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Chapter 4: Discussion 

These experiments are first to identify the ability of ovine neutrophils to produce both IL-

4 and IL-13 in response to H. contortus antigen stimulation in vitro. The ability of human 

neutrophils to produce IL-4 in response to various stimuli has been documented in the literature. 

Intracellular flow cytometric analysis revealed the presence of intracellular IL-4 in normal human 

donor neutrophils after stimulation with calcium ionophores (Reglier et al., 1998). Similarly, 

human neutrophils were stimulated with the promastigote form of Leishmania major for an hour, 

and qPCR analysis revealed a significant upregulation in neutrophil IL-4 transcript as compared 

to unstimulated neutrophils (Keyhani et al., 2014). Our data observed similar trends in IL-4 

expression with upregulation occurring within an hour after H. contortus antigen stimulation. 

Futhermore, ovine neutrophils were able to produce IL-4 as early as 3 hours of antigen stimulation 

at a quantity sufficient to activate PBMC which produce additional amounts of IL-4, this leads to 

a robust type 2 response in the host.  

Our data also showed a peak in IL-13 protein production as early as 6-hours after antigen 

stimulation in both SUF and STC neutrophils.  St. Croix neutrophils were able to produce IL-13 

transcript within an hour after H. contortus antigen stimulation as compared to SUF neutrophils, 

which took 6-hours to observe a peak in transcript production. Neutrophil’s ability to produce IL-

13 has been studied in the context of Nippostrongylus brasiliensis infection in mice. Murine 

neutrophils recruited to sites of helminth infection were shown to alter their phenotype through 

transcriptional analysis and promote differentiation of macrophages into alternatively activated 

macrophages (AAMϕ) (Chen et al., 2014). Alternatively activated neutrophils (N2) were shown 

to produce IL-13, which directly acted on macrophages and promoted alternative differentiation. 

Depletion of neutrophils within the host led to a decrease in macrophage adherence to the parasitic 
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larvae (Chen et al., 2014). Further, providing evidence of neutrophils role in both cytokine 

production and phenotype shift to promote the establishment of type 2 immune responses in 

reaction to parasite infections. Based on the existing literature, it is reasonable to conclude that 

early production of IL-4 and IL-13 has the capacity to promote alternative macrophage 

differentiation early in H. contortus infection, thereby promoting parasite expulsion. The presence 

of AAMϕ leads to greater production of IL-13, resulting in an increase in epithelial function, 

greater luminal flow, and gut contractility culminating in parasite expulsion.  However, due to the 

limited evidence to confirm the existence of AAMϕ in sheep (Kreider et al., 2007), further studies 

are needed to confirm this hypothesis. 

Neutrophil plasticity is a phenomenon that similarly requires further investigation. As first 

responders, neutrophils have an ability to adapt to their environment in order to respond 

accordingly. During helminth infection, neutrophils respond in a Th2 manner characterized by the 

production of cytokines such as, IL-4 and IL-13. Whereas, during Th1 and Th17 associated 

infection, neutrophils respond by release of ROS and aid in the promotion of an inflammatory 

environment. In order to examine the presence of a phenotype shift during these studies, IL-17 

expression was observed over the same time course as Th2 associated genes were. Our data 

indicates a downregulation of IL-17 expression during H. contortus antigen processing, providing 

evidence in favor of neutrophils adaptability to stimulus. 

Gene expression analysis of Th2 associated genes (IL-4, IL-13, IL-4Rα, and Stat6) 

revealed upregulation after an hour of H. contortus antigen stimulation. Increased transcription at 

1 hour after stimulation coincides with production of IL-4 and IL-13 protein observed as early as 

3 and 6-hours after larval antigen stimulation. Classically, neutrophils have been known for their 

vital role in microbial infection clearance through production of proinflammatory cytokines, 
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reactive oxygen species (ROS), phagocytosis, and neutrophil extracellular traps, promoting a Th1  

response (Mócsai, 2013). Our data suggests an ability of ovine neutrophils to recognize parasitic 

stimulant in vitro and alter their phenotype by upregulating type 2 associated genes necessary for 

parasite expulsion.  

Data from these studies also confirmed ovine neutrophils ability to communicate with other 

immune cells. Ovine neutrophils expressed major histocompatibility complex II (MHC II) 

necessary for extracellular antigen presentation and communication to immune cells. MHC II 

expression peaked at 1-hour for STC neutrophils and 3-hours for SUF neutrophils. Similarly, 

human neutrophils have been shown to present influenza hemaaglutinin to antigen-specific CD4+ 

T cells in an MHC II- DR dependent manner (Vono et al., 2011). Our data revealed ovine 

neutrophils from both STC and SUF breeds ability to present exogenous H. contortus larval 

antigen to PBMC and induce IL-4 production and a proliferative response.  

