
Graduate Theses, Dissertations, and Problem Reports

2018

VISION-BASED ROAD DEFECT DETECTION AND CLASSIFICATION VISION-BASED ROAD DEFECT DETECTION AND CLASSIFICATION

FOR IMPACT EFFECT MITIGATION USING ADAPTIVE FOR IMPACT EFFECT MITIGATION USING ADAPTIVE

SUSPENSIONS SUSPENSIONS

Shane M Haught

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Haught, Shane M, "VISION-BASED ROAD DEFECT DETECTION AND CLASSIFICATION FOR IMPACT
EFFECT MITIGATION USING ADAPTIVE SUSPENSIONS" (2018). Graduate Theses, Dissertations, and
Problem Reports. 7185.
https://researchrepository.wvu.edu/etd/7185

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

(a) CAD drawing of mounting bracket for Kinect sensor (b) Microsoft Kinect mounted in 3D printed bracket

Figure 2: Microsoft Kinect mounting bracket

The bracket was then attached to a wooded frame which was then securely fastened to the tailgate of a

pickup truck using ratchet straps. In order to test the road defect detection/classification algorithm, im-

ages of actual road defects needed to be gathered. The test vehicle was outfitted with the Kinect sensor

and traveled around the Morgantown, WV viscinity stopping at identified road defects in order to capture

static images that returned 3D point clouds of the road surface. The point cloud of the road surface was

analyzed to determine if it contained any objects that may constitute a road surface defect (e.g., pothole).

The mounting system for the Kinect sensor is shown in Figure 3.

Figure 3: Mounting system for the Microsoft Kinect

Once images were collected using the sensor and the developed data acquistion code required by the sensor,

the proposed detection/classification algorithm processes the raw data from the sensor and identifies a road

defect if one is visible in the frame of the sensor. The algorithm then classifies each detected road defect

into one of 6 discrete groups (0, 1, 2, 3, 4 or 5) depending on length, width and depth of the defect. This

classification will later be used to determine the damping setting for the adaptive shock.

9

4.1 3D Data Capture Sensor - Microsoft Kinect Sensor

In order to collect 3D point cloud data, a 3D data capture sensor is required to deliver the 3D point cloud

necessary for the image processing algorithm that is being developed. The Microsoft Kinect sensor, shown in

Figure 4, was chosen as the data acquisition hardware for this research. The Kinect sensor was originally de-

veloped and produced to be used in conjunction with the Microsoft Xbox gaming system as a motion-sensing

device. The sensor identifies human limbs and joints via skeletal tracking and can even distinguish between

an open and closed hand. The sensor achieves this by utilizing both an RGB camera that delivers color

images and an IR sensor that provides a 3D depth image. The coordinate system orientation is displayed in

Figure 4 which defines the Z axis growing out in the direction the sensor is facing.

Figure 4: Microsoft Kinect sensor

The RGB camera boasts a color image resolution of 1920 x 1080 pixels, a horizontal field of view (FOV)

of 84.1◦ and vertical FOV of 53.8◦. The IR sensor boasts a depth image resolution of 512 x 424 pixels, a

horizontal FOV of 70.6◦ and vertical FOV of 60.0◦. These specifications are shown in Figure 5.

(a) Horizontal FOV of the Kinect sensor (b) Vertical FOV of the Kinect sensor

Figure 5: Field of view of Kinect sensor

The depth image provides a 2D, 512 x 424 matrix populated with a depth measurement at each pixel lo-

cation. While developing the detection and classification algorithm it was discovered that it was beneficial

to be able to calculate the size of these single pixels using a real-world measurement such a inches. Using

geometry, known depths at each pixel location and FOV specifications from Figure 5, the widths and heights

of individual pixels can be calculated.

10

wpixel =
depthi ∗ 2 ∗ tan(FOVh

2)

512
(1)

hpixel =
depthi ∗ 2 ∗ tan(FOVv

2)

424
(2)

where wpixel and hpixel are the pixel width and height, respectively, in terms of meters. These values are

later converted to inches. The variable, depthi, refers to depth values corresponding to the ith pixel location.

FOVh and FOVv are the horizontal and vertical fields of view in degrees, respectively.

