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Abstract 

American Population Study of Pigmentation Based Genotype Interpretation for 

Phenotypic Determination of Hair and Eye Color using HIrisPlex 

Emma Leigh Combs, B.S 

Currently the largest limitation with DNA evidence is that a comparison to a known 

source sample is required for any interpretation with the current methods. Simply put, if an 

unknown sample from a crime scene is collected and results in a profile, but there is no suspect 

or match from CODIS to compare it to, the profile is essentially useless and no information can 

be gained from it. Research has been performed within the area of forensic DNA phenotyping as 

a potential tool to aid in taking steps forward to use genotypic information as an investigative 

tool. Populations studies have lead to the discovery of information used to develop an assay, 

HIrisPlex, for the purpose of understanding and predicting externally visible characteristics 

(EVCs) such as eye and hair color from DNA.  

Development of these tools for forensic purposes could be utilized to begin establishing a 

physical description of a suspect to help further aid in an investigation. The current limitation 

with the HIrisPlex assay is in eye color based prediction related to the lack of understanding of 

the genetic basis of non-brown or non-blue eye colors which they refer to as intermediate eye 

colors. The goal of this study was to take the first step in using a higher level of diverse 

phenotypes present within an American population to evaluate the accuracy of the DNA variants 

selected in relation to the prediction of eye color phenotypes for the HIrisPlex assays. 
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1. Purpose, Goals, and Objectives

The information gained from biological evidence within the field of Forensic Biology is  

highly valued, as DNA evidence has the potential for a high power of discrimination. However, 

currently the largest limitation with DNA evidence is that a comparison to a known source 

sample is required for any type of analysis or interpretation of DNA evidence with the current 

methods used. Simply put, if an unknown sample from a crime scene is collected and results in a 

profile but there is no suspect or match from Combined DNA Index System (CODIS) to compare 

it to, the profile is essentially useless and no information can be gained from it to further the 

investigation. Currently there is research being performed within the area of forensic DNA 

phenotyping, as a potential tool to aid in taking steps forward to use genotypic information as an 

investigative tool.  

Populations studies have lead to the discovery of information used to develop assays such 

as the IrisPlex and HIrisPlex for the purpose of understanding and predicting externally visible 

characteristics (EVCs) such as eye color and hair color from genotypes.¹ ² ³ Development of 

these tools for forensic purposes could be utilized to begin establishing a physical description of 

a suspect to help further aid in an investigation when no suspect for Short Tandem Repeat (STR) 

profile comparison has been found ⁴. This can also be a useful tool in aiding in identifying 

recovered remains, where visual identifications are not possible.⁴    

Within the development and validation of these assays the researchers discuss the 

limitation of eye color based prediction related to the lack of understanding of the genetic basis 

of non-brown or non-blue eye colors which they refer to as intermediate eye colors.² They also 

discuss how worldwide population studies for use in relation to eye color prediction where 

known phenotypic information of the individual whose genotypic information is being used to 

evaluate the prediction model should be conducted. ² This discussed area of interest for further 

research could be used as a foundation for a better understanding of the DNA variants in relation 

to intermediate eye color phenotypes.² The knowledge gained from this research could be 

utilized in forming an intermediate eye color prediction model that has high accuracy, similar to 

the results of the one developed with the IrisPlex assay in relation to predicting blue and brown 

eye color phenotypes.² 

The goal of this study is to take the first step in using a  higher level of diverse 

phenotypes present within an American population to evaluate the accuracy of the DNA variants 



2 

selected in relation to the prediction of eye color phenotypes for the IrisPlex and HIrisPlex 

assays. This aim aids in evaluating these developed assays in relation to the different variations 

of intermediate phenotypes using an American population study.  

There are two main objectives of this study, the first will be to perform an internal 

validation of the HIrisPlex assay on the West Virginia University DNA lab Applied Biosystems®️ 

3500 Genetic Analyzer for quality assurance purposes before being used for research samples. 

The second objective will be to run samples collected from individuals in the population who 

have different variations of intermediate eye color phenotypes. This will be used for evaluating 

the accuracy of the DNA variants used in this assay in relation to the eye color phenotype 

prediction. Specifically, this will evaluate the selected DNA variants on a wider range of 

intermediate eye color phenotype variations as well as examine the prediction probability values 

with recorded phenotypes to see if any significant trends can be observed.   

2. Theoretical Background

2.1 DNA and inheritance 

Deoxyribonucleic acid (DNA) is the genetic template for what constructs life.⁵ In humans 

there are two types of DNA, nuclear DNA which is contained within the nucleus of cells, and 

mitochondrial DNA which is circular DNA that is contained within each mitochondria and is 

maternally inherited.⁵  DNA has a very unique structure that was first discovered by James 

Watson and Francis Crick in 1954.⁵ The signature double helix structure was pieced together by 

Dr. Watson and Dr. Crick after examining a crystallography image of a DNA molecule captured 

by Dr. Rosalind Franklin which can be seen in Figure 1.⁶ ⁷ 

The double helix structure is composed of two antiparallel helical strands which are held 

together by hydrogen bonds between the purine and pyrimidine bases.⁵ Each of the strands is 

made up of a deoxyribose sugars and phosphate groups.⁵ The phosphate groups form a 

phosphodiester bond between the 5’ carbon of the a deoxyribose sugar and the 3’ carbon of 

another sugar.⁵ Branching off each of the sugars within the phosphate backbone are the purine   
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https://www.mun.ca/biology/scarr/Franklins_crystallograph.html 

Figure 1. Crystallography image known a B-DNA captured by Dr. Rosalind Franklin in 1954. ⁷ 

   

and pyrimidine nitrogenous bases.⁵ The purine bases of one strand forms a hydrogen bonds with 

the a pyrimidine bases of the other.⁵ With a specific complementary binding relationship, the 

purine base adenine (A) only binds with the pyrimidine base thymine (T), and the purine base 

guanine (G) only binds with the pyrimidine base cytosine (C).⁵ These complimentary binding 

pairs pull the two antiparallel strands together in the signature double helix shape.⁵ A visual 

diagram of the discussed structure can be found in Figure 2. 

