2\operatorname{O}(\operatorname{bdc})3\right]$	C7H6O and C5H7NO2;	Heck coupling	
	C6H5I and C3H4O2		
	a-Pinene, caryophyllene and cy-	Oxidation of Olefin	[40]
[PW11TiO40]5-@[Cr3F(H2O)2 O(bdc)3],	clohexene		
and [PW11CoO39]5- $@[Cr3F(H2O)2O(bdc$	C10H16, C15H24 and C6H10		
)3]	Tetralin	Aerobic oxidation	[41]
[Cu(2 pume)2] and [Ce(DhIM)2]		of Olefin	
$[\bigcirc u(2\text{-pymo})2]$ and $[\bigcirc (PnIM)2]$	C10H12		
	Various Epoxides	Ring-opening of	[42]
		Epoxide	
$\left[\bigcup_{n \in \mathcal{D}} (Dpy)(n \neq 0) \neq (DF4) \neq (Dpy) \right]$			

	cis-2,3-Epoxybutane and	Methanolysis of	[26]
	methanol	Epoxide	
$[\mathrm{Cu}(\mathrm{D}\text{-}\mathrm{asp}\)\mathrm{bpe0}\ .5]$ and $[\mathrm{Cu}(\mathrm{L}\text{-}\mathrm{asp}\)\mathrm{bpe0}\ .5]$	C4H8O and CH4O		
	Linear and cyclic olefins	Epoxidation of	[43]
[Cu(L2)2(H2O)2],[Cu(L3)2(H2O)(Py)2],		Olefin	
[Cu(L3)3(H2O)Cl] and $[Co(sal)(H2O)(Py)3]$			
	2,6-Dimethylphenol	Oxidative self-	[30]
[Cu(SO4)(pbbm)] and $[(Cu(Ac)2(pbbm)]$		coupling	
))*CH3OH]	C8H10O		
	a-Pinene oxide; citronellal; ethy-	Isomerization;	[44]
	lene acetal of		
	C10H16O; C10H18O; C6H14O2	cyclization; rear-	
	of C9H9BrO	rangement	
	Olive oil and mill waste waters	Oxidation of	[45]
		polyphenol	
[Cu3(btc)2]	Benzaldehyde (or acetone) and	Cyanosilylation of	[46]
	cyanotrimethylsilane	aldehyde	
	C7H6O (or C3H6O) and		
	C4H9NSi		
	Benzaldehyde and a-	Actualization of	[47]
$[\ln(OH)(hipph)]$	methylbenzeneacetaldehyde	aldehyde	
	C7H6O and C9H10O		
	Nitrobenzene and 2-methyl-1	Reduction of ni-	[48]
	nitronaphthalene; methylphenyl	troaromatic;	
	sulfide, (2-ethylbutyl) phenyl		
$[I_{n}2(OH)2(hda)1,5]$	sulfide		
	C6H5NO2 and C6H14ClNO2;	oxidation of sulfide	
	C14H14S, C24H34S		
Mp(Porphyrin) @[In48(HImDC)06]	Cyclohexane	Oxidation of alkane	[49]
Min(1 orphyrm) @[m48(mmbC)30]	C6H12		
	Linalool	Epoxidation of	[50]
		olefin	