4.2 Detection and Classification Algorithm Development

The Kinect sensor supplies a 3D point cloud, but a 3D point cloud alone is not capable of detecting and

classifying a road defect. Extensive algorithms and computer-vision techniques are necessary for processing

the raw data retrieved from the Kinect sensor. Because the raw data that is retreived from the Kinect sensor

includes both RGB color images and IR depth images, the raw data needs to first be sorted. Once sorted, a

Gaussian blur is applied to the data to clean up the data and remove noise.

Section 4.2.1, Section 4.2.2 & Section 4.2.2.1 were developed largely by Andrew Rhodes, a fellow graduate

student at West Virginia University (WVU) and former fellow member of WVU’s Applied Space Exploration

Laboratory. The topic of this thesis is derived from an Innovation Project associated with the EcoCAR 3

program, an advanced vehicle technology competition sponsored by General Motors and the U.S. Depart-

ment of Energy. The objective of the program was to convert a 2016 Chevy Camaro into a plug-in hybrid

electric vehicle for the purpose of: (1) reducing emission, (2) increasing fuel economy, and (3) maintaining

the performance of an iconic sports car such as the Chevy Camaro. The Innovation Project was an ancillary

project that required the EcoCAR team (more specifically the Innovation sub-team) to develop an innovative

topic to further the state-of-the-art in an automotive related technology.

4.2.1 Geometric Constraints

To simplify the algorithm and increase the speed of the image processing, some geometric constraints can be

exploited. Assume a vehicle is equipped with a 3D camera pointed towards the road. The camera returns a

3D point cloud of the road surface in the camera frame. It is then mathematically beneficial to transform

this point cloud into the wheel frame as

pw = Rc
wpc + rw (3)

where w and c refer to the wheel and camera frames respectively, Rc
w is a 3 × 3 rotation matrix from the

camera frame to the wheel frame, r is a 3×1 translation vector in the wheel frame, and p is an n×3 matrix of

point locations in either the wheel or camera frames. The transformation consisting of Rc
w and rw are known

since the camera is rigidly mounted to the vehicle. Without loss of generality, the origin of wheel frame is

defined as the center of the line connecting the contact points between the two front wheels and the ground

11

as depicted earlier in Figure 1b. The point cloud in the wheel frame now has a few interesting geometric

constraints that support detection of road surface defects. First, assume that the measured road surface is

planar. The camera is pointed down towards the ground at an angle of 30◦ below the local horizontal as

shown in Figure 6. Because the FOV for the Microsoft Kinect is 70.6◦ x 60◦, the result is a usable measured

point cloud of about 4× 3 meters. Images of road defects were captured using a variety of angles (i.e., 25◦,

30◦, 35◦, 40◦...etc) and the angle of 30◦ was chosen because it provided the best range and a large amount

of points within the road defect which enabled an accurate classification.

Figure 6: Geometry of road surface parameterization

It is reasonable to assume that a measured road section of the this size could be classified as planar. Then

the equation of a planar road surface is

nxx+ nyy + nzz + d = 0 (4)

where n =
[
nx, ny, nz

]T
is the surface normal vector of the plane and d is the signed perpendicular

distance from the origin to the plane. The normal vector may also be defined in terms of road pitch α, and

the road bank β. By examining Figure 6, it is clear that the surface normal may also be expressed as

n =
[
cos(β)cos(α), cos(β)sin(α), sin(β)

]T
(5)

Second, notice that the wheels of the vehicle are always in contact with the road. Thus the signed dis-

tance, d = 0, is because the road plane is in contact with the origin of the wheel frame. Also notice that if

the z-axis of the wheel frame is pointing vertically up towards the sky, and since the wheels are in contact

with the road, the nominal surface normal vector for the road plane in the wheel frame is nw =
[
0, 0, 1

]T
.

Suppose that the vehicle is approaching an inclined hill, but has not yet begun ascent. In this scenario, the

vehicle is on the flat road surface while the camera returns a point cloud of the hill. The normal vector of

the plane that describes the hill is not the same as the nominal normal vector because the wheels are not

yet in contact with the hill. The goal is to find the normal vector of the hill. Let the signed perpendicular

distance, εi, of any measured point to the plane be given as

12

εi = (xi − x̄)cos(β)cos(α) + (yi − ȳ)cos(β)sin(α) + (zi − z̄)sin(β) (6)

where

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, z̄ =
1

n

n∑
i=1

zi (7)

In order to meet the requirement of real-time implementation, an efficient solution to the variables α, β is

sought. Begin by de-normalizing the measurements

x̂i = xi − x̄, ŷi = yi − ȳ, ẑi = zi − z̄ (8)

and then stacking all the measurements

ε =

x̂1 ŷ1 ẑ1

x̂2 ŷ2 ẑ2
...