Nuclear DNA in humans consists of 23 pairs of chromosomes, 22 autosomal pairs and a 

single pair of sex chromosomes.⁵ Parents of an offspring each contribute half of an individual's 

chromosomal information, meaning one chromosomes within each pair is inherited from the 

mother and the other half from the father.⁵ Within the pair of sex chromosomes, an X 

chromosome is alway contributed by the mother, while a the father contributes the sex 

determining chromosome of either an X or Y chromosome.⁵  

Chromosomes contain genetic information in the form of a gene, and all genes have a 

specific location on a specific chromosome.⁵ The location is referred to as a locus.⁵ At a 
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http://encyclopedia.lubopitko-bg.com/Nucleic_Acids.html 

Figure 2. An illustration of the structure, a DNA double helix (a), complementary base pair 

binding (b), and the ladder configuration diagram to display the bonds between the sugar, 

represented by a green pentagon, and the phosphate represented by a yellow circle that makes up 

the phosphate backbone⁸.  

 

 

particular locus there can be varying forms of that gene which are referred to as an allele.⁵ Each 

individual has two alleles per locus, one on each chromosome meaning one allele inherited from 

the father and one from the mother.⁵ When an individual inherits the same allele for a gene from 

both parents they are homozygous at that locus, and if different alleles are inherited for the same 

gene from each parent, an individual is considered to be heterozygous at that locus.⁵ A visual 

illustration of the discussed terminology is depicted in Figure 3.       

The genetic information contained with an individual's DNA from all chromosomes is the 

same through all cells of a given human being, excluding gamete cells.⁵ As well as being 

consistent throughout an individual, their genetic information is unique to that individual with 

the exception of monozygotic twins who share identical genetic information.⁵  
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https://digital.wwnorton.com/ebooks/epub/bionowcore/OPS/xhtml/Chapter07-3.xhtml 

Figure 3. A visual diagram that explains the terminology in relation to alleles on a pair of 

homologous chromosome.⁹  

 

2.2 Protein Synthesis 

 DNA functions as the template for the synthesis of all proteins that are produced and 

interact to construct an individual.⁵ The sequence of nucleotides along a strand of DNA for a 

specific gene is used as the foundation for the transcription of ribonucleic acid (RNA).⁵ The 

transcribed RNA is then free to move outside of the nucleus of the cell to a ribosome where it 

can be translated into a sequence of amino acids to synthesize the specific protein dictated by 

original DNA sequence.⁵ The process of transcription occurs in the nucleus, and RNA 

polymerase II binds to the promoter region that sits up stream in the sequence of the DNA from 

the gene to be transcribed.⁵ RNA polymerase II then builds a pre-messenger RNA sequence at 

the transcriptional start site.⁵ 

Like DNA, RNA is composed of four nucleotides; adenine (A), guanine (G), cytosine 

(C), and uracil (U).⁵ Uracil forms a complementary binding pair with the adenines within the 

DNA sequence, while the adenines within the RNA form complementary binding with the 

thymines within the DNA sequence.⁵ While the complementary binding relationship between 

cytosine and guanine remains the same.⁵ The pre-mRNA undergoes a packaging process in 
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which a series of modifications to the strand specify it for a specific protein and increases the 

time a messenger RNA can be free flowing within the cytoplasm of the cell as it works its way to 

a ribosome to be translated before being broken down by the cell.⁵ These modifications include 

the addition of a 5’ cap and a poly-A-tail, as well as the removal of introns from the sequence.⁵ 

Introns are the selection of the pre-mRNA that do not contain coding information, therefore 

modifications are made to cut out the introns and splice together the exons which are the regions 

of the pre-mRNA that contain the coding information for the protein.⁵   

Once properly packaged and modified, the mRNA moves out of the nucleus and into the 

cytoplasm of the cell, where it facilitates protein synthesis.⁵ This is done by translating the 

mRNA strand from non-overlapping three base pairs units, referred to as codons, into a chain of 

amino acids.⁵ Each amino acid has its own chemistry and the charge of an amino acid, whether it 

be positive, negative or neutral, effects the way the sequences of amino acids will fold and 

dictates the structure of the protein.⁵ When it comes to proteins, the structure of a protein decides 

its function, and ultimately the expression of the gene.⁵ Therefore mutations that cause a single 

nucleotide difference within a coding region of a gene have the potential to alter the structure, 

and therefore the function of the protein.⁵ These physical results of gene expression are referred 

to as phenotypes, and are decided by the genotype of the specific gene for an individual.⁵             

 

2.3 Polymorphisms  

 Approximately 5% of the human genome codes for proteins, while the rest is composed 

of introns.⁵ ¹⁰ The non-coding regions of the genome are often highly variable because the 

occurrence of mutations within this region of the DNA does not impact the phenotypes of an 

individual.⁵ ¹⁰ This variability is known as a polymorphism, which can be in two main variations, 

sequences or length based polymorphisms.¹⁰ Sequence based polymorphisms are when there is a 

change of a nucleotide within the DNA sequence, often a single nucleotide difference referred to 

as a single nucleotide polymorphism or a SNP.¹⁰ An example of this can be seen in part A of 

Figure 4. There are also regions of DNA that contain repeating units of repetitive DNA that can 

be classified as micro or minisatellites based on the number of base pairs (bp) within the repeat 

unit.¹⁰ The microsatellites contain repeat units between 2-8 base pairs in length and repeat a 

variable number of times. These repeat units are referred to as short tandem repeats (STRs).¹⁰ 
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These are considered length polymorphism, and an example of this can be seen in part B of 

Figure 4.              

 

a. Sequence 

-----------ATCGGCCTATCG---------- 

-----------ATCCGCCAATCG---------- 

b. Length 

-----------(AATA)(AATA)(AATA)---------- 3 Repeats 

-----------(AATA)(AATA)---------- 2 Repeats 

Figure 4. Visual illustration of the difference of what makes a sequence based polymorphism 

(a), and a length based polymorphism (b)¹⁰.   

