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Abstract

Three Essays on Health Economics and Policy Evaluation

Shishir Shakya

This dissertation consists of three essays on U.S. Health care policy. Each para-
graph below refers to the three abstracts for the three chapters in this dissertation,
respectively.

I provide quantitative evidence on how much Prescription Drug Monitoring Pro-
grams (PDMPs) affects the retail opioid prescribing behaviors. Using the American
Community Survey (ACS), I retrieve county-level high dimensional panel data set
from 2010 to 2017. I employ three separate identification strategies: difference-in-
difference, double selection post-LASSO, and spatial difference-in-difference. I com-
pare how the retail opioid prescribing behaviors of counties, that are mandatory for
prescribers to check the PDMP before prescribing controlled substances (must-access
PDMPs), vary from the counties where such a PDMP check is voluntary. I find
must-access PDMP reduces about seven retail opioid prescriptions dispensed per 100
persons per year in each county. But, when I compare must-access PDMPs counties
with bordering counties without such law, I find a reduction of three retail opioid pre-
scriptions dispensed per 100 persons per year suggesting the possibility of spillovers
of retail opioid prescribing behaviors.

As of 2019, all U.S. states, except Missouri, have enacted voluntary Prescription
Drug Monitoring Programs (PDMPs). In response to the relatively low uptake of
voluntary access, several states have strengthened their PDPMs by requiring providers
to access information regarding prescription drug use under certain circumstances.
These “must-access” PDPMs require states to view a patient’s prescription history to
facilitate the detection of suspicious prescription and utilization behaviors. This paper
develops causal evidence of the effectiveness of “must-access” PDPM laws in reducing
prescription opioid overdose death rates relative to voluntary PDMP states. I find
that PDMPs are ineffective in reducing prescription opioid overdose deaths overall,
but the effects are heterogeneous across states with “must-access” PDMP states. I
find that marijuana and naloxone access laws, poverty level, income, and education
confound the impact of must-access PDMPs on prescription opioid overdose deaths.

The optional provision of Medicaid expansion, through the Affordable Care Act
(ACA), has triggered a national debate among diverse stakeholders regarding the im-
pacts of Medicaid coverage on various dimensions of public health, costs, and benefits.
Randomized experiments like the Rand Health Insurance Experiment and the Oregon
Health Insurance Experiment have generated some credible estimates of the average
treatment effects of insurance access. However, identical policy interventions can
have heterogeneous effects on different subpopulations. This paper uses data from
the Oregon Health Insurance Experiment to estimate the heterogeneous treatment



effects of access to Medicaid on health care utilization, preventive care utilization,
financial strain, and self-reported physical and mental health. I detect heterogeneous
treatment effects using a cluster-robust generalized random forest, a causal machine
learning approach. I find that the impact of Medicaid is more pronounced among
relatively older non-elderly and poorer households, consistent with standard adverse
selection theory. Furthermore, I implement the “efficient policy learning,” another
machine learning strategy, to identify policy changes that prioritize providing Medi-
caid coverage to the subgroups that are likely to benefit the most. On average, the
proposed reforms would improve the average probability of outpatient visits, pre-
ventive care use, overall health outcomes, having a personal doctor and clinic, and
happiness by a range of 2% to 9% over a random assignment baseline. These findings
help design Medicaid Section 1115 waiver.
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1

Chapter 1

County Level Assessment of

Prescription Drug Monitoring

Program and Opioid Prescription

Rate

1.1 Introduction

Deaths related to overdoses of opioids drugs, including both prescription opioid

drugs and illicit opioids such as heroin and illicitly manufactured fentanyl, are rising

in the United States, especially after 2010. On average, 130 Americans die every day

from an opioid overdose (CDC, 2019). Compared to 1999, prescription-drug sales

have quadrupled in the United States (CDC, 2019), leading to a 40 percent increase

in prescription drug overdose deaths.

Abuse of prescription opioids drugs is highest compared to other variants of pre-

scription drugs. National Center on Addiction and Substance Abuse (2014) esti-

mates one in five Americans above 12-year ages misused prescription opioid drugs in

their lifetime, and more than one in four new initiates of illicit drug users started

with prescription opioid drug abuse. National Center on Addiction and Substance

Abuse (2015) estimates 119 million Americans aged 12 or older used prescription
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psychotherapeutic drugs in the past year, representing 44.5 percent of the popu-

lation and 18.9 million people aged 12 or older (7.1 percent) misused prescription

psychotherapeutic drugs in the past year. National Center on Addiction and Sub-

stance Abuse (2015) highlights several contributing factors to the prescription opioid

drug epidemic, namely the advancement of new drug therapies, prescribing practices,

internet pharmacies, expansion of insurance coverage, pharmaceutical advertisement,

increased availability, medication and prescription pad theft, employee pilferage.

Opioid-dependent abusers steal, street purchase from a friend or relative, and

doctor-shop to obtain prescription opioid drugs for non–medical use. Physicians rep-

resent the primary source for prescription opioid opioids for those who obtain pre-

scription opioids through their own prescriptions (Jones et al., 2014). In contrast,

pharmacists and physicians claim doctor shopping as the leading source for opioid

abusers to get prescription opioid opioids (National Center on Addiction and Sub-

stance Abuse, 2015) and is an indirect channel of supply source for street dealers

(Inciardi et al., 2009).

As policy responses to the escalating rates of opioid abuse and overdose death

rates, the US policymakers have tried a variety of state-level policies like quantitative

prescription limits, patient identification requirements, doctor-shopping restrictions,

Prescription Drug Monitoring Program (henceforth PDMP or PDMPs), provisions

related to tamper-resistant prescription forms, and pain-clinic regulations (Meara

et al., 2016). The CDC has been promoting PDMPs as the best defense against the

current impending crisis (Birk and Waddell, 2017).

As of 2019, 49 US states, along with the District of Columbia and the US territory

of Guam has implemented some form of PDMPs. Except for the state of Missouri1,

all the US states have adopted voluntary PDMP. In contrast, few other states have

enacted a so-called “mandatory” or must-access PDMP. Unlike voluntary PDMP, the

must-access PDMP states abide by the law to collect data on controlled substance

1St. Louis County that accounts for more than half of Missouri’s population has implemented
their unique PDMP and appeal to other counties and cities in Missouri to conjoin (PDMPTTAC,
2019).
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prescriptions that doctors have written for patients. The must-access PDMP states

allow authorized individuals to view a patient’s prescription history to facilitate the

detection of suspicious prescriptions and utilization behaviors. The PDPMs varies by

state along several dimensions2 and also evolve over time3.

Differentiating among voluntary and must-access PDMPs is crucial to understand

how these programs affect the prescribing rate. For example, when New York imple-

mented a must-access PDMP in 2013, the number of registrants increased fourteen-

fold, and the number of daily queries rose from fewer than 400 to more than 40,000

(PDMP Center of Excellence, 2016). Similarly, in Kentucky, Tennessee, and Ohio,

implementing a “must access” provision increased by order of magnitude the number

of providers registered and the number of queries received per day (PDMP Center of

Excellence, 2016). In contrast, in the first year after a voluntary PDMP was estab-

lished in Florida, a state with a well-publicized opioid misuse problem, fewer than one

in ten physicians had even created a login for the system (Electronic-Florida Online

Reporting of Controlled Substances Evaluation, 2014).

In this paper, I am quantifying to what extent these must-access PDMPs change

the opioid prescribing behavior. This research question is a crucial policy-relevant

issue because the risk of an opioid use disorder, overdose, and death from prescription

opioids are susceptible to the opioid prescribing rate.

Several papers relate the reduction of an opioid prescription to heroin crime

(Alpert et al., 2017; Evans et al., 2018b; Kilby, 2015; Lankenau et al., 2012; Mal-

latt, 2018; Meinhofer, 2018b). While another strand of literature relates must-access

PDMP to overdosages and overdosages death rates (Buchmueller and Carey, 2018;

Meara et al., 2016; Meinhofer, 2018b). However, in this paper, I provide several

2States can differ in who may access the database (e.g., prescribers, dispensers, law enforcement),
in the agency that administers the PDMP (e.g., department of health, pharmacy boards), in the
controlled substances (CS) that are reported (e.g., some do not monitor CS-V), in the timeliness
of data reporting (e.g., daily, weekly), in how to identify and investigate cases of potential doctor
shoppers (e.g., reactive, proactive), and on whether prescribers are required to query the database
(Meinhofer, 2018a).

3Initially, several states implemented paper-based PDMPs. Still, eventually, these and others
shifted to electronic-based PDMPs (Meinhofer, 2018a).
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unique contributions − first, this paper study of impacts of must-access PDMPs on

the retail opioid prescribing rate. Several studies exist to answer similar questions

(Strickler et al., 2019; Rutkow et al., 2015; Schieber et al., 2019), but these studies

are descriptive. See Ponnapalli et al. (2018) for a systematic literature review of Pre-

scription Drug Monitoring Programs too. However, I contribute to quantifying the

impacts of must-access PDMPs on the opioid prescribing rate.

Second, this paper is first to exploit the county level variations of the retail opioid

prescribing rate. Several studies provide state-level analysis of PDMPs on various

outcomes of interests, and this is because PDMPs are state-level law. However, the

county-level analysis offers a more granular summary by capturing the county level

heterogeneity on how these state-level PDMP laws change the outcome of interest.

Third, I also utilize the two-way fixed effect difference-in-difference econometric

approach with two novel identification strategies using US counties-level panel data

spanning from 2010 to 2017. The first approach is the double selection post-LASSO −

a causal-machine learning method − to control observable characteristics. The second

approach exploits spatial contiguity to control for unobservables characteristics, pos-

sibly. The PDMPs are economic policy variables that are likely not to be randomly

assigned. Therefore several observable characteristics could confound the PDMPs

law and opioid prescribing rate. These observable characteristics can be the social,

economic, and demographic profiles of counties along with several other state-level

laws like Medicaid expansion, marijuana law, good Samaritan law, Naloxone access

laws. The double selection post-LASSO allows selecting observable controls that af-

fect PDMPs and prescribing rates. However, this method is likely not to properly

unobservable. I compare the prescribing rate among must-access PMDP counties,

which the bordering counties without must-access PMDP.

I find that must-access PDMPs reduce seven retail opioid prescriptions dispensed

per 100s persons per county per year. However, when comparing the prescribing

rate among must-access PMDP counties, which the bordering counties without must-

access PMDP, I find about three retail opioid prescriptions dispensed per 100s persons
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per county per year. Since the prescribing rate in boarding counties is lower than over-

all counties, it suggests it is likely that the prescribing rate from must-access PDMPs

counties spillovers to bordering counties that do not have must-access PDMPs.

Section 1.2 explores the data. Section 1.3 layouts two-way fixed effect difference-

in-difference econometric approach along with the double selection post LASSO and

spatial methods. Section 1.4 provides the results and section 1.5 concludes the results.

1.2 Data

I web-scrape CDC website to acquire data of the retail opioid prescriptions dis-

pensed per 100 persons per year4 from 2006 to 2017. CDC estimates prescribing rates

using the IQVIA Xponent data set.

Figure 1.1: Retail Opioid Dispensed per 100 Persons per Year, 2017

Source: https://www.cdc.gov/drugoverdose/maps/rxrate-maps.html

4Note that retail opioid prescriptions dispensed per 100 persons per year index is different from
the morphine milligram equivalent (MME) per person or the number of opioids prescribed per
person.
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IQVIA Xponent is based on a sample of approximately 50,000 retail (non-hospital)

pharmacies, which dispense nearly 90% of all retail prescriptions in the United States.

For this database, a prescription is an initial or refill prescription dispensed at a retail

pharmacy in the sample and paid for by commercial insurance, Medicaid, Medicare,

or cash or its equivalent. This database does not include mail order pharmacy data.

IQVIA Xponent data set uses the National Drug Code to identify opioid prescrip-

tions, which include buprenorphine, codeine, fentanyl, hydrocodone, hydromorphone,

methadone, morphine, oxycodone, oxymorphone, propoxyphene, tapentadol, and tra-

madol. However, the IQVIA Xponent data set excludes cough and cold formulations

containing opioids and buprenorphine that are typically used to treat opioid use dis-

order. Also, methadone dispensed through methadone maintenance treatment pro-

grams is not included in the IQVIA Xponent data. A lack of available data in IQVIA

Xponent may indicate that the county had no retail pharmacies, the county had no

retail pharmacies sampled, or the prescription volume was erroneously attributed to

an adjacent, more populous county according to the sampling rules used.

For the calculation of prescribing rates, numerators are the total number of opioid

prescriptions dispensed in a county in a given year, and the denominator is the annual

resident population denominator estimates obtained from the US Census Bureau.

Figure 1.1 shows US opioid prescribing rate maps in 2017, where rates are classified

by the Jenkse natural breaks classification method into four groups using the 12-year

range of data (2006 to 2017) to determine the class breaks.

I retrieve the list of states that require prescribers to check the PDMP before

prescribing controlled substances or must-access PDMP and the PDMP enactments

date from the pdaps.org website. Figure 1.2 is a visual representation of state and

timing of states that enacted must-access PDMP and the state with only voluntary

PMDPs.

Using the Application Programming Interface of Census from the “censusapi” R

package, I retrieve all the social, economic, housing, and demographic data profile

of each county in the US from the five-year American Community Survey from 2010
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Figure 1.2: State Requiring Prescribers to Check the PDMP Before Prescribing
Controlled Substances

Source: http://pdaps.org/

to 2017. Then, I only include variables that are consistently available from 2010

to 2017. I then deleted variables that are a linear combination of each other and

also remove furthermore highly correlated variables. This process, finally, retains 90

different social, economic, housing, and demographic data profiles of each county.

I also retrieve state-level laws like Good Samaritan Laws and Naloxone Access

Law from pdaps.org website. I use procon.org to access the Marijuana Law (medi-

cal or/and recreational possession of Marijuana). States with the Good Samaritan

Law provide immunity from prosecution for possessing a controlled substance while

seeking help for himself or another person experiencing an overdose. The state with
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Naloxone Access Law provides naloxone and other opioid overdose prevention services

to individuals who use drugs, their families and friends, and service providers, includ-

ing education about overdose risk factors, signs of overdose, appropriate response,

and administration of naloxone. As of 2016, 48 states have authorized some variant

of a naloxone access law, and 37 states have passed a drug overdose good samaritan

law (Ayres and Jalal, 2018).

1.3 Methodology

1.3.1 Difference-in-Difference with Fixed Effects and Clus-

tered Standard-Errors

I begin the analysis by showing if there is a significant difference in retail opioid

prescriptions dispensed per 100 persons between the counties of the state that have

a must-access prescription drug monitoring program (PDMPs henceforth) with the

counties of the state that don’t have such program. For this, I use a simple difference-

in-difference model with county and year fixed effects while clustering the standard

errors in-state levels.

Yit = c+ δDit + αi + ςt + εit (1.1)

where, Yit is retail opioid prescriptions dispensed per 100 persons per year; c is the

intercept, Dit is the treatment indicator and equals 1 after state i has been exposed to

the treatment (must-access PDMP) and equals 0 otherwise; δ is the average treatment

effect, αi and ζt are additive individual state and year fixed effects respectively. One

should expect a negative and significant value of δ, which would suggest the PDMP is

successful in reducing retail opioid prescriptions dispensed. However, a positive and

significant δ shows that states with PDMP have higher retail opioid prescriptions

dispensed rates than in comparison states that do not have must-access PDMP.
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1.3.2 High Dimensional Features and Unknown Data Gen-

erating Process

Studies that examine the impact of the must-access PDMPs on the retail opioid

prescriptions dispensed are likely to suffer the endogeneity. The endogeneity leads

to either over or underestimation of the effects of must-access PDMPs on the retail

opioid prescriptions dispensed. The endogeneity arises because must-access PDMP

enactment is a policy response to the escalating opioid-related overdose death rate

and opioid prescribing behavior.

The equation 2.1 produces an incomplete picture of the relationship between retail

opioid prescriptions dispensed and must-access PDMP. Since the policy/treatment

variable is PDMP is a non-randomly assigned economic variable. The socio-economic

and demographic profile of each county could likely affect both retail opioid pre-

scriptions and must-access PDMP. Furthermore, literature has shown that Medicaid

expansion, marijuana law, good Samaritan law, Naloxone access laws have a diverse

effect on the demand for prescription opioids.

Failure to conditioning these confounders can lead to omitted variable bias. How-

ever, over-controlling leads to loss of efficiency of estimates. The actual data gener-

ating a process that explains the relationship between the must-access PDMPs and

the opioid prescribing rate is unknown to the researcher. However, one can use gen-

eral economic intuition to guide the variable selection that is standard in the litera-

ture. However, the actual data generating process (DGP) might comprise the various

transformation of these observable confounders, for example, lags, higher-order poly-

nomials, and interactions. Including and controlling for all these transformations

may not be feasible because the covariates space can increase exponentially with high

dimensional data.

Hence, the primary goal is to inference the low-dimensional parameter from the

high-dimensional nuisance parameter, which comprises to solve auxiliary prediction
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problem quite well. Consider the following outcomes yi as a partially linear model:

yi = diα0 + g (zi) + ξi, E [ξi|zi, di] = 0

di = m (zi) + vi, E [vi|zi] = 0
(1.2)

where we have a sample of i = 1, . . . , n independent observation, d is policy/treatment

variable as “must-access” PDMPs possibly non-randomly assigned an economic vari-

able. The α0 is the target parameter of interest, which answers the portion of

variations in outcome variable due to the changes in policy variables. zi is a high-

dimensional vector of other controls or confounders. The high-dimensional vector of

controls is in zi and collected from the social, economic, housing, and demographic

data profile from the American Community Survey for each county from 2010 to

2017. It is plausible to define that some of those features are a common cause for the

existence of “must-access” PDMP and opioid prescription, and m0 6= 0, typically in

the case of observational studies. m0 = 0 would suggest that the policy variable is

randomly assigned.

1.3.3 Double Selection Post LASSO

Lets consider linear combinations of control terms xi = P (zi) to approximate

g (zi) and m (zi). The list xi = P (zi) could be composed of many transformations

of elementary regressors zi such as B-splines, dummies, polynomials, and various

interactions. Having many controls poses a challenge of estimation and inference,

therefore, to avoid such we assume the sparsity assumption that only a few among

many variables in the zi explains outcomes yi.

yi = diα0 + x′iβg0 + rgi︸ ︷︷ ︸
g(zi)

+ξi

di = x′iβm0 + rmi︸ ︷︷ ︸
m(zi)

+vi

(1.3)

The sparsity then relates to x′iβg0 and x′iβm0 approximate g (zi), and m (zi) that
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requires only a small number of non-zero coefficients to render corresponding approx-

imation errors rgi and rmi.

An appealing method to estimate the sparse parameter from a high-dimensional

linear model is the Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-

shirani, 1996). LASSO simultaneously performs model selection and coefficient esti-

mation by minimizing the sum of squared residuals plus a penalty term. The penalty

term penalizes the size of the model through the sum of absolute values of coefficients.

Let me define a feasible variable selection via LASSO for outcome variable and

policy or treatment variable. Here, we change the notation as the outcome, and the

policy variable takes the following form:

ỹi = xiβ1 + ri+︸ ︷︷ ︸
f(z̃i)

εi

d̃i = xiβ2 +mi+︸ ︷︷ ︸
f(z̃i)

εi
(1.4)

moreover, LASSO estimator is defined as the solution to:

min
β1∈Rp

En
[
(ỹi − x̃iβ1)2

]
+
λ

n
‖β1‖1

min
β2∈Rp

En

[(
d̃i − x̃iβ2

)2]
+
λ

n
‖β2‖1

(1.5)

where, the penalty level λ is a tuning parameter to regularize/controls the degree

of penalization and to guard against overfitting. We choose λ by cross-validation in

prediction. The ‖β‖1 =
∑p

j=1 |βj|. The kinked nature of penalty function induces

β̂ to have many zeros, thus LASSO solution feasible model selection method. The

estimated coefficients are biased towards 0; therefore, Belloni et al. (2013) and Belloni

et al. (2014a) suggest to run an OLS on selected variables also known as post-LASSO

or Gauss-LASSO estimator.

Let Î1 = S
(
β̂1

)
denote support or the controls selected by feasible LASSO esti-

mator β̂1 and Î2 = S
(
β̂2

)
denote support or the controls selected by feasible LASSO

estimator β̂2. The post-double-selection estimator
^

α of α0 is defined as the least
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squares estimator obtained by regressing yi on di and the selected control terms xij

with j ∈ Î ⊇ Î1 ∪ Î2:

(
^

α,
^

β
)

= min
α∈R,β∈Rp

En
[
(yi − diα− x̃iβ)2

]
: βj = 0,∀j /∈ Î (1.6)

In this equation 1.6, we can impose fixed effects and we can also cluster standard

error. Belloni et al. (2013) provide theoretical results that the estimates are unbiased

and consistent as:([
Ẽṽ2i

]−1
E
[
ṽ2i ξ̃

2
i

]−1[
Ẽṽ2i

]−1)−1/2√
n
(^
α− α0

) d→N (0, 1) (1.7)

1.3.4 Managing Unobservable with Spatial Difference-in-Difference

The equation 1.6 allows us to properly select few or sparse observables from the

high dimensional observables that could affect both the outcomes and policy variables.

Equation 1.6 can utilize fixed effects to handle unobserved heterogeneity. However,

as an additional layer of caution, I exploit the county level spatial contiguity. Rather

than comparing outcomes of all the counties within the state with PDMPs and with-

out PDMPs, in this setting, I implement equation 2.1 and 1.6 to compare outcome

variables from the neighboring PDMPs county with the bordering counties without

PDMPs. Figure 1.3 exhibits a map of the US that comprises the bordering treatment

and comparison counties in a different color for the year 2017.

1.4 Results

Table 1.1 show the impacts of PDMP on retail opioid prescriptions dispensed with

the Näıve OLS, double selection post-LASSO with pooled OLS, Näıve fixed effect, and

double selection post-LASSO with fixed effect model in column (1) to (4) respectively.

The dependent variable is retail opioid prescriptions dispensed per 100 persons, and

the policy variable is the must-access PDMP. The standard errors are clustered at

the state level to account for the intra-state level correlations.
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Figure 1.3: Bordering Counties, 2017

Table 1.1 column (1) and (2) are estimates of Näıve OLS and double selection

post-LASSO with pooled OLS. These estimates are not signification in a 5% level of

significance. However, the intercept of the Näıve OLS model holds the interpretation

that, on average, in non-PDMPs counties, retail opioid prescriptions dispensed per

100 persons is 83, and counties with must-access PDMPs on average have additional

six retail opioid prescriptions dispensed per 100 persons. For the remaining models

in Table 1.1 column (2) to (4), the intercepts are not interpretive; therefore, I do not

report them.

Table 1.1, column (3) and (4) estimate Näıve fixed effect and double selection

post LASSO with fixed-effect models. Both models suggest that a reduction of 7

retail opioid prescriptions dispensed per 100 persons in the counties with must-access

PDMPs compared to comparison counties. The estimates of column (3) and (4) are
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Table 1.1: Impacts of Must-access PDMP on Retail Opioid Prescriptions Dispensed

Retail opioid prescriptions dispensed per 100 persons

Näıve OLS Pooled OLS Näıve FE DSPL FE
(1) (2) (3) (4)

PDMP 6.210 -2.622 -7.572*** -6.882***
(7.064) (3.282) (2.035) (1.521)

Intercept 83.530***
(3.535)

R2 0.002 0.258 0.929 0.931
Adj-R2 0.002 0.257 0.919 0.920
County FE Y Y
Year FE Y Y
DSPL Y Y

Notes: Note: Robust standard errors clustered by the state are reported in parenthesis. *,
** and *** represent the 10%, 5% and 1% level of significance. Double selection post-LASSO
(DSPL) is used for covariates selection. FE represents fixed effects.

similar; therefore, to save space, I do not report the selected variables.

Contrary to Table 1.1, in Table 1.2, I consider the must-access PDMP state’s

counties’ retail opioid prescription rate with bordering counties from the state that

have not enacted must-access PDMPs. Under the assumption that these bordering

counties would be similar in their unobservables, I can test the impacts of must-access

PDMPs on the retail opioid prescription rate. This will also allow checking if retail

opioid prescription rate spillovers from must-access PDMPs counties to bordering

counties without must-access PDMPs.