	C10H18O		
	Cyclic alkenes; cyclic/linear	Epoxidation of	[51]
[(Mn(TpCPP)Mn1.5)]	alkanes	olefin;	
(C3H7NO)*5C3H7NO]	CnH2n	oxidation of alkane	
	Aldehydes and cyanotrimethylsi-	Cyanosilylation of	[52]
	lane; benzaldehyde and acetal	aldehyde;	
[MII3((MII4CI)3(B11)8(CII3CII)10)]2	RC(=O)H and $C4H9NSi;$	Mukaiyama-aldol	
	C7H6O and C6H14O2		
[(Na20(Ni8L4 12)(H2O)28)(H2O)	СО	Oxidation to CO2	[53]
13(CH3OH)2]			
	Cinnamyl alcohol; aryl halides	Oxidation of	[27]
	and aryl boronic acids;	alcohol; Suzuki-	
[Pd(2-pymo)2]		Miyaura coupling;	
	C9H10O; C44H27NO2 and	hydrogenation of	
	H3BO2; C8H16, C12H22	olefin	
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2	Propanethiol	Oxidation of sulfide	[54]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4-	Propanethiol C3H8S	Oxidation of sulfide	[54]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4-	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene	Oxidation of sulfide Epoxidation of	[54] [29]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)}} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4-	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene	Oxidation of sulfide Epoxidation of olefins	[54] [29]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O	Oxidation of sulfide Epoxidation of olefins 	[54] [29]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl	Oxidation of sulfide Epoxidation of olefins Intermolecular	[54] [29] [55]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol	Oxidation of sulfide Epoxidation of olefins Intermolecular transfer of acyl	[54] [29] [55]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO	Oxidation of sulfide Epoxidation of olefins Intermolecular transfer of acyl 	[54] [29] [55]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols	Oxidation of sulfide Epoxidation of olefins Intermolecular transfer of acyl Transesterification	[54] [29] [55] [56]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)}])} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)] [Zn3(u3-O)(O2CR)6(H2O)3]n+	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols 	Oxidation of sulfideEpoxidationofolefinsIntermoleculartransfer of acylTransesterification	[54] [29] [55] [56]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)}])} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)] [Zn3(u3-O)(O2CR)6(H2O)3]n+	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols tert-Butyl chloride and toluene	Oxidation of sulfideEpoxidationofolefinsIntermoleculartransfer of acylTransesterificationFriedel-Crafts alky-	[54] [29] [55] [56] [25]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)] [Zn3(u3-O)(O2CR)6(H2O)3]n+	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols tert-Butyl chloride and toluene	Oxidation of sulfideEpoxidationofolefinsIntermoleculartransfer of acylTransesterificationFriedel-Crafts alky-lation	[54] [29] [55] [56] [25]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)}])} {(OCH2)3C-(NHCH2C6H4-4-CO2)}] [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)] [Zn3(u3-O)(O2CR)6(H2O)3]n+ [Zn4O(bdc)3] and [Zn4O(nds)3]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols tert-Butyl chloride and toluene C4H9Cl and C7H8	Oxidation of sulfideEpoxidationofolefinsIntermoleculartransfer of acylTransesterificationFriedel-Crafts alky-lation	[54] [29] [55] [25] [25]
Tb[V6O13{(OCH2)3C(NH2CH2C6H4-4-CO2)} {(OCH2)3C-(NHCH2C6H4-4-CO2)}2]4- [Zn2(bpdc)2L5] [Zn2(Py2(PhF5)2Por Zn)(TCPB)] [Zn3(u3-O)(O2CR)6(H2O)3]n+ [Zn4O(bdc)3] and [Zn4O(nds)3]	Propanethiol C3H8S 2,2-Dimethyl-2H-chromene C11H12O Acetyl imidazole and Nicotinyl alcohol C5H6N2O and C6H7NO Esters and alcohols tert-Butyl chloride and toluene C4H9Cl and C7H8 Cyclohexene	Oxidation of sulfideEpoxidation of olefinsIntermolecular transfer of acylTransesterificationFriedel-Crafts alky- lationOxidation of olefin	[54] [29] [55] [55] [25] [26]

Table B.2 Reference Material

Ac = acetyl (C2H3O)
bdc = 1,4-benzenedicarboxylate (C8H4O4)
BPB = 1,4-bis(4'-pyrazolyl)benzene (C12H10N4)
bpdc = biphenyldicarboxylate (C14H8O4)
bpe = trans-1, 2-bis(4-pyridyl)ethylene) (C6H4Cl2N2O2)
bpy = 4,4'-bipyridine (C10H8N2)
btc = 1,3,5-benzentricarboxylate (C9H3O6)
4-btapa = 1,3,5-benzene tricarboxylic acid tris[N-(4-pyridyl)amide]
BTT = Benzene-1,3,5-triyltris(2H-tetrazole) (C9H6N12)
D-asp = D-aspartate (C4H5NO4)
HImDC = 4,5-imidazole dicarboxylic acid (C5H4N2O4)
hippb = $4,4$ '-(hexafluoroisopropylidene)bis(benzoic acid) (C17H10F6O4)
L-asp= L-aspartic acid dianion (C4H5NO4)
L1 = (R)-6,6'-dichloro-2,2'-dihydroxy-1,1'-binaphthyl-4,4'-bipyridine (C4H8Cl2)-(C20H14O2)-(C10H8N2)
L2 = (4-formylphenoxy)acetic acid (C9H8O4)
L3 = 2-[2-[[(2-aminoethyl)imino]methyl]phenoxy]acetic acid (C11H14N2O3)
L4 = 4,5-imidazoledicarboxylic acid
L5 = (R,R)-(-)-1,2-cyclohexanediamino-N,N-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) MnIIIClosed (Approximately and Approximately Approxima
nds = naphthalenedisulfonic acid
pbbm = 1,1-(1,5-pentanediyl)bis(1H-benzimidazole) (C19H20N4)
PhIM = phenyl imidazolate
Porphyrin = 21H, 22H-Porphine
2-pymo = 2 -hydroxypyrimidinolate
Py2(PhF5)2Por = 5,15-dipyridyl-10,20-bis(pentafluorophenyl)porphyrin (C42H18F10N6)
sal = salicylaldimine moiety
TCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (C34H22O8)
TpCPP = tetra-(p-carboxyphenyl)porphyrin