 

2.4 STR vs. SNP profiling 

 The current method for DNA analysis within the field of forensics examines STRs by 

utilizing a PCR based technique, to analyze a minimum of 20 core loci set by the FBI 

standards.¹⁰ ¹¹ These core loci consist of units of four base pair length polymorphisms that vary in 

the number of times they repeat.¹⁰ The process for obtaining a DNA profile using STR profiling 

involves extraction, quantitation, amplification, and capillary electrophoresis.¹⁰   

SNPs detection methodology and instrumentation is traditionally different than STR 

profiling due to capillary electrophoresis being a size based separation technique.¹² SNPs are 

sequence polymorphisms therefore they are detected differently.¹² One of the most common and 

accurate methods utilized in the detections of SNPs is called pyrosequencing, which uses an 

enzyme cascade system that produces light whenever complementary base pairing is formed 

between nucleotides.¹² As the free floating nucleotides bind to the template DNA, the light signal 

is detected and translated into base pair information.¹² The next nucleotide is then added, 

generating nucleotide sequence data.¹² The SNaPshot™ kit from Applied Biosystems®️ can be 

used for SNPs detection using a capillary electrophoresis instrument.¹²  

The SNaPshot™ kit strategically utilizes artificially introduced size based separation and 

the use of fluorescent dye labeled dideoxynucleotide triphosphates (ddNTPs) in place of 

fluorescently labeled primers.¹² These fluorescently labeled ddNTPs are incorporated into the 

sequence during the single base pair extension (SBE) portion of PCR that allow for specific 

nitrogenous bases to appear as peaks within specific dye channels of an electropherogram.¹² 

Artificial size base separation is created for each of the SNPs detected by adding different length 



 

 

8 
 

poly-tails to the 3’ end of the single base pair extension (SBE) primers.¹² This allows for SNP 

based profiles to be produced using a genetic analyzer, making it the easier methodology to 

implement within a forensic DNA laboratory.¹² However, the selection of this method has the 

limitation of only providing specific single nucleotides as opposed to the short target sequences 

that can be acquired using a sequence based method like pyrosequencing.¹²       

  

2.5 DNA Phenotyping 

 Forensic DNA Phenotyping is used to predict possible traits related to an individual's 

appearance, or externally visible characteristics (EVCs) from specific regions of DNA.⁴ The goal 

within this area of research is to be able to achieve the ability of interpreting an individual's 

physical description from viewing their genetic profile.⁴ This information could then be utilized 

to aid in investigations where there are no suspects or a CODIS match to compare to a traditional 

STR profile produced from a crime scene sample.⁴ Currently the most information is know in 

relation to EVCs that are dictated by pigmentation based genes, such as eye color, hair color, and 

skin tones.⁴ Phenotype prediction models termed IrisPlex and HIrisPlex have been developed for 

use in predicting the eye color and hair color phenotypes of an individual based off of specific 

SNP genotype profiles.⁴ With these predictions it is feasible to begin generating a possible 

physical description of the unknown individual that left a biological sample at the crime scene, 

resulting in information that could turn up possible leads to aid investigations.⁴  

 

 

2.6 IrisPlex assay 

2.6.1 Background 

Human iris color is a highly polymorphic phenotype, and recent studies have aimed to 

increase genetic understanding of human eye color.² These studies that focused on genome-wide 

association and linkage analysis have resulted in understanding that the OCA2 gene located on 

chromosome 15, originally suspected to be the gene most informative in relation to human eye 

color, is less significant in its association with human eye color than the neighboring  HERC2 

gene.²  It was found that exon 12 of the OCA2 gene functions as a modifier for the rs1291382 

SNP on the HERC2 gene.² Though this HERC2/OCA2 region on chromosome 15 contributes 

most of the eye color information in relation to blue and brown, 5 other SNPs were found to have 



 

 

9 
 

a lesser degree of influence in human eye color variation.²  This information along with that from 

a population study of 6168 Dutch European individuals looked at 15 SNPs originating from 8 

different genes in relation to eye color, and was used in the selection of a subset of SNPs used to 

develop the single multiplex genotyping system they refer to as IrisPlex.²   

The IrisPlex assay consists of six eye color informative SNPs that are currently the most 

accurate in predicting blue and brown eye color in humans based off the previously mentioned 

research and Dutch European population study. These are rs12913832 (HERC2), rs1800407 

(OCA2), rs12896399 (SLC24A4), rs16891982 (SLC45A2 (MATP)), rs1393350 (TYR), and 

rs12203592 (IRF4).² This assay can generate DNA data to be used with the constructed 

prediction model to classify the eye color of an individual.² 

 

2.6.2 Methods 

DNA from buccal samples collected from their selected population was extracted using 

the QIAamp™ DNA Mini kit, following the manufacturer’s protocol (Qiagen, Hagen, 

Germany).² The details of the six SNPs rs12913832, rs1800407, rs12896399, rs16891982, 

rs1393350 and rs12203592  and the primers used in the assay are summarized in Table 1. 

The designed primer pairs were created using the Primer3Plus™ software, and each PCR 

fragment size was limited to no more than 150 bp to accommodate degraded DNA samples 

expected in relation to the intended implementation of IrisPlex for forensic purposes.² To ensure 

success of capillary separation between the single base extension (SBE) PCR products, poly-T  

tails of differing sizes were added to the SBE primers at the 5’end.² The SNaPshot™ kit by 

Applied Biosystems®️ was used for the amplification and detection of the multiplex SBE assay 

following the kit manufacture protocol.² 
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Table 1. Summary table information related to SNPs, and their PCR primer sequences and 

concentrations for IrisPlex assay.² 

SNP-ID Prediction 

rank 

Chromosome 

Position 

Gene PCR 

products 

(bp) 

Forward PCR Primers (5'-3') 

Reverse Primers (5'-3')  

Each 

Primer 

Conc. 

(uM) 

Single Base Extension primer (5'-3') with t-

tail for length differentiation 

rs12913832 

(1F and 1R) 

1 15 – 26039213 HERC2 87 TGGCTCTCTGTGTCTGATCC 0.416 ttttttttttttttttttttttttGCGTGCAGAACTTGACA 

GGCCCCTGATGATGATAGC 

rs1800407a(2F 

and 2R) 

2 15 – 25903913 OCA2 127 TGAAAGGCTGCCTCTGTTCT 0.416 tttttttGCATACCGGCTCTCCC 

CGATGAGACAGAGCATGATGA 

rs12896399 

(3F and 3R) 

3 14 – 91843416 SLC24

A4 

104 CTGGCGATCCAATTCTTTGT 0.416 tttttttttttttttttttttttttttttaTCTTTAGGTCAGTAT

ATTTTGGG 

CTTAGCCCTGGGTCTTGATG 

rs16891982 

(4F and 4R) 

4 5 – 33987450 SLC45

A2(MA

TP) 