Table 1.2, column (1) presents estimates of Näıve OLS. The intercept shows that

non-must-access PDMPs state counties that bordered with must-access PDMPs state

counties have 95 retail opioid prescription rates per 100 persons, which is about nine

retail opioid prescription rates per 100 persons higher.

Table 1.2, column (2), and (3) estimates Pooled OLS where the controls are se-

lected using double selection post-LASSO and a Naive fixed effects estimate, respec-

tively. Both these estimates show an insignificant effect of must-access PDMPs on

the retail opioid prescription rate. However, the double selection post-LASSO with

fixed effect in column (4) shows a reduction of about three retail opioid prescriptions
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Table 1.2: Impacts of Must-access PDMP on Retail Opioid Prescriptions Dispensed,
Spatial Contiguity

Retail opioid prescriptions dispensed per 100 persons

Näıve OLS Pooled OLS Näıve FE DSPL FE
(1) (2) (3) (4)

PDMP -9.184*** -2.426 -1.974 -3.158*
(2.917) (4.088) (1.374) (1.799)

Intercept 95.975***
(6.671)

Good Samaritan Law 9.035***
(2.882)

Information Industry (%) 3.811**
(1.679)

Construction Industry (%) 1.032*
(0.528)

Commuting Worked at Home (%) -1.336*
(0.665)

R2 0.009 0.406 0.932 0.935
Adj-R2 0.008 0.403 0.922 0.925
County FE Y Y
Year FE Y Y
“ DSPL Y Y
Selected covariates Y

Notes: Note: Robust standard errors clustered by the state are reported in parenthesis. *,
** and *** represent the 10%, 5% and 1% level of significance. Double selection post-LASSO
(DSPL) is used for covariates selection. FE represents fixed effects.

rate per 100 persons, and this model selects several variables.

I choose and put only the significant control variables in column (4) to save space.

Compared to counties without Good Samaritan Law, the counties with Good Samar-

itan Law has about nine more retail opioid prescription rate per 100 persons. States

with the Good Samaritan Law provide immunity from prosecution for possessing a

controlled substance while seeking help for himself or another person experiencing

an overdose. Counties with a higher share of information and construction industry

experience an additional 4 and 1 more retail opioid prescription rate per 100 persons,

whereas counties with a higher share population who worked from home and did not

commute have about one less retail opioid prescription rate per 100 persons.



Shishir Shakya Chapter 1. County-Level Assessment of PDMP and Opioid Rx Rate 16

1.5 Conclusion

This study quantifies how does the must-access PMDPs affect the retail pre-

scription opioid prescribing rate and presents first-hand evidence at the county-level.

Compare to non-must-access PDMPs counties, the must-access PDMPs counties, on

average, have seven less retail opioid prescriptions dispensed per 100 persons per

year. But, when I compare the bordering counties only, to control unobservables, I

find must-access PDMPs counties have three less retail opioid prescriptions dispensed

per 100 persons per year compared to their bordering counterpart non-must-access

PDMPs counties, suggesting the possibilities of spillovers of retail opioid prescribing

behaviors.

This study raises several issues. First, how much such reduction of retail opioid

prescriptions dispensed per 100 persons per year translates into the decline of the

prescription-related opioid death rate. Although the number of opioid-related deaths

from all sources increased since 2012, the number of deaths each year associated

with the use of prescription opioids alone has not increased since then (Schieber

et al., 2019). Similarly, reducing retail opioid prescriptions could lead opioid abusers

to switch to other cheaper and illicit substitutes. If there exists such substitution,

then there could be unintended consequences of must-access PDMPs like increase

crime, opioid poisoning, and deaths related to illegally manufactured Fentynal or

heroine. Therefore, to solve the current opioid epidemic, both illicit street drugs and

prescription opioids must become less available without compromising the need for

compensating medical care related to the opioid and getting patients with opioid use

disorder into treatment.

This study is subject to several limitations. CDC’s IQVIA Xponent data set uses

the National Drug Code to identify opioid prescriptions, which include buprenorphine,

codeine, fentanyl, hydrocodone, hydromorphone, methadone, morphine, oxycodone,

oxymorphone, propoxyphene, tapentadol, and tramadol. Each of these drugs is likely

not equally prescribed; therefore, without administrative IQVIA Xponent data set,
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it is not possible to see the heterogeneities within the retail prescription opioid pre-

scribing rate. Furthermore, each must-access PDMPs can be different stringent on

several dimensions. For example, states can differ in who may access the database

(e.g., prescribers, dispensers, law enforcement), in the agency that administers the

PDMP (e.g., department of health, pharmacy boards), in the controlled substances

(CS) that are reported (e.g., some do not monitor CS-V), in the timeliness of data

reporting (e.g., daily, weekly), in how to identify and investigate cases of potential

doctor shoppers (e.g., reactive, proactive), and on whether prescribers are required

to query the database (Meinhofer, 2018a). This study doesn’t account for such vari-

ability of stringent PDMPs.

The analysis presented in this paper may inform states as they create laws, poli-

cies, communications, and interventions tailored to their specific problems. The mag-

nitude, severity, and chronic nature of the opioid epidemic in the United States is

of serious concern to clinicians, the government, the general public, and many oth-

ers. As they review new studies and recommendations, clinicians should continue to

consider how they might improve pain management, including opioid prescribing, in

their practice (Schieber et al., 2019).
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Chapter 2

Impact of Must-access Prescription

Drug Monitoring Program on

Prescription Opioid Overdose

Death Rates

2.1 Introduction

The United States (U.S.) is amid an opioid drug epidemic1. From 1999 to 2017,

over 700,000 people have died from a drug overdose, and nearly 400,000 people have

died from an overdose involving prescription (Rx) opioids and illicit opioids like heroin

and illicitly manufactured Fentanyl (CDC, 2019). In 2017, opioid overdoses claimed

about 130 American lives each day2. In 2017, the number of overdose deaths involving

opioids (including Rx opioids and illegal opioids) was six times higher compared to

2006 (CDC, 2019). The dramatic increase in opioid-related deaths has reversed the

1Opioid drugs are formulated to replicate properties of opium, mainly to soothe pain and emo-
tions and to release the dopamine hormone to create a feeling of euphoria, and can lead users to
dependence and later to the addiction. These opioid drugs include both legal painkillers like Mor-
phine, Oxycontin, or Hydrocodone prescribed by doctors for acute or chronic pain and illegal drugs
like heroin and illicitly made Fentanyl (CNN, 2019).

2Wide-ranging online data for epidemiologic research (WONDER). Atlanta, GA: CDC, National
Center for Health Statistics; 2017. Available at http://wonder.cdc.gov.
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declining midlife mortality trend for middle-aged Whites (Case and Deaton, 2015).

Florence et al. (2016) estimate the total economic burden of Rx opioid overdose along

with opioid abuse, dependence, loss of productivity, and criminal justice costs to be

$78.5 billion annually.

In 2011, the Centers for Disease Control and Prevention (CDC) classified Rx abuse

as an “epidemic”. Among many policy responses, the CDC promotes the Prescrip-

tion Drug Monitoring Programs (PDMPs) as the best defense against the current Rx

opioid crisis (Birk and Waddell, 2017)3. The PDMP is a supply-side policy to restrict

over-prescription and over-utilization of controlled substances while maintaining com-

passionate care. PDMPs collect data on prescriptions of controlled substances and

allow authorized healthcare providers, law enforcement officials, PDMP administra-

tors, and other authorized stakeholders (Meinhofer, 2018a) to identify patients who

are possibly abusing Rx drugs, doctor shopping, and are at high risk of an overdose

(Grecu et al., 2019)4.

Currently, 49 U.S. states, along with the District of Columbia and the U.S. ter-

ritory of Guam has implemented some form of PDMPs. The only state without a

PDPM is Missouri5 The stringency of the PDPMs varies by state along several di-

mensions6 and also evolve over time7. As of 2018, 18 different states have enacted

“must-access” or mandatory PDMP, while the remaining states have so-called “volun-

3Various state-level policy responses have been pursued to address the escalating rate of opioid
abuse and overdose, including quantitative prescription limits, patient identification requirements,
doctor-shopping restrictions, Prescription Drug Monitoring Programs (PDMPs), provisions related
to tamper-resistant prescription forms, and pain-clinic regulations (Meara et al., 2016).

4The data collected generally includes the names and contact information of the patient, pre-
scriber, and dispenser, the name and dosage of the drug, the quantity supplied, the number of
authorized refills, and the method of payment (Meinhofer, 2018a).

5St. Louis County that accounts for more than half of the population of Missouri have imple-
mented their own PDMP and appeal to other counties and cities in Missouri to conjoin (PDMPT-
TAC, 2019).

6States can differ in who may access the database (e.g., prescribers, dispensers, law enforcement),
in the agency that administers the PDMP (e.g., department of health, pharmacy boards), in the
controlled substances (C.S.) that are reported (e.g., some do not monitor CS-V), in the timeliness
of data reporting (e.g., daily, weekly), in how to identify and investigate cases of potential doctor
shoppers (e.g., reactive, proactive), and on whether prescribers are required to query the database
(Meinhofer, 2018a).

7For instance, initially, several states implemented paper-based PDMPs, but eventually, these
and others shifted to electronic-based PDMPs (Meinhofer, 2018a).
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tary” PDMPs. Authorized individuals in the states that passed must-access PDMP

are required by law to check the PDMP before prescribing controlled substances

(Buchmueller and Carey, 2018).

Most of the previous literature finds that PDMPs, in general, have limited, in-

consistent, or no effect on mortality and abuse (Meara et al., 2016; Brady et al.,

2014; Reifler et al., 2012; Haegerich et al., 2014). These inconsistencies in results may

be caused by not differentiating among voluntary and must-access PDMPs because,

when provider access not mandatory, only a small share of providers create PDMP

logins and request patient histories (PDMP Center of Excellence, 2014; Buchmueller

and Carey, 2018)8. Therefore, previous studies that do not differentiate between

voluntary and mandatory PDPMs are likely to consider lower provider utilization of

PDMPs when estimating the possible impacts.

A few recent studies differentiate between “must-access” and voluntary PDMPs in

the research design. Buchmueller and Carey (2018) find must-access PDMPs reduce

indicators of opioid abuse while voluntary PDMPs have no effects among elderly

and disabled participants between 2007 and 2013. Ali et al. (2017) find limited

impact based on self-reported measures of Rx drug abuse. Grecu et al. (2019) find a

reduction in opioid abuse among young adults (ages 18 to 24) and substitution toward

other illicit drugs and a corresponding decrease in admissions related to cocaine and

marijuana abuse.

This paper contributes to this limited literature in several aspects. First, I ex-

amine the effect of the must-access PDMPs and develop some of the first evidence

of state-level heterogeneous effects of must-access PDMPs. Second, I control for

observable confounders using a high dimensional panel data from 1999 to 2017, im-

8For example, when New York implemented a must-access PDMP in 2013, the number of reg-
istrants increased fourteen-fold, and the number of daily queries rose from fewer than 400 to more
than 40,000 (PDMP Center of Excellence, 2016). Similarly, in Kentucky, Tennessee, and Ohio,
implementing a “must access” provision increased by order of magnitude the number of providers
registered and the number of queries received per day (PDMP Center of Excellence, 2016). In
contrast, in the first year after a voluntary PDMP was established in Florida, a state with a well-
publicized opioid misuse problem, fewer than one in ten physicians had even created a login for the
system (Electronic-Florida Online Reporting of Controlled Substances Evaluation, 2014).
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plementing the double-selection post-LASSO method (Belloni et al., 2013). Most

previous studies exploit variation PDMP policies as an exogenous shock to examine

the effect of PDMPs on some outcome variables like opioid abuse, poisoning, and

overdose death. However, state-specific political, socioeconomic, and demographic

features could affect both PDMP enactment and opioid-related outcome variables.

Therefore, for inference, the state’s political, socioeconomic, and demographic char-

acteristics must be adequately controlled. The double-selection post-LASSO method

helps with causal inference by utilizing the strengths of machine learning methods to

select adequate observables and instruments.

Third, I examine Rx opioid overdose deaths in a state setting and contribute

to the literature of program evaluation in a regional context. The synthetic con-

trol method only allows estimating the policy effect on one treatment unit or state

(Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015); however, this study eval-

uates the impact of “must-access” PDMPs by implementing a generalized synthetic

control method which allows multiple intervention units (Xu, 2017). This approach

also allows modeling the unobserved time-varying heterogeneity by explicitly imple-

menting the interactive fixed effects (IFE) model of Bai (2009), while the previous

studies model the unobserved time-varying heterogeneity using unit-specific linear or

quadratic time trends in a conventional two-way fixed effects models (Grecu et al.,

2019; Mallatt, 2018). Fourth, to generalize the results to the national context, I imple-

ment weighted regressions, which allows for investigating the impact of “must-access”

PDMP provisions across states.9

My findings show that “must-access” PDMPs states do not reduce the Rx opioid

overdose deaths while these effects are heterogeneous across “must-access” PDMP

states. I find evidence that marijuana and naloxone access laws, poverty level, in-

come, education confound the impact of must-access PDMPs on the Rx opioid over-

dose deaths. I show that the unobserved time-varying heterogeneity possibly relates

9Grecu et al. (2019) suggest utilizing weighted regressions because unweighted regressions impose
the constraint of a similar effect for the entire population which may mask heterogeneity and policy
effects.
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to the illicit Fentanyl overdose death rate, which cannot be identified from the overall

Rx opioid overdose death rate. Furthermore, this paper explains why the existing

literature does not reach a consensus regarding the effect of PDMPs. I show evidence

that the definition of the Rx opioid death rate provided by the CDC can lead to in-

conclusive results. Among the deaths with drug overdose as the underlying cause, the

CDC reports the Rx opioid deaths following ICD-10 multiple cause-of-death codes:

natural and semisynthetic opioids (T40.2); methadone (T40.3); and synthetic opi-

oids, other than methadone (T40.4). Deaths from illegally-made Fentanyl cannot be

distinguished from pharmaceutical Fentanyl in the data. For this reason, deaths from

both legally prescribed and illegally produced Fentanyl are included in these data.

Section 2.2 comprises a background of Rx opioids and PDMPs. Section 2.3 pro-

vides a literature review. Section 2.4 layouts detailed empirical strategies. Section

2.5 explains the data. Section 2.6 reports the results. Section 2.7 concludes the study.

2.2 Prescription Drug Epidemic

In the 1840s, opium and Morphine were sold as miracle cures and syrup. Diverse

users10 triggered the first U.S. opium and morphine epidemic that lasted until the

1910s. The 1960’s heroin epidemic, the 1980’s cocaine/crack epidemic, and 2000s

methamphetamine epidemic are evidence that the United States has a persistent

insatiable demand for intoxicating substances, legal and illegal (Pacula and Powell,

2018), and the U.S. is always on the war on drugs.

The root causes of the present U.S. opioid epidemic dates back to the 1980s.

Portenoy and Foley (1986)’s conclusion that long-term usages of opioid pain reliev-

ers are safe (based on the sample size of 38 chronic pain patients) was widely cited

to support the use of opioid pain relievers for chronic non-cancer pain. The prac-

10Mothers dosed themselves and their children with opium tinctures and patent medicines. Soldiers
used opium and Morphine to treat diarrhea and painful injuries. Drinkers alleviated hangovers with
opioids. Chinese immigrants smoked opium, a practice that spread to the white underworld. But
the primary source of the epidemic was iatrogenic morphine addiction, which coincided with the
spread of hypodermic medication during 1870–1895. The model opioid-addicted individual was a
native-born white woman with a painful disorder, often of a chronic nature (Kolodny et al., 2015).
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tice to prescribe opioid pain relievers for chronic non-cancer pain gradually rose and

accelerated rapidly after 1995 when Purdue Pharma introduced “OxyContin” as an

extended-release formulation of oxycodone with aggressive marketing and promotion

strategies11. This extend-release formulation contained a much higher concentration

of oxycodone (Singer, 2018), which slowly releases into the bloodstream and can be

taken less frequent intervals (every 12 hours for control of chronic pain) than other

immediate-release counterparts products (Soni, 2018). Bootleggers diverted a consid-

erable amount of OxyContin to the illegal market for non-medical use, and abusers

crush OxyContin into a fine powder to snort (intranasal), or dissolve the powder in

water to inject into intravenous, or chew (Singer, 2018).

Around the same time, in 1995, the president of the American Pain Society’s

campaign, “Pain is the Fifth Vital Sign” encourage healthcare professionals to assess

pain (Kolodny et al., 2015) along with other four vitals: body temperature, blood

pressure, heart rate, and respiratory rate. By 2001, the Veteran Affairs health system

and the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) –

which accredits hospitals and other health care organizations, with the introduction

of new pain management standards – made a formal recommendation to include pain

as the fifth vital sign in the physician checklist (Pacula and Powell, 2018).

In 2005, Medicare introduced Hospital Consumer Assessment of Healthcare Providers

and Systems (HCAHPS)12 linked inpatient reimbursement payments with patients’

11As per The United States, General Accounting Office (2003), between 1996 to 2002, Purdue
Pharma funded direct sponsorship or financial grants for more than 20,000 pain-related educational
programs to promoted long-term use of OxyContin for chronic non-cancer pain. Purdue Pharma also
provided financial support to the American Pain Society, the American Academy of Pain Medicine,
the Federation of State Medical Boards, the Joint Commission, pain patient groups, and other
organizations Fauber (2012).

12The HCAHPS Survey has three intents. The first is to produce comparable data on the patient’s
perspective on the care that allows objective and meaningful comparisons between hospitals on
domains that are important to consumers. Second is to incentives for hospitals to improve their
quality of care by linking Medicare reimbursement. The third is to enhance public accountability in
health care by increasing the transparency of the quality of hospital care provided in return for the
public investment. The HCAHPS survey contains 21 patient perspectives on care and patient rating
items that encompass nine key topics: communication with doctors, communication with nurses,
the responsiveness of hospital staff, pain management, communication about medicines, discharge
information, cleanliness of the hospital environment, the quietness of the hospital environment, and
transition of care. The survey includes four screener questions and seven demographic items, which
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perspectives on hospital care – one of the measures is “pain management.” When the

Affordable Care Act passed, value-based incentive payments to hospitals were tied

to the value of these patient experience performance measures, which included pain

management scores as a core component Pacula and Powell (2018).

Kolodny et al. (2015) define increasing overdose deaths involving prescription

opioids (natural and semisynthetic opioids and methadone) since at least 1999 to

2010 as the “first wave”. The “second wave” began in 2010 with rapid increases

in overdose deaths involving heroin (CDC, 2019) and is contemporaneous with the

2010 abuse-deterrent formulations (ADF) or reformulation13 of OxyContin (Evans

et al., 2018a), pill mill crackdown, prescription drug monitoring programs (PDMPs)

(Meinhofer, 2016). The “third wave” began in 2013, with significant increases in over-

dose deaths involving synthetic opioids — particularly illicitly-manufactured Fentanyl

(IMF) (CDC, 2019) and its analogs adulterated with counterfeit pills and heroin which

are highly potent, less bulky and – that are sourced primarily from China, Mexican

drug trafficking organizations and disseminate using crypto-currencies through inter-

net (Beletsky and Davis, 2017).

2.3 Literature Review

Existing studies associate PDMPs with opioid prescription and opioid-related

overdose deaths and poisoning, while another strand of literature exploits PDMPs

as an exogenous source of variation to investigate the heroin-related crime.

are used to adjust the mix of patients across hospitals and for analytical purposes. The survey is 32
questions in length. See: https://www.hcahpsonline.org/

13By the early 2000s, opioid overdoses and deaths, especially related to OxyContin spiked. In
2007, Prude Pharma pleaded guilty to misbranding OxyContin, a felony under the Food, Drug,
and Cosmetic Act, and agreed to pay more than $600 million in fines (Van Zee, 2009). In April
2010, the Food and Drug Administration approved Purdue Pharma’s ADF of the original OxyContin
formulation. With no public notice, on the 5th August 2010, Purdue Pharma stopped manufacturing
the unique formulation of OxyContin and only manufactured and sold the reformulated version from
9th August 2010 (Butler et al., 2013) without any change in the price (Coplan et al., 2016). The
ADF OxyContin is resistant to crushing, forms a gel not quickly injected when dissolved in solutions,
and resists extraction with solvents (Singer, 2018).
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Simeone and Holland (2006) study the effect of PDMPs on the supply using Au-

tomation of Reports and Consolidated Orders System (ARCOS) and abuse of Rx

drugs using Treatment Episode Data Set (TEDS) dataset. They find states with

PDMP reduces per capita supply of Rx pain relievers and stimulants while the prob-

ability of abuse is higher among nonPDMPs states compared to PDMPs states. Reis-

man et al. (2009) also, find similar results that PDMP decreases the number of oxy-

codone shipments and the Rx opioid admission rate for states with these programs.

Reifler et al. (2012) implement repeated measures negative binomial regression on

quarterly RADARS R© System Poison Center and Opioid Treatment surveillance data

(from 2003 to mid-2009) to estimate and compare opioid abuse and misuse trends.

They find compared to nonPDMPs, PDMPs states reduce Poison Center intentional

exposures by 1.9% per quarter, exposures opioid intentional exposures by 0.2% per

quarter. In contrast, opioid treatment admissions increase, on average, 4.9% per

quarter in states without a PDMP vs. 2.6% in states with a PDMP. These find-

ings suggest the effectiveness of PDMPs. Simoni-Wastila and Qian (2012) retrieve

2.2 million records from Coordination of Benefits (COB) MarketScan administrative

claims data of Medicare-eligible and their dependents to study analgesic utilization by

an insured retiree population among the different types of PDMPs and nonPDMPs

states with cross-sectional study implementing multivariate logistic and multinomial

regressions. They find reductions in the utilization of targeted Rx opioid analgesics

and increases in less scrutinized, lower scheduled opioid analgesics. Contrary to these

studies, Brady et al. (2014) find no significant impact on per-capita opioids dispensed

among PDMP states. They covert quarterly 1999-2008 ARCOS database to mor-

phine milligram equivalents (MMEs) for each state then implement multivariable

linear regression modeling with temporal trends and demographic characteristics.

Contrary to previous studies that use simple multivariate analysis, the health

economics literature deals rigorously with an identification strategy for proper esti-

mation. For example, Kilby (2015) uses an individual-level dataset of Rx claims of

59% of the U.S. population from Truven Health Analytics and merges this dataset
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with ARCOS dataset. She finds about a 10% reduction of oxycodone Rx and a

10% decrease in oxycodone shipment. Similarly, Buchmueller and Carey (2018) uses

a claims-level subsample of the universe of Medicare claims, and find must-access

PDMPs reduce indicators of opioid abuse. In contrast, voluntary PDMPs have no

effects among elderly and disabled participants between 2007 and 2013. Ayres and

Jalal (2018) implements standard difference-in-difference with fixed effect methods

on the county-level panel data on all opioid Rx in the U.S. between 2006 and 2015

along with county-level demographic controls, other state-level opioid interventions

such as Naloxone Access and Good Samaritan laws, Medicaid expansion, and the

provision of Methadone Assistance Treatment. They find a reduction of Rx rates;

however, such a decline is pronounced among urban, predominantly white counties

within more affluent regions. Another recent study Rivera-Aguirre et al. (2019) ex-

plores the source of heterogeneity of PDMPs (what populations benefit the most

from these programs) and opioid overdoses using county-level, spatiotemporal study

design. They find lower rates of Rx opioid-related hospitalizations but see an increase

in heroin-related admission.

Contrary to the effect of PDMPs on the Rx rates, the results for the impact of

must-access PDMPs on outcomes like opioid overdoses and opioid-related overdoses

death rates are mixed. Patrick et al. (2017) perform 1999-2013 period state-level

analysis with interrupted time-series with fixed effect and a linear time trend method

using Wide-Ranging Online Data for Epidemiologic Research (WONDER) database

of multiple causes of death maintained by the Centers for Disease Control and Pre-

vention (CDC). They find an average reduction of 1.12 opioid-related overdose deaths

per 100,000 population in the year after PDMPs implementation.

