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Chapter 1 

1 Introduction 

1.1 Motivation and Background 

According to the highlights of the world energy outlook, energy demand is projected to increase 

by 37% by 2040 (EIA, 2013). As demand continues to grow, the need for clean energy is 

increasingly becoming important. Constrained by ever tightening environmental regulations and 

demand for increased plant availability, high efficiency and profitability remains a crucial 

requirement for power plants. Therefore, operations of energy plants need to be profitable, agile 

and flexible while maintaining maximum efficiency. This necessitates advanced optimal strategy 

for operations. A crucial part of process operations is the control structure design of process plant 

i.e. the selection of the optimal controlled variables (CVs). In this research, mathematical tools are 

leveraged for solving aforementioned challenging problems associated with the optimal CV 

selection using biologically inspired techniques. In addition, this work also focuses on 

optimization and scheduling of set points of pertinent controlled variables for an energy plant. This 

is necessary as changes in disturbances necessitate changes in set points of CVs therefore periodic 

optimization must be performed in the face of stochastic predictions of disturbances to calculate 

and pass these set points to the controller (supervisory control layer). Together, these constitute a 

necessary and important part of the optimal requirements of energy plants in the near future. 

A chemical process plant is operated with an objective that is desired to be optimized. To achieve 

the optimal operation, a number of variables needs to be measured, manipulated and controlled. 

Traditionally, previous works in open literature have  based the selection of controlled variables 

on heuristics lacking a methodical approach (Fisher et al., 1985). The earliest works include that 

of (Murthy Konda et al., 2005) where an integrated framework of heuristics and simulation are 

provided as a means for plantwide control. This was an improvement on the works of (Luyben et 

al., 1997) where a nine step heuristic based method was outlined for complex processes consisting 

of various process units. (Morari et al., 1980) developed mathematical measures within the 

framework of multilevel optimization theory for decomposition and partitioning of processes for 

the purpose of control. These included studies of the effect of controlled variable selection on plant 
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operation. Other works in literature have also addressed controlled variable selection in one form 

or the other (Narraway et al., 1991, Arbel et al., 1996, Rijnsdorp, 1991, Zheng et al., 1999) 

Recently, a systematic approach to optimal CV selection by considering an economic loss function 

has been proposed (Skogestad, 2004). However, the CVs selected by considering only economic 

criterion may need to poor controllability1. To circumvent this issues, some measures of 

controllability and control performance were included in the CV selection process by Jones et al. 

(2014). Jones et al. (2014) proposed a three-stage procedure (a priori, optimization, posteriori) for 

selection of primary CVs for processes that operates with a hierarchical control structure like 

shown in Fig. 1.1. At the upper layer, a real time optimizer (RTO) that typically use a steady-state 

model, periodically (typically minutes or hours) updates the setpoint for the primary CVs, which 

in turn, updates the setpoints of the secondary CVs.  

During the a priori analysis, manipulated variables (MVs) and disturbance variables (DVs) are 

identified and a list of the candidate CVs for the primary control layer is generated, but a significant 

number of candidate variables that do not have acceptable gain for servo control and disturbance 

rejection is eliminated. The remaining CVs are further analyzed at the second stage. This is the 

most important step, where first, the process and operational constraints that are active under the 

desired design and off-design conditions are identified. These active constraints are selected as 

primary CVs. A number of additional CVs are also selected depending on the additional degrees 

of freedom. In the final stage, a posteriori analysis is performed for the CV sets selected at the 2nd 

stage. This step is necessary since a linear process model is used in the 2nd stage. Therefore, the 

economic and control performances of the CV sets from the second stage are evaluated under off-

design conditions by using a nonlinear process model.  

                                                 
1 By controllability, we mean ease of control and not necessarily being controllable as defined in classical control 

theory for linear time invariant systems. 
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Figure 1.1 Feedback policy with optimization and control layer with controlled variables 𝒄𝒔 as a 

combination of measured output variables 𝒚𝒑,𝒚𝒔. Inputs, disturbances and noise denoted as  𝒅,𝝎. 

The most time-consuming step is the second step due to the combinatorial nature of the 

optimization problem. Even after prescreening of the candidate CVs, there can be large number of 

CV sets that needs to be evaluated during the 2nd stage. This combinatorial optimization problem 

can easily explode with the increase in the number of potential CVs that can be often correlated 

with the plant size/complexity. For a small plant where one has to choose 10 CVs from 80 for 

example, the combinatorial demand is (
80
10
) = 1.6 × 1012. Typically, branch and bound (BB) 

optimization methods have been used for solving the optimization problem in the 2nd stage (Cao 

and Kariwala, 2008, Kariwala and Cao, 2009, Jones et al., 2014). More recently convex 

optimization (Yelchuru et al., 2010) has been proposed for controlled variable selection with 

constraints. However, solving the optimization problem where trillions of combinations need to 

be evaluated can be computationally prohibitive and therefore is not suitable if re-selection of the 

CV sets needs to be done often. It can be noted that re-selection of the CV sets is desired when any 

of the following things change with respect to the nominal operation- operational objective, update 
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in the list of CVs, MVs or DVs or their bounds, or the underlying process models. If one or more 

new equipment item(s) is/are added or removed or the configuration of the process units are 

changed, then not only the list of CVs, MVs or DVs or their bounds needs to be changed, but the 

underlying process model also needs to be updated. Example of one such process is the cyber-

physical processes where the cyber-component of the process can be readily modified, replaced or 

the process configuration can be readily changed. Operational objective of the newly configured 

process is likely to change as well. It can also be noted that in chemical plants, change in the 

operational objective is also common. A plant can operate to maximize profit or maximize 

production or maximize yield or minimize utility consumption, for example. Thus it is desired that 

the CV selection process be executed faster than the current state-of-the-art. For this reason, a 

number of features in biological systems would be adapted for use. 