128 TCCAAGTTGTGCTAGACCAGA 0.416 tttttttttttAAACACGGAGTTGATGCA 

CGAAAGAGGAGTCGAGGTTG 

rs1393350 (5F 

and 5R) 

5 11 – 88650694 TYR 80 TTCCTCAGTCCCTTCTCTGC 0.416 tttttttttttttttttttttttaTTTGTAAAAGACCACAC

AGATTT 

GGGAAGGTGAATGATAACACG 

rs12203592a(6

F and 6R) 

6 6 – 341321 IRF4 115 ACAGGGCAGCTGATCTCTTC 0.416 tttttttttttttttaTTTGGTGGGTAAAAGAAGG 

GCTAAACCTGGCACCAAAAG 

 

 

 2.6.3 Results 

 The predicted phenotypes were determined from the results of the multinomial logistic 

regression model previously published in Liu et al. labeled as equations 1-3.¹ ²    

 

𝜋 1 = 𝑒𝑥𝑝(𝛼 1+𝛴𝛽(𝜋 1) 𝑘 𝑥 𝑘)

1+𝑒𝑥𝑝(𝛼 1+𝛴𝛽(𝜋 1) 𝑘 𝑥 𝑘) +𝑒𝑥𝑝(𝛼 2+𝛴𝛽(𝜋 2) 𝑘 𝑥 𝑘
 (1) 
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𝜋 2 = 𝑒𝑥𝑝(𝛼 2+𝛴𝛽(𝜋 2) 𝑘 𝑥 𝑘)

1+𝑒𝑥𝑝(𝛼 1+𝛴𝛽(𝜋 1) 𝑘 𝑥 𝑘) +𝑒𝑥𝑝(𝛼 2+𝛴𝛽(𝜋 2) 𝑘 𝑥 𝑘
 (2) 

 

𝜋 3 = 1− 𝜋 1 − 𝜋 2 (3) 

 

Equation 1-3 are were to calculate the probability of an individual having brown (𝜋 1), 

blue (𝜋 2), and intermediate (𝜋 3) eye colors, where 𝑥𝑘represents the number of minor alleles 

of the kth SNP, and the alpha and beta values were obtained from data of the previously 

performed Dutch population study by Liu et al.¹ ² Prediction probability values for each category 

were calculated for each individual sample, which is used to determine the sample classification 

as brown, blue or intermediate based off of a 0.7 threshold for the probability value.² This 

threshold was determined using the receiver operating characteristic (ROC) curve from the Liu et 

al. Dutch population.¹ ²  

The IrisPlex assay design kept the PCR fragment length between 80-128 bp so that the 

intended application of this assay within forensics could still be utilized on degraded DNA 

samples that are a commonly present sample type within forensic DNA analysis.² The PCR and 

SBE multiplex aimed to generate peak heights with approximately equal intensities, and overall 

allele balance.² Though peak height balance was almost achieved, there were two slight 

imbalances observed in relation to SNPs rs12896399 and rs16891982.² However, this slight 

imbalance did not display any issues with samples of DNA quantities above the determined 

sensitivity threshold.² Though the optimal DNA quantity in the range of 0.25-0.5 ng of template, 

full profiles were consistently obtained with as low as 31 pg of DNA, and only at 15 pg of DNA 

was allelic dropout first observed. This can be seen in Figure 5.² 

Prevalence-adjusted prediction accuracy values obtained from the area under the receiver  

characteric operating curve (AUC) gave very high values for both brown and blue eyes.² The 

author’s reported prediction accuracy values of the developed model as 0.93 for brown eyes, and 

a 0.91 for blue eyes, where a fully accurate prediction value should be equal to 1.²   
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Figure 5. Images of a IrisPlex assay profile obtained from starting concentrations of 31pg and 

15pg of DNA to show where allelic drop out occurred, which is circled in red. ². 

 

 Once these prediction probability values were calculated for population used, they 

ordered the high resolution photos of the irises of the individuals sampled for the study in order 

based on the probability values.² Starting with the highest blue value in the top left corner and 

the highest brown value in the bottom right corner.² This is illustrated in Figure 6. The 

phenotypic eye color was not considered in the selected order of the images in Figure 6 but it 

can be seen that there is a correlation between the visible color of the expressed phenotypes and 

the produced prediction values when viewed from top to bottom and left to right.² The authors 

took this as confirmation of the accuracy of their developed six SNP prediction model.²    

For 37 out of the 40, or 92.5%, of the individuals sampled in the study the genetic eye 

color prediction agreed with the phenotypic color based on visual inspection.² It was observed 

that intermediate eye colors were more difficult to classify as they can appear a lighter or varying 

shades of blue or brown.² The study concluded that more work in relation to the genetic variants 

for the intermediate, non-brown and non-blue, eye colors needs to be done to obtain a higher 

predictive value.² 

Each of the six SNPs contribute genetic information towards the prediction model, with 

the rs12913832 SNP within the HERC2 gene having been shown to have the most predictive 



 

 

13 
 

information in relation to eye color determination.² The other five SNPs rs1800407(OCA2 gene), 

rs12896399 (SLC24A4 gene), rs16891982 (SLC45A2 (MATP) gene), rs1393350 (TYR gene), 

and rs12203592 (IRF4 gene) within the IrisPlex assay a smaller degree of influence to the 

accuracy of the prediction model.² A visual representation of each SNPs informational 

contribution to eye color determination can be seen in Figure 7.²  

  

2.6.4 Validation 

 A validation study of this assay was completed following SWGDAM guidelines.¹³ 

Successful accuracy and reproducibility was found on a wide range of sample materials 

including blood, semen, saliva, hair, and touch DNA samples that included very low quantity 

samples.¹³ Its sensitivity for obtaining a full profile from the six SNPs was shown at 31pg of 

template DNA.¹³ Species testing revealed the complete assay is specific to human and primate 