My study is similar to Patrick et al. (2017) in which they explore the impact

of PDMPs on the Rx opioid overdose. However, they utilize interrupted time-series

with fixed effect and a linear time trend; my study has a more rigorous identification

strategy and implements non-linear time trends using interactive fixed effect. Unlike

many other studies that utilize difference-in-difference with fixed effect methods, I
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perform difference-in-difference with event study framework and generalized synthetic

control approach, which is similar to event study models of Grecu et al. (2019) and

Mallatt (2018) and interactive fixed-effect models used by Mallatt (2018). However,

these studies explore the impact of PDMPs on the Rx opioid prescription and abuse;

however, this research examines the impact of PDMPs on the Rx opioid overdose

death rate similar to Erfanian et al. (2019). However, Erfanian et al. (2019) study

impact of Naloxone access laws on opioid overdose deaths utilizing spatial econometric

methods. Several studies exhibit the heterogeneous effects of PDMPs mainly on

different age groups within the state population like Grecu et al. (2019); Mallatt

(2018); Ayres and Jalal (2018); Buchmueller and Carey (2018). However, I show

first-hand evidence of state-level heterogeneous effects of Rx opioid overdose. As

my knowledge, this paper is first to utilize the strength and innovation of machine

learning and causal inference namely the double-selection post-LASSO (Belloni et al.,

2013) which is a robust method for inference on the effect of a treatment variable

(must-access PDMP) on the outcome variable (Rx opioid overdose death) by selecting

adequate observable confounders from a list of high dimensional controls which I

compile based on the literature review and economic intuition.

2.4 Empirical Strategies

2.4.1 Two-way Fixed Effect Difference-in-Differences Frame-

work

I exploit variation in the timing of adoption of must-access PDMPs, within a

variety of difference-in-differences (D.D.) frameworks, to estimate the impact on the

Rx opioid overdose death rate. I begin the analysis with a two-way fixed-effect model.

Yit = c+ δDit + αi + ςt + εit (2.1)
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where, Yit is Rx opioid overdose death rates per 100,000 population (age-adjusted);

c is the intercept, Dit is the treatment indicator and equals 1 after state i has been

exposed to the treatment (must-access PDMP) and equals 0 otherwise; δ is the av-

erage treatment effect, αi and ζt are additive individual state and year fixed effects

respectively. One should expect a negative and significant value of δ which would sug-

gest the must-access PDMP is successful to reduce Rx opioid overdose death rates.

However, a positive and significant δ shows that state with must-access PDMP have

on average higher Rx opioid overdose death rates compare to comparison state that

do not have must-access PDMP.

2.4.2 Two-way Fixed Effect Difference-in-Differences Frame-

work with LASSO

The state-specific political, socioeconomic, and demographic features could affect

both must-access PDMP enactment and Rx opioid overdose death rates. Therefore,

for inference, political, socioeconomic, and demographic characteristics of state or

observable confounders must be adequately controlled. Failure to conditioning these

confounders can lead to omitted variable bias. However, over-controlling leads to

loss of efficiency of estimates. The actual data generating a process that explains

the relationship between the must-access PDMPs and Rx opioid overdose death rate

is unknown to the researcher. However, one can use general economic intuition to

guide the variable selection that is standard in the literature. Table 2.1 in the results

section displays the list of variables, their transformation, units, data sources, and

summary statistics. However, the actual data generating process (DGP) might com-

prise the various transformation of these observable confounders, for example, lags,

higher-order polynomials, and interactions. Including and controlling for all these

transformations may not be feasible because the covariates space can increase expo-

nentially with high dimensional data, and regression is infeasible when the numbers

of covariates exceed the number of observations in data.

To properly select the observable confounders, I exploit the strengths and inno-
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vations of machine learning method, namely the “LASSO”14 and causal inference.

Under the assumption of sparsity, I utilize the double-selection post-LASSO method

Belloni et al. (2013) to select the observable confounders properly.The double-post-

LASSO procedure comprises the following steps (Belloni et al., 2014a). First, run

LASSO of dependent variables on a large list of potential covariates to select a set of

predictors for the dependent variable. Second, run LASSO of treatment variable on

a large list of potential covariates to select a set of predictors for treatment. If the

treatment is truly exogenous, I should expect this second step should not select any

variables. Third, run OLS regression of dependent variable on treatment variable,

and the union of the sets of regressors selected in the two LASSO runs to estimate

the effect of treatment on the dependent variable then correct the inference with

usual heteroscedasticity robust OLS standard error. The following D.D. exhibits the

estimation after the double-post-LASSO procedure.

Yit = c+ δDit + βxit + αi + ςt + εit (2.2)

where, xit are a set of time-varying observable confounders selected by the double-

selection post-LASSO.

2.4.3 Event Study Framework

The DD estimates in equation 2.1 and equation 2.2 only show the average impact

of the must-access PDMPs. To obtain a more precise understanding of the impact of

the must-access PDMPs, I employ an event study methodology, which takes into ac-

14The Least Absolute Shrinkage and Selection Operator (LASSO) is an appealing method to esti-
mate the sparse parameter from a high-dimensional linear model is introduce by Frank and Friedman
(1993) and Tibshirani (1996). LASSO simultaneously performs model selection and coefficient esti-
mation by minimizing the sum of squared residuals plus a penalty term. The penalty term penalizes
the size of the model through the sum of absolute values of coefficients. Consider a following linear
model ỹi = Θiβ1 + εi, where Θ is high-dimensional covariates, the LASSO estimator is defined

as the solution to min
β1∈Rp

En

[
(ỹi−iΘβ1)

2
]

+ λ
n‖β1‖1, the penalty level λ is a tuning parameter to

regularize/controls the degree of penalization and to guard against overfitting. The cross-validation
technique chooses the best λ in prediction models and ‖β‖1 =

∑p
j=1 |βj |. The kinked nature of

penalty function induces β̂ to have many zeros; thus LASSO solution feasible for model selection.
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count the possible dynamic response of must-access PDMP on the Rx opioid overdose

death rate. The event study D.D. framework with policy lags and leads to provide

visual evidence of the policies’ effect. Furthermore, the event study D.D. framework

is visually appealing to detect the parallel trend – in the absence of the treatment,

the average outcomes of treated and comparison states would have followed parallel

paths – which is the key identifying assumption for D.D.

Yit = c+
∑6

p=−12
δpDi,t+p + βxit + αi + ςt + εit (2.3)

where Di,t+p is an indicator equal to one if the must-access PDMP started in state i

in the time t+ p and equal zero in all other time periods. The coefficient δp capture

the measured effect of the must-access PDMP at p periods after the enactment. The

negative value of p correspond to “leads,” which captures the effect of the policy before

it is implemented and should be zero under the “parallel trend” assumption (the

average outcomes of the treated and control units follow parallel paths in pretreatment

periods is required to maintain for causal inference) of the DD framework. The data

starts from 1999 to 2017 which is 19 period. In this data sample, Kentucky, New

Mexico and West Virginia are the earliest states that enacted must-access PDMP in

2012. From 2012 until 2016 there are 6 periods and prior 2012 there are 13 periods.

Therefore, I index p from −12 to 6 periods. See Figure 2.2.

2.4.4 Generalized Synthetic Control

The detection of the average outcomes of the treated and comparison states follow

parallel paths in pretreatment periods is not sufficient but provides more confidence

in the validity of the parallel posttreatment period. But, in many cases, if the parallel

pretreatment trends are not supported by data, it’s likely to fail in the posttreatment

period. The “parallel trend” assumption is not directly testable; however, literature

provides two broad directions. First is the synthetic control (S.C.) method proposed

by Abadie, Diamond, and Hainmueller (2010, 2015). It matches both pretreatment
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covariates and outcomes between a treated unit and a set of control units and uses

pretreatment periods as criteria for suitable matches. Specifically, it constructs a

“synthetic control unit” as the counterfactual for the treated unit by reweighting the

control units. It provides explicit weights for the control units, making a comparison

between the treated and synthetic control units transparent. However, it only applies

to the case of one treated unit, and the uncertainty estimates it offers are not easily

interpretable. The synthetic control method is not appropriate in this study because

must-access PDMPs were enacted in several states at different periods.

The second approach is to model the unobserved time-varying heterogeneities

explicitly. A widely used strategy is to add in unit-specific linear or quadratic time

trends to conventional two-way fixed effects models. For example, Grecu et al. (2019)

imposes a quadratic time trend to their two-way fixed effect model to examine the

impact of opioid abuse among young adults; and Mallatt (2018) implements linear,

quadratic and cubic time trends to estimate the effect of PDMP on heroin incidents.

An alternative way is to model unobserved time-varying confounders semi para-

metrically. For example, Bai (2009) proposes an interactive fixed effects (IFE) model,

which incorporates the unit-specific intercepts interacted with time-varying coeffi-

cients. The time-varying coefficients are also referred to as (latent) factors, while the

unit-specific intercepts are labeled as factor loadings. Unlike explicitly imposing a

linear or a quadratic time trend to a model, the IFE allows for additional non-linear

time trends that affect areas to varying degrees. The factor captures nationwide time

trends in Rx opioid-related overdose deaths to which different states are either more or

less susceptible, depending on the unobservable characteristics of those states. The

factor loading exhibits the intensity or severity of such nationwide time trends for

each state. For example, Mallatt (2018) implements the D.D. framework with the

IFE model to identify the effect of PDMPs on opioid painkiller Rx filled and on rates

of heroin crimes.

I implement Xu (2017) generalized synthetic control (GSC) method that unifies

the synthetic control method with linear fixed-effects models. This method provides
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several advantages over the S.C. method and IFE. First, it generalizes the synthetic

control method to cases of multiple treated units and/or variable treatment periods

and can estimate confidence intervals for counterfactual. Therefore, this method is

suited for the causal inference for program evaluation in a regional context. Second,

it embeds a cross-validation scheme to select the number of factors of the IFE model.

This is crucial because, in practice, researchers may have limited knowledge of the

exact number of factors to be included in the model. The GSC estimate is presented

as:

Yit = δitDit + x′itβ + ziθt + λ′ift + αi + ζt + εit (2.4)

where, ft comprise of r different factor and λi are factor loadings. The main quantity

of interest is the average treatment effect on the treated (ATT) at the time t when

t > T0 and given as:

ATTt,t>T0 = N−1tr
∑
i∈τ

[Yit (1)− Yit (0)] = N−1tr
∑
i∈τ

δit

where, Yit (1) is the observed for treated units in the posttreatment period, and

Yit (0)is the counterfactual for the treated unit in the posttreatment period. The

total number of states is N = Ntr + Nco, where Ntr and Nco are the numbers of

treated and control states. The T0,i is the number of pretreatment period for state

i and state are first exposed to the treatment at the time (T0,i + 1) and observed

for T − T0,i periods. States in the control group remain unexposed to the treatment

in the observed period. Under several assumptions15, Xu (2017) GSC estimator is

a three-step process. First, the GSC method estimates the interactive fixed-effect

model using only the control group. Second, GSC estimates factor loadings for each

treated unit by minimizing the mean squared error of the predicted treated outcome in

pretreatment periods. Third, GSC estimates counterfactuals with a cross-validation

15Under the assumption of strict exogeneity (unconfoundedness), decomposable time-varying con-
founders, weak serial dependence of the error term, some regularity conditions and cross-sectionally
independent and homoscedastic error terms.
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procedure to select the number of factors to be included in the model.

All of the regression presented in this section have clustered standard error at the

state level to allow for an arbitrary autocorrelation process within states (Bertrand

et al., 2004) and are weighted by the population of the relevant state (Angrist and

Pischke, 2009).

2.5 Data

This study merges several panel data (from 1999 to 2017) from various sources.

The dependent variable is Rx opioid overdose deaths per 100,000 (age-adjusted)16 and

retrieved from the National Vital Statistics System multiple cause-of-death mortality

files published by the CDC. Figure 2.1 displays geographical heat maps of Rx opioid

overdose death rate per 100,000 populations from 2002 to 2017.

I retrieve the list of states that require prescribers to check the PDMP before

prescribing controlled substances or must-access PDMP and the PDMP enactments

date from the pdaps.org website. Figure 2.2 is a visual representation of state and

timing of states that enacted must-access PDMP and the state with only voluntary

PMDPs.

The supply of opioids along with a health care system – that incentivizes opioid

16As per kff.org, the National Vital Statistics System multiple cause-of-death mortality files were
used to identify drug overdose deaths. Drug overdose deaths were classified using the International
Classification of Disease, Tenth Revision (ICD-10), based on the ICD-10 underlying cause-of-death
codes X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).
Among the deaths with drug overdose as the underlying cause, Rx opioid deaths are indicated by
the following ICD-10 multiple cause-of-death codes: natural and semisynthetic opioids (T40.2);
methadone (T40.3); and synthetic opioids, other than methadone (T40.4). Deaths from illegally-
made Fentanyl cannot be distinguished from pharmaceutical Fentanyl in the data source. For this
reason, deaths from both legally prescribed and illegally produced Fentanyl are included in these
data. Rates represent age-adjusted rates per 100,000 population. Natural and Semisynthetic Opi-
oids are a category of Rx opioids that provides for natural opioid analgesics (e.g., morphine and
codeine) and semisynthetic opioid analgesics (e.g., drugs such as oxycodone, hydrocodone, hydro-
morphone, and oxymorphone). Synthetic Opioids, other than Methadone, are a category of opioids,
including drugs such as tramadol and Fentanyl. Synthetic opioids are commonly available by pre-
scription. Fentanyl is legally made as a pharmaceutical drug to treat pain, or illegally made as a
non-prescription drug and is increasingly used to intensify the effects (or “high”) of other medica-
tions, such as heroin. Methadone is a synthetic opioid prescribed to treat moderate to severe pain
or to reduce withdrawal symptoms in people addicted to heroin or other narcotic drugs.
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Figure 2.1: Rx Opioid-related Overdose Death per 100,000 Population

Notes: Darker intensity represents a higher Rx opioid-related overdose death rate. The intensity
is fixed between 0 and 50 deaths per 100,000. This allows comparison of each state with others
over the period. I exclude Alaska for scaling purpose.

prescription as a quick-fix to complex physical and mental health needs – fuels the

U.S. opioid crisis, therefore, I include Morphine mg equivalents of prescribed opioids

per 100,000 population in the control variable list. These quantities are available from

the Drug Enforcement Administration’s Automation of Reports and Consolidated Or-

ders System (ARCOS). ARCOS reports the legal flow of control substances from the

manufacturer to retails sales in the zip level and quarterly frequency. Reliance on

opioid medication for physical pain, psychological trauma, concentrated disadvan-

tages, isolation, and hopelessness – that are caused by economic and social upheaval

– complicates the etiology of the U.S. opioid crisis (Dasgupta et al., 2018). Therefore

controlling social and economic confounders (common causes of Rx opioid deaths and

PDMPs enactment) is crucial for estimation. I retrieve several socioeconomic vari-
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Figure 2.2: State Requiring Prescribers to Check the PDMP Before Prescribing
Controlled Substances.

Notes: I exclude the state of Missouri because it has not enacted any form of PDMPs. Com-
parison states have enacted only a voluntary PDMPs. I also exclude the state of North Dakota
due to the missing data. These data are retrieved from pdaps.org website.

ables from the University of Kentucky Center for Poverty Research (2019) database;

Annual State-Level Measures of Human Capital Attainment database (Frank, 2009);

Measures of Income Inequality database (Frank, 2014); Top Income Shares by the

State of Frank, State level employment database constructed by Barry and David

was created in 2002 and is updated annually. Monnat (2016) briefs opioid crisis also

intertwined with political supports, so I also control some political variables like a

fraction of statehouse and Senate house that is democrats.

I also use Good Samaritan Laws, Marijuana Law (medical or/and recreational

possession of Marijuana), and Naloxone Access Law as indicator variables. States

with the Good Samaritan Law provide immunity from prosecution for possessing a
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Table 2.1: Descriptive Statistics (Pooled Across the State from 1999 to 2017)

Variables Min Max Mean Std Dev Source

Prescription Drugs Monitoring Programs 0.00 1.00 - - PDAPS
Prescription opioid overdose death rate per 100,000 population 0.30 47.20 5.96 5.27 NVSS
Unemployment rate 2.30 13.70 5.65 1.97 UKCPR
Poverty rate 4.50 23.10 12.56 3.37 UKCPR
The fraction of state house that is the democrat 0.00 92.00 49.60 17.77 UKCPR
The fraction of state senate that is the democrat 0.00 100.00 48.52 19.02 UKCPR
State minimum wage (in 2014 $) 2.20 10.62 7.39 1.05 UKCPR
Employment to population (percentage) 38.51 56.12 47.66 3.47 UKCPR
High school completion (percentage) 52.63 74.84 63.95 3.93 Frank (2009)
College level completion (percentage) 10.71 30.56 18.96 4.15 Frank (2009)
Atkinson inequality coefficient 21.60 41.08 28.25 3.62 Frank (2014)
Gini inequality coefficient 52.18 71.14 59.81 3.68 Frank (2014)
Thiel inequality coefficient 0.44 1.50 0.82 0.20 Frank (2014)
Fraction of top 1% income population 0.08 20.07 2.05 3.19 Frank (2014)
Fraction of millionaires population 0.11 18.27 2.05 3.05 Frank (2014)
Log of per capita Gross Domestic Product (in thousands, 2014 $) 10.34 11.39 10.81 0.19 UKCPR
Log of per capita income (in thousands, 2014 $) 10.37 11.39 10.82 0.19 UKCPR
Share of private construction industry (percentage) 2.89 11.99 5.59 1.22 unionstats
Share of private manufacturing industry (percentage) 1.61 27.23 11.97 4.87 unionstats
Share of total public industry (percentage) 10.78 31.87 17.08 3.60 unionstats
Morphine mg equivalents of prescribed opioids per 100,000 population 0.15 52.29 11.82 9.62 ARCOS
Marijuana law (either Medical and/or recreational) 0.00 1.00 - - PDAPS
Naloxone access law 0.00 1.00 - - Procon.org
Good samaritan law 0.00 1.00 - - PDAPS

Notes: The state of Nebraska don’t have state upper and lower house. Missing value imputation
were based on the weighted moving average and performed separately for each state.

controlled substance while seeking help for himself or another person experiencing an

overdose. The state with Naloxone Access Law provides naloxone and other opioid

overdose prevention services to individuals who use drugs, their families and friends,

and service providers, including education about overdose risk factors, signs of over-

dose, appropriate response, and administration of naloxone. As of 2016, 48 states

have authorized some variant of a naloxone access law, and 37 states have passed a

drug overdose good samaritan law (Ayres and Jalal, 2018).

Table 2.1 displays the list of variables, their transformation, units, data sources,

and summary statistics. The summary statistics comprise the minimum, maximum,

mean, and standard deviation for each variable. Each variable is pooled across time

and state.
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2.6 Results

2.6.1 Main Results

Table 2.2 presents the estimated impact of the PDMP on the age-adjusted Rx

opioid overdose death rate per 100,000 population utilizing difference-in-difference

(DID), event study and generalized synthetic control with interactive fixed-effect

(GSC) methods. When applicable, each of these methods use the double-selection

post-LASSO method to select the confounders.

Table 2.2: Impact of Must-access PDMPs on Age-adjusted Rx Opioid Overdose
Death Rate per 100,000 Population

VariablesVariablesVariablespt¡ -Variablespt¿ DiD Event study GSC

(1) (2) (3) (4) (5) (5)

ATT 5.45***(1.58) 4.31***(1.42)
ATT (Average) 6.05***(1.65) 4.95***(1.78) -0.91(2.39) -0.82(2.92)
High school 0.29***(0.11) 0.12(0.11) -0.05(0.05)
Marijuana law 2.01***(0.94) 1.77*(1.14) -0.27(0.43)
Medicare expansion 1.31(1.09) -0.94(1.13) -0.72(0.53)
Fraction of millionaires -0.18(0.63) -0.19(0.59) -0.15(0.36)
Naloxone access law 1.12(1.11) 2.33***(1.07) -0.57(0.40)
Private manufacturing industry -0.04(0.18) -0.23(0.13) -0.03(0.07)
Morphine 0.07(0.08) 0(0.08) 0.01(0.03)
Intercept 5.5***(0.41) -13.93(8.19)

State fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
DSPL - 22 - 22 - 22
Factor - - - - 1 1
Observation 950 950 950 950 950 950
Treated states 18 18 18 18 18 18
Control States 30 30 30 30 30 30

Notes: All the model comprises of state and year fixed effects. Standard errors are based on
non-parametric bootstraps (blocked at the state level) of 2,000 times. Controls are selected,
implementing the double post-LASSO selection method. Standard errors are enclosed in paren-
thesis. The 1%, 5%, and 10% level of significance are given as ***, **, and *, respectively.
DSPL shows the number of variables that are feed to the double-selection post-LASSO method.
In this table, the double-selection post-LASSO method was performed using 24 different con-
temporaneous covariates. Variable Morphine represents Morphine mg equivalents of prescribed
opioids per 100,000 population. The event study and generalized synthetic control regressions
are weighted based on the relevant state population.

Estimates presented in columns (1) and (2) are the standard two-way fixed effect

model, also known as DID in the literature. The estimates in column (1) only include

the indicator of must-access PDMP, while column (2) contains additional controls,

these controls are selected utilizing the double-selection post-LASSO method. On

average, PMDP enacting states have 5.45 and 4.31 additional age-adjusted Rx opioid
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overdose death rates per 100,000 population, compared to comparison states with

only voluntary PDMP.

The identification strategy of DID is the “parallel trend”, I relax this assumption.

In other words, I estimate the effect of must-access PDMP on Rx opioid overdose

death in the posttreatment period by subtracting the time intercepts estimated from

the control group and the unit intercepts based on the pretreatment data. The pre-

dict Rx opioid overdose death for state i in year t, therefore, is the summation of

unit intercept i and time intercept t, plus the impact of the time-varying covariates.

The column (3) and (4) exhibits the average of ATT and Figure 2.3 provides a vi-

sualization. These regressions are weighted based on the population size of relevant

states.

Figure 2.3: Estimated Impact of Must-access PDMP on Age-adjusted Rx Opioid
Overdose Death Rate per 100,000 Population for Years Before, During, and After
Adoption, (Based on Event Study)

The left panel of Figure 2.3 shows the average actual age-adjusted Rx opioid

overdose death rate per 100,000 population (solid line) and average predicted age-

adjusted Rx opioid overdose death rate per 100,000 population in the absence of

must-access PDMP laws (dashed line); both averages are taken based on the number

of terms since (or before) must-access PDMP laws first took effect. The right panel of

Figure 2.3 shows the gap between the two lines or the estimated ATT. The confidence
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intervals are derived from the standard errors, which are based on non-parametric

bootstraps (blocked at the state level) of 2,000 times. It is clear from both figures

that the “parallel trends” assumption is not likely to hold since the average predicted

Rx opioid overdose death deviates from the average actual Rx opioid overdose death

in the pretreatment periods.

These estimates presented in column (1) to column (4) may be contaminated

by measurement error, mainly in the dependent variable. As per the CDC, among

the deaths with drug overdose as the underlying cause, prescription opioid deaths

are indicated by the following ICD-10 multiple cause-of-death codes: natural and

semisynthetic opioids (T40.2); methadone (T40.3); and synthetic opioids, other than

methadone (T40.4). Deaths from illegally-made Fentanyl cannot be distinguished

from pharmaceutical Fentanyl in the data source. For this reason, deaths from both

legally prescribed and illegally produced Fentanyl are included in these data.

Literature establishes that PDMPs being a supply-side policy, opioid abusers,

and dependent users may substitute the Rx opioid with cheap substitutes like ille-

gally manufactured Fentanyl or illegal heroin. (CDC, 2019) reports such substitution

led to another nationwide crisis known as the third wave of the opioid crisis and il-

licit manufactured Fentanyl are adulterated with counterfeit pills and heroin which

are highly potent, less bulky and – that are sourced primarily from China, Mex-

ican drug trafficking organizations and disseminate using cryptocurrencies through

internet (Beletsky and Davis, 2017).

The estimates presented in Table 2.2 cannot distinguish deaths from legally pre-

scribed and illegally produced Fentanyl. Therefore, the estimates possibly incorporate

the total effect of must-access PDMPs on intended Rx opioid overdose deaths as well

as the third wave of the opioid crisis (an unintended substitution effect). The positive

significant coefficient suggests possibly unintended substitution effect surpasses the

intended impact of PDMPs on the Rx opioid overdose death rate. One way to deal

with such a situation is to implement an interactive fixed-effect model, which can

help to control for the underlying nationwide time trends in Rx opioid death rate (if
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such pattern exists). The next section explores such a possibility.