Self-organization, distributed intelligence, adaptability, intelligent monitoring, and decision 

capabilities are some of the characteristics of the biological world that can be effectively utilized 

in the optimal control structure design of plants. An example of a distinguishing feature of 

biological systems is information sharing and cooperation. The proposition in this research is that 

the computational demand of CV selection can be reduced drastically if a process is considered as 

different sections rather than holistically. Thus the CV selection can be performed independently 

on each section and the results can be aggregated thus mimicking cooperation, divide and conquer 

found in biological systems. Additionally, another strategy presented in this work is to employ 

metaheuristic biologically inspired optimization techniques as opposed to branch and bound. It is 

proven that these two strategies would improve the computational time thus energy plants can 

afford to deploy CV selection more often than is currently realizable in the industry.  

In addition to selecting CVs, optimality of plant operations depend on CV set points as they are 

results of an optimization performed at a nominal point, thus these set points become sub-optimal 

once disturbances change from nominal operating points. Therefore this optimization must be 

periodically performed to obtain new set points as the process navigates from one operating point 

to another, this necessitates the mathematical framework of real time optimization in chapter 5. 

Consequently, this thesis presents the theoretical development and practical implementation of 

biologically inspired techniques for optimal control structure design of advanced energy plants. 

The aim of this is to improve flexibility, optimality and efficiency of advanced energy plants now 



5 

 

and in the near future. In addition to this, real time optimization in the presence of stochastic 

disturbances for the purpose of maximizing economic profit while maintaining environmental 

emission standards is presented. This portion however employs conventional rather than 

biomimetic approach for its development.  

1.2 Biomimetic Approach to Control Structure Design 

This research is part of an overall biomimetic approach to control structure and controller design 

for an advanced energy plant as shown in Fig. 1.2. A self-organizing, biomimetic control structure 

selection process dynamically adapts the controlled variables for maximizing the plant profit 

without violating constraints. The controller design process then accepts these sets of controlled 

variables and designs centralized/decentralized controllers that exploit the rule of pursuit present 

in ant colonies. To reject the modeled and unmodeled disturbances, an intelligent system monitors 

the process and adapts the control actions by infusing cognition and decision capabilities.  

 Self-Organizing, Biomimetic Control Structure Selection 

The overall scheme in Fig 1.2 is as follows: objectives and disturbances are passed into the system, 

in order to meet this objective, self-optimizing CVs must be selected. The term self-optimizing 

implies that operating the process plant while keeping the CVs constant at predetermined set points 

will result in an acceptable loss (Skogestad, 2004). Loss is defined as the difference in the objective 

function values between the optimal cases as compared with when CVs are kept at the constant 

setpoint provided by the RTO at the upper layer. This is infeasible to solve in real time or in every 

couple of minutes if all the candidate variables are considered. Here, to reduce the size of the 

problem and still achieve self-optimizing control, the function of the cortical areas of human brain 

is imitated. Thus process data is then used to establish the partitioning/decomposition of the system 

into various sections/islands. This is seen in Fig. 1.2 as regions 1 through 5 (R1-R5).  

To perform this decomposition, it is required to determine the specific pattern and intensity of 

connections in response to the stimulation. Therefore units with strong couplings and connectivity 

would be considered together during portioning and otherwise. To this end, first a process model 

referred to as the Dynamic Causal Model (DCM) is utilized to establish this connectivity strength. 

In neuroscience, the brain is considered to be a deterministic input-state-output process and an 

analogous connectivity estimation approach is used to understand the self-organization of the 
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cortical areas of the brain. The inputs in DCM are conventional stimulus functions that are 

analogous to manipulated variables in process control.  

Upon decomposition, each section/island would have its CVs established. These CVs (measurable 

and observable) are then aggregated together and passed to the supervisory control layer (beyond 

the scope of this thesis) where controller design is performed. During process operation, intelligent 

monitoring of the process is performed to establish when the process departs into abnormal 

conditions (Al-Sinbol, 2013). As the process operation moves from one operating point to another, 

or when objective function changes, it may be necessary to repeat the process for the purpose of 

reorganizing the decomposition and consequently CV selection to meet the new demands of the 

process. This selection procedure requires solution of a mixed integer nonlinear programming 

(MINLP) problem through the multi-agent optimization framework that mimics the CNS 

It should be noted however, that change in CV for a plant during operation is rather futuristic and 

philosophical for now as most plants can only afford this during start up after a period of shut 

down. When energy plants are completely automatic, this may very well be applicable. Therefore 

the utility of the propositions and methodologies developed in this work would find application in 

a near or completely autonomous plant 

 

Figure 1.2. Overview of biomimetic control approach to integrated energy plant 
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 Multi-agent Optimization Framework  

The control structure design problems for biomimetic control of power plants are expected to be 

nonconvex.  The possibility of obtaining local minima or maxima is very high in such problems.  

Some of the biomimetic optimization techniques such as genetic algorithms, ant colony 

optimization (and simulated annealing) show higher probability of obtaining global solutions.  

However, these techniques can be computationally intensive.  For each island, one MINLP 

problem (for control structure selection) and several NLP problems (one for each controller present 

in an island) need to be solved. This can result in computational intractability for large scale 

systems. For the bilaterian animals, the CNS coordinates the activities of the entire body in real-

time in an optimal manner. To achieve the similar functionalities as the CNS, a multi-agent 

optimization framework will be developed in this thesis. The multi-agent optimization framework 

provides a way of combining various algorithms in one platform and exploits the strengths that 

each one of them possesses.  Such an approach avoids the problem of getting stuck in local optima 

as well as reduces the computational burden.   In process systems engineering, agent-based systems 

are proposed for conceptual design (Chonghun et al., 1995), supply chain management (Julka et 

al., 2002, Mele et al., 2007), and controller design (Tetiker et al., 2008, Tatara et al., 2005).   

However, for multi-agent optimization of process systems engineering problems, very few articles 

have appeared and most of them are restricted to small scale problems (Siirola et al., 2003).  In 

this work, the multi-agent optimization framework was implemented for a large-scale, real-world 

problem.  The flow of data and control structure will be similar to Siirola et al (Siirola et al., 2003).   

However, the agents will be designed differently for solving large scale optimization problems. 