Haemonchus contortus infection in sheep is of great importance due to its detrimental 

nature to economically favorable sheep breeds such as the Suffolk. Jacobs et al., (2016) observed 

differences in immune responses between parasite-resistant STC and parasite-susceptible SUF 

sheep. IL-4 expression was found to be upregulated in abomasal tissue within the first 7 days, as 

early as day 3 in STC sheep. Previous reports support the notion of a 7-day delay in immune 

responses by the SUF sheep to larval stages, permitting the establishment of adults. In SUF sheep, 

IL-4 expression was not upregulated until day 10-post H. contortus infection (Jacobs et al., 2016). 

Characterization of cellular components found in the abomasal tissue of sheep during H. contortus 

infection observed the only difference between STC and SUF breeds were in neutrophil presence. 

Neutrophil presence by day 3-post infection was significantly higher in STC than in SUF abomasal 

tissue, that trend continued out to day 7 (Bowdridge et al., 2015). In vivo differences in resistant 
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and susceptible breeds point toward recruitment of neutrophils to the site of infection. In vitro 

analysis of neutrophil function after H. contortus antigen stimulation reveals no functional 

differences between breeds however; there are differences in neutrophil responses to larval stages 

as compared to responses to adult stages.  

  The ability of neutrophils to migrate to site of infection in resistant STC sheep early during 

H. contortus infection, and their ability to produce both IL-4 and IL-13 provide a framework for 

early responses initiating resistance. The lack of breed differences observed in in vitro analysis 

provides evidence that a defect in the effector function of SUF neutrophils may not be the cause 

of delayed responses. In vivo analysis has shown a reduction in neutrophil recruitment at the site 

of infection with SUF sheep, which may cause the delays observed in SUF immune responses. 

Future studies remain to be performed to understand the dysfunction in neutrophil recruitment in 

susceptible SUF sheep. An understanding of this phenomenon may allow for the development of 

therapies that would induce neutrophil migration would be beneficial in conferring parasite 

resistance in economically-relevant breeds of sheep.  
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Table 1  

 

Table 1. TaqMan Probes   

Gene Name  Abbr. Assay ID  

Glyceraldehyde3-phosphate GAPDH Bt03210913_g1 

Interleukin-4 IL-4 Oa04927178_s1 

Major histocompatibility complex II  MHC II  Oa04925564_s1 
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Table 2 

Table 2. SYBR Green Primers   

Gene Name  Abbr. Primer  Accession # 

Glyceraldehyde3-phosphate GAPDH F- CAGGAGCACGAGAGGAAGAG 

R- AATGTATGGAGGTCGGGAGA 

HM043737 
 

Interleukin-13 IL-13 F- ACTGGGGTTAGGAGGGACTG 

R- ATGCCCACTGCTTTAGTGCT 

DQ679798.1 
 

Interleukin-4 receptor α IL-4Rα F- TGGGAAGAGACGGAGTTTTG 

R- GCTTGGCAGGATGTTTGTTT 

XM_004020855 
 

Signal transducer and 

activator of transcription 3 

STAT3 F- CCTCCCTGATTGTGACCGAG 

R- CAATGAGTGCGTCTCCAGGT 

 

Signal transducer and 

activator of transcription 6 

STAT6  F- GCGTGTGAGTGTGTGTCCT 

R- ACACTCCCTCCCACATACACA 

 

Interleukin- 17 IL-17  F- GGAACACGAACTCCAGAAGG 

R- ACTTGGCCTCCCAGATCAC 

 

XM_004018887.1 
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Figure 2  

 

Figure 2: Neutrophils IL-4 production in response to stimulation with larval (HcLA) 

or adult (HcWA) antigen. St. Croix (STC) and Suffolk (SUF) neutrophils were cultured 

with 20 µg/ml of HcLA (A), or HcWA (B) for 0.5, 1, 3, 6, 12, or 24 hours. Average IL-4 

protein was measured over the time course for larval (C), or adult (D) antigen stimulation. 

Interleukin-4 protein in cell supernatant was measured by an ovine specific IL-4 ELISA. 

Error bars = SEM. 