Next, I apply the GSC method, which is similar to the synthetic control method

but allows multiple treatment units and also allows the possibility of interactive fixed

effects. Table 2.2 columns (5) and (6) reports the estimation from the GSC method.

Again, both specifications impose additive state and year fixed effects. In column (5),

no covariates are included, while in column (6), controls are selected, implementing

the double-selection post-LASSO method. These regressions are weighted based on

the population size of relevant states. The cross-validation scheme finds one unob-

served factor to be important and ater conditioning on both the factors and additive

fixed-effects. The estimated ATT is -0.91 and -0.82 and insignificant. These estimates

suggest that must-access PDMP state laws are not associated with an increase in Rx

opioid overdose death. Figure 2.4 provides a visualization.

Figure 2.4: Estimated Impact of Must-access PDMP on Age-adjusted Rx Opioid
Overdose Death Rate per 100,000 Population for Years Before, During, and After
Adoption, (Based on Generalized Synthetic Control Study)

The left panel of Figure 2.4 shows averages taken ater the actual and predicted

Rx opioid overdose death rates are realigned to the timing of the must-access PDMP

enactment. With the GSC method, the average actual Rx opioid overdose death

and average predicted Rx opioid overdose death match well in pretreatment periods,

and diverged ater must-access PDMP laws took effect. The right panel of Figure 2.4
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shows that the gaps between the two lines are flat in pretreatment periods, and the

results shoot downward right ater few years of the adoption of “must-access” PDMP.

Yet, such a relationship is not statistically significant.

2.6.2 A Nationwide Time Trends in Rx Opioid

The estimates presented in 2.2 columns (5) and (6) requires an in-depth interpre-

tation because the GSC includes the factor. Figure 2.5 shows factor in left panel. The

x-axis is a year, and the y-axis is the magnitude of factors (re-scaled by the square root

of their corresponding eigenvalues to demonstrate their relative importance). Bearing

in mind the caveat that estimated factors might not be directly interpretable because

they are, at best, linear transformations of the true factors, I find that the estimated

factors shown in this figure are meaningful as this factor correlates with the third

wave of the opioid crisis known as the synthetic opioid crisis. In simplest, the factor

can be thought of as nationwide time trends in Rx opioid, in which different states

are either more or less susceptible, depending on the unobservable characteristics of

those states. A widely used strategy is to add in unit-specific linear or quadratic time

trends to conventional two-way fixed effects models. For example, Grecu et al. (2019)

imposes a quadratic time trend to their two-way fixed effect model to examine the

impact of opioid abuse among young adults; and Mallatt (2018) implements linear,

quadratic and cubic time trends to estimate the effect of PDMP on heroin incidents.

The basic difference-in-difference model accounts for national non-linear patterns in

Rx opioid overdose deaths, and the GSC factor model extends this by accounting

for additional non-linear time trends that affect areas to varying degrees. This factor

gradually increases in Rx opioid overdose deaths from 1999-2012, which then increases

exponentially from 2013-2015. States experience the non-linear increase in Rx opi-

oid overdose deaths to differing degrees, which is accounted for in each states’ factor

loading. In the case of Rx opioid overdose deaths, a state’s factor correlated with the

third wave of the opioid crisis known as synthetic opioid crisis (CDC, 2019), implying

that Rx opioid overdose deaths-dense states are more sensitive to the third wave of
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the opioid crisis that was triggered particularly those involving illicitly-manufactured

Fentanyl. This is consistent with the hypothesis that restricting Rx opioids causes

opioid abusers toward another illicit opioid, in this case, that could be illicit Fentanyl.

Figure 2.5: Factor and Factor Loadings

Notes: I exclude the state of Missouri, because it has not enacted any form of PDMPs. Com-
parison states have enacted only a voluntary PDMPs. I also exclude the state of North Dakota
due to the missing data. Factor loading are enclosed in parenthesis with descending order as:
West Virginia (43), Kentucky (16.2), New Hampshire (13.9), Tennessee (10.9), Rhode Island
(10.1), Maryland (6.1), Oklahoma (5.6), Ohio (5.5), Maine (4.7), Connecticut (3.1), Delaware
(3.1), Michigan (3), Massachusetts (1.8), Illinois (1.5), Nevada (1.4), South Carolina (1.2), North
Carolina (1.2), New York (1), Wisconsin (0.9), Florida (0.7), Vermont (0.2), Pennsylvania (0.1),
Georgia (0), Virginia (-0.1), Minnesota (-0.2), New Jersey (-0.4), Arizona (-0.4), Alaska (-0.5),
Utah (-0.5), Alabama (-0.6), Colorado (-0.6), Iowa (-0.7), Mississippi (-0.8), Arkansas (-0.9),
Oregon (-1.2), Wyoming (-1.3), California (-1.3), Idaho (-1.3), Nebraska (-1.5), Washington (-
1.5), Kansas (-1.5), Hawaii (-1.6), Texas (-1.6), South Dakota (-1.8), Indiana (-2), Montana
(-2.6), New Mexico (-4.7), Louisiana (-4.9)

Figure 2.5 shows factor loadings in right panel. Factor loading exhibits severity

of the state’s experience of the non-linear increase in Rx opioid deaths (or the factor

which correlates with synthetic opioid crisis) to differing degrees, which is accounted

for in each state. The states with darker colors are more susceptible to the factor.

2.6.3 State-level Impact of Must-access PDMPs

Next, Figure 2.5 shows state-level impact of must-access PDMPs. Note to inter-

pret these plots; we should keep track of the factor loading. The PDMPs seems to

reduce the Rx opioid overdose deaths among the state of West Virginia, Kentucky,

New Hampshire, Tennessee, Rhode Island, Oklahoma but these states also have higher

factor loading – suggesting that possibly these states suffer higher unintended conse-
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quences where Rx opioid overdose deaths are substituted by the deaths from the third

wave of the opioid crisis. The rest of the states presented in Figure 2.5 shows that

PDMPs are ineffective in reducing Rx opioid deaths, however, the state of Nevada,

despite having lower factor loading, seems to reduce the Rx opioid death successfully.

Figure 2.6: State-level Impact of Must-access PDMPs

Notes: To interpret these plot, we should keep track of the factor loading for each PDMP law
abiding state.

2.6.4 Validity: Consistency using High Dimensional Covari-

ates

One potential question arises regarding the control variables. Causal interpreta-

tion relies on the belief that there are no higher-order terms of the control variables,

no interaction terms, and no additional excluded variables that associate with the

PDMPs and Rx opioid overdose deaths. Thus, controlling a large set of variables

seems desirable to make this assumption plausible. However, naively controlling re-

dundant variables reduces the ability to distinguish the impact of interest variables
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and, consequently, produces less precise estimates. Further, literature considers utiliz-

ing lagged control rather than contemporaneous control mainly to avoid the potential

reverse causality.

Table 2.3: Impact of Must-access PDMPs on Age-adjusted Rx Opioid Overdose
Death Rate per 100,000 Population (Variables Selection on High Dimensional Co-
variates)

DiD Event study GSC

(1) (2) (3) (4) (5) (6)

ATT 5.35***(1.55) 3.78***(1.27) - - - -
ATT (Average) - - 5.91***(1.63) 4.7(2.64) -1.23(2.26) -2.42(3.07)

State fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
DSPL - 324 - 324 - 324
Factor - - - - 1 1
Observation 900 900 900 900 900 900
Treated states 18 18 18 18 18 18
Control States 30 30 30 30 30 30

Notes: All the model comprises of state and year fixed effects. Standard errors are based on
non-parametric bootstraps (blocked at the state level) of 2,000 times. Controls are selected,
implementing the double post-LASSO selection method. Standard errors are enclosed in paren-
thesis. The 1%, 5%, and 10% level of significance are given as ***, **, and *, respectively.
DSPL shows the number of variables that are feed to the double-selection post-LASSO method.
In this table, the double-selection post-LASSO method was performed using the first lag, the
second-order polynomial of first lag, all the possible interaction between first lag variables, in
total, there are 24+24+24*23/2=324 different possible covariates. The regressions (2), (3), (4),
and (5) are weighted based on the relevant state population.

In this regard, I have 24 contemporaneous covariates; instead of these contempo-

raneous covariates, I took the first lag of these variables. Next, I allow second-order

polynomial or quadratic of these lagged variables to account for the possible non-

linear relationship. Further, to allow the possible interaction of controls, I took all

the feasible controls. Then to select the adequate controls, I implement the double-

selection post-LASSO method using the first lag, the second-order polynomial of

first lag, all the possible interaction between first lag variables. In total, there are

24+24+24*23/2=324 different potential covariates. Table 2.3 shows the estimates

which are very similar to the estimate I presented in the main results in Table 2.2

therefore provides validity of effect as the results have consistency across high dimen-

sional covariates.
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2.7 Discussion and Conclusion

The results in the previous section are consistent and have relevance in the pol-

icy analysis in the regional settings. The GSC approach unifies the synthetic control

method with interactive linear fixed-effects models under a simple framework, of which

DID is a particular case (Xu, 2017). In short, this paper concludes that, on average,

the effect of “must-access” PMDPs to reduce Rx opioid overdose deaths are hetero-

geneous. States, where the “must-access” PMDPs seem to reduce Rx opioid overdose

deaths (mainly West Virginia, Kentucky, New Hampshire, Tennessee, Rhode Island,

Oklahoma), is heavily affected by additional non-linear time trends that correlate

with the third wave of the opioid crisis. The rest of the states, except for Nevada,

the “must-access” PMDPs, seem unsuccessful, and these sates are mildly affected by

additional non-linear time trends. In aggregate, the PDMPs do not save lives, mainly

due to the third wave of the opioid crisis.

We present some discussions on some of the obvious questions that the reader may

have. First is why we choose to discuss the Rx opioid-related overdose deaths and not

the Rx rates or other overdose deaths and what are some caveats of the dependent

variable. Several papers discuss the impact of PDMPs on the Rx rate. We think that

the effect of PDMPs on the prescription rate is evident that the PDMPs leads to a

reduction of prescription rates. However, there may be some heterogeneity (Ayres

and Jalal, 2018).

Literature finds the opioid Rx rate declines after PDMPs, but the trend of Rx

opioid overdoses is rising. This phenomenon could represent either that the Ameri-

cans are reporting more pain (which is not the case), or the opioid user is using more

of other opioid drugs (possible heroin/Fentanyl), and the overdose occurred due to

Rx opioid. As per the CDC, among the deaths with drug overdose as the underly-

ing cause, prescription opioid deaths are indicated by the following ICD-10 multiple

cause-of-death codes: natural and semisynthetic opioids (T40.2); methadone (T40.3);

and synthetic opioids, other than methadone (T40.4). Deaths from illegally-made
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Fentanyl cannot be distinguished from pharmaceutical Fentanyl in the data source.

But simple economic intuition suggests that a reduction of prescription opioids would

lead to higher demand for substitutes like heroin and Fentanyl.

This paper shows evidence regarding the unintended consequence of the PDMPs

using the interactive fixed-effect model. Readers might get concerned about endogene-

ity as the PDMPs were policy responses to the prescription-related opioid overdose

deaths. I argue that the states with high opioid-related overdose death might enact

“must-access” PDMPs, but once the PDMPs are passed, the feedback of high opioid-

related overdose death to reenact “must-access” PDMPs is not possible. However, I

also provide an additional analysis with a lagged variable and high dimensional list

of covariates to control two different sources of endogeneity: reverse causality and

omitted variables biases. The results hold validity.

Secondly, I discuss why this paper finds evidence of the ineffectiveness of PDMP in

generalize synthetic control and not in a simple Difference-In-Difference framework.

The DID framework assumes “parallel trend” or the average outcomes of the treated

and control units follow parallel paths in pretreatment periods. Due to the unobserved

time-varying confounding effect, the parallel trend assumption is not directly testable,

and visual detection of the parallel trend is also most likely not to hold. GSC method

captures unobserved time-varying confounding effects. At the same time, GSC allows

the interactive fixed effect to potentially capture the unobserved heterogeneity. I

argue that GSC absorbs the third wave of the opioid crisis, mainly the switching

of prescription opioids to the illicit Fentanyl, which is an unintended consequence of

PDMPs. DID exhibits the estimates with both intended and unintended consequences

of PDMPs, while GSC estimates teasel out an intentional and unintentional effect of

PDMPs.

Third, I discuss the meaning of the unobserved time-varying confounding effect or

the factor. The factor captures nationwide time trends in prescription opioid-related

overdose deaths to which different states are either more or less susceptible, depend-

ing on the unobservable characteristics of those states. The factor correlates with
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the third wave of the opioid. Therefore, this factor potentially captures a nation-

wide trend of prescription opioid switching toward illicit Fentanyl as the unintended

consequence. Even thou, we don’t know the source of switching behavior, but the lit-

erature suggests Oxycotin reformulation or other supply-side policy that restricts the

prescription opioid, or drug lords are moving toward the suburb. Finally, to conclude,

the Rx opioid deaths from illegally-made Fentanyl cannot be distinguished from phar-

maceutical Fentanyl in the data source, therefore to study the impact of PDMPs on

Rx opioids is obscure. However, there is clear evidence that abusers possible switch

to cheaper opioid alternatives like Fentanyl.
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Chapter 3

Heterogeneous Treatment Effects

of Medicaid and Efficient Policies

3.1 Introduction

As of September 20, 2019, 37 states and the District of Columbia have expanded

Medicaid coverage for low-income adults to 138%1 of the Federal Poverty Level

through the Affordable Care Act (ACA). This optional2 provision to expand the

Medicaid program through the ACA has triggered a substantial nationwide debate

among policymakers and diverse stakeholders about what effects, if any, Medicaid has

on the various dimensions of health (Baicker, 2019).

Finkelstein et al. (2012) use random assignment of Medicaid, employing the Ore-

gon Health Insurance Experiment (OHIE) dataset, and found mixed-bag effects3 of

1Medicaid income eligibility limits for adults as a percent of the Federal Poverty Level, indeed,
are different from states to states. Kaiser Family Foundation (2019a) provides a table for the state
by state Medicaid income eligibility levels for adults.

2Following the June 2012 Supreme Court decision, states face a decision about whether to adopt
the Medicaid expansion. But, as per the Centers for Medicare and Medicaid Services (CMS) guid-
ance, there is no deadline for states to implement the Medicaid expansion (Kaiser Family Foundation,
2019b).

3Finkelstein et al. (2012) use OHIE data set, and found that, in the year following the random
assignment of lottery Medicaid, the treatment group had higher health care use, lower out-of-pocket
medical expenditures and medical debt, and better self-reported physical and mental health than
the control group, but did not reflect any detectable improvements in physical health conditions like
high blood pressure.
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Medicaid which have presented policymakers with tough choices in balancing the costs

and benefits of Medicaid (Baicker, 2019). Meanwhile, states like Florida, Minnesota,

and North Carolina are analyzing their Medicaid programs to find potential savings,

some of which could be redirected to improve access and the quality of care to patients

served by the Medicaid program (Rueben, 2019). Furthermore, another significant

reform in Medicaid is the “Medicaid work requirements4,” which take away Medicaid

coverage from people not engaging in work or work-related activities for a specified

number of hours each month (Katch et al., 2018).

The mixed-bag effect of Medicaid and policymakers’ quest for Medicaid reforms

are the main motivations of my research. In this paper, I provide answers to the

questions of “Why previous literature finds the mixed-bag effect of Medicaid?”, and

“How to think about Medicaid reforms while improving the effectiveness of Medi-

caid?” To answer these research questions, I use the Oregon Health Insurance Ex-

periment (OHIE) public-use data. This data set comprises the lottery assignment of

Medicaid in Oregon, thus creates a randomized controlled study setting and allows

causal analysis by comparing various outcomes of the lucky Oregonians who received

Medicaid to those who did not (Klein, 2013). The primary rationale to use OHIE

data is that random assignment of Medicaid allows circumventing the challenges of

endogeneity. Endogeneity arises because it is difficult to control5 for observed and un-

observed confounding6 variables among the insured and uninsured population (Levy

and Meltzer, 2008).

Answers of the above research questions can contribute to two primary domains

that are relevant for policy development. First, unlike the series of papers7 that

4Centers for Medicare Medicaid Services (CMS) guidance for state Medicaid waiver proposals,
issued on January 2018, allows states, for the first time, to impose work requirements in Medicaid
as a condition of eligibility. As a result, several states have received approval for or are pursuing
these waivers. See Garfield et al. (2019) for details.

5For example, a comparison of the health between those with and without health insurance,(say
the Medicaid) can reveal that Medicaidinsurance is detrimental for one’s health because people with
poor health are more likely to get insurance compared to healthy people (Baicker and Finkelstein,
2011).

6Confounding variables are common causes that explain both treatment and outcome variables.
7See Allen et al. (2010); Baicker et al. (2013, 2017, 2014); Baicker and Finkelstein (2011); Finkel-
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have evaluated the average treatment effects of Medicaid, I contribute by estimating

the heterogeneous treatment effect of lottery Medicaid, employing the Athey et al.

(2019) cluster-robust generalized random forest, on several outcome variables. These

outcomes variables are health care utilization, preventive care utilization, financial

strain, self-reported physical and mental health, and several variables of potential

mechanism to improve health. The primary rationale to understand the heteroge-

neous treatment effects is that the identical policy intervention can often distinctly

affect different individuals and subpopulations in different ways. Along with average

treatment effects, policymakers are usually interested in how the effects of intervention

vary across subpopulations. Identifying the heterogeneous treatment effects accom-

modate the discovery of underlying mechanisms that drive the results and allow for

efficient design and reform of policy.

Second, I contribute insights regarding how to target health insurance interven-

tions for effective policymaking using the Athey and Wager (2019a) strategies of

“efficient policy learning.” Understanding “who should be treated” with intervention

is ubiquitous in policymaking. It can be unfair, unethical, and sometimes illegal to

target policy at only a particular subpopulation. Moreover, intervening everybody in

the population (a blanket policy) is welfare-maximizing but can be costly.8 The main

logic of efficient policy learning is to identify treatment assignment policies based on

easily observable individual characteristics. The treatment assignment, in this paper,

represents Medicaid assignment.

To investigate the heterogeneous treatment effects, one can stratify the data in

mutually exclusive groups or include interactions within a regression (Athey and Im-

bens, 2017a). However, for large-scale investigations of effect heterogeneity, p−values

stein et al. (2012); Grossman et al. (2016); Taubman et al. (2014); Zhou et al. (2017).
8For example, a provision of the Affordable Care Act (ACA) was that the federal government

would pay the full cost of coverage expansion through 2016. Moreover, it would reimburse at least
90% of the cost of covering the newly-insured population (Norris, 2018). Oregon responded to this
incentive by expanding Medicaid in January 2014 and ensured insurance to everyone with incomes up
to 133% of the federal poverty line. When the federal government gradually reduced their payments,
the state budget of Oregon (nearly $74 billion for 2017-2019) suffered about $1 billion budget hole
due to the cost of health care (Foden-Vencil, 2018).
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of standard “single” hypothesis tests are no longer valid because of the multiple hy-

pothesis testing9 problems (Lan et al., 2016; List et al., 2019). Moreover, performing

ad-hoc searches or p−hacking10 to detect the responsive subgroups may lead to false

discoveries or may mistake noise for an actual treatment effect (Davis and Heller,

2017). To avoid many of the issues associated with data mining or p−hacking, re-

searchers can commit in advance to study only a subgroup by a preregistered analysis

plan.11 However, this may also prevent discovering unanticipated results and devel-

oping new hypotheses (Athey and Imbens, 2016).

I implement the cluster-robust generalized random forest methods, developed by

the Athey et al. (2019), on the OHIE dataset to explore the heterogeneous treat-

ment effects of Medicaid. The Athey et al. (2019) method re-engineers the strengths

and innovations of the Breiman (2001) random forest12, a predictive machine learn-

ing method for causal inference. The Athey et al. (2019) modifications13 allow for

a systematic investigation of the heterogeneous treatment effects that are not prone

to data mining and p−hacking, and useful when research includes high-dimensional

9The “multiple hypothesis testing problems” leads to the so-called “ex-post selection problem,”
which is widely recognized in the program evaluation literature. For example, for fifty single hy-
potheses tests, the probability that at least one test falsely rejects the null hypotheses at the 5%
significance level (assuming independent test statistics as an extreme case) is 1 − 0.9550 = 0.92 or
92%.

10The p−hacking is an exhaustive search for statistically significant relations from combinations
of variables or combinations of interactions of variables or subgroups. The p−hacking could lead to
discovering the statistically significant relationship, when, in fact, there could have no real underlying
effect.

11A preregistered analysis plan is sets of analyses plans released in the public domain by the
researchers in advance prior they collect the data and learn about outcomes. For example, The
American Economic Association’s registry for randomized controlled trials is a reputable platform
for conducting a preregistered analysis plan.

12The Breiman (2001) random forest ensembles or bootstrap and aggregate many classifications
and regression tree (CART) of the Breiman et al. (1984), and report the average. The CART
recursively filters and partitions the large dataset into binary sub-groups (nodes) such that the
samples within each subset become more homogeneous in their fit of the response variable, thus
resulting in a tree-like format.

13The modifications are based on the “causal tree” (Athey and Imbens, 2016), “causal forest” (Wa-
ger and Athey, 2018) and the “generalized random forest” (Athey et al., 2019) methods. The “causal
tree” approach re-engineers the Breiman et al. (1984) classification and regression tree (CART), a
machine learning algorithms for causal inference. The remaining methods extend the “causal tree”
approach utilizing the Breiman (2001) random forest machine learning algorithm for causal inference.
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covariates.14 Furthermore, OHIE provides individual-level data set, but the Medicaid

lottery intervention occurred at household-level; therefore, the outcome variable may

be arbitrarily correlated within a household. The Athey et al. (2019) allows a conser-

vative approach of cluster-robust analysis to account for potential correlations within

each household cluster.

Along with the heterogeneous treatment effects, the question of: “Who should get

treatment?” is also a widespread issue in policy design. For example, who should get in

youth employment programs (Davis and Heller, 2017), who should get Medicare fund-

ing for hip or knee replacement surgery (Kleinberg et al., 2015), who should get a job

training, job searching support, and other assistance (Kitagawa and Tetenov, 2018).

My paper implements the “efficient policy learning” strategies of Athey and Wager

(2019a) to answer how to set eligibility criteria to intervene with Medicaid coverage.

The Athey and Wager (2019a) approach allows identifying policy changes/reforms

that prioritize providing Medicaid coverage to the subgroups that are likely to benefit

the most.

I show efficient policy rules considering two rationales − first, I exclude observable

covariates like race, gender, and residence. Excluding these covariates are essential

to allow ethical, legislative, and political considerations of policy design. Second, I

follow the Kitagawa and Tetenov (2018) approach to design policy from an “intent-

to-treat” perspective. This approach is crucial because the policy maker’s problem is

only a choice of the eligibility criteria and not the take-up15 rate.

I find the heterogeneous treatment effect of Medicaid on health care utilization,

preventive care utilization, financial strain, self-reported physical and mental health,

and several variables of potential mechanism to improve health. For each of these

outcome variables, I display the causal thresholds for distinct subpopulations where

14The nearest-neighbor matching, kernel methods, and series estimation are classical approaches
for nonparametric estimation of heterogeneous treatment effects (Crump et al., 2008; Lee, 2009;
Willke et al., 2012), and performs well with a smaller set of covariates. However, these classic
approaches break down quickly when covariates are large in numbers (Athey and Wager, 2019a).

15The take-up rate in our study is the percentage of eligible people who accept Medicaid benefits.
Individuals decide the take-up rate for various reasons unknown to the policymakers.
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the impacts of Medicaid intensify and subdue. These realms have not been explored

earlier, and my results are some unique contributions to the literature. My findings,

therefore, provide a holistic perspective toward the large, and at times contradictory

research exploring the effects of Medicaid on health. I find that the heterogeneous

impacts of Medicaid are more pronounced among poorer and older non-elderly house-

holds. These impoverished families may need more medical services, and when Med-

icaid provides an opportunity, these households utilize more health care compared to

those who are uninsured, just as standard adverse selection theory would predict.

Furthermore, I find efficient policies or reforms for several selected outcome vari-

ables. I quantify the cost of estimated policy rules in comparison to the random

assignment of Medicaid. On average, the proposed reforms would improve the av-

erage probability of outpatient visits, preventive care use, overall health outcomes,

having a personal doctor and clinic, and happiness by a range of 2% to 9% over a

random assignment baseline, and these improvements are likely to support a causal

interpretation.