There will be three autonomous agents consisting of transient programs that run independently on 

various machines.  The three agents include the efficient simulated annealing agent (ESA), 

efficient genetic algorithm agent (EGA), efficient ant colony agent (EAC). Since it is expected that 

the number of agents will be more than the machines available to run them on, the central executive 

routine will schedule the agent runs based on the waiting time and probability function assigned 

to each agent depending on previous successes.  For example, GA agents can find global optimum 

with lesser computational effort than the other agents for certain classes of problems; so the central 

agent might give higher probability of success to the EGA agent for these types of problems. This 

scheduling algorithm is based on efficient sampling techniques developed by Diwekar’s group 

over the last decade (Diwekar and Ulas, 2007).  
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The agent provides search regions to the common memory space, to be explored by the optimizers 

based on previous clustering agent’s work.  The optimizing agents use different algorithms to solve 

the same problem.  These agents will be running on different machines.   However, every 

optimization agent will perform small number of iterations than typically required for reaching 

optimal solution.  This increases the frequency at which those agents can communicate and 

collaborate with the other agents in the system by requiring them to post their solutions and then 

reinitialize more frequently.  The ESA, EGA, and EAC agents are based on new efficient heuristic 

based algorithms called Efficient Simulated Annealing, Efficient Genetic Algorithm, and Efficient 

Ant Colony algorithm.  The first two algorithms (ESA and EGA) have been developed by 

considering the k-dimensional uniformity of a quasi-random number generator based on 

Hammersley Sequence Sampling (Kalagnanam and Diwekar, 1997) developed in Dr. Diwekar’s 

group.  The multi-agent optimization framework proposed above to handle both MINLP and NLP 

problems is a unique framework that is developed for the first time for control of power systems. 

1.3 Computation Tools 

MATLAB®, a computing environment developed by MathWorks®, is one of the main 

engineering software used in this project for modeling and optimization. Another major software 

used for the completion of this project is DYNSIM. The Dynsim - Matlab engine Link is an 

interface for including Matlab -based models and controllers in a DYNSIM dynamic simulation 

model using the OPC data access protocol. The engine link is capable of handling several scenarios 

including, solution unavailability, solution impossibility, and data communication loss. The link 

was developed by Schneider Electric for West Virginia University.  

1.4 Thesis Organization 

Chapter 1 presents the background and motivation. Chapter 2 focuses on the first biologically 

inspired algorithm which is a decomposition algorithm stemming from the analogy of the human 

cortical brain. In this chapter, a process plant is viewed as a coordinated system of different 

sections/islands with connectivity existing amongst them. This is done through a dynamic causal 

model (DCM). This connectivity is thought to be modelled after neuronal connections found in 

the human brain. Borrowing from the self-organization of the human brain in neuroscience, this 

task aims at developing the framework for distributed intelligence and computing for energy 
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plants. Connectivity information between different processes of the energy plant are garnered 

through probabilistic network methods. This result can be used to aggregate strongly connected 

islands together for the purpose of deploying algorithms such as the control structure design.  

Chapter 3 exploits the results of Chapter 2 for the purpose of control structure design. In particular, 

the use of a coordinated multiagent platform is discussed which employs exploitation and 

exploration to achieve faster convergence on optimization problems as opposed to conventional 

methods. The strength of coupling between various controlled variables will be evaluated by using 

the DCM so that different islands with strongly coupled controlled variables can be identified. 

Each island will form an independent sub-problem. This will be followed by a development of a 

multi-agent optimization (MAOP) for each island to select the controlled variable using the results 

from the DCM. This multi-agent system will solve a mixed integer nonlinear programming 

(MINLP) problem by mimicking the distributed intelligence of the central nervous system (CNS). 

The information obtained therein about input-state-output interrelations available from the DCM 

and the MAOP can then be passed on to control configuration design.  

In Chapter 4, the methods of chapter three are extended to a cyber physical system with virtual 

components, the biomimetic CV selection is deployed to a fuel cell gas turbine hybrid system. This 

system poses unique characteristics which render multiagent coordination attractive to employ.  

In Chapter 5, a real time optimization algorithm is proposed based on economic optimality. 

Production and carbon capture are scheduled based on stochastic predictions of future electricity 

demands and electricity prices while meeting environmental regulations. 

In Chapter 6, recommendations and future research directions are provided. 

1.5 Research Output 

The contributions of this research includes: 

1. Algorithmic development of connectivity estimation with a second order nonlinear model 

2. Decomposition and partitioning algorithm of process plants based on structural 

connectivity 

3. Partition based CV selection predicated on inferred structural connectivity 

4. Use of multiagent metaheuristic algorithms for CV selection 

5. Real time optimization of an energy plant with CO2 capture 

6. Lyapunov stability of the mathematical formulation of RTO of energy plant with CO2 

capture 
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Chapter 2 

2 Development of Algorithms for Biomimetic, Self-Organizing 

Control Structure Design 

2.1 Introduction  

Many process systems engineering tools at the heart of optimization and control require the 

solution of large scale problems which demand significant computational expense (El-Beltagy et 

al., 1999). Recent advances in development of theoretical tools in control and optimization 

together with the state of the art computational power and available software have further opened 

up immense possibilities. In spite of the increased performance and efficiency of computing speed 

and power, it is still infeasible to solve large-scale process optimization problems especially when 

the application is intended for online deployment or fast computation of the solution is desired. 

Examples of such large-scale optimization problems include, but are not limited to: various 

dynamic optimization problems that are solved for obtaining optimal control trajectory, 

reconciling dynamic data, or for obtaining optimal estimates of time-varying parameters, online 

adaptation of process models etc. If the underlying problem is combinatorial in nature, then the 

optimization problem can be computationally prohibitive even for moderate-sized plants.  An 

example of such a large-scale combinatorial problem is the controlled variable (CV) selection 

problem (Jones et al, 2014). It should be noted that while CV selection is done heuristically or by 

off-line evaluations that are rarely revisited, the CV sets can be sub-optimal if the control objective 

of the process changes or the process model or operating constraints change considerably. One 

example of such processes is a cyber-physical system where the control objective can considerably 

change over a period of time or components can be readily added/modified/removed changing the 

underlying process model and operating constraints. Thus fast (not necessarily online) selection of 

updated optimal CV sets will be highly desired. It can be noted that the search for optimal CV sets 

involves systematic evaluation of an objective function for large number of candidate sets. For 

highly nonlinear plants, solution of the underlying optimization problem for each candidate set is 

difficult and computationally demanding. One approach to solving such large scale optimization 

problems is to use a ‘divide and conquer’ approach where a large process can be decomposed into 

smaller sub-processes. Such decomposition can be accomplished using inferred structural 
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connectivity information among various sub-processes. Then, only strongly connected sub-

processes can be considered together for computation. Therefore, a methodology that can identify 

and detect dynamic changes in the connectivity among various sub-processes is desired. 