 

 

 

 

 

 

 

 

 

 



36 

 

Figure 3 

 

 

Figure 3: Neutrophils IL-13 production in response to stimulation with larval (HcLA) 

or adult (HcWA) antigen. St. Croix (STC) and Suffolk (SUF) neutrophils were cultured 

with 20 µg/ml of HcLA (A), or HcWA (B) for 0.5, 1, 3, 6, 12, or 24 hours. Average IL-13 

protein was measured over the time course for larval (C), or adult (D) antigen stimulation. 

Interleukin-13 protein in cell supernatant was measured by an ovine specific IL-13 ELISA. 

Error bars = SEM. 
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Figure 4 

 

 

Figure 4: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for IL-4 gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average IL-4 expression over time after larval 

antigen stimulation (E), and average IL-4 expression over time after adult antigen 

stimulation (F). Missing time point were undetectable. 
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Figure 5 

 

 

Figure 5: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for IL-13 gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average IL-13 expression over time after larval 

antigen stimulation (E), and average IL-13 expression over time after adult antigen 

stimulation (F). Missing time point were undetectable. 
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Figure 6 

 

 

Figure 6: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for IL-4Rα gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average IL-4Rα expression over time after 

larval antigen stimulation (E), and average IL-4Rα expression over time after adult antigen 

stimulation (F). Missing time point were undetectable. 
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Figure 7 

 

 

Figure 7: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for STAT6 gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average STAT6 expression over time after 

larval antigen stimulation (E), and average STAT6 expression over time after adult 

antigen stimulation (F). Missing time point were undetectable. 
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Figure 8 

 

 

 

Figure 8: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for MHC II gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average MHC II expression over time after 

larval antigen stimulation (E), and average MHC II expression over time after adult 

antigen stimulation (F). Missing time point were undetectable. 
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Figure 9 

 

 

 

Figure 9: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for STAT3 gene expression analysis. STC HcLA (A), STC 

HcWA (B), SUF HcLA (C), SUF HcWA (D), average STAT3 expression over time after 

larval antigen stimulation (E), and average STAT3 expression over time after adult 

antigen stimulation (F). Missing time point were undetectable. 
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Figure 10 

 

 

Figure 10: mRNA analysis of primed Suffolk and primed St. Croix neutrophils by 

qPCR in response to culture with parasitic antigen. Neutrophils from primed SUF and 

STC sheep were incubated with 20 µg/ml of HcLA or HcWA for 0.5, 1, 3, 6, 12, or 24 

hours before RNA extraction for IL-17 gene expression analysis. Larval antigen (A), adult 

antigen (B), average IL-17  expression over time after larval antigen stimulation (C), and 

average IL-17 expression over time after adult antigen stimulation (D). Missing time point 

were undetectable. 
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Figure 11 

 

 

 Figure 11: Interleukin-4 production by PBMC stimulated with supernatant from H. 

contortus antigen stimulated neutrophils. Neutrophils were incubated with larval 

antigen at 20µg/ml for 3 hours before a 6-hour co-culture with peripheral blood 

mononuclear cell (PBMC) to assess IL-4 protein production. Total IL-4 production (A), 

Neutrophil IL-4 production after 9 hours (B), and IL-4 production by PBMC post 

stimulation with neutrophil supernatant (C). To obtain the values observed in figure 5C, 

figure 5B was subtracted from figure 5A. NCM: neutrophils stimulated with complete 

media, NCLA: neutrophils stimulated with HcLA. NCM: neutrophils stimulated with 

complete media, NCLA: neutrophils stimulated with HcLA. 
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 Figure 12 

 

Figure 12: Antigen primed neutrophils incubated with naïve PBMC to assess PBMC 

IL-4 production. Neutrophils were incubated with larval antigen at 20µg/ml for 3 hours 

and washed with sterile PBS. Neutrophils were then co-culture with naive peripheral blood 

mononuclear cell (PBMC) for 6 hours to assess IL-4 protein production. Total IL-4 

production by each group, including neutrophils alone, after 9 hours (A) and IL-4 

production by PBMC post stimulation with antigen stimulated neutrophils (B). NCM: 

neutrophils stimulated with complete media, NCLA: neutrophils stimulated with HcLA. 
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Figure 13 

 

 

 

Figure 13: Proliferation assay to assess PBMC responsiveness after culture with 
H. contortus antigen stimulated neutrophils. Neutrophils were incubated for 3 hours 
with larval antigen at 20 µg/ml. After stimulation neutrophils were washed and co-cultured 
with peripheral blood mononuclear cells (PBMC) for 72 hours, before an alamar blue 
assay was performed to assess PBMC proliferation.  
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