In summary, I use the Oregon Health Insurance Experiment public-use data and

contribute to examining the sources of treatment heterogeneity on Medicaid programs

and offering efficient policy rules or reforms that prioritize Medicaid allotments to

subgroups that are likely to benefit the most. The findings of this paper are useful

for analysts, policymakers, and insurance designers to discover the underlying mech-

anisms that drive the health outcome results and to design or reform policy. For

example, the proposed reforms can help Oregon to develop a priority list against

current blanket Medicaid policy which can help to reduce the state budget-deficits16

without hampering the current Medicaid welfare.

Section 3.2 summarizes the institutional background of the Oregon Health In-

surance Experiment. Section 3.3 summarizes approaches to study health insurance

and health outcomes and explains how causal machine learning can help to analyze

16The federal government started to defund Oregon’s Medicaid Expansion from 2016 which has
led to a budget deficit and Oregon Measure 101 − a two-year budget fix to close state budget deficit
by taxing hospital and insurance agencies − is nearing to end in 2020.
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different research questions. Section 3.4 lays out identification strategy and empirical

methods for the cluster-robust random forest for heterogeneous treatment estimation

along with efficient policy learning strategies. Section 3.5 displays the results. Section

3.6 provides discussions on findings and concludes the study.

3.2 Oregon Health Insurance Experiment

Oregon’s Medicaid program, the Oregon Health Plan (OHP), created by one of the

first federal waivers of traditional Medicaid rules, has two separate parts. First is the

“OHP Plus.” It serves low-income children, pregnant women, welfare recipients, and

poor elderly and disabled populations groups who are categorically eligible Medicaid

populations in Oregon (Office for Oregon Health Policy and Research, 2009). Second

is the “OHP Standard.” It servers poor adults who are financially but not categorically

eligible for the Plus program. Eligibility for the Standard plan is limited to adults

ages 19−64 who are Oregon residents and U.S. citizens or legal immigrants, and have

incomes below the 100% federal poverty level and/or who have been without health

insurance for at least six months, and/or have less than $2,000 in assets (Office for

Oregon Health Policy and Research, 2009; Allen et al., 2010).

Except for vision and non-emergency dental services, the OHP Standard provides

relatively comprehensive benefits with no consumer cost-sharing. The OHP Stan-

dard coverage includes physician services, prescription drugs, all significant hospital

benefits, behavioral health, and chemical dependency services (including outpatient

services), hospice care, and some durable medical equipment (Finkelstein et al., 2012;

Baicker and Finkelstein, 2011). In 2001−2004, the average annual Medicaid expen-

ditures for an individual on the OHP Standard were about $3,000, with monthly

premiums that ranged below $20 depending upon income and was $0 for those below

10% of the federal poverty level (Wallace et al., 2008).

In early 2002, OHP Standard covered nearly 110,00 people, but in 2004, a bud-

getary shortfall halted new enrollment in the OHP Standard; and by early 2008,
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attrition had reduced enrollment to about 19,000. However, in early 2008, the state

of Oregon had the budget to enroll an additional 10,000 adults. Despite this newfound

budget, the demand for the program among eligible individuals would far exceed the

10,000 available slots. Therefore, Oregon’s Department of Human Services applied for

and received permission from the Centers for Medicare and Medicaid Services to add

new members through random lottery draws from a new reservation list (Finkelstein

et al., 2012).

In early 2008, the state of Oregon campaigned an extensive public awareness pro-

gram about the lottery opportunity focusing on the group that was not categorically

eligible for the Plus program. Any qualified person could sign up from January 28

to February 29, 2008, by telephone, fax, in-person sign-up, mail, or online while

providing very little demographic information. The sign up form required minimal

demographics information such as sex, date of birth, address, telephone number, P.O.

box, and preferred language of communication (either English or Spanish) along with

the list of names, sex, and date of birth of anyone age nineteen and older in the

household whom they wished to add to their sign up form (Allen et al., 2010).

No attempts were made to verify the information or to adequately screen for

program eligibility at sign up for the lottery in order to keep the entry barrier low.

During the window from January 28 to February 29, 2008, a total of 89,824 individuals

signed up. Ineligible individuals for the OHP Standard were excluded before the

lottery. The exclusion comprises individuals residing outside of Oregon, individuals

born before 1944 or after 1989, individuals with the OHP standard plan as of January

2008, individuals with an institutional address, and individuals who sign up by an

unrelated third party (Allen et al., 2010).

This exclusion leads to a sample that comprises 74,922 individuals (representing

66,385 households). After the sign-up phase, the state of Oregon conducted eight

lottery drawings (occurred from March through September 2008) and randomly se-

lected 29,834 individuals, and the remaining 45,088 individuals were kept as a control

group.
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Lottery selectees were sent a two-page application form17. Up to eight supplemen-

tal forms could accompany it (Allen et al., 2010). The selected individual was eligible

to apply for OHP Standard for themselves and their family member (whether listed

or not) and was required to submit the paperwork within 45 days. If they met the

eligibility requirements, they could enroll in the Oregon Health Plan (OHP) Standard

indefinitely. However, they had to verify their status every six months.

About 60% of the people who were selected by the lottery sent back the applica-

tion. Half of those applications failed to meet the requirements. The primary reason

was the requirement of income in the last quarter, corresponding to annual income

below the poverty level. The federal poverty line in 2008 was $10,400 for a single per-

son and $21,200 for a family of four (Allen et al., 2010). Therefore, about 30% of the

total selected individuals successfully enrolled in the OHP Standard. Shortly after

the random assignment of lottery and OHP Standard application form, an “initial

survey” was conducted and followed by the “main survey” a year later. These surveys

consist of data for 58,405 individuals comprising 29,589 individuals in treatment, and

28,816 individuals in the control group.

3.3 Approaches to Health Insurance & Health Out-

comes

“How does health insurance affect health?” The answer seems obvious, but Levy

and Meltzer (2008) review the literature and draw three conclusions. First, the prob-

lem of endogeneity makes causal claims tenuous. Second, the papers that establish

causal evidence are focused on small subgroup populations. For example, public

health insurance reduces mortality among infants and children (Currie and Gruber,

1996a,b; Hanratty, 1996), while for the elderly, public health insurance improves dif-

17“The main form asked for the names of all household members applying for coverage and in-
quired about their Oregon residence, U.S. citizenship, insurance coverage over the past six months,
household income over the past two months, and assets. Documentation of identity and citizenship
and proof of income had to be returned with the completed form” (Allen et al., 2010).
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ferent outcomes but not mortality (Card and Maestas, 2008; Finkelstein and McK-

night, 2008; McWilliams et al., 2007b,a). Third, the nature of these studies is not

representative of the broader population, which prohibits generalizing for policy pur-

poses. In this paper, I provide causal claims of the effects of Medicaid that qualify

for subgroups and also allow results to generalize in out-of-samples.

Allen et al. (2010) point out three practical designs for insurance and health out-

comes research: observational studies, quasi-experimental studies, and randomized

experiments. Observational studies comprise the most substantial part of the liter-

ature. Most of these studies typically utilize “multivariate regression” approaches.

When implemented correctly, these approaches control the observable confounding

variables between health insurance and health outcomes. However, these approaches

are less likely to address the issues of unobservable confounders between health in-

surance and health outcomes. Failure to control unobservable differences between

the insured and the uninsured may drive the observed differences in health outcomes

(Levy and Meltzer, 2004, 2008), which could lead to biased estimations.

The second set of studies exploit natural experiments to evaluate the effect of

health insurance on health outcomes. These studies implement techniques like differences-

in-differences estimations, regression discontinuity designs, and instrumental vari-

ables. These techniques exploit an exogenous event that results in variation within

health insurance coverage − changes that are plausibly unrelated to health and other

underlying determinants of health insurance coverage (Levy and Meltzer, 2008). Ex-

ploiting an exogenous event makes the variation of the health insurance coverage

take-up as good as random. In other words, health insurance coverage varies in a way

that is unrelated to the unobservable factor. Thus a comparison of various outcomes

between insured and uninsured are likely to support a causal interpretation.

However, the results of natural experiments are valid for only specific population

groups; thus, they cannot be generalized to the broader population. As explained

earlier, several studies show that public health insurance reduces mortality among

infants and children (Currie and Gruber, 1996a,b; Hanratty, 1996), while for the
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elderly, public health insurance does not reduce mortality (Card and Maestas, 2008;

Finkelstein and McKnight, 2008; McWilliams et al., 2007b,a). The “one size fits all”

policy approaches are unlikely to be useful for the broader population. For example,

the channels or mechanisms through which having insurance affects health outcomes

may be different for infants and children than they are for elderly adults.

The third set of studies are social experiments, which are the “gold standard” for

establishing causality. The RAND Health Insurance Experiment (RAND) and the

Oregon Health Insurance Experiment (OHIE) are only two of such kind in the United

States. Newhouse (1994) provides details on the RAND experiment while Finkelstein

et al. (2012) offer details on the Oregon experiments. Using RAND experiment data,

Newhouse (1994) and Brook et al. (1983) find no significant effect of insurance on the

health status of an average adult. Levy and Meltzer (2008) point out a weakness of the

RAND experiment that it did not randomize people to receive any health insurance.

Instead, random individuals have treated with health insurance with varying degrees

of generosity. Finkelstein et al. (2012) study the Oregon health insurance experiment

data. They find statistically significant higher health care utilization, lower out-of-

pocket medical expenditures and medical debt, and better self-reported physical and

mental health among the treatment group.

The observational studies, quasi-experimental studies, and randomized experi-

ments often focus on causal inference and have been dominant in empirical policy

research in health economics as well as economics in general. Recently, due to the

availability of big-data and computing powers, machine learning approaches are gain-

ing momentum among researchers and policymakers. Several scholars like Varian

(2014), Mullainathan and Spiess (2017), and Athey (2018) have promoted the value

of the big-data and machine learning method in the field of economics. Within the

domain of machine learning in economics, two strands of literature are gaining mo-

mentum: machine learning for policy prediction problems and machine learning for

causal inference problems.

The machine learning algorithms behave well for out-of-sample prediction as it uti-
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lizes flexible model selection, model ensembles, high dimensional data environment,

and cross-validations. Therefore these algorithms are useful in many policy applica-

tions18 where the causal inference is not central or potentially unnecessary. However,

machine learning algorithms are not well suited for causal inference. Rather than

just correctly predicting out-of-sample, establishing causal effect relates to under-

standing the counterfactual − what would happen with and without a policy (Athey,

2018). However, some slight modifications of “off-the-shelf” or readily-available ma-

chine learning algorithms can utilize the strengths and innovations of machine learning

algorithms for causal inference. The predictive machine learning algorithms are read-

ily available with the open-source routines for statistical software like Python and

R.

The approaches that use machine learning methods for causal inference focus on

estimating the average treatment effect, heterogeneous treatment effects, and optimal

policies (Athey, 2018). In Appendix A, I provide a summary of these approaches.

This paper implements a causal machine learning approach, the “generalized ran-

dom forest” of Athey et al. (2019), to explore the heterogeneous treatment effects

of expanding access to public health insurance on various dimensions of healthcare

utilization, personal finance, health, and wellbeing. Then, I utilize efficient policy

learning strategies of Athey and Wager (2019a) to explore some strategies that can

help to reform access to public health insurance programs.

18For example, Kleinberg et al. (2015) consider a resource allocation problem in health policy
in which a policymaker needs to decide which otherwise-eligible patients should not be given hip
replacement surgery through Medicare. They predict the probability that a candidate for a joint
replacement would die within a year from other causes. They then identify patients who are at
particularly high risk and should not receive joint replacement surgery. Similarly, Henderson et al.
(2012) use satellite data on lights at night to predict economic growth, and Glaeser et al. (2018)
use Google Street View images to predict income in New York City. Glaeser et al. (2016) develop
a system for allocating health inspectors to restaurants in Boston, and Naik et al. (2016) quantify
the “urban appearance” from street-level imagery for 19 American cities and establish an empirical
connection between the physical appearance of a city and the behavior and health of its inhabitants.
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3.4 Empirical Strategy

3.4.1 Identification

Finkelstein et al. (2012) provides the most detailed explanations and analyses of

the Oregon Health Insurance Experiment. They give the Intent-to-Treat (ITT) and

the Local Average Treatment Effect (LATE) estimates for various outcome variables

using the data from the “main survey” along with several other data sources. Shortly

after the lottery assignment, − that allowed lucky Oregonians to apply for the OHP

Standard Medicaid, and an “initial survey” was conducted to collect information

from those that participate in the application. A year later, a follow-up survey or the

“main survey” was performed. Therefore, the “initial survey” is pre-treatment, and

the “main survey” is a post-treatment survey. These surveys consist of data of 58,405

individuals comprising 29,589 individuals in treatment, and 28,816 individuals in the

control group.

Analyses in this paper consider similar outcome variables as Finkelstein et al.

(2012). However, the interpretations are very distinct compared to the approach of

Finkelstein et al. (2012). This paper contemplates a situation where analysts know

their outcome variable (Y ) at the post-treatment and have data of observables (X) at

the pre-treatment period. Therefore, the sample in this study may not be independent

because the covariates are all drawn from the “initial sample” and merged to the

outcome variables that are from the “main survey” sample. For this reason, this paper

analyzes the data as an observational, rather than a genuinely randomized study. This

paper assumes unconfoundedness to identify causal effects. Unconfoundedness means

that treatment assignment is as good as random conditional on observable covariates

(Rosenbaum and Rubin, 1983).

Consider i ∈ {1, . . . , N} observations where the potential outcomes for each unit

is either {Yi(0), Yi(1)}. Following Rosenbaum and Rubin (1983), the unit level causal

effect is the difference in potential outcomes τi = Yi(1) − Yi(0), where, Wi ∈ {0, 1}

is a binary indicator for the treatment with Wi = 0 indicating that unit i did not
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received the treatment and Wi = 1 indicating that unit i received the treatment. Xi

is a k-component vector of features or covariates unaffected by the treatment. The

data consist of triple
(
Y obs
i ,Wi, Xi

)
, ∀ i = 1, . . . , Nwhich are i.i.d samples drawn

from a large population. The realized outcome for unit i is the potential outcomes

corresponding to the treatment i.e. Y obs
i is

Y obs
i = Yi(Wi) =

{
Yi(0) if Wi = 0,

Yi(1) if Wi = 1.

then, unconfoundedness can be formalized as:

{Yi (0) , Yi (1)}⊥Wi|Xi.

3.4.2 Mean Comparison of Demographics

In this study, the outcome variables are health care utilization, preventive care

utilization, financial strain, and health after a year of the OHP Standard or Medicaid

experience. The treatment variable is lottery selection, and observable covariates

comprise pre-treatment demographics. This paper begins the analyses by comparing

the mean of control and treatment group demographics.

x̃i,h = γ0 + γ1Wi,h + ηih (3.1)

where x̃ is an observable demographic variable in the pre-treatment period, γ0 is

the mean of the control group and, γ1 is the mean difference between the control

and treatment group. One should expect γ1 to be statistically zero for comparable

control and treatment groups. The selected individuals were eligible to apply for OHP

Standard for themselves and their family member (whether listed or not); therefore,

standard errors are household-level clustered and heteroscedasticity-consistent.
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3.4.3 Intent to Treat Effect of Lottery

Secondly, this paper estimates the “intent-to-treat” (ITT) effect of winning the

lottery (i.e., the difference between treatment and controls). The ITT provides a

causal assessment of the net impact of expanding access to public health insurance.

This paper utilizes the double-selection post-LASSO approach introduced by (Bel-

loni et al., 2014b). This method is based on the“LASSO.”19 Under the assumption

of sparsity20, the double-selection post-LASSO approach select the observable con-

founders and covariates properly. Confounders are common-cause variables that affect

both outcomes and treatments. Covariates are variables that might affect results but

are not associated with anything else.

The double-selection post-LASSO procedure is comprised of the following steps

(Belloni et al., 2014a). First, run LASSO of dependent variables on a large inven-

tory of potential covariates to select a set of predictors for the dependent variable.

Second, run LASSO of treatment variable (lottery) on an extensive list of potential

covariates to choose a set of predictors for treatment. If the treatment is genuinely

exogenous, one should expect this second step should not select any variables. Third,

perform OLS regression of dependent variable on treatment variable, and the union

of the sets of regressors chosen in the two LASSO implementations to estimate the

effect of treatment on the dependent variable then correct the inference with usual

heteroscedasticity robust OLS standard error.

19The Least Absolute Shrinkage and Selection Operator (LASSO) is an appealing method to esti-
mate the sparse parameter from a high-dimensional linear model is introduce by Frank and Friedman
(1993) and Tibshirani (1996). LASSO simultaneously performs model selection and coefficient esti-
mation by minimizing the sum of squared residuals plus a penalty term. The penalty term penalizes
the size of the model through the sum of absolute values of coefficients. Consider a following linear
model ỹi = Θiβ1 + εi, where Θ is high-dimensional covariates, the LASSO estimator is defined

as the solution to min
β1∈Rp

En

[
(ỹi−iΘβ1)

2
]

+ λ
n‖β1‖1, the penalty level λ is a tuning parameter to

regularize/controls the degree of penalization and to guard against overfitting. The cross-validation
technique chooses the best λ in prediction models and ‖β‖1 =

∑p
j=1 |βj |. The kinked nature of

penalty function induces β̂ to have many zeros; thus LASSO solution feasible for model selection.
20The “sparse” outcome model means a model with a few meaningful covariates affect the average

outcome.
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Yi,h = β0 + β1Wi,h + xihβ2 + εit (3.2)

where, β1 is the main coefficient of interest and gives the average difference in (ad-

justed) means between the treatment group (the lottery winners) and the control

group (those not selected by the lottery). β1 is the impact of being able to apply

for OHP Standard through the Oregon lottery (Finkelstein et al., 2012). The xih are

selected from Xit, implementing the double-selection post-LASSO. xih includes the

set of confounding variables that correlate with treatment probability (and poten-

tially with the outcome) along with covariates that explain treatment and outcome.

Therefore controlling these covariates helps to estimate the “unbiased” relationship

between winning the lottery and the outcome.

3.4.4 Local Average Treatment Effect of Lottery

The ITT estimates from equation 3.2 provide the causal effect of winning the

lottery to apply for the OHP Standard. Another interesting causal parameter would

be the impact of actual OHP Standard Medicaid insurance coverage rather than just

the impact of winning the lottery to be eligible for the OHP Standard (ITT). In other

words, policymakers are interested in the causal effect of compliance to the lottery and

not just winning the lottery. The “complier” is the subset21 of individuals who obtain

insurance from winning the lottery and who would not obtain insurance through the

lottery selection. One way to retrieve this parameter is to utilize lottery selection as

an instrument and perform a two-stage least square (2SLS). equation 3.3 represents

21Imbens and Angrist (1994) point out that there exist four possible groups of individuals based
upon the compliance types: complier, always-taker, never-taker, and defier. The “complier” is
the subset of individuals who obtain insurance by winning the lottery and who would not obtain
insurance without winning the lottery. Never takers are a subset of individuals who never get
insurance even after winning the lottery. Always takers will get insurance regardless of the lottery.
The defier insured themselves when they are in the control group, and don’t take insurance when
they are in the treatment group. So, always taker and defier have insurance though they are in the
control group. The never taker and defier won’t take insurance though they win the lottery.
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the first stage equation and the second stage equation respectively.

Zi,h = δ0 + δ1Wi,h + xihδ2 + µit

Yi,h = φ0 + φ1Ẑi,h + xihφ2 + νit

(3.3)

where, Wi,h is an instrumental variable of lottery assignment; Zi,h is an endogenous

binary variable that takes a value of 1 if an individual is “ever in Medicaid” during

the study period (from initial notification period until September 2009), or 0 other-

wise. The first stage equation provides Ẑi,h, which is the predicted value of “ever in

Medicaid.” The main coefficient of interest is φ1 and is interpreted as a local aver-

age treatment effect (LATE) of Medicaid insurance (Imbens and Angrist, 1994) and

identifies the causal impact of insurance among the “compliers.” For just identified

model, the LATE estimates, φ1, is the ratio of ITT estimates from equation 3.2 and

the first-stage coefficient on winning the lottery from equation 3.3 or φ1 = β1
δ1

(Finkel-

stein et al., 2012). Relative to the study population, “compliers” are somewhat older,

more likely white, in worse health, and in lower socioeconomic status (Finkelstein

et al., 2012).

3.4.5 Heterogeneous Treatment Effects

Numerous studies examine the population average treatment effect of having an

insurance. This effect can be formalize using a potential outcome framework as

τ = E [Yi(1)− Yi(0)]. However, this paper’s main contribution is examining the het-

erogeneous treatment effect of Medicaid on several health and personal finance related

outcomes. The treatment heterogeneity can be expressed as the conditional average

treatment effect (CATE) and can be formalized as τ(x) ≡ E [Yi(1)− Yi(0)|Xi = x].

This paper employs the cluster-robust random forest approach of Athey and Wager

(2019b) to access the treatment heterogeneity. This approach is based on the “causal

tree” (Athey and Imbens, 2016), “causal forest” (Wager and Athey, 2018) and the
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“generalized random forest” (Athey et al., 2019) methods. The “causal tree” approach

re-engineers the Breiman et al. (1984) classification and regression tree (CART)22, a

machine learning algorithms for causal inference. The remaining methods extend the

“causal tree” approach utilizing the Breiman (2001) random forest23 machine learning

algorithm for causal inference.

In essence, CART recursively filters and partitions the large data-set into binary

sub-groups (nodes) such that the samples within each subset become more homoge-

neous in their fit of the response variable, thus resulting in a tree-like format. Figure

3.1 shows an example of features of the Titanic survivors using the CART method,

as demonstrated by Varian (2014).

CART minimizes the mean-squared error of the prediction of outcomes to capture

heterogeneity in outcomes. However, the “causal tree” minimizes the mean-squared

error of treatment effects to capture treatment effect heterogeneity. The approach

to estimate the “causal tree” is similar to the Imai and Ratkovic (2013) method. A

sample is split into two halves. One half is used to determine the optimal partition

of covariates space. The other half is used to estimate treatment effects based on the

optimal partition of covariates selected from the first partition (Athey and Imbens,

2016). This sample-splitting approach is known as an “honest” estimation because

model training and model estimation are independent. This approach leads to loss

of precision, as only half of the data is used to estimate the effect. However, this

approach generates a treatment effect and a confidence interval for each subgroup that

is valid no matter how many covariates are used in estimation. This paper employs

the Chernozhukov et al. (2018a) cross-fitting approach, which will be covered later in

this section, to prevent the loss of precision.

One caveat of the causal tree is that it does not provide personalized estimates.

22In simplest, the CART algorithm chooses a variable and split that variable above or below a
certain level (which forms two mutually exclusive subgroups or leaves) such that the sum of squared
residuals is minimized. This splitting process is repeated for each leave until the reduction in the
sum of squared residuals is below a certain level (as defined by users), thus resulting in a tree format
(Athey and Imbens, 2017b).

23The Breiman (2001) random forest ensembles or bootstrap and aggregate many CART and
report the average.
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Figure 3.1: A Classification Tree for Survivors of the Titanic

Source: Varian (2014).
Interpretation: The leftmost terminal node can be interpreted as, if the class of travel is more
than 2.5 (a third-class accommodation), 370 out of 501 died. The rightmost terminal node can
be interpreted as, out of 36 people of the age-cohort 16 or below who were in the first and
second-class accommodation, 34 survived. Those who were age-cohort more than 16, if they
were in second-class accommodation, 145 died out of 233 (second from the leftmost terminal
node), while 174 out of 276 died if they were in the first-class accommodation (second from
the rightmost terminal node). These rules fit the data reasonably well, misclassifying about 30
percent of the observations in the testing set.