Analysis of connectivity of chemical processes have long been researched in the open literature 

mainly from the perspective of fault detection and diagnosis. In those works, typically, a system is 

represented by using directed input and output arcs or signed digraphs (SDGs). These directed arcs 

represent causality. From these diagraphs, subsets of strongly connected components and maximal 

strongly connected component can be deduced. Strongly connected components in these sense are 

a combination of nodes that can be reached from every other node within the subset while a maximal 

strongly connected subset is a strongly connected subset with no input arcs (Iri et al., 1979). In 

(Emmerich  et al., 2001) process plants have been modelled as structured graphs, a type of directed 

graphs. Unit operations are represented by vertices while edges represent streams from the outlet of 

a unit operation to the inlet of another. Causality is modelled in these graphs by using inlet and 

outlet connectors. An excellent review of various works in this area can be found in 

(Venkatasubramanian et al., 2003). The DGs and SDGs have been widely utilized from the 

perspective of fault propagation where steady state or incipient changes in the process variables are 

utilized for obtaining the connectivity information rather than considering a state-space model. 

Therefore, dynamic change in the connectivity due to dynamics of inputs cannot be inferred from 

the DGs and SDGs. Another drawback of the DG or SDG- based approaches are that a binary 

information (a value of ‘1’ if two nodes should be connected, ‘0’ otherwise) is obtained about the 

connectivity, but a quantitative measure of the relative strength in connectivity between various 

nodes is not available. A quantitative measure of the connectivity strength can be helpful in 

determining how to decompose processes.  

Connectivity estimation is also important for the purpose of control structure selection. Input-output 

interaction can be quantified using participation matrices (PM)(Conley and Salgado, 2000), Hankel 

Interaction Index Array (HIIA) (Wittenmark and Salgado, 2002) and the Σ2 measure (Birk and 

Medvedev, 2003). An estimation of interaction parameters for high order Vector ARX (VARX) has 

also been proposed (Carvalho Bittencourt, 2016) . These interaction parameters allow control 

pairing with superior performance compared to the relative gain array (RGA). A number of these 

methods have been compared in terms of computational complexity for control structure selection 
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(Bankole et al., 2018a). Similarly, methods for interaction analysis using weighted graphs for 

control structure selection have been reported (Arranz and Birk, 2012). 

In light of identifying connectivity in the field of neuroscience, two prominent methods used for 

estimating connectivity include Granger causality (or G-causality) and transfer entropy 

approaches. These approaches enjoy wide use in literature and typically employ autoregressive 

models. It has been reported that the Granger causality based approaches might perform poorly in 

comparison to other methods including partial correlations, mutual information, coherence, 

generalized synchrony and Bayesian networks as the measurement noise can reverse the estimation 

of causality direction (Smith et al., 2011). Extension of the Granger causality to nonlinear process 

systems where the nonlinearity can stem forth due to interaction between the input and state 

variables as well as due to interaction among the state variables is not straight forward. The use of 

transfer entropy for measuring process connectivity for fault diagnosis including process 

connectivity has been reported (Landman and Jämsä-Jounela, 2016). These two methods are 

typically applied when the variables are assumed to be Gaussian (Barnett et al., 2009). Other 

approaches include model-driven approaches generally known as structural equation modeling 

where specific model structures can be employed (Kline, 2015). The model-based approaches have 

been widely used in the area of economics, social sciences, and neuroscience, to name a few. For 

example, in the area of neuroscience, a modified direct transfer function model has been proposed 

where a multivariate auto-regressive model is converted to frequency domain and a partial 

coherence metric multiplied by the direct transfer function is used in quantifying connectivity 

(Korzeniewska et al., 2003). Excellent reviews of various methods for determining structural 

connectivity can be found in (Friston, 2011) for neuroscience and (Yang et al., 2014) for process 

plants.  

Since the objective of the current work is to decompose the process model based on structural 

connectivity information, the connectivity measures are constrained by the physical connectivity 

of the process equipment items and the mass and heat exchange between them. Thus, a structural 

equation modeling approach is required. Due to the very nature of the typical chemical process 

systems and specific to the desired outcome of the current work, the candidate model should be 

nonlinear and should capture the nonlinearity due to interactions between states and inputs as well 

as interactions among state variables. Furthermore, it is desired that the stochastic parameters that 

quantify the structural connectivity be estimated for a non-Gaussian system. To the best of our 
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knowledge, there is no work in the current literature on quantifying structural connectivity of non-

Gaussian chemical process systems characterized by bilinear models incorporating interactions 

between state and input variables as well as interactions between state variables.  

For obtaining quantitative measure of connectivity strength and its dynamics, a dynamic model 

representing the process is desired where the model parameters would represent connectivity. 

Typical approach to candidate model selection for an intended application starts off with the 

qualitative measure of the system description, where the key features describing the system is 

identified. This step is usually referred to as the structural identification (Kay et al., 2000, Bradley 

and Stolle, 1996). In this thesis, a second order nonlinear model is considered as a candidate model. 

Its integration and use for connectivity estimation are original works of the author. The particular 

form of second order model considered in this work (Bankole and Bhattacharyya, 2018) is an 

extension of bilinear models found in the literature. In this model, the bilinear terms represent 

interactions between states and inputs as well as interactions among state variables. This is crucial 

in chemical engineering systems where exogenous inputs such as feed flowrates, temperature, and 

compositions have strong effects on states such as concentrations and temperatures. Bilinear 

models have been used in the field of neuroscience for the modelling of interactions amongst 

neuronal populations at a cortical and subcortical level (Friston et al., 2003). Using magnetic 

resonance imaging, evoked brain responses are used to characterize plausible models by making 

inferences about the coupling of several brain regions and the modulation of these couplings by 

experimentally designed inputs. By treating the brain as a deterministic input-state-output system, 

effective connectivity is parameterized as a function of couplings amongst unobserved neuronal 

states. However, the inferences are contingent upon assumptions about model structure. This is 

inevitable as concrete information about the architecture of the neuronal connectivity is unknown 

and can at best be surmised. Nevertheless, the utility of the dynamic causal model is grounded on 

its use as an exploratory means for model selection amongst several models (Will et al., 2004).  