DNA profiles.¹³ The only noted potential issue with the IrisPlex assay is that it is unable to be 

applied to mixture samples.¹³  However, as an intended investigation based tool to be used when 

no suspect or CODIS match can be found for comparison, it would fall within the DNA 

casework flow after an STR profile has been obtained,  at which point the presence of a mixture 

should have been identified.¹³    

 Few alterations to the run parameters and the assay were made within the study to 

increase the sensitivity.¹³ These modifications included an increase in the annealing temperature 

for the multiplex PCR, and the direction of the SNP primers for rs1800407, and rs12203592 in 

the SBE reaction.¹³ This was done to increase the resulting peak heights at lower DNA 

concentrations.¹³ The primer concentration for rs16891982 was increased to 0.5μM to increase 

the peak heights produced when the homozygous C/C alleles were present.¹³ Lastly, the standard 

protocol for the ABI 3130xl Genetic Analyzer®️ was changed to have an increased injection 

voltage and time, as well as decreasing the processing time to a 500 second run time.¹³ All of 

these minor changes resulted in an increase in the overall performance of the IrisPlex assay.¹³   
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2.7 HIrisPlex 

 2.7.1 Background 

 After recent studies demonstrated that hair color could be predicted based upon 

specifically selected DNA markers, the researchers who developed the IrisPlex assay worked to 

expand it.³ The goal of the expanded assay was to exploit the strong genetic and phenotypic  

 

 

Figure 6. Illustrated visual example of how the IrisPlex analysis model worked in predicting eye 

color phenotypes of 40 individuals, with calculated model predicted probability values attach to 

corresponding phenotypes.² 
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Figure 7. Hypothesized scenario for genetic determination of brown and blue eye colors 

showing the impact of the most influential SNP genotypes from the 6-SNP model.² 

 

relationship observed between hair and eye color variation.³ Their objectives were to increase the 

understanding of the genetic influence of hair color and to create a prediction model that works 

for hair color determination with an expanded assay.³ Secondly, they aimed to create an assay 

that when combined in a single run gives a profile of the SNPs related to hair color determination 

as well as the previously studies six SNPs used in the IrisPlex assay.³ This combined assay was 

termed HIrisPlex.³  

 Based on information gained from Valenzuela et al., three SNPs, rs12913832 (HERC2), 

rs16891982 (SLC45A2), and rs1426654 (SLC24A5), were found to provide the best prediction 

for light verse dark hair colors.³ ¹⁴ 46 different SNPs from 13 genes were considered in relation 

to the variants within human hair color variation based of the authors previous study.³ ¹⁵ The 46 

DNA variants were evaluated for model base hair color prediction based off of population data in 

relation to determining hair color variants.³ ¹⁵ Though a set of markers containing the most 

informative genes in relation to hair color prediction were identified in their previous study, they 

were unable to run genotyping simultaneously for all of the selected 22 DNA markers within a 

single reaction.³ Therefore, this study focused on developing and evaluating a single-tube 

multiplex assay.³ The assay included all 22 of the hair color predictive DNA variants from the 

previous study as well as the 6 SNPs from the IrisPlex assay.³ This resulted in a total of 24 DNA 

markers as four were overlapping.³  With this newly developed HIrisPlex assay, the author’s also 
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made available a spreadsheet tool to be used in interpreting and performing the calculations for 

the prediction model classification for both the IrisPlex and HIrisPlex assay.³ ¹⁶     

 

2.7.2 Methods 

    DNA samples from three separate European populations were collected from  

Poland, Greece, and Ireland with the intention of collecting samples that contained a range of all 

phenotype categories.³ DNA samples were extracted using multiple different methods for each 

population, and all samples were genotyped with the HIrisPlex assay.³ The assay includes 23 

SNPs and 1 insertion or deletion (INDEL) polymorphism.³ These DNA variants came from a 

total of 11 separate genes.³ Sample collection included high resolution images of hair color and 

eye color of individuals under the same lighting and distance conditions.³ All individuals 

sampled were given a questionnaire asking for basic information as well as questions related to 

self reported hair and eye color phenotypes.³ Buccal swab samples of each individual were 

collected.³ A summary of the PCR primers for the 24 DNA variants for the assay can be found in 

Table 2.³ The authors followed the same parameters and methods for primer design used in the 

IrisPlex assay development, with the exception of changing the target fragment length from less 

than 150 bp to less than 160 bp.² ³ 

     The same reaction conditions from the IrisPlex PCR runs were used for the HIrisPlex with the 

adjusted PCR primer concentrations in Table 2, still utilizing the SNapShot™ kit from Applied 

Biosystems®️ for the multiplex SBE.² ³ The samples were run on a ABI 3130xl Genetic 

Analyzer®️ with POP-7 on a 36 cm capillary following the manufacturer's guidelines of the 

SNapShot™ kit, with the exception of the run parameter being set to 2.5 kV 10s inject voltage 

and a 500 second run time at 60℃.³ These alterations in the run parameters were used to increase 

the sensitivity of the assay.³ The analytical threshold used was set to 50-rfu. This was based on 

the production of a full profile in every replicate of the different input DNA levels from their 

conducted sensitivity study.³  

The HIrisPlex assay consists of a total of 23 SNPs and 1 INDEL.³ 6 of the SNPs are from 

the previously established IrisPlex assay used for eye color prediction.³ The 22 DNA variants 

used in relation to hair color prediction are 11 SNPs, Y152OCH, N29insA, rs1805006, 

rs11547464, rs1805007, rs1805008,rs1805009, rs1805005, rs2228479, rs1110400, and rs885479, 

from the MC1R gene, as well as rs1042602 (TYR), rs4959270 (EXOC2), rs28777 (SLC45A2 
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(MATP)), rs683 (TYRP1), rs2402130 (SLC24A4), rs12821256 (KITLG), rs2378249 

(PIGU/ASIP), rs12913832 (HERC2), rs1800407 (OCA2), rs16891982 (SLC45A2 (MATP)), and 

rs12203592 (IRF4).³  

Though hair color can be displayed in many different variations, the authors categorized 

them into four main groups: red, blonde, brown and black.³ For the four categories the highest 

calculated probability value was used for the category prediction.³ A random subset of 80% of 

the samples from each selected population were used for training the prediction model for hair 

color to obtain the alpha and beta values to be used with the model.³ The hair color prediction 

model was based on the same Multinomial Logistic Regression model (MLR) used for the 