...
...

x̂i ŷi ẑi

cos(β)cos(α)

cos(β)sin(α)

sin(β)

 (9)

or equivalently as

ε = Dδ (10)

The numeric solution is found by taking the singular value decomposition (SVD) of D as

D = UΣV T (11)

The last column of V , which corresponds to the smallest singular value of Σ, is the closest numeric solution

to the vector δ. Since δ = n, it must be normalized to ‖δ‖ = 1 or

√
sin(β)2 + cos(β)2cos(α)2 + cos(β)2sin(α)2 = 1 (12)

We find the optimal values of α, β by:

α = arctan

(
δ2
δ1

)
, β = arcsin(δ3) (13)

where δ1, δ2, and δ3 are the components of the vector, δ. By applying these geometric constraints inherent

to the situation, the values of α and β completely define the plane of the hill. Fast and efficient point cloud

processing algorithms may now be applied to separate the defective areas from the road surface.

13

4.2.2 Point Cloud Processing

Processing of the measured point cloud must be fast and efficient for real-time implementation on a vehicle.

The algorithm also must be deterministic in order to have repeatable and dependable results. Section 4.2.2.1

presents the the portion of the algorithm necessary to separate outlier points from the road surface and

cluster the outlier points into groups. Presented here is a novel and innovative method of detecting road

defects from a measured road plane using a 3D point cloud.

4.2.2.1 Determine Point Cloud Inliers and Outliers

Suppose there is a noise free measured point cloud of a road surface in the wheel frame. According to

Equation 4 and the geometric constraints stated in Section 4.2.1, d = 0 and every point has the same normal

vector of nz =
[
0, 0, 1

]T
. This, however, is not ordinarily the situation because of sensor measurement

noise and the presence of road surface defects. These two causes present similar point cloud distortions and

are thus difficult to analyze separately. A method of detecting point cloud outliers from a planar road surface

is presented in this section.

For this procedure, the normal vectors of each point in the point cloud must be found. Normal vectors

are not a measurement returned by the sensor, but they may be calculated using any number of methods

[26][27]. All of these methods operate similarly to finding the normal vector to the road plane as presented

in Section 4.2.1, but apply more restrictions on the local curvature and inter-point distances. Algorithms

for calculating normal vectors for every point in a point cloud are found in nearly all point cloud processing

applications and do not present any risk to the overall real-time operation. Since this process is not the

focus of this report, these values are assumed to be available for use in further analysis.

In the current constrained situation, there are two criteria that may be used to define an outlier point:

1. Has a normal vector that is significantly different than the nominal. The inner product (dot product)

of ni and nz is less than an angular threshold ta.

nT
i nz < ta (14)

2. Lies far from the true road surface plane. The inner product of pi and nz is greater than a Euclidean

distance threshold td.

pT
i nz > td (15)

Consider Figure 7a which shows a point cloud with outlier points (in red) lying some distance away, but

parallel to the road surface plane (in black). In this situation, the angular differences between the normal

vectors of the outlier points and the road surface normal vector are minimal. These points are considered

outliers because their signed perpendicular distances from the road surface plane are large compared to the

sensor noise. Alternatively, examine Figure 7b which shows a point cloud with outlier points lying near to,

but tilted at some angle with respect to the road surface plane. While the signed perpendicular distances be-

tween the points and the plane are small, these points are considered outliers because the angular differences

14

(a) A circular road defect below the road plane (b) A circular road defect tilted with respect to the road
plane

Figure 7: A noise free case of a road plane containing defects. Road defects shown in red demonstrate the
importance of analyzing both normal vector alignment and perpendicular distance to the plane. This figure
is best viewed in color.

between the normal vectors and the road surface normal vector are significant. By simultaneously examining

both 1) the signed perpendicular difference to the plane, and 2) angular differences in the normal vectors

compared to the road surface normal vector, outliers may be robustly detected in many more situations than

if only one characteristic was examined.