Once the candidate model is determined, model parameters must be estimated using one of several 

methods such as the minimum square error method (Ljung, 1987), maximum a posteriori method 

(Nelles, 2013), etc. A number of authors has used gradient-based methods for maximization of the 

likelihood function conditioned on the defined statistics of the observed data (Fnaiech and Ljung, 

1987, GAB and Subba Rao, 1984, Verdult, 2002, Verdult et al., 2002). Schön et al. (Schön et al., 

2011) provides a rigorous approach for system identification for a general class of discrete time 









118 

 

side. For Scenario1, higher values of revenue can be generated by exploiting the stochastic 

predictions of electricity demand from the grid as opposed to nominal power production (Fig. 

5.13a). This exploitation however leads to an increase in CO2 capture cost compared to the nominal 

case as seen in Fig. 5.13b. For Scenario 2, similar arguments apply to the total objective function 

as shown in Fig. 5.14a, however the operational cost of the plant is lower than the nominal case. 

This is due to the optimized carbon capture profile where higher percentages of carbon capture are 

scheduled for periods with lower electricity prices and vice versa.  Therefore while the nominal 

case sets a constant power production and carbon capture, exploitation of the electricity prices 

enables the scheduler to achieve lower operational cost for the AGR unit (Fig. 5.14b). Close 

inspection shows that the RTO achieves higher costs with respect to the nominal case between day 

1 and day 20, however this is only due to the higher carbon capture at the beginning of the base 

time as electricity prices are relatively low (cf Fig. 5.9b). 

Finally for Scenario 3 in Fig. 5.12, due to the flexibility of trading tax credits, the difference in the 

profit objective function value with respect to the nominal case is significant. Higher values of 

revenue in the beginning of the base period can be seen due to higher carbon capture as the real 

time optimizer takes advantage of lower electricity prices in the beginning of the base period (cf 

Fig. 5.9b) while capturing relatively lower amounts of carbon emissions towards the end of the 

base period. Similar to Scenario 2, this corresponds to a higher carbon capture cost as shown in 

Fig. 5.16b. In this scenario, both buying and selling prices of CO2 are set at $100/ton (see section 

5.4.1), thus the high selling price motivates the scheduler to capture an average of 90% of the 

overall carbon (cf fig 15b) as compared to the nominal target of 80% as specified in Section 5.4.1. 

This difference renders prospective selling units of CO2 credits available for revenue. Thus the 

marked difference in the objective function for the RTO and nominal case in Fig. 5.15a. This 

corresponds to a significant increase in the cost of carbon capture for the AGR unit.  For a 90 day 

period, the overall values are summarized in Table 5.1. 

Table 5.1 Summary of objective function values and cost of carbon capture for all scenarios 

 Scenario 1 Scenario 2 Scenario 3 

 RTO No RTO RTO No RTO RTO No RTO 

Objective function ($)× 107 3.82 3.38 6.33 5.65 11.07 5.65 

CO2 capture cost ($)× 105 2.22 2.00 1.73 1.65 1.91 1.65 
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Figure 5.13 Objective function (Profit) and cost of carbon capture for Scenario 1 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

Figure 5.14 Objective function (Profit) and cost of carbon capture for Scenario 2 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

b) a) 

b) a) 
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Figure 5.15 Objective function (Profit) and cost of carbon capture for Scenario 3 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

Results from the RTO strongly depend on the amount of tax levied on carbon emissions. Therefore, 

a study is conducted to evaluate the RTO dynamics due to change in the carbon tax ($/ton). For 

Scenarios 1 and 2, the tax levied on the CO2 emissions was varied and for Scenario 3, the geometric 

mean of the buying and selling credit for CO2 emissions was varied. These tax values were varied 

until the minimum and maximum carbon capture is reached for each scenario. The average carbon 

capture during the entire base period is plotted against different tax values as shown in Fig 5.16. 

   
b) 

a) 

b) a) 
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Figure 5.16 Sensitivity of average carbon capture due to changes in the carbon tax γ($/ton CO2) 

(a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 

From Figs. 5.16a-c, it is apparent that reduced tax levied on CO2 emissions results in a concomitant 

decrease in the amount of CO2 captured as expected. In the case of Scenario 2, the maximum CO2 

captured is the target specified for the base time as no credit is gained by capturing more CO2. For 

Scenario 3, a similar trend is observed where the CO2 capture varies from the maximum to 

minimum as the geometric mean of the buying and selling price of CO2 decreases. However, 

greater incentives to capture higher carbon exists for Scenario 3 due to the possibility of selling 

CO2 credits hence the sharp rise in the CO2 capture fraction at 𝛾𝑏𝑢𝑦 = 𝛾𝑠𝑒𝑙𝑙 = 0.08$/ton CO2. 

5.5 Conclusions 

Optimal scheduling of an IGCC power plant with CO2 capture is provided in this study. A complete 

mathematical formulation including revenue generation and operational cost of carbon capture 

under different tax scenario is presented. In addition to this, Lyapunov-based stability conditions 

are provided for which the results are guaranteed for the optimizer. Effects of three different 

scenarios for carbon tax on optimal set points of syngas flowrate and CO2 capture are investigated. 