Wager and Athey (2018) utilize the “random forest” machine learning approach and

propose a “causal forest” method, where many different causal trees are generated

and averaged, which can provide personalized estimates. This method offers causal

effects that change more smoothly with covariates and provides distinct individualized

estimates and confidence intervals. Wager and Athey (2018) also provide an essen-

tial finding that the predictions from causal forests are asymptotically normal and

centered on the true conditional average treatment effect for each individual. Athey

et al. (2016) extend the approach to other models for causal effects, such as instru-

mental variables, or other models that can be estimated using the generalized method

of moments (GMM). In each case, the goal is to evaluate how a causal parameter of

interest varies with covariates.
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3.4.6 Cluster-robust Random Forest

Random Forest

Essentially, the Breiman (2001) random forest approach makes prediction from

an average of b CARTs or trees, as follow: (1) for each tree b = 1, . . . , B, draw a

subsample Sb ⊆ {1, . . . , n}; (2) grow a tree via recursive partitioning on each such

subsample of the data; and (3) make a prediction by averaging the prediction made

by individual tree as:

µ̂ (x) =
1

B

B∑
b=1

n∑
n=1

Yi1 ({Xi ∈ Lb (x) , i ∈ Sb})
|{i : Xi ∈ Lb (x) , i ∈ Sb}|

(3.4)

where, Lb (x) denotes the leaf of the bth tree containing the training sample x. For

out-of-bag prediction, one can estimate the average as µ̂(−i) (x) by only considering

those trees b for which i /∈ Sb. (−i) superscript denote “out-of-bag” or “out-of-fold”

prediction

R−Learner Objective Function

Nie and Wager (2017) showed that “R−learner” objective function for heteroge-

neous treatment effect estimation as

τ̂ (·) = arg min
τ

{
n∑
i=1

((
Yi − m̂(−i)(Xi)

)
− τ(Xi)

(
Wi − ê(−i)(Xi)

))2
+ λn (τ (·))

}
(3.5)

where, λn (τ (·)) is a “regularizer” that controls the complexity of the learned condi-

tional average treatment effect τ̂ (·) function. e (x) = P [Wi|Xi = x] is the propensity

score or probability of being treated; m (x) = E [Yi|Xi = x] is expected outcomes

marginalizing over treatment; (−i) superscript denote “out-of-bag” or “out-of-fold”

prediction.
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Causal Random Forest

As explained earlier, random forest ensembles of many trees and provides predic-

tion as an average prediction made by many individual trees. Athey et al. (2019) show

that a random forest can be equivalent as an adaptive kernel method and re-express

the random forest from equation 3.4 as

µ̂ (x) =
n∑
i=1

ai (x)Yi; ai (x) =
1

B

B∑
b=1

Yi1 ({Xi ∈ Lb (x) , i ∈ Sb})
|{i : Xi ∈ Lb (x) , i ∈ Sb}|

(3.6)

where, ai (x) is a data-adaptive kernel or simply weights that measure how often the

ith training example appears in the same leaf as the test point x. Causal forests

can be seen as a forest-based method motivated by “R−learner”. Causal forest has

several tuning parameters24 and the cross-validation on the “R−learner” objective

function helps to select these tuning parameters. The kernel-based perspective on

forests suggests a natural way to use them for treatment estimation by first growing

a forest to get weights ai (x), and then set

τ̂ =

∑n
i=1 ai (xi)

(
Yi − m̂(−i)(Xi)

) (
Wi − ê(−i)(Xi)

)∑n
i=1 ai (xi) (Wi − ê(−i)(Xi))

(3.7)

Athey et al. (2019) discuss this approach in more detail, including how to design a

splitting rule of a forest that will be used to estimate prediction via equation 3.7. At

the implementation level, the causal forest starts by fitting two separate regression

forests to estimate m̂ (·) and ê (·) and making out-of-bag predictions using these two

first-stage forests. Then the model uses these out-of-bag predictions as inputs to the

causal forest where cross-validation on the “R−learner” objective function, as given

in equation 3.5, chooses the tuning parameters for the causal forest.

The random forests in this paper employs the Wager and Athey (2018) “honest”

estimation, as explained earlier. Furthermore, the lottery assignment was to the

household rather than to an individual. Therefore, this paper grows random forests

24These tuning parameters include the number of variables to try for each split, number of trees
grown in the forest, a target for the minimum number of observations in each tree leaf, number of
minimum node size for tree.
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by drawing a subsample at household level rather than individual-level. Similarly,

the out-of-bag predictions are made using the household that was not in the training

sample. equation 3.8 exhibits effectiveness of intervention, or Medicaid in individual,

household, and global levels.

τ̂h =
1

nh

∑
{i:Hi=h}

Γ̂i, τ̂ =
1

H

H∑
h=1

τ̂h, σ̂2 1

H (H − 1)

H∑
h=1

(τ̂h − τ̂)2,

Γ̂i = τ̂ (−i) (Xi) +
Wi − ê(−i) (Xi)

ê(−i) (Xi) (1− ê(−i) (Xi))

(
Yi − m̂(−i) (Xi)−

(
Wi − ê(−i) (Xi)

)
τ̂ (−i) (Xi)

)
(3.8)

where, for the individual with household index Ai ∈ {1, . . . , H}, the individual level

effectiveness of lottery intervention is Γ̂i and estimated based on the “doubly-robust”

estimator with cross-fitting (Chernozhukov et al., 2018a). The household-level effec-

tiveness of lottery intervention or the doubly-robust Average Treatment Effect (ATE)

is τ̂h. The global effectiveness of lottery intervention is τ̂ with standard error of

σ̂2. The “doubly-robust” estimator is a variant of the augmented inverse-probability

weighting. The name “doubly-robust” means in the sense that estimates are consis-

tent whenever either the propensity fit, ê (·) , or the outcome fit, m̂ (·), is consistent,

and are asymptotically efficient in a semiparametric specifications. The cross-fitting,

as suggested by Chernozhukov et al. (2018a), is similar to the Athey and Imbens

(2016) “honest” estimation. A sample is split into two halves. The first half (main

sample) is used to determine the optimal partition of covariates space. The second

half (auxiliary sample) is used to estimate treatment effects within the leave based

on the optimal partition of covariates selected from the first partition. Then flip the

role of the main and auxiliary samples. Each of the estimates is “honest” or the two

estimators will be approximately independent, so simply averaging them offers an

efficient procedure (Chernozhukov et al., 2018a). In Section 3.5, column (3) of Table

3.2, 3.3, 3.4 and 3.5 exhibits the estimates of τ̂j.
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Assessing Treatment Heterogeneity

A heuristic approach to gain qualitative insights about the strength of hetero-

geneity is to see how different are the doubly-robust average treatment effects for

the subgroup whose out-of-bag CATE estimates are below or above median CATE

(Athey and Wager, 2019b). Davis and Heller (2017) and Athey and Wager (2019b)

have used this approach to test for heterogeneity.

However, another test is based on “best linear predictor” or BLP method of

Chernozhukov et al. (2018b). First test if the model is calibrated or not, and sec-

ond, test for the existence of treatment heterogeneity. For this Chernozhukov et al.

(2018b) suggest to create three variables: Bi = Yi − ŷi
(−i); Ci = τ̄Wi − τ̄ êi

(−i);

and Di = (τ̂ (−i)(Xi) − τ̄)(Wi − êi(−i)). τ̄ is out-of-bag ATE, and êi
(−i) is out-of-bag

propensity score.

The mean forest prediction or regressing Bi and Ci, should yield dBi

dCi
= 1. A

coefficient of one for mean forest prediction (MFP) suggests that the mean forest

prediction is correct. Next, the differential forest prediction (DFP), or regressing

Bi and Di, if dBi

dCi
= 1, it suggests that the forest has captured heterogeneity in the

underlying signal. The p−value of the DFP coefficient also acts as an omnibus test

for the presence of heterogeneity: if the coefficient is significantly greater than 0, then

one can reject the null of no heterogeneity. However, asymptotic results justifying

such inference are not presently available.

3.4.7 Estimation of Treatment Policies

The optimal policy estimation has received greater attention in the machine learn-

ing literature25 (Athey, 2018). The optimal policy function maps the observable

characteristics of an individual to a policy or treatment assignment. In simplest,

the main goal of optimal policy estimation is to answer “who should be treated?” or

the optimal treatment allocation. The understanding of optimal policy is essential

25See Strehl et al. (2010); Dud́ık et al. (2011); Li et al. (2012); Dud́ık et al. (2014); Swaminathan
and Joachims (2015); Jiang and Li (2015); Thomas and Brunskill (2016) and Kallus (2018).
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in policymaking because an ad-hoc targeting of a specific subpopulation with posi-

tive interventions can be unfair, unethical, illegal, and politically incorrect to some

other subpopulations while intervening everyone in the population (a blanket policy)

is welfare-maximizing but can be extremely costly.

The optimal policy estimation, or optimal treatment allocation, has been recently

studied in using causal machine learning in economics, mainly by Kitagawa and

Tetenov (2018) and Athey and Wager (2019a). The main idea is to select a pol-

icy function that minimizes the loss from failing to use the ideal policy, referred to as

the “regret” of the policy. Note that estimating conditional average treatment effect

or heterogeneous treatment effect focus on the squared-error loss while the optimal

policy estimation focuses on utilitarian regret (Athey and Wager, 2019a).

Once a policymaker understands the heterogeneity effect, they would like to assign

the correct treatment to each individual or subpopulation. For that, I implement the

Athey and Wager (2019a) strategy to find the policy function π that can map the

observable characteristic of individuals, Xi, to an available set of treatment, Wi.

π : Xi → Wi ∈ {+1,−1}

Note, Wi ∈ {1, 0} is reindexed as Wi ∈ {+1,−1} which will help to formulate an

optimal policy assignment strategy later. Then an optimal treatment assignment

policy can be given as π∗ that maximizes expected utility, in our case, the health

outcomes.

π∗ ∈ arg max
π∈

∏ E [Yi (π (Xi))]

Alternatively, any other non-optimal policy experiences the regret of R (π), and we

would like to minimize the regret function:

R (π) = E [Yi (π
∗ (Xi))]− E [Yi (π (Xi))] (3.9)

Under unconfoundedness, the overlapping assumptions and binary treatment as-
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signment Athey and Wager (2019a) propose a technique to estimate the regret, regret

convergence, and bound of the regret. They first determine the treatment effect, Γ̂i,

for each i using the double-robust estimation technique called double machine learning

of Chernozhukov et al. (2018a) and given in equation 3.8.

Equation 3.8 is a doubly-robust estimator because only one of µ̂ or ê needs to be

correctly specified, and the term double machine learning is used because µ̂ and ê can

be semi- or non-parametric estimators. If the estimate is a positive treatment effect

Γ̂i, I assign individual to treatment (π (Xi) = 1) and if not then I assign individual to

control (π (Xi) = 0) and penalize for mismatch and maximize the following Q function

to assess the effective policy:

Q̂ (π) = n−1
∑
i

π (Xi) |Γ̂i|sign
(

Γ̂i

)
Further, Athey and Wager (2019a) show that the regret has

√
n
(
R̂DML (π)−R (π)

)
d→N

(
0, σ2 (π)

)
convergence and is bounded with the order of

√
V C (Π) /n where R̂DML (π) is the

double machine learning estimates of regret. The bound provides a robust theoretical

prediction that the test-error on any out-of-sample data is upper bounded with the

sum of training error and
√
V C (Π) /n.

3.5 Results

The analysis presented in this paper utilizes data from the “initial survey” and the

“main survey.” The “initial survey” (administered shortly after random assignment

of lottery and mailing of the OHP Standard application form to the lottery selectee)

and the “main survey” (conducted a year after the random assignment of the lottery)

collect data from very similar questionnaire from 58,405 individual comprising 29,589

individuals in treatment and 28,816 individuals in the control group. Each of these
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individuals is adults of ages 19−64 who are Oregon residents, the U.S. citizens, or

legal immigrants without health insurance for at least six months, and/or are below

the federal poverty level and/or have assets below $2,000.

3.5.1 Pre-treatment Comparison of Demographic Character-

istics

Employing equation 3.1, Table 3.1 begins the analysis by presenting how different

are treatment and control groups in their demographics in the pre-treatment period.

These demographics are retrieved from the lottery list data and the initial survey

data. Table 3.1 illustrates the mean of the control group and the difference of means

between the treatment group and the control group. Given the random assignment

of insurance, one should expect that the mean of the treatment and control group

should be statistically similar. Except for a few variables, the differences in the

means between treatment and control group are statistically zero. There exist some

anomalies where the mean difference of few demographics are statistically nonzero,

but close to zero, which could be due to the large sample size. This evidence suggests

that treatment or lottery was assigned randomly.

3.5.2 ITT, LATE and Heterogeneous Treatment Effects

The treatment effect often varies with individuals’ observable characteristics. For

example, if the treatment is costly and less accessible, then only those who are likely

to benefit most will take the treatment. In this case, the availability of the treatment

may reduce the average effect among the treatment recipients. While, on the other

hand, if the treatment provided to the individuals who are less likely to benefit,

then the availability of the treatment may increase the average effect among the

treatment recipients. Therefore understanding the heterogeneity in treatment effects

has important implications for policymakers, mainly to yield valuable insights about

how to distribute scarce social resources in an unequal society (Xie et al., 2012) by
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Table 3.1: Pre-treatment Comparison of Demographic Characteristics

Variable Control mean Mean diff Variable Control mean Mean diff

% Female § 0.600 -0.015*** % don’t currently work 0.527 -0.007
(0.006) (0.008)

% English preferred § 0.921 -0.009** % work below 20 hours/week 0.096 -0.002
(0.004) (0.005)

% Self signup § 0.880 -0.045*** % work 20–29 hours/week 0.111 -0.003
(0.004) (0.005)

% Signed up on first day § 0.102 0.004 % work 30+ hrs/week 0.266 0.012*
(0.004) (0.007)

% PO Box address § 0.127 0.000 % income the FPL below 50% 0.436 -0.029***
(0.005) (0.009)

% MSA § 0.750 -0.004 % income the FPL 50–75% 0.125 0.005
(0.006) (0.006)

Age (as of 2008) § 42.33 -0.108 % income the FPL 75–100% 0.154 0.000
(0.169) (0.006)

% Race as White 0.838 -0.009 % income the FPL 100–150% 0.171 0.012*
(0.006) (0.007)

% Race as Black 0.031 -0.001 % income the FPL above 150% 0.114 0.011*
(0.003) (0.006)

% Race as Spanish/Hispanic/Latino 0.100 0.009* % Insurance 0.293 0.145***
(0.005) (0.008)

% 4-year college degree or more 0.113 0.000 % OHP 0.067 0.158***
(0.005) (0.006)

% High school diploma or GED 0.506 -0.007 % Private insurance 0.028 -0.002
(0.008) (0.003)

% Less than high school 0.168 0.002 % Other insurance 0.055 0.00
(0.006) (0.004)

% Vocational training or 2-year degree 0.212 0.004 Household size 2.884 0.094***
(0.007) (0.029)

Notes: The initial survey consists of data of 58,405 individual comprising 29,589 individuals
in the treatment group and 28,816 individuals in the control group. The variables collected
from the lottery list for the population that appeared in the “initial survey” are marked with §.
Enclosed in the parenthesis are household-level clustered heteroscedasticity-consistent standard
errors. The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. the FPL
represents the FPL; in 2008, it was $10,400 for a single person and $21,200 for a family of four
Allen et al. (2010). The variables presented in this table are similar to Finkelstein et al. (2012)
paper. However, these estimates are different from theirs. They compare the means of treatment
and control group using lottery list data (marked as §) for the observation of n = 74922 and the
“main survey” data while this table utilizes “initial survey” data.

balancing the competing policy objectives, such as reducing cost, maximizing average

outcomes, and reducing variance in outcomes within a given population (Manski,

2009).

As noted earlier, this paper contemplates a situation where analysts know their

outcome variable, (Y ), at post-treatment and have data of observables, (X), at the

pre-treatment period. For this reason, this paper analyzes the data as an observa-

tional rather than a genuinely randomized study. Therefore, treatment heterogeneity

is likely because such a situation could arise if there are unobserved household-level

features that are an essential treatment effect modifiers. For example, some house-
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holds may have better access to care and probably implement the intervention better

than others or may have the knowledge to utilize resources to benefit from the treat-

ment.

To generalize the results outside the sample size, one needs to robustly account

for the sampling variability of potentially unexplained household-level effects. This

study takes a conservative approach and assumes that the outcome variables of an

individual within the same household may be arbitrarily correlated within a house-

hold (or “cluster”); therefore, it utilizes the cluster-robust analysis. Furthermore, to

generalize beyond the household given in the data, each household is equally weighted

such that the model allows the prediction of the effect on a new individual from a

new household.

Tables 3.2, 3.3, 3.4 and 3.5 comprise various estimates for health care/preventive

utilization, financial strain, self-reported health and potential mechanisms, respec-

tively. These outcome variables are taken from the “main survey” and proxy the

causal effects after one year of Medicaid experiences. Each of these tables has several

estimates. The estimates in Column (1) represent “intent-to-treat” effects implement-

ing double-selection post-LASSO method. Column (2) shows local average treatment

effects, which can be interpreted as the impact of Medicaid among compliers. Column

(3) presents the doubly-robust average treatment effect, which presents the average

effectiveness of the lottery intervention on the outcomes.

For each Table, Columns (4), (5), and (6) explore the treatment heterogeneity.

Column (4) provides “heuristic”, or qualitative, insights about the strength of hetero-

geneity, and it groups the out-of-bag CATE estimates to above or below the median

CATE estimate then estimates average treatment effects in these two subgroups sep-

arately using the doubly-robust approach to test if those average treatment effects

are statistically similar or not. Columns (5) and (6) provide a test calibration for

causal forest or the omnibus evaluation of the quality of the random forest-based on

the “best linear predictor” method of Chernozhukov et al. (2018b). It computes the

best linear fit of the target “estimand” using the forest prediction (on held-out data)
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as well as the mean forest prediction as to the sole two regressors. A coefficient of one

for mean forest prediction (MFP) suggests that the mean forest prediction is correct,

whereas a coefficient of one for differential forest prediction (DFP) additionally sug-

gests that the forest has captured heterogeneity in the underlying signal. The p−value

of the DFP coefficient also acts as an omnibus test for the presence of heterogeneity:

If the coefficient is significantly higher than 0, then we can reject the null hypothesis

of no heterogeneity. Though the treatment heterogeneity is not detected, this does

not exclusively indicate the non-existence of treatment heterogeneity. Therefore, a

heatmap plot is provided for a closer look at the location of heterogeneity.

The heatmap helps to characterize which subpopulations are more or less inclined

to Medicaid. However, a heatmap is a partial representation of overall treatment

heterogeneity. It requires caution while interpreting because it only presents two-

dimensions: age in the x-axis and household income as a percentage of the FPL.

Indeed, there may exist several variables that should be taken into consideration for

proper interpretation of heterogeneous treatment effects. Appendix B provides a list

of relevant variables to explain each of the heatmaps in this section.

Health Care Utilization

Table 3.2 Panel A describes health care utilization on extensive and intensive

margins. The health care utilization extensive margin relates to if an individual is

currently taking any medication, has any outpatient visits, has any emergency visits,

or has any inpatient hospital admission in the last six months. While the health

care utilization intensive margins quantify how many times an individual is currently

taking medication, has outpatient visits, has emergency visits, has inpatient hospital

admission in the last six months.

The ITT and LATE estimate in Table 3.2 Panel A shows that on both margins of

the health care utilization, there are substantial and (mostly) statistically significant

increases in prescription drugs and outpatient use. However, the doubly-robust ATE

estimates illustrate a significant effect for the outpatient usages only. The average
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Table 3.2: Health Care Utilization

Outcome variables ITT LATE ATE Heuristic MFP DFP
(1) (2) (3) (4) (5) (6)

Panel A: Health care utilization
Extensive margins

Currently taking any prescription medications 0.021** 0.067** 0.007 -0.018 0.801 -0.494
(0.009) (0.03) (0.009) (0.018) (1.015) (0.734)

Outpatient visits last six months 0.07*** 0.224*** 0.062*** 0.055*** 1.028*** 1.316***
(0.009) (0.027) (0.009) (0.017) (0.145) (0.312)

ER visits last six months 0.009 0.029 0.005 -0.014 0.696 -3.331
(0.008) (0.024) (0.008) (0.015) (1.172) (1.816)

Inpatient hospital admissions last six months 0.002 0.005 0.001 -0.006 0.272 -0.626
(0.004) (0.014) (0.005) (0.009) (2.322) (1.4)

Intensive margins
Number of prescription medications currently taking 0.104* 0.342* 0.042 -0.119 0.899 -0.383

(0.055) (0.177) (0.055) (0.109) (1.219) (1.005)

Number of Outpatient visits last six months 0.335*** 1.087*** 0.304*** 0.426*** 1.037*** 1.502***
(0.052) (0.166) (0.055) (0.11) (0.188) (0.373)

Number of ER visits last six months 0.006 0.018 -0.003 -0.115*** 1.97 -10.89
(0.016) (0.053) (0.017) (0.035) (14.846) (2.98)

Number Inpatient hospital admissions last six months 0.007 0.024 0.007 0.008 0.713 -2.071
(0.007) (0.021) (0.007) (0.014) (0.661) (1.974)

Panel B: Preventive care utilization

Blood cholesterol checked (ever) 0.036*** 0.116*** 0.035*** 0.00 1.043*** 1.022*
(0.008) (0.026) (0.008) (0.016) (0.236) (0.73)

Blood tested for high blood sugar/diabetes (ever) 0.038*** 0.121*** 0.035*** 0.003 0.982*** -1.588
(0.008) (0.025) (0.008) (0.017) (0.235) (1.618)

Mammogram within last 12 months (women 40 + age) 0.078*** 0.249*** 0.063*** 0.048* 0.992*** 2.036***
(0.013) (0.039) (0.014) (0.027) (0.213) (0.697)

Pap test within last 12 months (women) 0.053*** 0.18*** 0.047*** 0.037* 1.003*** 2.159***
(0.01) (0.034) (0.011) (0.022) (0.23) (0.671)

Notes: The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. Enclosed
in the parenthesis are household-level clustered heteroscedasticity-consistent standard errors.
The regressions in Columns (1) and (2) include household size dummies, survey wave dummies,
and survey wave interacted with household size dummies. For the LATE estimates in Column
(2), the instrumental variable is lottery assignment, and the endogenous variable is “Ever in
Medicaid”. The ITT and LATE estimates are base on the double-selection post-LASSO.

treatment effect of winning the lottery is associated with about a 0.30 (std. err. =

0.06) increase in the number of outpatient usages. Table 3.2 Panel B depicts the

preventive care utilization. The ITT and ATE estimates are similar and statistically

significant, suggesting that winning the lottery increases the likelihood for preventive



Shishir Shakya Chapter 3. HTEs of Medicaid and Efficient Policies 78

cares like a blood test for cholesterol and diabetes, mammograms (for women of age

40+), or Pap tests (for women). However, these estimates are small in size and also

do not shed light on the treatment heterogeneity. There is likely no effect among a

particular subgroup, while another subgroup may be uniquely affected.

Table 3.2 Column (4) renders the heuristic approach to test the treatment het-

erogeneity. Evidence of treatment heterogeneity for outpatient usages and preventive

care utilization is found. Table 3.2 Column (5) shows the MFP and Column (6)

represents the DFP. The MFP and DFP are close to unit and statistically nonzero,

suggesting treatment heterogeneity among these variables.

Note that 2000 causal trees were assembled to develop a cluster-robust random

forest. Among these 2000 causal trees, the algorithm always selects the age and the

household income below the federal poverty level along with the household size and

other variables like education and employment. Appendix A provides the variable

importance table for all of the outcomes analyzed. It lists the variables which were

split (more than average) by the random forest. Only for illustration purpose of

treatment heterogeneity, I develop a heatmap by grouping age and percentage of

household income below the FPL and average the out-of-bag conditional average

treatment. The heatmap has age on the x−axis and Household Income below the

FPL (in percentage) on the y−axis.

Figure 3.2 Panel (a) to (e) renders graphical depictions that compare the treatment

and control group to exhibit the treatment heterogeneity for the outpatient usages

and preventive care. Figure 3.2 Panel (a) and (b) portray an insight into outpatient

utilization, CATE, over Age and household income. It appears that outpatient usage

CATE (in extensive margin) for lottery winners is high and positive for those who

belong to a household whose income lies below 100% of the FPL, regardless of age

cohorts. The findings are similar for the intensive margin of outpatient usage CATE;

however, there exist some additional heterogeneity for different age-cohorts.