IrisPlex assay published by Liu et al modified to the four discrete categories.¹ ³ Individuals were 

divided into the previously discussed four categories based on their phenotypes, and the 22 DNA 

variants in relation to hair color prediction were used to test the prediction model.³ Due to the 

division of the categories being based in color and not shade, a different approach was used to 

separate the individuals grouped into subsequent light verse dark categories for hair color.³ This 

was performed utilizing a two-prong model approach which used only blonde and black category 

data to predict light or dark categories.³  These shaded category predictions were based on the 

influence of genotypes associated with blonde and black phenotypes.³ The remaining 20% of 

samples from each population were then used to evaluate the accuracy of the developed 

prediction models in terms of both the hair color category prediction as well as hair shade 

prediction.³  

 

2.7.3 Results 

 Effort was put in to optimizing the single multiplex assay to have balanced peak 

heights, with the intent of minimizing allelic drop at lower DNA concentrations.³ This was 

successful with the exception of the INDEL DNA variant N29insA, which is a difficulty known 

to occur with INDELs.³ Though a lower peak height is observed at this DNA variant, it was not 

seen to affect the sensitivity of the HIrisPlex assay until DNA concentrations were lower than 63 

pg³. However, it was noted that this technical issue related to N29insA DNA variant did not 

affect the overall practical use of the HIrisPlex assay.³ It was observed that greater than 500pg of  
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Table 2. Summary table information related to DNA variants, and their PCR primer sequences 

and concentrations for HIrisPlex assay.³  

                      

DNA resulted in a balanced profile with high RFU levels, but full profiles, though imbalanced, 

were still obtained with as low as 63pg of DNA.³  Allelic dropout did not occur until quantities 

under 63pg of DNA were run, at which drop out only occured at 5 instances.³ Specifically at 

N29insA, rs1042602, rs4959270, rs1800407, and rs1393350.³  

The hypothesized influence of each of the 22 DNA variants considered in the 

contribution to hair color is illustrated in Figure 8.³ The provided results of the HIrisPlex 

prediction for a subset of 44 individuals’ phenotype images was used to visually assess the 

performance of the prediction model.³ The individuals hair color images were ordered according 
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to their phenotype predicted probability values obtained from the HIrisPlex analysis.³ The actual 

hair color phenotype of the images was not considered in the ordering.³ The results of this are 

depicted in Figure 9.³  

Since overlap exists between hair colors and factors such as the presence of an A allele at 

N29insA or Y152OCH produces a red hair color probability value equal to one, the highest 

probability category approach was adjusted to consider these factors.³ A prediction guide 

approach was developed for interpretation purposes, an example of this can be seen in Figure 

10.³         

 

Figure 8. Hypothesized scenario for genetic determination of black, brown, red (two shades) and 

blond showing the impact of the most influential DNA variant genotypes from the 22 DNA 

variant model.³    
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Figure 9. Illustrated visual example of how the HIrisplex analysis model worked in predicting 

hair color phenotypes of 44 individuals, with calculated model predicted probability values 

attach to corresponding phenotypes.³   
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Figure 10. The HIrisPlex prediction guide for interpreting the individual hair color and shade 

prediction probability values.³  

 

2.7.4 Validation 

 A validation study of this assay was completed following SWGDAM guidelines. 

Successful accuracy and reproducibility was found on a wide range of sample material, including 

blood, semen, saliva stains, hair, and touch DNA samples that included very low quantity 

samples.¹⁷ Its sensitivity for obtaining a full profile with the HIrisPlex assay was shown at 63pg 

of DNA.¹⁷ Species testing revealed the complete assay is specific to human DNA but a close 
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non-human partial profiles of 20 of the 24 DNA variants were obtained with primate DNA.¹⁷ It 

was noted that due to the assay design which is designed to cater to degraded samples, the assay 

is successful at obtaining full profile from human remains that are up to several hundred years 

old.¹⁷  

 

3. Methods and Results 

3.1 Sample Collection  

 Due to the need for a collection gradient of a wide range of phenotypes, 70 buccal swab 

samples were collected in duplicate from willing participants.. The tips of the swabs were cut off 

into a clean 2ml microcentrifuge tube and labeled with the individual's sample identification 

number. The identification number corresponded with an extensive survey on genealogy and 

phenotypic history filled out by each participant. High resolution images of the iris and hair color 

phenotypes of each of the participants were taken from approximately a 7cm distance from the 

left eye and back of the head of the individual, using a Nikon camera with a 60mm macro lens 

set with an f/stop at 5.6, an ISO of 100 and under direct 5000K color light at 50% brightness.  

 Once all samples and phenotype images were collected, a population of 40 samples of the 

collected samples were selected to give a relatively equal distribution of all collected phenotypes 

to be used for internal validation of the HIrisPlex assay. A second population from the collected 

samples was selected independently of the previous population. This population contained all 

collected samples with individuals that self-identified their phenotype classification to be a 

variation of an intermediate eye color phenotype, not already included in the previous 

population.    

 

3.1.1 Phenotype Image Analysis 

 Once captured, the iris phenotype images for each of the participants were analyzed in 

ImageJ, utilizing the RGB Measure Plugin. Due to the variation in iris size, pupil dilation, image 

impurities such as light reflections, the entirety of the Iris image could not be used to evaluate 

Red, Green, Blue color values. To minimize variability, five different 250-pixel diameter circles 
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were taken out of each captured iris phenotype image, and visual representation of this can be 

seen in Figure 11.  

 

Figure 11. A visual representation of five different 250-pixel diameter circles taken out of each 

captured iris phenotype image. 

 

 

Each 250-pixel diameter circle was analyzed using the ImageJ RGB Measure Plus 

Plugin, to give a red, green, or blue color threshold value, as well as a standard deviation value 

for each of the color thresholds. The color threshold values, as well as the standard deviation 

values for each of the color thresholds, were also averaged between all five 250-pixel diameter 

circles to get the overall color determination values for each participant image.  

This process was then repeated in triplicate to eliminate any potential human error 

introduced from the manual selection of the 250-pixel diameter circles.The color threshold 

values for each replicate were then used to build a Random Forest Classification Model, as 

described in Section 4.1.1.            