As expected, carbon capture for all scenarios considered is negatively correlated with electricity 

price. Results show how exploitation of the stochastic predictions of electricity price and demand 

can result in increased profits for power plants. For Scenario 1, it is shown that higher values of 

c) 
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profit can be obtained by producing just the required amount of electricity to offset power produced 

by fluctuating sources such as renewables. For Scenario 2, in addition to higher values of profit 

which is obtained in part by load following, reduced cost of carbon capture is obtained by 

exploiting variation in electricity prices. Lastly for Scenario 3, higher values of profit are obtained 

due to three properties, one is the exploitation of electricity demand, secondly the electricity prices 

are used to schedule carbon capture, lastly prospective selling or buying of CO2 credits can be 

taken advantage of to arrive at optimal scheduling of power production and carbon capture.  Of all 

scenarios, Scenario 3 takes most advantage of the scheduling as can be seen in the sensitivity of 

the percentage of CO2 capture to changes in tax prices. The insights gained from this study can be 

applicable to real power plants for increasing profit and revenue without violating environmental 

constraints of carbon capture especially when the operational cost of running the plant is high. 
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Chapter 6 

6 Recommendations and future research 

The contributions of this thesis includes the development of a connectivity estimation procedure 

and algorithm for the purpose of decomposition. This decomposition is then used for CV selection 

to reduce computational time. Secondly, metaheuristic algorithms are coupled into one framework 

referred to as the multiagent optimization programming which is utilized to solve CV selection 

optimization. Lastly, real time optimization is examined for further optimality of energy plants. 

Further studies should be carried out with nonlinear plants of sizes considerably larger than 

considered here for the purpose of control structure design. This would necessitate the utility of 

the estimation of structural connectivity for the purpose of reorganization of the process into 

different islands/sections while seeking for the optimal CV selection with the new organization. 

While the DCM was developed for continuous time systems with full model integration, analysis 

could be extended to discrete time systems with comparison to the findings here for continuous 

time systems as most processes are inherently modelled as discrete systems. It may also be crucial 

to identify other filtering techniques that could be exploited such as particle filtering and/or 

unscented Kalman filters for the purpose of powerful system identification techniques. This may 

compromise computational efficiency. Additionally, the DCM can be utilized for obtaining 

pertinent information for controller design such as Gramian and Relative gain arrays. 

Studies could be carried out for further algorithm development towards performance and 

computational time improvements. In particular, the agent-based nature of the proposed algorithm 

could be investigated in details for further advancements. For example, the computational time 

performance of the biologically-inspired methods could be improved by examining parallel 

computation of agent’s trajectories. 

The real time optimization considers two pertinent variables for the advanced energy plant with 

CO2 capture, it should be investigated if additional variables could be incorporated into real time 

optimization. Additionally, the methods developed in this thesis could be extended to other 

applications for the purpose of comparison and future research.  

The biomimetic control structure design methods could be implemented further to address other 

cyber physical systems.



 

Appendix 

A.1 Supervisory Control Layer Design 

A.1.1 Interaction Analysis 

As noted earlier, three major Gramian-based measures for input-output variable interaction are the 

PM (Conley and Salgado, 2000), HIIA (Wittenmark and Salgado, 2002) and Σ2 measure (Birk and 

Medvedev, 2003) . The traditional measure for interaction, RGA, is given by Eq. (1) where G is 

the steady-state gain and ‘.*’ denotes element-by-element matrix multiplication. In Eq. (1), the 

element 𝜆𝑖𝑗 corresponds to yi and vj. Eq. (2) is the formal definition of what the elements of the 

RGA represent. Each of these elements shows how the gain of input j on output i changes when 

all remaining loops are closed. This provides information on loop-loop interactions as the further 

away an element is from 1, the higher the degree of loop-loop interactions.  

 

 Π(𝐺) = 𝐺(0).∗ (𝐺(0)−1)𝑇 (1) 

 

Π(𝐺) = [

𝜆11 𝜆12 ⋯ 𝜆1𝑛
𝜆21 𝜆21 … 𝜆2𝑛
⋮ ⋮ ⋱ ⋮
𝜆𝑛1 𝜆𝑛2 ⋯ 𝜆𝑛𝑛

]  

 

𝜆𝑖𝑗 =

(
𝜕yi
𝜕𝑣𝑗

)
all loops open

(
𝜕yi
𝜕𝑣𝑗

)
loop 𝑖 open

 (2) 

Gramian-based interaction measures are a relatively new and potentially powerful tool in the 

analysis of multiple-input, multiple-output control structures. The main features of these 

interaction measures are outlined.  Readers interested in a more thorough examination are directed 

to (Halvarsson, 2008, Van De Wal and Jager, 2001). 

The Gramian-based interaction measures all rely upon the controllability and observability 

Gramians.  Consider the following continuous time-invariant state-space model:  

                                                   �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡)

y(𝑡) = 𝐶𝑥(𝑡)
 (3) 
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where x(t) is the state vector, v(t) is the input vector, and y(t) is the output vector.  The 

controllability and observability Gramians for this system are defined by Eqs. (14) and (15).   

 
𝑃 =  ∫ 𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴

𝑇𝜏𝑑𝜏
∞

0

 (4) 

 
𝑄 =  ∫ 𝑒𝐴𝜏𝐶𝐶𝑇𝑒𝐴

𝑇𝜏𝑑𝜏
∞

0

 (5) 

The three Gramian-based interaction measures discussed in this paper all are based upon the 

Hankel matrix, defined as the product of the observability and controllability Gramians.  An 

important property of the Hankel matrix is that it is independent of the state-space realization and, 

therefore, so is any interaction measure derived from it.   Eqs. (6), (7) and (8) define the PM, HIIA, 

and the Σ2 interaction matrices, respectively.  The matrix norms are defined in Eqs. (9) and (10).   

 
[Φ]𝑖𝑗 =

𝑡𝑟(𝑃𝑗𝑄𝑖)

𝑡𝑟(𝑃𝑄)
 (6) 

 
[Σ𝐻]𝑖𝑗 =

‖𝑃𝑖𝑄𝑗‖𝐻
∑ ‖𝑃𝑘𝑄𝑙‖2𝑘𝑙

 (7) 

 
[Σ2]𝑖𝑗 =

‖𝑃𝑗𝑄𝑖‖2
∑ ‖𝑃𝑘𝑄𝑙‖2𝑘𝑙

 (8) 

 ‖𝐺‖𝐻 = √𝜆max(𝐺) (9) 

 
‖𝐺(𝑠)‖2 ≡ √∑∫ |𝑔𝑖𝑗(𝜏)|

2
𝑑𝜏

∞

0𝑖,𝑗

  (10) 

An important characteristic of the Gramian-based interaction measures is that they are scaling 

dependent.  Therefore, before these measures can be used for the design of a control structure, a 

systematic means of scaling must be defined.  Several scaling methods have been proposed in the 

open literature (Salgado and Conley, 2004, Shaker and Stoustrup, 2013). In this paper, the 

Gramian-based interaction measures are scaled in such a way that the sum of any row (column) is 

equal to the sum of any other row (column).  Scaling in this way ensures that all output variables 

are considered of equal importance, i.e., one output variable is not considered more significant 

than others.  Additionally, it is assumed that the relative ‘power’ of all input variables is the same, 
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specifically, all input variables have the same relative gain.  Scaling in this manner gives the 

Gramian matrices some of the similar properties to that of the RGA. 