Further analysis of the interplay between the two characteristics reveals details about other possible road

surface situations. Examine Figure 8 which is a scatter plot of normal vector alignment with respect to road

surface normal vectors and the signed perpendicular distance to the plane for all points in a given point

cloud. This plot has been designated as the Alignment-Distance Graph (ADG).

Figure 8: Alignment-Distance Graph

Different types of road defects (or obstacles) appear in different locations on the ADG. The blue area con-

sisting of a square and triangular region is considered the road plane. The midline of the road plane is

determined by capturing images of known flat surfaces such as a tile floor and then fitting a plane surface to

the points. Any point within 0.003 meters (0.118 in.) from this surface is also included in the road surface

or inlier points. This threshold was experimentally chosen to ensure a substantial number of inlier points

and outlier points. Any points outside of the area defined as the road plane are labeled as outliers. Then

there are two sets of points: inliers placed in the set I, and outliers placed in the set O.

15

Since points constituting a road surface defect may have either one or both of these aforementioned charac-

teristics, it is beneficial to examine both together. The set of inlier points, I, in blue on Figure 8 is defined

by

I = pi :

I1 : (nT

i nz < ta) ∧ (|pTi nz| < td)

I2 : (nT
i nz > ta) ∧ (pTi nz < m(nT

i nz − ta) + td)

I3 : (nT
i nz > ta) ∧ (pTi nz > −m(nT

i nz − ta)− td)

 (16)

where I = I1∪I2∪I3, m = ntd/(1−ta), ni is the normal vector of pi and ta, td are the angular and distance

thresholds defined in the criteria. The current implementation uses ta = cos(30◦) and td = σs, where σs is

the standard deviation of the sensor’s measurement noise. An example of the inliers identified in a single

image represented in 2D form is shown in Figure 9.

Figure 9: 2D illustration of 3D points representing inliers or the planar road surface

The set of outlier points, O, is defined as

O = pi : pi 6∈ I (17)

or all points not belonging to the set of inliers.

4.2.2.2 Road Defect Classification using Saliency Maps

The preliminary version of the developed Matlab code was capable of identifying the potential outline of a

road defect. The algorithm correctly processed the point cloud, and categorized each point as either being

within the plane of the road surface (inliers), an outlier above the surface, or an outlier below the surface

(i.e., a pothole), but it did not estimate the length, width, or the approximate depth. An example of the

point cloud categorization is shown in Figure 10. It is desirable to categorize the characteristics of the road

defects for use in later situations such as determining the time to impact, creating a catalog of road defects

for maintenance crews [13], or for avoiding heavily defected roads with GPS navigation [30]. Particularly

important characteristics for the purpose of this thesis includes defect length, width and depth. Charac-

16

teristics that may be important for the other situations may include (but are not limited to) defect change

through time, material (e.g. asphalt, concrete), and geographic location.

Figure 10: 3D point cloud illustrating inlier points (shown in blue), outlier points above the road surface
(shown in red), and outlier points below the road surface (shown in green) and representing the road defect.

Using the inlier points in the road surface, I, and outlier points below the surface, O, a clustering technique

is applied that divides each image into a checkerboard of blocks (30 rows and 30 columns) and then compares

the number of points in each category. If the number of inlier points in the block is greater than the number

of outlier points below the road surface in the block, the outlier points are dismissed as being considered

part of the road defect under the probability that the 3D points in said block are more likely to belong to

the plane of the road surface. The number of divisions in the rows and columns to produce the checkerboard

were determined by processing various examples of road defects and visually examining the resulting image

(such as seen in Figure 11b). The desired number of divisions chosen was based on a road defect that was

accurate in length and width compared to the actual length and width while keeping the computational cost

of comparing each block of the checkerboard to a minimum. Figure 11 shows images of the outliers below

the road surface before clustering and after clustering. It also shows the outliers overlaid on the inliers (road

surface points). The elimination of points can be seen from Figure 11a to Figure 11b. This refinement is the

direct result of the clustering technique and represents one step toward defining the outline of the road defect.