    

3.1.2 Phenotype History Survey  

 The phenotype history survey given to each participant collected information in relation 

to ancestral origin, the participants self identified hair and eye color phenotypes, as well as any 

changes to either of these phenotypes for any reason. (ie. Hair dye, gray hair, color changing 

intermediate eye color phenotype, etc.). This information was collected to be used within data 

and profile interpretation. A copy of the Phenotype History Survey can be found attached as 

Supplement Document 1.        
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3.2 Sample Preparation Troubleshooting  

3.2.1 Following Published Protocol  

Testing began with using my own sample, an intermediate eye color reference sample 

(ELC_R), and a blue and brown eye color phenotype reference sample (26908.L, and 32942.L) 

for initial testing following the methods presented in the Walsh et al, HIrisPlex developmental 

validation study.¹⁷ Due to the selected base pair size of the target regions of the DNA variants for 

the assay, study samples were extracted using the QIAamp™ DNA Mini Kit from Qiagen 

following manufacturer’s standard protocol. DNA concentrations of samples were quantified 

using the Quantifiler™ Trio DNA Quantification Kit from Thermo Fisher Scientific following 

the kit manufacturer protocols. The amplification of the samples was performed in two different 

amplification steps.  

First the AmpliTaq Gold DNA Polymerase with Buffer II and MgCl₂ kit from Thermo 

Fisher Scientific were used for a single multiplex PCR step using 1 μl of extracted DNA between 

3ng to 300pg in concentration. This was added to a 20 μl PCR reaction with 1X PCR reaction 

buffer, 2.5 mM𝑀𝑔𝐶𝑙2, 1.75 U AmpliTaq Gold DNA polymerase and primer concentrations for 

each primer listed in Table 2. The thermal cycling conditions for the PCR reaction on the 9700 

Thermal Cycler from Applied Biosystems®️ can be found in Table 3. The PCR products were then 

cleaned using the ExoSAP-IT PCR Product Cleanup Reagent from Thermo Fisher Scientific 

following the manufacturer's protocol. 

 

Table 3. Thermal cycling run conditions for single multiplex PCR reaction on the 9700 Thermal 

Cycler from Applied Biosystems  

Thermal Cycling Conditions  

 

 

95 °C for 10 minutes 

33 cycles of  

 

5 minutes at 60 °C 95 °C for 30 seconds 60 °C for 30 seconds 

  

 The second amplification step was completed using SBE multiplex PCR utilizing the 

Applied Biosystems®️ SNaPshot™ multiplex kit. 3μl of the cleaned PCR product was used with 
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5μl SNapShot™ reaction mix in a total reaction volume of 10μl, along with all listed SBE primer 

concentrations listed in Table 2. The thermal cycling conditions for the SBE PCR reaction on the 

9700 Thermal Cycler from Applied Biosystems®️ can be found in Table 4. The SBE PCR 

products were cleaned using Shrimp Alkaline Phosphatase (SAP) from USB Corp following 

manufacturer's guidelines. Samples were prepared for capillary electrophoresis by taking 0.5μl of 

cleaned product to be run on the ABI 3500 Genetic Analyzer®️ with POP-7 polymer following 

the ABI SNaPshot™ Kit sample preparation guidelines, however the run parameters were altered 

to a 2.5 kV for a 10 second injection voltage and run times of 560 seconds at 60 °C for increased 

sensitivity. 

 

Table 4. Thermal cycling run conditions for single multiplex PCR reaction on the 9700 Thermal 

Cycler from Applied Biosystems  

Thermal Cycling Conditions  

 

 

96 °C for 2 minutes 

25 cycles of 

96 °C for 10 seconds 50 °C for 5 seconds 60 °C for 30 seconds 

 

A singleplex run of each individual SBE primer for each eye color phenotype reference 

samples was run, in addition to a multiplex run with each of the three eye color phenotype 

reference samples. The singleplex samples were to aid in the determination of the SNP 

identification peaks bin set development, while the multiplex samples were to confirm that the 

multiplex run protocols were working.   

 Capillary electrophoresis runs were viewed within the GeneMapper-IDX software 

version 1.4, settings for profile viewing were modified for peak detection only and no bin set, or 

panel was set in the analysis parameters. Setting for peak detection only were used following the 

guideline within the ABI SNaPshot™ Kit Analysis Getting Started User Guide version 4.0. 
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3.2.2 Results for Following Published Protocol 

 The profiles resulting from the first run following the published protocol yielded 

electropherograms with no significant peaks in all samples. 

 

3.2.3 Optimization Troubleshooting  

3.2.3.1 DNA Concentration Testing, and Cleaning Reagent Adjustment 

After researching possible areas within the amplification processes that could be adjusted 

based on the desired outcomes, two possible issues seemed most likely. Either too much of the 

cleaning reagents in either of the amplification steps were degrading the samples prior to 

capillary electrophoresis, or the initial concentration of DNA input into the first PCR step was 

too low. 

Given these factors, a test run of the same three test samples was run with each sample 

being run at four different concentrations of DNA (1ng, 5ng, 10ng, and 25ng). In addition the 

concentration of ExoSAP-IT™ Cleanup reagent was decreased to 2 units per 15μL for the 

cleaning step following the first PCR step. The quantities of Shrimp Alkaline Phosphatase (SAP) 

reagents in the cleanup step for the second amplification were also adjusted to increase the 

volume of the second amplification product to 6μL, and adjusted the SAP reagent and buffer to 2 

units from a 20μL total reaction volume, decreasing the amount of distilled water to 6μL.  

The capillary electrophoresis run settings were also adjusted to increase the injection time 

to maximize the likelihood of peak visualization. 

 

3.2.3.2 Resulting Electropherograms 

 The resulting electropherograms contained a range of strong to weak peaks in all samples 

of varying input DNA concentrations, and a visual of the resulting electropherogram for sample 

ELC_R at 1ng can be seen in Figure 12.   
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Figure 12. Electropherogram of sample ELC_R at 1ng from sample test run with a testing range 

of DNA concentrations, and cleaning reagent protocol adjustments.               

 

From this it was concluded that targeting a concentration of DNA around 1ng should be 

sufficient for future optimization testing. However, the peak heights present within LIZ-120 size 

standard appeared to be significantly higher than all peaks presumptively being assumed to be 

data. This can be seen within Figure 12, where the LIZ-120 size standard is within the orange 

dye channel.  

 

3.2.3.3 LIZ-Size Standard Testing   

Due to the difficulty in visualization with the disproportionate RFUs values between the 

size standard peaks and the SNP data peaks, a run utilizing different size standards was done. 

The aim of the run being to assist with trying to solve a recurring sizing issue of the data within 

GeneMapper-IDX version 1.4.  