As mentioned earlier, the expected computation time required for the calculation of control actions 

if an MPC were used is proposed here as a quantitative measure of controller complexity.  For 

simple PID controls, it is assumed that the computation is completed instantaneously and therefore 

has zero controller complexity. For MPC control, it is assumed the computational time and 

controller complexity is defined as Eq. (11). This measure is based upon the time complexity of 

the evaluation of an n dimensional optimization problem (Karmarkar, 1984).  Using this measure 

for controller complexity, the optimization problem shown as Eq. (12) is formulated where 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

is calculated from one of the Gramian interaction measures.  The solution of this optimization 

problem will yield a set of Pareto optimal control structures which balance the tradeoffs of control 

performance with control complexity.  

 𝒪(𝑛2𝑙𝑛(𝑛) ) (11) 

  (𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑣, y) ⋅ (𝑣 + y)
2𝑙𝑛(𝑣 + y))  𝑣,𝑦  

min  (12) 

A.1.2 Optimal Tuning 

In addition to control structure design, tuning of MPC controllers has been a subject of ongoing 

research for several decades now.  These tuning methods fall into one of two general categories: 

online and offline tuning.   For a review of many of tuning methods proposed, readers are directed 

to (Garriga and Soroush, 2010).  The method proposed in this work is an offline tuning method 

where the tuning parameters of the MPC are manipulated to optimize the sum of a time domain 

control performance metric, the integral squared error (ISE), scaled based upon the individual CV's 

impact on the economic performance of the process. This is a promising method, as the framework 

allows for the introduction of constraints on the process response and the incorporation of 

economic insights of the process that were attained during the course of the plant-wide control 

system design procedure into the tuning method. 

 

 ∑(ŷ𝑘+𝑝|𝑘 − 𝑟)
𝑇
Ψ(�̂�𝑘+𝑝|𝑘 − 𝑟) +

𝑁𝑝

𝑝=1

 Δ𝑣   
min ∑ Δ𝑣𝑘+𝑗|𝑘

𝑇 Φ

𝑁𝑐−1

𝑗=1

Δ𝑣𝑘+𝑗|𝑘 

s.t. 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑘 ≤ �̂�𝑚𝑎𝑥 

(13) 
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𝑣𝑚𝑖𝑛 ≤ 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 

Δ�̂�𝑚𝑖𝑛 ≤ Δ𝑣𝑘 ≤ Δ𝑣𝑚𝑎𝑥 

�̂�𝑘+1 = �̂��̂�𝑘 + �̂��̂�𝑘 + θ𝑘  
ŷ𝑘+1 = �̂��̂�𝑘+1 

𝑘 = 0, 𝑇𝑠, 2𝑇𝑠, … 

Consider a general MPC formulation, as defined in Eq. (13).  Here, ŷ𝑘+𝑝|𝑘 represents the vector 

of the plants CVs at the (𝑘 + 𝑝)th time interval. Similarly the vector 𝑣𝑘+𝑗|𝑘 denotes the future 

values for the manipulated variables at the (𝑘 + 𝑗)th time interval which are to be optimally decided 

in the face of constraints to drive the CVs  �̂� to the reference set point 𝑟 passed down from the 

scheduler (denoted by 𝑢 at the scheduler level). The scalars 𝑘, 𝑝 and 𝑗 represent time, indexes for 

the prediction and control horizons respectively. 𝑁𝑝 and 𝑁𝑐 represent the prediction horizon and 

the control horizon, respectively. Ψ and Φ are weighting matrices.  The effects of disturbance θk 

at any time 𝑘 is incorporated into the discrete state space model 

The ‘tuning parameters’ for this MPC are the sampling interval, Ts, the prediction horizon, 𝑁𝑝, the 

control horizon, 𝑁𝑐, and the weighting matrices Ψ and Φ.  In this work, the prediction horizon is 

set following the heuristics of (Banerjee and Shah, 1992) to a value of 95% of the settling time to 

steady state and the control horizon is set following the heuristics of (Georgiou et al., 1988) to a 

value of 60% of the settling time to steady state.   

For the determination of the optimal output and movement suppression weights, an optimization 

problem is formulated. Here, 𝑛𝑦 is the number of CVs, ISE is the integral squared error of the 

primary controlled variable i, and , Θ𝑖 is the scaling factor based upon the economics of the process. 

The objective function to be optimized is the summed, scaled ISE values of the CVs, defined as in 

Eq. (14).  The scaling factors, Θ𝑖 are based upon the impact of individual CVs on the economics 

of the process. These are the same scaling factors as used in our previous work (Jones et al, 2014) 

for the selection of secondary CVs.   

 

min
Ψ,Φ

∑Θ𝑖𝐼𝑆𝐸𝐲𝑖

𝑛𝑦

𝑖=1

 

Subject to 

(14) 

 Γ(𝑟, 𝑦, 𝑣, 𝑡) ≤ 0  (15) 

In addition to the minimization of the summed, scaled ISE, one can include constraints on the 

process responses given set point changes or measured/unmeasured disturbances.  For example, 

one may wish to specify that a controlled variable have no more than a 3% overshoot in response 
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to a step change to its set point.  Including such constraints within the optimization allows for 

important process characteristics to be addressed during tuning the initial tuning of the MPC.  

These inequality constraints can take many user defined forms and represented as Eq. (15). 

Results 

First, the optimal structure of the supervisory control layer needs to be selected as outlined in A.1. 