Figure 3.2 Panel (c) exhibits treatment heterogeneity if the blood test for choles-

terol level were ever done within the study period. Mostly younger age cohorts,
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Figure 3.2: Health Care and Preventive Care Utilization

(a) Outpatient visits last
six months

(b) Number of outpatient
visits last six months

(c) Blood cholesterol
checked (ever)

(d) Blood tested for
high blood sugar/diabetes
(ever)

(e) Mammogram within
last 12 months (women
40+)

(f) Pap test within last 12
months (women)

Notes: The heatmap helps to exhibit which subpopulations are more or less susceptible to Med-
icaid. For each heatmap, age is in the x-axis and household income as a percentage of the FPL
is in the y-axis. For each grid of x-axis and y-axis, the color maps the intensity of individ-
ualized treatment effect. However, a heatmap is a partial representation of overall treatment
heterogeneity and requires caution to interpret. Indeed there may exist several variables which
should be taken into consideration for proper interpretation of heterogeneous treatment effect.
Appendix B provides relevant variables list to explain each of the heatmaps in this section.

between 20 to 40, who belong to a more impoverished household, have a higher like-

lihood of this preventive test. Figure 3.2 Panel (e) shows the treatment subgroup

who are in a household below 80% of the FPL are more likely to the blood test for

diabetes. Figure 3.2 Panel (e) and (f) illuminates CATE for the Mammogram test

(for women whose age is above 40) and the Pap test (for women). It appears that

women aged 40 years and above who belong below 50% of the FPL households are

highly likely to elect to have a Mammogram test performed. Post 50 years, women

are likely to have a Mammogram test regardless of the household income is below the

FPL. The heatmap of the Pap test shows, women from households close to the FPL

or below 100% the FPL are likely to participate for the Pap test.
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Financial Strain

Table 3.3 displays extensive margins and intensive margins of financial strains.

Winning the insurance lottery is associated with lower financial strains both in ex-

tensive and intensive margins. The ITT and ATE estimates for financial strains in

intensive margins quantify the results in dollar terms as the net effect of winning

the lottery. The ITT and ATE ranges describe that winning the lottery relates to

reductions of various types of out-of-pocket costs for the past six months. The ITT

and ATE estimate ranges depicts on average $20 reductions on out-of-pocket costs for

doctors visits, clinics or health centers; nearly $40 to $49 reduction on out-of-pocket

costs for emergency room or overnight hospital care; about $13 to $15 reduction

on out-of-pocket costs for medical care and nearly about $50 reduction on the total

out-of-pocket cost for medical care. Other than these financial strains, the group

that received insurance through the lottery also has nearly $450 to $500 on average

reduction of their medical debts.

The “best linear prediction” (BPL) model narrates the treatment heterogeneity

in the out-of-pocket expenses (last six months) only. Again, this does not necessarily

mean that there is no heterogeneity because the BPL acts as an omnibus test for

the presence of heterogeneity. A closer look at the heatmap in Figure 3.3 illuminates

some sources of treatment heterogeneity.

The heatmap of Figure 3.3 Panel (a) shows a reduction for the extensive mar-

gin on the out-of-pocket medical expenses (last 6 months) suggesting lower financial

strain for lottery winners of all age groups and all households but the effects are more

pronounced for lottery winning households with income that ranges below 80% the

FPL and belong to the age group of 40 years and above. Figure 3.3 Panel (b) ex-

hibits a sharp discontinuity of owing money for medical expenses for lottery winning

households with income below 100% the FPL. These differences suggest that at least

within a low-income and relatively older population, individuals who select health

insurance coverage are in poorer health (and therefore demand more medical care)

than those who are uninsured, just as standard adverse selection theory would predict
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Table 3.3: Financial Strain

Outcome variables ITT LATE ATE Heuristic MFP DFP
(1) (2) (3) (4) (5) (6)

Extensive margins

Any out-of-pocket medical -0.073*** -0.238*** -0.073*** 0.028 1.021*** 1.449***
expenses, last six months (0.009) (0.029) (0.009) (0.018) (0.125) (0.562)

Owe money for medical -0.053*** -0.17*** -0.058*** 0.038** 1.076*** 0.87
expenses currently (0.009) (0.027) (0.009) (0.018) (0.169) (1.253)

Borrowed money or skipped other -0.057*** -0.184*** -0.064*** 0.008 1.061*** 0.473
bills to pay medical bills, last six months (0.009) (0.028) (0.009) (0.017) (0.145) (1.323)

Refused treatment because of -0.012** -0.037** -0.013*** 0.006 1.054*** -3.706
medical debt, last six months (0.005) (0.015) (0.005) (0.009) (0.387) (2.121)

Intensive margins

out-of-pocket costs for doctors visits, -19.308*** -61.429*** -20.175*** -8.47 0.999*** 0.371
clinics or health centers, past 6 months (3.46) (10.919) (3.594) (7.192) (0.179) (0.664)

out-of-pocket costs for emergency room -49.519** -157.71** -40.73** 14.213 1.035** 0.211
or overnight hospital care, past 6 months (21.611) (67.674) (18.46) (36.89) (0.468) (0.689)

out-of-pocket costs for prescription -15.042** -45.756** -12.747** 2.234 0.889** -1.116
medicine, past 6 months (6.941) (22.054) (6.012) (12.067) (0.403) (1.405)

out-of-pocket costs for other -3.431 -10.577 -3.052 -7.223* 0.894* -3.693
medical care, past 6 months (2.088) (6.55) (2.083) (4.188) (0.617) (1.492)

Total out-of-pocket costs for -48.203*** -152.815*** -53.793*** 13.3 1.034*** 0.489
medical care, last 6 months (9.552) (30.393) (9.751) (19.707) (0.188) (0.732)

Total amount currently owed -442.39*** -1447.906*** -496.084*** 167.277 1.038*** -0.298
for medical expenses (96.744) (318.1) (105.023) (208.674) (0.223) (1.125)

Notes: The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. Enclosed
in the parenthesis are household-level clustered heteroscedasticity-consistent standard errors.
The regressions in Columns (1) and (2) include household size dummies, survey wave dummies,
and survey wave interacted with household size dummies. For the LATE estimates in Column
(2), the instrumental variable is lottery assignment, and the endogenous variable is “Ever in
Medicaid”. The ITT and LATE estimates are base on the double-selection post-LASSO.

Finkelstein et al. (2012).

Figure 3.3 Panel (c) shows no heterogeneity of being refused for treatment because

of medical debt. Privately-owned hospitals may refuse patients in a non-emergency,

but public hospitals cannot turn away patients. The Emergency Medical and Treat-

ment Labor Act (EMTLA) enacted by Congress in 1986, explicitly prohibits public

hospitals from denying care to indigent or uninsured patients even if they cannot pay.

Figure 3.3 Panel (d) shows that lottery winners have an overall reduction of bor-



Shishir Shakya Chapter 3. HTEs of Medicaid and Efficient Policies 82

Figure 3.3: Financial Strain

(a) Any out-of-pocket
medical expenses, last 6
months

(b) Owe money for medi-
cal expenses currently

(c) Refused treatment be-
cause of medical debt, last
six months

(d) Borrowed money or
skipped other bills to
pay medical bills, last 6
months

(e) out-of-pocket costs for
doctors visits, clinics or
health centers, past 6
months

(f) out-of-pocket costs
for emergency room or
overnight hospital care,
past 6 months

(g) out-of-pocket costs
for prescription medicine,
past 6 months

(h) Total out-of-pocket
costs for medical care, last
6 months

(i) Total amount cur-
rently owed for medical
expenses

Notes: The heatmap helps to exhibit which subpopulations are more or less susceptible to Med-
icaid. For each heatmap, age is on the x-axis, and household income as a percentage of the FPL
is on the y-axis. For each grid of the x-axis and y-axis, the color maps the intensity of the indi-
vidualized treatment effect. However, a heatmap is a partial representation of overall treatment
heterogeneity and requires caution to interpret. Indeed there may exist several variables that
should be taken into consideration for proper interpretation of heterogeneous treatment effect.
Appendix B provides a relevant variables list to explain each of the heatmaps in this section.

rowing money or skipping other bills to pay medical costs compared to the control

group. However, the effect is more pronounced for lottery winning households with
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income below 100% of the FPL compared to a similar control group. These estimates

are for the extensive margin only. The next figure exhibits some of the intensive

margins of financial strains.

Figure 3.3 Panel (e) shows that more than $25 to $30 reductions of out-of-pocket

costs (for doctors visits, clinics or health centers in past six months) for age group

50 plus who belongs to the lottery winning household with an income below 80% of

the FPL compared to the control group. The below 40 age group from the lottery

winning households within the range of 80% to 200% of the FPL have less than about

$15 reductions of such cost compared to the similar control group. The rest of the

lottery winning subgroup has roughly an average of $20 cuts of such cost, compared

to the control group.

Figure 3.3 Panel (f) shows about $60 to $70 or more reduction in the out-of-pocket

costs for emergency room or overnight hospital care in the past six months for the

age group of 40 below of the lottery winning household with income below 100%

of the FPL. The reduction of such costs is less than $20 for the 50 and above age

group, regardless of their household-level income status. The remaining subgroup of

these aged below 50 who belong to a household with income more than 100% of the

FPL has about $30 to $50 reductions in the costs of the out-of-pocket payments for

emergency room visits or overnight hospital stays.

Figure 3.3 Panel (g) exhibits that the lottery winners who belong to the household

with income below 100% the FPL (regardless of their age) report more than $15 of

reductions in the out-of-pocket costs for prescription medicine in past six months.

Figure 3.3 Panel (h) illuminates that the lottery winners who belong to a house-

hold with income below 100% the FPL (regardless of their age) have more than $50

of reductions in the total out-of-pocket cost for medical care in last six months.

Figure 3.3 Panel (i) exhibits the decline of the total amount currently owed for

medical expenses. Compared to the control group, the treatment group with the age

of 35 to 50, have medical debt reductions. Such medical debt reductions are more

pronounced (more than $600) if the person belongs to a household with an income of
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50% below the FPL.

As pointed out by Finkelstein et al. (2012), these results suggest that some of

the financial benefits from Medicaid coverage can spillover beyond the insured. For

example, the declines in out-of-pocket expenses and a reduction in the difficulty of

paying non-medical bills means a reduction in the costs of unpaid care for medical

providers. Furthermore, insurance can reduce extreme adverse shocks to consumption

and can lead to consumption-smoothing.

Self-reported Health

Table 3.4 describes the effectiveness of the Oregon Health Insurance Experiment

in the various dimensions of the perceived physical and mental health outcomes after

a year. The ITT and ATE are similar and positive, suggesting lottery winners, on

average, self-reported higher health in comparison with the control group. The LATE

relates to the effect that is even higher for the compliance subgroup. There exists

detectable treatment heterogeneity.

The survey has a self-reported health section. The responders had five options to

choose (excellent, very good, good, fair, and poor) to report their health for differ-

ent time frames. These are ordinal questions in nature, and there is no doubt that

responders may have different perceptions of what good health represents for each in-

dividual. These options are recoded as binary for the self-reported health: good/very

good/excellent to 1 and not fair or poor to 0.

Figure 3.4 Panel (a) shows, compared to the control group, the lottery winning

subgroup, those aged 40 and above, from a household whose income is below 100%

of the FPL are more likely to report better health. Only the small subgroup of those

aged 50 reported at least not poor health, as exhibited in Figure 3.4 Panel (b).

Figure 3.4 Panel (c) depicts heterogeneity for another question regarding the re-

sponder’s perceptions of better or worse health outcomes throughout the last six

months. The lottery winners from households whose income is below 70% of the FPL

report better health to compare to the control group. When asked to quantify the
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Table 3.4: Self-reported Health

Variables ITT LATE ATE Heuristic MFP DFP
(1) (2) (3) (4) (5) (6)

Self-reported health good/very 0.046*** 0.15*** 0.046*** 0.032* 0.984*** 1.485***
good/excellent (not fair or poor) (0.009) (0.028) (0.009) (0.017) (0.19) (0.431)

Self-reported health not 0.033*** 0.107*** 0.033*** 0.044*** 1.036*** 1.085***
poor (fair, good, very good, or excellent) (0.006) (0.019) (0.006) (0.012) (0.188) (0.316)

Health about the same or gotten 0.035*** 0.115*** 0.039*** 0.078*** 1.086*** 1.748***
better over last six months (0.008) (0.026) (0.008) (0.016) (0.223) (0.437)

Number of days physical 0.557*** 1.796*** 0.602*** 0.431 1.037*** 1.011***
health good, past 30 days (0.182) (0.587) (0.183) (0.364) (0.312) (0.4)

Number days poor physical or mental 0.432** 1.397** 0.454** 1.333*** 1.157** 1.286***
health did not impair usual activity, past 30 days (0.198) (0.641) (0.197) (0.392) (0.511) (0.421)

Number of days mental health 0.741*** 2.479*** 0.806*** 0.807** 1.041*** 0.815***
good, past 30 days (0.209) (0.675) (0.207) (0.411) (0.27) (0.311)

Did not screen positive for 0.024*** 0.079*** 0.027*** 0.023 1.055*** 0.657
depression, last two weeks (0.008) (0.027) (0.008) (0.017) (0.338) (0.81)

Notes: The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. Enclosed
in the parenthesis are household-level clustered heteroscedasticity-consistent standard errors.
The regressions in Columns (1) and (2) include household size dummies, survey wave dummies,
and survey wave interacted with household size dummies. For the LATE estimates in Column
(2), the instrumental variable is lottery assignment, and the endogenous variable is “Ever in
Medicaid”. The ITT and LATE estimates are base on the double-selection post-LASSO.

number of good physical health days in the past 30 days, lottery winning households

closer to the FPL report higher numbers, as presented in Figure 3.4 Panel (d).

However, in Figure 3.4 Panel (e), the number of good mental health days in the

past 30 days is reported to be higher for the age group above 40 from the lottery

winning households closer to the FPL. The severity of mental and physical health is

captured from the question to quantify the number of poor physical or mental health

days did not impair the usual activity, past 30 days. Again, households closer to

the FPL report higher numbers of days that were not impaired by poor physical and

mental health, as plotted in Figure 3.4 Panel (f).

Figure 3.4 Panel (g) shows a group of those aged 50 and above who are from a

household below 100% of the FPL are more likely to not be among those detected with

depression (in the last two weeks). In all these Panels, it is repeatedly observed that

lottery winning, poorer households report slightly better health outcomes compared
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Figure 3.4: Self-reported Health

(a) Self-reported health
good/very good/excellent
(not fair or poor)

(b) Self-reported health
not poor (fair, good, very
good, or excellent)

(c) Health about the same
or gotten better over last
six months

(d) Number of days phys-
ical health good, past 30
days

(e) Number of days men-
tal health good, past 30
days

(f) Number days poor
physical or mental health
did not impair usual activ-
ity, past 30 days

(g) Did not screen pos-
itive for depression, last
two weeks

Notes: The heatmap helps to exhibit which subpopulations are more or less susceptible to Med-
icaid. For each heatmap, age is on the x-axis, and household income as a percentage of the FPL
is on the y-axis. For each grid of the x-axis and y-axis, the color maps the intensity of the indi-
vidualized treatment effect. However, a heatmap is a partial representation of overall treatment
heterogeneity and requires caution to interpret. Indeed there may exist several variables that
should be taken into consideration for proper interpretation of heterogeneous treatment effect.
Appendix B provides a relevant variables list to explain each of the heatmaps in this section.

to those who were not selected in the lottery. These results could arise due to adverse

selection. As the theory suggests, those who are typically viewed as poorer/older
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require more health services than their counterparts. When they can receive that

care, they will report better health outcomes compared to the groups that are unable

to acquire that care.

Potential Mechanism for Improved Health

Table 3.5 depicts some potential mechanisms by which health insurance could

have improved objective physical health along the heterogeneities in these mecha-

nisms. Table 3.5 Columns (1), (2), and (3) present statistically significant increases

of self-reported access to care (Panel A), quality of care (Panel B), and happiness

(Panel C). Overall, the evidence suggests that people feel better off due to insurance,

but Finkelstein et al. (2012) point-out that with the current data, it is difficult to de-

termine the fundamental drivers of this improvement. One way to look at the drivers

of this improvement is to capture the treatment heterogeneities. Except for the use

of ER for a non-emergence (last six months), there are treatment heterogeneities in

the access to care, quality of care, and happiness detailed in Table 3.5 Columns (4),

(5), and (6).

Figure 3.4 illustrates the heatmap with age in the x−axis and percentage of house-

hold income below the FPL in the y−axis. The treatment effects are plotted for every

possible grid of age and percentage of household income below the FPL. Figure 3.4

Panel (a) exhibits a particular threshold that households with income below the FPL

90% are more likely to have the usual place of clinic-based care than the control

subgroup of similar attributes.

Figure 3.4 Panel (b) depicts households with income above 100% of the FPL with

those aged 40 years and above are less likely to have a personal doctor compared

to the households with income below 100% of the FPL with those aged under 40.

Most of the poorer households are likely to get all their needed medical care (Figure

3.4 Panel (c)) and medications (Figure 3.4 Panel (d)) while households with income

below 50% of the FPL and aged 40 age and above are less likely to utilize the ER in

instance of non-emergencies (Figure 3.4 Panel (e)). Perceived quality of care is very
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Table 3.5: Potential Mechanism for Improved Health

Variables ITT LATE ATE Heuristic MFP DFP
(1) (2) (3) (4) (5) (6)

Panel A: Access to care
Have usual place 0.087*** 0.274*** 0.086*** 0.041** 1.012*** 2.185***

of clinic-based care (0.009) (0.029) (0.009) (0.018) (0.109) (0.736)

Have personal doctor 0.073*** 0.235*** 0.072*** 0.101*** 1.031*** 1.329***
(0.009) (0.029) (0.009) (0.018) (0.127) (0.202)

Got all needed medical 0.085*** 0.274*** 0.085*** 0.095*** 1.019*** 1.985***
(0.009) (0.028) (0.009) (0.017) (0.106) (0.332)

Got all needed drugs, 0.07*** 0.227*** 0.073*** 0.058*** 1.016*** 1.733***
last six months (0.008) (0.026) (0.008) (0.016) (0.112) (0.416)

Didn’t use ER for 0.00 0.00 0.003 -0.04*** 1.163 -4.168
non emergency, last six months (0.005) (0.015) (0.005) (0.01) (1.469) (2.29)

Panel B: Quality of care
Quality of care received last six months 0.049*** 0.15*** 0.053*** -0.312*** 1.028*** -402.796

good/very good/excellent (conditional on any) (0.01) (0.03) (0.01) (0.019) (0.179) (19.252)

Panel C: Happiness
Happiness, very happy or pretty 0.062*** 0.202*** 0.069*** 0.057*** 1.049*** 1.551***

happy (vs. not too happy) (0.009) (0.029) (0.009) (0.017) (0.134) (0.379)

Notes: The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. Enclosed
in the parenthesis are household-level clustered heteroscedasticity-consistent standard errors.
The regressions in Columns (1) and (2) include household size dummies, survey wave dummies,
and survey wave interacted with household size dummies. For the LATE estimates in Column
(2), the instrumental variable is lottery assignment, and the endogenous variable is “Ever in
Medicaid”. The ITT and LATE estimates are base on the double-selection post-LASSO.

uniformly distributed among the households and all age groups (Figure 3.4 Panel (f)).

However, aged 40 and above in households with income below 180% of the FPL are

more likely to have perceived happiness (Figure 3.4 Panel (d)).

3.5.3 Efficient Policies

The previous section describes the ITT, LATE, and ATE along with the test of

treatment heterogeneity. A more interesting question is whether we can find ways

to prioritize treatment to some subgroups of Medicaid eligible registrants who are

more likely to benefit from it. Following the out-of-bag prediction using generalized

random forests of the Athey and Wager (2019b), I compute doubly-robust scores for

the treatment effect as in equation 3.8, and learning policies empirical maximization
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Figure 3.5: Potential Mechanism for Improved Health

(a) Have usual place of
clinic-based care (b) Have personal doctor

(c) Got all needed medical
care, last six months

(d) Got all needed drugs,
last six months

(e) Didn’t use ER for non-
emergency, last six months

(f) Quality of care re-
ceived last six months
good/very good/excellent
(conditional on any)

(g) Happiness, very happy
or pretty happy (vs. not
too happy)

Notes: The heatmap helps to exhibit which subpopulations are more or less susceptible to Med-
icaid. For each heatmap, age is on the x-axis, and household income as a percentage of the FPL
is on the y-axis. For each grid of the x-axis and y-axis, the color maps the intensity of the indi-
vidualized treatment effect. However, a heatmap is a partial representation of overall treatment
heterogeneity and requires caution to interpret. Indeed there may exist several variables that
should be taken into consideration for proper interpretation of heterogeneous treatment effect.
Appendix B provides a relevant variables list to explain each of the heatmaps in this section.

as in equation 3.9.

Table 3.6 Column (1) details the average outcome for each policy variable of inter-

est under the random assignment of treatment. Table 3.6 Columns (2) to (5) present
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Table 3.6: Estimate of the Utility Improvement of Various Policies Over Baseline.

Variable Baseline Probability rule CATE rule Shallow tree Deeper tree
(1) (2) (3) (4) (5)

Panel A: Health care utilization
Outpatient visits 0.604*** 4.74*** 5.119*** 4.228*** 2.898***

last six months (0.002) (0.182) (0.17) (0.197) (0.177)

Panel B: Preventive care utilization
Blood cholesterol checked (ever) 0.659*** 0.575*** 3.023*** 1.934*** 1.59***

(0.005) (0.176) (0.146) (0.166) (0.154)

Blood tested for high blood 0.625*** 1.066*** 3.059*** 2.665*** 2.068***
sugar/diabetes (ever) (0.003) (0.157) (0.124) (0.137) (0.178)

Mammogram within last 0.331*** 7.008*** 10.228*** 9.26*** 5.75***
12 months (women + 40) (0.002) (0.482) (0.398) (0.552) (0.42)

Pap test within last 0.411*** 3.489*** 5.682*** 4.955*** 4.058***
12 months (women) (0.003) (0.286) (0.24) (0.315) (0.316)

Panel C: Self-reported health
Self-reported health good/very 0.579*** 1.952*** 4.186*** 4.225*** 2.588***

good/excellent (not fair or poor) (0.003) (0.174) (0.145) (0.201) (0.195)

Panel D: Potential mechanism
Have usual place 0.558*** 5.462*** 7.44*** 7.305*** 4.718***

of clinic-based care (0.002) (0.227) (0.203) (0.237) (0.202)

Have personal doctor 0.544*** 6.114*** 6.432*** 6.144*** 4.576***
(0.003) (0.192) (0.207) (0.244) (0.181)

Happiness, very happy or pretty 0.629*** 2.137*** 4.883*** 5.042*** 3.306***
happy (vs. not too happy) (0.002) (0.196) (0.174) (0.218) (0.166)

Notes: The ***, **, and * represent 1%, 5%, and 10% level of significance, respectively. Enclosed
in the parenthesis are standard errors. The estimates in Columns (1) represents the averages of
each variable based on the random assignment baseline and considered as a parameter measuring
the cost of treatment. The estimates in Column (2) to (5) presents the estimates of the average
outcome improvement (in percentage) of various policies over a random assignment baseline for
selected variable of interest. Policies learned on different subsets of the data will in general be
different from the policies learned on the full data. Therefore, to examine the stability of the
learned rule, 100 different policy are learned from randomly sample subdata and estimates are
based on the out-of-bag sample.

the estimates of the average outcome improvement (in percentage) of various policies

over a random assignment baseline for the selected variable of interest. Efficient pol-

icy for each of the variables of interest uses a particular set of covariates, as given in

appendix B. However, I did not use covariates like gender and race for the ethical

and political rationale because these covariates cannot legally be used for treatment

allocation.

In Table 3.6 Column (2) the assignment policy is based on a probability rule. The
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Figure 3.6: Efficient Policy to Improve Outpatient Visits

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctthe FPL 0m shows household income as percentage of the federal poverty
line in the baseline and the ins months 0m num shows numbers of months that a responder has
insurance in last six months. Policies learned on different subsets of the data will in general be
different from the policies learned on the full data, and it can be interesting to examine them to
gain intuition for the stability of the learned rule. Table 3.6 exhibits the stability of learned rule,
however, Figure 3.6 is a graphical depiction of a learned policy and can be different to different
subsets of the data.

probability rule allocates Medicaid for those whose probability is less than the aver-

age probability of each outcome of interest. The generalized random forest provides

the probability for each outcome of interest. In Table 3.6 Column (3), the assign-

ment policy is the CATE rule, i.e., assign Medicaid if CATE is positive. In Table

3.6 Columns (4) and (5), the shallow and deeper causal tree provides the Medicaid

assignment policies. The shallow causal tree allows a max-depth of 3 policy trees

while the deeper causal tree allows the max-depth of policy tree to be obtained by

optimal pruning of the causal tree using cross-validation. Caution is warranted as

asymptotic results hold only for trees with little complexity.