Figure 11: Shown above is: a) outlier points below the road surface before clustering, b) outlier points below
the road surface after clustering, c) points from (b) overlaid onto inlier points (points within road surface)

17

After the clustering is completed, a saliency map is applied to the image containing outlier points overlaid

on inlier points (see Figure 11c). The saliency map isolates foreground pixels from background pixels in an

image to yield a blurred, grayscale image of the road defect as shown in Figure 12b. The pixels in this image

contain a range of gray shades from black to white, where black pixels contain a value of 0, white pixels

contain a value of 1 and gray pixels contain a value between 0 and 1.

Figure 12: Shown above is: a) actual color image of the road defect, b) blurred image from saliency map, c)
smoothed image of road defect including the length and width indicated by the red lines

The blurred, grayscale image of the road defect is then smoothed using a threshold determined by exper-

imenting with different threshold values and then comparing algorithm-generated lengths and widths with

the road defect true lengths and widths. The algorithm then displays the 2D binary, black-and-white image

of the road defect containing only zeros and ones. Using this binary, black-and-white image the algorithm

scans the rows of pixels from top to bottom searching for pixels containing ones. It identifies the uppermost

row containing a one and the lowermost row containing a value of one. If there happens to be multiple ones

contained in these rows, the algorithm identifies the location of the middle pixel in these rows. Using this

uppermost pixel and lowermost pixel, the algorithm produces a red line connecting the two, defining one

major axis of the road defect. This process is repeated from left to right to determine the second axis of the

road defect. This yields the length and width of the road defect as shown in Figure 12c.

Length, width and depth measurements are first checked to determine if they are under a specified threshold.

For instance, if the width and depth of the road defect are significant but the length of the road defect is

less than 1 inch, then there is no need to adjust the shock. These thresholds are strategically chosen to

ensure that there would be nominal effect on the ride quality of the consumer if a tire of average size and

width were to encounter a defect parameterized by lengths, widths and depths of equal or lesser value to

these thresholds. After initial checks are done on each of the road defect dimensions and it is found they are

beyond the thresholds, then the algorithm calculates the volume of the road defect and classifies it into one

of 6 discrete values that categorizes the road defect between 0 and 5 based on the volume. Zero is the mildest

of the road defects and will require small, if any, adjustment of the adaptive shock. Five is the most severe

and covers all road defects with calculated volumes over 350 cubic inches. The number of discrete values

were arbitrarily chosen and these discrete values were used because it simplified the controls algorithm for

the bench testing platform. A compilation of images of road defects were collected from the Morgantown,

18

WV area which included actual length, width and depth measurements. These images were used to evaluate

the accuracy of the dimension estimation from the algorithm.

4.3 Real-Time Data Collection and Code Conversion

To effectively capture and process data quickly enough to react to road defects with adequate speed, the

overall data collection and processing operations from the Kinect Sensor have to be executed at a rate of

at least 12 Hz. A value of 12 Hz, or 0.0833 seconds, is determined by assuming a vehicle traveling at 70

mph, or 31.2 m/s, and a Kinect Sensor maximum range of 4 meters while affixed to a vehicle at a 30 degree

downward angle from horizontal. The specification regarding the angle of the sensor and the subsequent

range is determined from experimentation during the on-road data collection sessions. If only image process-

ing time were taken into account, the algorithm could potentially operate at a minimum of 8 Hz, or 0.125

seconds. Because the systems requires additional time for the adaptive shock to respond once it receives

an electric signal, a buffer is built into the algorithm speed requirement. Therefore, if the algorithm takes

0.0833 (12 Hz) seconds to process the image, the adaptive shock has 0.0416 seconds to alter the damping,

keeping the combined response of the system within the 0.125 second requirement needed for the system to

operate effectively at speeds of up to 70 mph. While 12 Hz is determined as the minimum operational speed

for the data capture according to vehicle velocity and sensor range, the Kinect sensor is reported as capable

of capturing 30 frames per second (fps). Therefore, the ideal operational speed of the data collection script

would be 30 Hz, or 0.0333 seconds. The original MATLAB script responsible for early data gathering was

not adequate for this operation, usually running at 1-2 Hertz with little room for optimization. To remedy

this limitation with the MATLAB script, a C++ program is developed and compiled to vastly improve the

Kinect Sensor data capture rate. If the algorithm processing speed goal can not be met, resolution might

have to be sacrificed or the top speed that the vehicle can travel with defect detection active will have to be

decreased. Reducing the vehicle speed will give the vehicle more time for the algorithm to process before the

road defect hits the tires, but would limit the prototype system to low-speed driving which is problematic.