To begin, the state space model of the AGR unit is required. This is obtained from the Aspen Plus 

Dynamics model of the AGR unit. From this state space model, the controllability and 

observability Gramians are calculated for each of the individual subsystems, i.e., each of the 

pairings of input to output. From these calculations, the three unscaled Gramian interaction 

matrices are obtained. Next, each of these Gramian interaction matrices are scaled, according to 

the methodology discussed in Section A.1. The three Gramian interaction matrices, namely HIIA, 

PM and Σ2 interactions measures, are used to determine the optimal pairings of the structure. These 

Gramian interaction measures may lead to the same or different control structures. The 

optimization problem shown in Eq. (9) is solved for all possible control structures that involve 

either decentralized or centralized, or any combination thereof where 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is calculated from 

the Gramian interaction measure used. To determine the actual structure to be used, the numerical 

derivative of the control performance criteria with respect to the controller complexity is calculated 

for the PM, HIIA and Σ2 interactions measures listed in Table A.1. From this table, it is observed 

that using a combination of ‘one 4 by 4 centralized' controller and 'one 2 by 2 centralized’ 

controller is optimal.  

Table A.1 Numerical Derivative of Control Performance with respect to Controller Complexity 

[listed in increasing controller complexity] 

Disturbance Σ2  PM  HIIA  

Decentralized - - - 

One 2x2 Centralized 0.039638 0.036428 0.040864 

Two 2x2 Centralized 0.034841 0.033038 0.030405 

Three 2x2 Centralized 0.021244 0.018322 0.012263 

One 2x2 Centralized 

One 3x3 Centralized 
0.012298 0.015821 0.014232 

One 4x4 Centralized 0.010963 0.010176 0.009009 

Two 3x3 Centralized 0.01767 0.011027 0.006856 

One 4x4 Centralized 

One 2x2 Centralized 
0.002028 0.00617 0.007597 

One 6x6 Centralized 0.009358 0.007953 0.006746 
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With the structure of the supervisory control determined, the design of the supervisory control 

system is undertaken. The 4×4 centralized controller comprises the following controlled variables, 

namely CO2 capture rate, vapor composition in the CO2 absorber, H2S purity to the Claus unit, and 

solvent composition in the H2S absorber, and the following manipulated variables, namely the LP 

flash pressure, semi-lean solvent flowrate, lean solvent flowrate, and H2S concentrator pressure. 

The 2x2 centralized controller controls H2S capture and water content of the solvent using the 

stripper bottom temperature and steam flow to the stripper. For the purposes of this work, the forms 

used for these centralized controls are linear model predictive controls (LMPC).  

Models were identified by applying a pseudorandom binary sequence (PRBS) input signal to the 

nonlinear process model in Aspen Plus Dynamics. Using the MATLAB system identification 

toolbox, the output data and the PRBS input data were used to identify linear transfer functions. 

Using these identified models, the LMPCs for the process are designed. For the tuning of the 

LMPCs, the economic information obtained during controlled variable selection is introduced as 

described in (Jones et al, 2014). The objective of the optimization is shown in Eq. (11). Table A.2 

shows comparison of the objective function values of the initial, non-optimized tuning used for 

the LMPCs and that of the PID controllers. Table A.2 shows that superior performance, as 

compared to PID control, is attained from the LMPCs using these tuning parameters.  

Table A.2 Comparison of Initial ISEs of the LMPC to PID for Three Disturbances 

Disturbance Integral Square error (ISE) Percent improvement 

 PID LMPC  

-20% Step in syngas flow 701.4 222.7 68.25% 

+2% Step in CO2 Capture 116.9 43.0 63.20% 

-2% Step in CO2 Capture 103.7 49.3 52.43% 

 

For the first row, comparison of the performance of the PID controller and MPC for CO2 capture, 

H2S purity to Claus unit, CO2 vapor fraction in CO2 absorber and the scaled ISEs is shown in Figs. 

A.1 and A.2, respectively, for a -20% step change in syngas flow. 
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Figure A.1 CO2 Capture Fraction(a) and H2S Purity to Claus unit (b) after 20% Step Decrease in 

the Syngas Flowrate 

 

 

 

Figure A.2 CO2 vapor fraction(a) and ISEs (b) due to 20% Step Decrease in the Syngas Flowrate 

 

 

 

 

 

 

a) b) 

a) b) 
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A.2 Dynamic Causal Model 

Table A.3 Latent connectivity for the acid gas removal unit 

  

  FROM 

Variables 

CO2 

absorber 
(T1) 

H2 

recovery 

KO 
drum 

(D1) 

H2 
recovery 

drum 

(D2) 

MP flash 

(D3) 

LP 

flash(D4) 

H2S 

absorber 
(T2) 

H2S 

concentrator 
(T4) 

TO 

CO2 

Absorber(T1) 

CO2  
Vapor               

Liquid               

H2 
Vapor   `           

Liquid               

H2S 
Vapor               

Liquid               

H2 recovery 

K.O drum(D1) 

CO2  Vapor               

H2 Vapor               

H2 recovery  

drum(D2) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

MP flash (D3) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

LP flash(D4) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S Absorber 
(T2) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S 
Vapor               

Liquid               

H2S 

concentrator 
(T4) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S 
Vapor               

Liquid               
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Normalization 

Consider the equation  

 

�̇�(𝑡) = (�̅� +∑𝑢𝑗�̅�
𝑗

𝑗

+ diag(𝑋)�̅�)𝑋 (16) 

Let the variables be scaled such that 

 

�̇̃�(𝑡) = (�̃� +∑�̃�𝑗�̃�
𝑗

𝑗

+ diag(𝑋)�̃�) �̃� (17) 

Where 

�̃�𝑖 = 𝑋𝑖/max (𝑋𝑖)  

�̃�𝑝 = 𝑢𝑝/max (𝑢𝑝)  

It follows that 

𝐴𝑖𝑗 =
�̃�𝑖𝑗max (𝑋𝑖)

max (𝑋𝑗)
  

𝐵𝑖𝑗
𝑝
=

{
 
 

 
 

�̃�𝑖𝑗
𝑝max (𝑋𝑖)

max (𝑢𝑝)max (𝑋𝑗)
   ∀ 𝑗 > 1

            �̃�𝑖𝑗
𝑝 max (𝑋𝑖)

max (𝑢𝑝)
   , 𝑗 = 1

 

𝐻𝑖𝑗 = �̃�𝑖𝑗/max (𝑋𝑗) 
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