Table 3.6 Panel A, Column (1) describes the percentage of the households with

outpatient visits over the last six months using the full sample data. About 60% of the

whole sample has an outpatient visit in the previous six months. Note, this estimate is

based on the lottery assignment of the OHP Standard or Medicaid. Panel A, Column

(2) presents that if the Medicaid or OHP Standard is assigned among the eligible

registrants using the probability rule, then it would improve outpatient visits by an
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additional 4.74%. Panel A, Column (3), exhibits, if the Medicaid assignment is based

on the CATE rule, then it would improve outpatient visits by 5.12%. The optimal

depth-3 policy tree or shallow tree would improve outpatient visits by an additional

4.23%. The optimal depth for policy trees based on the cross-validation for pruning

would improve outpatient visits by an extra 2.9%. All of these improvements are

statistically significant.

Figure 3.6 is a graphical depiction of the proposed efficient policy with the shallow

tree in Panel (a) and deep tree in Panel (b). Note that the policies learned on different

subsets of the data will, in general, be different from the policies acquired on the full

data. It can be interesting to examine them to gain an intuition for the stability of

the learned rule. Table 3.6 exhibits the stability of learned rule. However, Figure 3.6

is a graphical depiction of a learned policy and can vary for different subsets of the

data. To save space, learned efficient policies for the rest of the variables that are

presented in Table 3.6 are compiled in Appendix C.

3.6 Discussion and Conclusion

In 2008, 10,000 low-income Oregonian adults (19 to 64 years of age) were ran-

domly chosen to qualify for Medicaid, which provides a unique opportunity to study

the causal effect of Medicaid coverage. Finkelstein et al. (2012) found in the year

following the random assignment of Medicaid, the treatment group had higher health

care use, lower out-of-pocket medical expenditures and medical debt, and better self-

reported physical and mental health than the control group, but it did not have

detectable improvements in physical health conditions like high blood pressure. How-

ever, these mixed-bag effects of Medicaid puzzle researchers to determine what drives

the relationship between Medicaid and other outcomes of interest. My paper puts for-

ward an argument of heterogeneous treatment effect where Medicaid distinctly affects

different individuals and subpopulations differently. Furthermore, I use these hetero-

geneous treatment effects to reveal policy reforms. These reforms prioritize Medicaid
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allotments to the subgroups that are likely to benefit the most. I also quantify how

much these reforms improve from the baseline Medicaid impacts on health care use,

personal finance, health, and well-being.

In this section, I present discussions on some of the obvious questions that the

reader may have. This paper contemplates a situation where analysts know their

outcome variable, (Y ), at the post-treatment and have data of observables, (X), at

the pre-treatment period. This situation may be a standard for many researchers. For

this reason, this paper analyzes the data as an observational rather than a genuinely

randomized study. Therefore, the unconfoundedness assumption to identify causal

effects is crucial for this paper.

This paper focuses on “intent-to-treat” rather than “local average treatment ef-

fects.” A local average treatment effect can be interpreted as the impact of Medicaid

among compliers while an intent-to-treat estimates the net impact of expanding access

to Medicaid. The results present both facts, but I mainly focus on the intent-to-treat

because the problem policymakers face only a choice of the eligibility criteria and

not the take-up. There can be many reasons for eligible people (lottery winner) not

to accept Medicaid and people who do not win the lottery to get other insurance

from other sources. This is the consumer’s sovereignty, and policymakers cannot

micromanage.

The heterogeneous effects of Medicaid are pronounced among households below

100% of the federal poverty line. A possible answer would be that more impoverished

families may need more medical care. Medicaid provides an opportunity for these

households to gain access to health care, and they, therefore, may utilize health care

more than those who are uninsured that can be an exemplification of a standard

adverse selection theory prediction. Also, I did not use the covariates like gender

and race for the ethical and political rationale because these covariates cannot legally

be used for treatment allocation. However, these are essential covariates, and not

including these covariates can lead to higher standard errors in the estimates.

The proposed policy can be thought of as small reforms in Medicaid. Rather than
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a blanket policy that can be welfare-maximizing yet highly costly, these reforms target

the subpopulation who are more likely to derive benefit and because these reforms are

aimed, therefore, can be less expensive. For example, the federal government started

to defund Oregon’s Medicaid Expansion from 2016 which has led to a budget deficit

and Oregon Measure101 a two-year budget fix to close the state budget deficit by

taxing hospital and insurance agencies, is nearing to end in 2020, these proposed

reforms can help Oregon to reduce the state budget deficit.

To generalize the results outside the sample size, one needs to robustly account

for the sampling variability of potentially unexplained household-level effects. This

study takes a conservative approach and assumes that the outcome variables of an

individual within the same household may be arbitrarily correlated within a household

(or “cluster”), and therefore, utilizes the cluster-robust analysis. Each household is

equally weighted, such that the model allows the prediction of the effect on a new

individual from a new household, to generalize beyond the households given in the

data. However, caution must be taken. First, these estimates are the one-year impact

of expanding Medicaid access, and effects can change over longer time horizons than

we can analyze. Second, these findings are the partial equilibrium effects of covering a

small number of people, holding constant the rest of the health care system; the results

of much more extensive health insurance expansions might differ because of supply-

side responses by the health care sector. Third, the population is not representative of

the low-income uninsured adults in the rest of the United States on several observable

(and presumably unobservable) dimensions.

To conclude, I provide some evidence of heterogeneous treatment effects of Med-

icaid that can reconcile the mixed-bag results of Medicaid, as reported by previous

literature. I also proposed some reforms that can improve program effectiveness. The

Medicaid expansion, through the Affordable Care Act (ACA) and the contemporary

fiscal pressure, has triggered a national debate amongst diverse stakeholders regarding

the impacts of Medicaid coverage on various dimensions of public health, costs, and

benefits. Some have argued that Medicaid decreases total health care spending by
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improving health and reducing inefficient hospital and emergency room utilization.

Others have disputed that Medicaid reneges the promised benefits because Medicaid

reimburses providers insufficiently, and therefore, recipients struggle to obtain access

to care, and the low income uninsured already have reasonable access to care through

clinics, uncompensated care, emergency departments, and out-of-pocket spending.

Both of these arguments eventually motivate a need for substantial discussion and

rigorous empirical assessment of what effects, if any, Medicaid coverage has on health

care, health, and well-being and how to strike a balance between cost and benefits.
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Appendix A

Causal Machine Learning

Approaches

Average Treatment Effect In this paragraph, I show a few examples of a causal

machine learning approach to estimate the average treatment effect. For example,

Belloni et al. (2014b) and Belloni et al. (2014a) utilize “off-the-shelf” or readily avail-

able predictive machine learning algorithm called the “LASSO”1 method and purpose

a correction2 called the “double-selection post-LASSO”3 method. This method is use-

1The Least Absolute Shrinkage and Selection Operator (LASSO) is an appealing method to esti-
mate the sparse parameter from a high-dimensional linear model is introduce by Frank and Friedman
(1993) and Tibshirani (1996). The LASSO simultaneously performs model selection and coefficient
estimation by minimizing the sum of squared residuals plus a penalty term. The penalty term pe-
nalizes the size of the model through the sum of absolute values of coefficients. Consider a following
linear model ỹi = Θiβ1 +εi, where Θ is high-dimensional covariates, the LASSO estimator is defined

as the solution to min
β1∈Rp

En

[
(ỹi−iΘβ1)

2
]

+ λ
n‖β1‖1, the penalty level λ is a tuning parameter to

regularize/controls the degree of penalization and to guard against over-fitting. The cross-validation
technique chooses the best λ in prediction models and ‖β‖1 =

∑p
j=1 |βj |. The kinked nature of

penalty function induces β̂ to have many zeros; thus LASSO solution feasible for model selection.
2When LASSO of outcome variable is implemented to select the covariates while always restricting

the treatment indicator, the estimated treatment effect is biased because LASSO’s sole objective is
to select variables that predict outcome thus LASSO fails to select confounders that are also strong
predictor of treatment assignment.

3Belloni et al. (2014a) simplify the double-selection post-LASSO procedure as following. First,
run LASSO of outcome variables on a large list of potential covariates to select a set of predictors
for the outcome variable. Second, run LASSO of treatment variable on a large list of potential
covariates to select a set of predictors for treatment. If the treatment is truly exogenous, we should
expect this second step should not select any variables. Third, run OLS regression of outcome
variable on treatment variable, and the union of the sets of regressors selected in the two LASSO
runs to estimate the effect of treatment on the outcome variable then correct the inference with
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ful for estimating the average treatment effect when the analyst is required to select

a “sparse” outcome model4 from high-dimensional observables when some covariates

correlate with treatment and outcome, and the analyst does not know which ones

are important. Similarly, Athey et al. (2018) utilize “doubly-robust”5 method and

LASSO method and purpose “residual balancing”6 approach for estimating average

treatment effect under the assumption of unconfoundedness7 and the assumption of

the outcome model is linear and sparse. Similarly, Chernozhukov et al. (2018a) pur-

pose “double machine learning” for estimating the average treatment effect under

unconfoundedness. The idea is to first run any feasible machine learning methods

of outcomes on covariates, and then second run another feasible machine learning

methods of the treatment indicator on covariates; then, the residuals from the first

machine learning are regressed on the residuals from the second machine learning

to estimate the average treatment effect. This idea is similar to Frish-Waugh-Lovell

theorem8 and close to the concept of Robinson (1988) residual-on-residual regression

approaches where the estimator was a kernel regression. Heterogeneous Treatment

Effects Along with the average treatment effect, heterogeneous treatment effects es-

usual heteroscedasticity robust OLS standard error.
4The “sparse” outcome model means a model with a few meaningful covariates that affect the

average outcome. These few meaningful covariates are selected from a given list of many observables
covariates, and potentially a situate when numbers of observables k are greater than numbers of
observations n, i.e., k > n. When k > n, an estimation based on the least-squares estimation is
infeasible. However, traditionally, the principal component analysis (PCA) is commonly used to
reduce dimension when the likelihood function is normal. The PCA creates principal components
using linear combinations of a much larger set of variables from a multivariate data-set. Interpreting
the coefficients on the principal components requires the researcher first to interpret the principal
components, which can prove a challenge as all variables have non-zero loadings.

5The “doubly-robust” estimator proceeds by taking the average of the efficient score, which
involves the estimation of conditional mean of outcomes given covariates as well as the inverse
propensity score Athey (2018).

6The “residual balancing” replaces inverse propensity score weights with weights obtained using
quadratic programming, where the weights are designed to achieve balance between the treatment
and control group. The conditional mean of outcomes is estimated using LASSO Athey (2018).

7The unconfoundedness assumption implies treatment is randomly assigned and knowing ob-
servable characteristics of an individual, and their treatment status gives no additional information
on the potential outcomes. This means the treatment assignment is independent of the outcome
variable.

8The Frisch-Waugh-Lovell theorem is that estimating a parameter in a multiple regression is
equivalent to estimating the same parameter in a simple regression of the residual of the regress and
regressed on all other predictors on the residual of the regressor regressed on all other predictors.
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timation interests policymakers because it helps to quantify the sizes of effects on

different subpopulations, which is valuable to improve program targeting and to un-

derstand the underlying mechanisms driving the results. Usually, data are stratified

in mutually exclusive groups or include interactions in a regression to explore het-

erogeneous treatment effects. However, ad-hoc searches for the responsive subgroups

may lead to false discoveries or may mistake noise for a true treatment effect (Davis

and Heller, 2017). Knaus et al. (2017) points out that for large-scale investigations

of effect heterogeneity, standard p−values of standard (single) hypothesis tests are

no longer valid because of the multiple hypothesis testing problems (Lan et al., 2016;

List et al., 2019) and leads to so-called “ex-post selection” problem which is widely

recognized in the program evaluation literature. For example, for fifty single hypothe-

ses tests, the probability that at least one test falsely rejects the null hypotheses at

the 5% significance level (assuming independent test statistics as an extreme case) is

1− 0.9550 = 0.92 or 92%.

The new avenue of causal machine learning provides a better systematic approach

to search the groups with heterogeneous treatment effects. One intuitive approach

proposed by Imai and Ratkovic (2013) is to sample-split and use the first sample to run

the LASSO regression model with the treatment indicator interacted with covariates

and perform variables selections then use the selected model with the second sample

to perform an ordinary least squares regression to guard against over-fitting. While

Athey and Imbens (2016) utilizes the Breiman et al. (1984) classification and regres-

sion tree (CART)9 machine learning algorithms and purpose “causal tree” method.

The CART recursively filters and partitions the large data-set into binary sub-groups

(nodes) such that the samples within each subset become more homogeneous that fit

the response variable. Unlike the CART that minimizes the mean-squared error of

the prediction of outcomes to capture heterogeneity in outcomes, the “causal” tree

9In simplest, the CART algorithm chooses a variable and split that variable above or below a
certain level (which forms two mutually exclusive subgroups or leaves) such that the sum of squared
residuals is minimized. This splitting process is repeated for each leave until the reduction in the
sum of squared residuals is below a certain level as defined by users, thus resulting in a tree format
(Athey and Imbens, 2017b).
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minimizes the mean-squared error of treatment effects to capture treatment effect

heterogeneity. The approach to estimate the “causal” tree is similar to Imai and

Ratkovic (2013) approach, in which half of the sample is used to determine the opti-

mal partition of covariates space, while the other half is used to estimate treatment

effects within the leave based on the optimal partition of covariates selected from the

first partition (Athey and Imbens, 2016). The sample-splitting approach also known

as “honest” estimation lead to loss of precision as only half of the data is used to

estimate the effect, but generates a treatment effect and a confidence interval for

each subgroup that is valid no matter how many covariates are used in estimation.

Athey and Imbens (2017b) points out that the researcher is free to estimate a more

complex model in the second part of the data, for example, if the researcher wishes to

include fixed effects in the model, or model different types of correlation in the error

structure.

The causal tree doesn’t provide personalized estimates, Wager and Athey (2018)

utilize the “random forest” machine learning approach and propose a “causal for-

est” method, where many different causal trees are generated and averaged. This

method provides causal effects that change more smoothly with covariates and pro-

vides distinct individualized estimates and confidence intervals. Wager and Athey

(2018) also shows that the predictions from causal forests are asymptotically normal

and centered on the true conditional average treatment effect for each individual.

Athey et al. (2016) extend the approach to other models for causal effects, such as

instrumental variables, or other models that can be estimated using the generalized

method of moments (GMM). In each case, the goal is to evaluate how a causal param-

eter of interest varies with covariates. Efficient Policy The optimal policy estimation

have received greater attention in the machine learning literature10 (Athey, 2018).

The optimal policy function map the observable characteristics of an individual to a

policy or treatment assignment. In simplest, the main goal of optimal policy estima-

10See Strehl et al. (2010); Dud́ık et al. (2011); Li et al. (2012); Dud́ık et al. (2014); Swaminathan
and Joachims (2015); Jiang and Li (2015); Thomas and Brunskill (2016) and Kallus (2018).
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tion is to answer−- “who should be treated?” or optimal treatment allocation. The

understanding of optimal policy is essential in policymaking because an ad-hoc tar-

geting a specific subpopulation with positive interventions can be unfair, unethical,

illegal, and unpolitical to some other subpopulations while intervening everyone in

the population (a blanket policy) is welfare-maximizing but can be extremely costly.

The optimal policy estimation or optimal treatment allocation has been recently

studied in using causal machine learning in economics, mainly by Kitagawa and

Tetenov (2018) and Athey and Wager (2019a). The main idea is to select a pol-

icy function that minimizes the loss from failing to use the ideal policy, referred to as

the “regret” of the policy. Note that estimating conditional average treatment effect

or heterogeneous treatment effect focus on the squared-error loss while the optimal

policy estimation focuses on utilitarian regret Athey and Wager (2019a).
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Appendix B

Variable Importance

Table B.1: Variable Importance

Variables FPL Age HHS INS Other variables

Currently taking any prescription medications X X X % MSA
Outpatient visits last six months X X X
ER visits last six months X X X
Inpatient hospital admissions last six months X X X X
Number of prescription medications currently taking X X X X
Number of Outpatient visits last six months X X X
Number of ER visits last six months X X X X % High school disploma or GED
Number Inpatient hospital admissions last six months X X X % Self signup
Any out of pocket medical expenses, last six months X X X X % MSA
Owe money for medical expenses currently X X X
Borrowed money or skipped other bills to pay medical bills, last six months X X X
Refused treatment because of medical debt, last six months X X X
Out of pocket costs for doctors visits, clinics or health centers, past 6 months X X % work 30+ hrs/week
Out of pocket costs for emergency room or overnight hospital care, past 6 months X X X
Out of pocket costs for prescription medicine, past 6 months X X X X
Out of pocket costs for other medical care, past 6 months X X X
Total out of pocket costs for medical care, last 6 months X X X X % work 30+ hrs/week
Total amount currently owed for medical expenses X X X X
Have usual place of clinic-based care X X
Have personal doctor X X X % work 30+ hrs/week
Got all needed medical care, last six months X X X X % work 30+ hrs/week
Got all needed drugs, last six months X X X % dont currently work
Didn’t use ER for non emergency, last six months X X X % work 30+ hrs/week
Quality of care received last six months good/very good/excellent (conditional on any) X X X % MSA
Happiness, very happy or pretty happy (vs. not too happy) X X X X
Blood cholesterol checked (ever) X X X X
Blood tested for high blood sugar/diabetes (ever) X X X
Mammogram within last 12 months (women 40) X X X X % work 30+ hrs/week
Pap test within last 12 months (women) X X X % work 30+ hrs/week
Self-reported health good/very good/excellent (not fair or poor) X X X X
Self-reported health not poor (fair, good, very good, or excellent) X X X
Health about the same or gotten better over last six months X X X % High school diploma or GED
Number of days physical health good, past 30 days X X X
Number days poor physical or mental health did not impair usual activity, past 30 days X X X X
Number of days mental health good, past 30 days X X X X % Female
Did not screen positive for depression, last two weeks X X X

Notes: FPL represents household below the federal poverty line (in %), HHS represents house-
hold size, INS represents the nummber of non insurance months in last six months. The random
forest model always splits on FPL and Age along with HHS and INS. Along with these variables
the random forest also splits on different variables included in the last column. For example,
consider the model called “Currently taking any prescription medications”, the random forest
splits (more than average) the data on FPL, Age, HHS, and % MSA. Therefore, the treatment
heterogeneity is likely within these variables.
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Appendix C

Efficient Policies

Figure C.1: Efficient Policy to Improve the Blood Cholesterol Check Participation

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size.
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Figure C.2: Efficient Policy to Improve Blood Tests Participation for High Blood
Sugar/Diabetes

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size.

Figure C.3: Efficient Policy to Improve Mammogram Test Participation for Women

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.
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Figure C.4: Efficient Policy to Improve Pap Test Participation for Women

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.

Figure C.5: Efficient Policy to Improve Self-reported Health

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.
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Figure C.6: Efficient Policy to Improve to have Usual Place of Clinic-based Care

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.

Figure C.7: Efficient Policy to Improve to have a Personal Doctor

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.
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Figure C.8: Efficient Policy to Improve to Post Health-care Service Happiness

(a) Shallow tree (b) Deep tree

Notes: The hhinc pctfpl 0m shows household income as percentage of the federal poverty line.
The ins months 0m num shows numbers of months that a responder has insurance in last six
months. The employ hrsmwork 30 hrs week shows > 0.5 shows the responder work more than
30 hours per/week. The hhsize 0m is household size. Valid only for women.
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Castillo-Carniglia, A., Marshall, B. D. L., Ponicki, W. R., Gaidus, A., and Mar-

tins, S. S. (2019). Prescription Drug Monitoring Programs and Opioid Overdoses.

Epidemiology, 30(2):212–220.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica,

56(4):931–954.

Rosenbaum, P. R. and Rubin, D. B. (1983). The Central Role of the Propensity Score

in Observational Studies for Causal Effects. Biometrika, 70(1):41–55.

Rueben, B. (2019). Let data guide medicaid reforms — opinion.

Rutkow, L., Chang, H.-Y., Daubresse, M., Webster, D. W., Stuart, E. A., and

Alexander, G. C. (2015). Effect of Florida’s Prescription Drug Monitoring Pro-

gram and Pill Mill Laws on Opioid Prescribing and Use. JAMA Internal Medicine,

175(10):1642–1649.



References 120

Schieber, L. Z., Guy, Gery P., J., Seth, P., Young, R., Mattson, C. L., Mikosz, C. A.,

and Schieber, R. A. (2019). Trends and Patterns of Geographic Variation in Opioid

Prescribing Practices by State, United States, 2006-2017. JAMA Network Open,

2(3):e190665–e190665.

Simeone, R. and Holland, L. (2006). An evaluation of prescription drug monitor-

ing programs. US Department of Justice, Office of Justice Programs, Bureau of

Justice . . . .

Simoni-Wastila, L. and Qian, J. (2012). Influence of prescription monitoring programs

on analgesic utilization by an insured retiree population. Pharmacoepidemiology

and drug safety, 21(12):1261–1268.

Singer, J. A. (2018). Abuse-Deterrent Opioids and the Law of Unintended Conse-

quences. (832).

Soni, A. (2018). Health Insurance , Price Changes , and the Demand for Pain Relief

Drugs : Evidence from Medicare Part D.

Strehl, A. L., Langford, J., and Kakade, S. M. (2010). Learning from logged implicit

exploration data. CoRR, abs/1003.0120.

Strickler, G. K., Zhang, K., Halpin, J. F., Bohnert, A. S., Baldwin, G. T., and Kreiner,

P. W. (2019). Effects of mandatory prescription drug monitoring program (pdmp)

use laws on prescriber registration and use and on risky prescribing. Drug and

Alcohol Dependence, 199:1 – 9.

Swaminathan, A. and Joachims, T. (2015). Batch learning from logged bandit feed-

back through counterfactual risk minimization. Journal of Machine Learning Re-

search, 16(52):1731–1755.

Taubman, S. L., Allen, H. L., Wright, B. J., and Baicker, K. (2014). Oregon’s Health

Insurance Experiment. Science, 343(6168):263–268.



References 121

The United States, General Accounting Office (2003). OxyContin Abuse and Di-

version and Efforts to Address the Problem: Report to Congressional Requesters.

Technical report, United States, General Accounting Office.

Thomas, P. S. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for

reinforcement learning. CoRR, abs/1604.00923.

Tibshirani, R. (1996). Regression Selection and Shrinkage via the Lasso.

University of Kentucky Center for Poverty Research (2019). UKCPR National Welfare

Data, 1980-2017.

Van Zee, A. (2009). The promotion and marketing of oxycontin: Commercial triumph,

public health tragedy. American Journal of Public Health, 99(2):221–227.

Varian, H. R. (2014). Big Data: New Tricks for Econometrics. Journal of Economic

Perspectives, 28(2):3–28.

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treat-

ment effects using random forests. Journal of the American Statistical Association,

113(523):1228–1242.

Wallace, N. T., McConnell, K. J., Gallia, C. A., and Smith, J. A. (2008). How

effective are copayments in reducing expenditures for low-income adult medicaid

beneficiaries? Experience from the Oregon Health Plan. Health Services Research,

43.

Willke, R. J., Zheng, Z., Subedi, P., Althin, R., and Mullins, C. D. (2012). From con-

cepts, theory, and evidence of heterogeneity of treatment effects to methodological

approaches: A primer.

Xie, Y., Brand, J. E., and Jann, B. (2012). Estimating Heterogeneous Treatment

Effects with Observational Data. Sociological methodology, 42(1):314–347.



References 122

Xu, Y. (2017). Generalized synthetic control method: Causal inference with interac-

tive fixed effects models. Political Analysis, 25(1):57–76.

Zhou, R. A., Baicker, K., Taubman, S., and Finkelstein, A. N. (2017). The uninsured

do not use the emergency department more- they use other care less. Health Affairs,

36(12):2115–2122.


	Three Essays on Health Economics and Policy Evaluation
	Recommended Citation

	Three Essays on Health Economics and Policy Evaluation
	tmp.1593614943.pdf.gxcJt