A reduction in resolution would decrease the time per frame by at least the percentage of resolution reduction.

A compiler such as C++ is a low-level programming language that generates a relatively optimized machine

code whereas MATLAB is a high-level programming language. MATLAB has the benefit of containing

libraries with commands already included to perform commonly used functions. However, when executed,

the functions must first be converted to machine code. The lower-level C++ code is closer to the machine

code and executes scripts more efficient and faster than MATLAB especially when there are large amounts

of code to be executed.

The program being developed for capturing images was written in C++ using Microsoft Visual Studio 2017

and the publicly available Kinect SDK 2.0 code. The converted program initiates the sensor and waits for

user input. Once the user triggers a frame capture by laptop keyboard input, a frame is be captured and

stored in a plain text file for observation. A timer reports how long it takes to capture a frame and displays

it at the end of the test for observation. This frame is then be stored in a one-dimensional array of vectors

that stores each distance value for each “pixel” of the depth sensor (i.e., a two-dimensional image with

pixel values representing the distance from the XY plane of the Kinect Sensor as shown in Figure 13). The

recorded time is saved to later be used in an analysis illustrating the improvement in speed of the C++ code

19

over the MATLAB code.

Figure 13: Kinect sensor field of view

5 Adaptive Shock Experimentation

As discussed in Section 4, because altering of the vehicle steering, braking and/or suspension is prohibited,

it is not feasible for the adaptive suspension portion of the road defect mitigation system to be incorpo-

rated into a test vehicle. Therefore, a separate bench testing platform had to be designed, developed and

fabricated in order to simulate a single adaptive shock contacting a road defect such as a pothole. The

testing platform will perform tests necessary to confirm the ability of the system to properly alter the

damping of the adaptive shock and to verify that the system was capable of altering the damping of the

shock prior to the tire striking the road defect under normal vehicle operating speeds. The data necessary to

validate the results of these tests is provided by a suite of sensors incorporated into the best testing platform.

5.1 Bench Testing Platform

A bench testing platform was developed to apply a dynamic load to an adaptive shock to test both time

response of the system to signals sent from the detection algorithm, as well as dynamic response of the adap-

tive shock and ability to dampen applied impact forces. A Monroe OESpectrum 1502 shock with adjustable

damping was procured to test the defect detection/classification algorithm and to determine response time.

The adaptive shock used in this experimentation is shown in Figure 14.

20

Figure 14: Monroe OESpectrum C1501 adaptive shock

The test rig consists of a rectangular, steel frame fabricated from 1” square tubing that is welded to a 1
2

′′

thick base plate made of steel. Attached to the base plate is a pneumatic piston-cylinder system which has

an adaptive shock pinned to the top of the piston. The other end of the shock is attached to a 22′′ x 22′′ x 1
2

′′

thick “floating” plate with 4 - 6′′ sections of 1 1
8

′′
square tubing welded into each corner allowing the plate to

travel along the lengths of the upright tubing on the frame (see Figure 15: Section A). The design consists of

weights that are cut out of 1
2

′′
steel plate, using a CNC plasma cutter, with additional weights stacked onto

the “floating” plate to simulate the weight of the vehicle over one wheel. Figure 15 shows the “floating” plate

(in yellow) which supports the weights. Between the “floating” plate and shock, a compression load cell is

positioned. Figure 16 shows 412.5 lbs of weights stacked onto the actual bench testing platform. Standard

weights similar to the weights used for weightlifting were acquired from a fellow student. The amount of

weights used in the bench testing platform was determined by researching the average weight applied to a

single shock in a suspension system. A piece of 1′′ steel, round stock is welded on top of and centered on

the “floating” plate”. This makes it easy for the weights to be added and removed. A 1′′ clamping collar

was obtained and tightened down on the round stock after the weights are added. This collar is put in place

as a precautionary measure to ensure the safety of the bench testing platform operators by prohibiting the

weights from sliding off of the shaft during operation.

21