A capillary electrophoresis run using the same adjusted run settings discussed in Section 

3.2.3.1 were used in a run with the 1 ng target samples of ELC_R and 32942.L from the previous 

DNA concentration testing, and cleaning reagent adjustment run. Both samples were run with 

replicates with LIZ-120 size standard, no size standard, a 1:10 dilution of the LIZ 120 size 

standard, and 1:10 dilution of the LIZ 600 size standard.  
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3.2.3.4 LIZ-Size Standard Testing Results  

           The electropherograms showed increased visualization of the data peak, that could best be 

viewed in the sample run with no size standard, this can best be seen in Figure 13. However, the 

1:10 dilution of LIZ 600 size standard had the best coverage of the data peaks present; this can 

be seen in Figure 14.     

 

 

Figure 13. Electropherogram of sample 32942.L run with no size standard.  

 

 

Figure 14. Electropherogram of sample 32942.L run with a 1:10 dilution of LIZ 600 size 

standard. 
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The WVU Genomics Core Director, Ryan Percifield, M.Sc. was consulted to view the 

electropherograms on their GeneMapper version 5 software with a pre-installed SNaPshot™ kit 

analysis protocol to confirm the peaks were consistent with those viewed using the custom 

setting within in GeneMapper-IDX version 1.4 in the WVU Forensic Biology Laboratory. After 

reviewing the profiles on the GeneMapper version 5 software with a pre-installed SNaPshot™ 

kit analysis protocol it was believed that the peaks present within the electropherogram could be 

true data.  

 

3.2.3.5 Testing for Reproducibility of Methodology 

  Samples ELC_R, 26908.L, and 32942.L were rerun in duplicate 

through the modified amplification and capillary electrophoresis 

methodology described in Section 3.2.3.1, with the exception of using a 

1:100 dilution of LIZ 600 size standard. Due to the height of the peaks in the 

samples run with a 1:10 dilution of LIZ 600 size standard described in 

Section 3.2.3.4, and seen in Figure 14, a further dilution of LIZ 600 size 

standard to a 1:100 dilution was used to test if it would result in better 

visualization.   

 

3.2.3.6 Testing for Reproducibility of Methodology Results 

The resulting electropherograms contained multiple peaks in a range 

of varying RFUs, that can be seen in Figure 15. Due to utilizing 

GeneMapper-IDX version 1.4 software for peak detection only at this phase 

in the project, the Base Pairs (bps) and data point values for the sizing 

standard peaks were collected. This was used to plot a sizing graph to 

determine the slope and y-intercept for each profile to calculate the value of 

each peak's bps size, using their reported data point value. The data point 

values and calculated bps peaks for sample 26908.L can be seen in Table 5, 

Table 6, and Table 7.     
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Figure 15. Electropherogram of sample 26908.L from the testing for reproducibility of 

methodology run described in Section 3.2.3.5.   

 

       Table 7. Calculated bps of peaks in sample   

Table 6. Data points from sample 26908.L  26908.L electropherogram using sizing data  

electropherogram from run described in  in Table 5 from the run described in Section 

Section 3.2.3.3.                3.2.3.3. 
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3.2.3.7 Singleplex Reruns for Bin Determination 

 Due to obtaining profiles with distinct peaks using the same methodology for more than 

one run, I continued with the assumption that true profiles were being obtained. To be able to 

move forward more easily and no longer have to complete manual interpretation of profiles a 

singleplex run with each individual primer using sample ELC_R, and one sample with the full 

multiplex primer set was run following the protocol laid out in Section 3.2.3.5. The intention of 

the run being able to locate the expected peak positions for each individual SNP within the 

profiles to aid in the creation of a bin set determination protocol within GeneMapper-IDX 

version 1.4. The multiplex sample run with the singleplex samples was intended to be utilized as 

a reference to confirm the rerun results were consistent with the previous runs.  

 

3.2.3.8 Singleplex Reruns for Bin Determination Results  

Resulting profiles had inconsistent appearances of peaks within the majority of samples. 

A rerun of the samples was performed with the modification that the forward and reverse primers 

within the first amplification run both increased to 1μL per reaction, as well as increasing the 

SBE primer volume to 2μL per reaction within the second amplification step. 

The resulting rerun produced sample profiles with peak issues similar to the first run, as 

well as issues with having no sizing data when viewed within GeneMapper -IDX version 1.4. 

From this, the amplified samples with the increased primer volumes were rerun through capillary 

electrophoresis with the sample volume increased to 1μL and utilizing non-diluted size standard. 

The resulting sample profiles appeared more consistent with the previously obtained profiles, 

however there was an issue of seeing multiple peaks, exceeding the two possible expected peaks 

for a heterozygous phenotype, in all singleplex samples which was also present in the multiplex 

samples. To gain better understanding of if this could be possible contamination or noise, focus 

was shifted into panel and bin set creation for easier data interpretation.  

 

3.2.3.9 Panel and Bin Determination Protocol Creation in GeneMapper-IDX version 1.4 

 Following the panel and bin set creation instructions in the SNaPshot™ Kit Analysis 

Getting Started Guide version 4.0, a SNaPshot™ Panel was created within the software library. 

Within the Panel folder a bin set was created and the bin boundaries for each bin were estimated 

based on the bp number of the related SBE primer lengths, plus one for the addition of the 
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fluorescently labeled nucleotide with a plus or minus of 0.5 or 1 bps for error. The input values 

for the estimated bin set can be found in Table 8. A copy of the panel settings, and bin set file 

for the HIrisPlex assay SNP peaks, compatible with being uploaded into GeneMapper softwares 

can be found in Supplementary Document 2 and Supplementary 

Document 3 respectively.  

 Applying the SNaPshot™ Panel containing the estimated bin set to 

the GeneMapper-IDX version 1.4 analyze protocol on all of the resulting 

profiles from runs described in Section 3.2.3.8, revealed a few issues. With 

further examination it was determined that though the positive and negative 

control from the SNaPshot™ Multiplex kit worked, all of the peak data 

obtained from question samples were far out of the range to be consistent 

with true peak data for the HIrisPlex assay.    

 

4. Data Analysis  

4.1 Statistical Analysis of ImageJ Data 

4.1.1 Random Forest Model for Classification 

 The set of color threshold values collected from each of the Iris 

images processed using the methods described in Section 3.1.1 were used to 

create a Random Forest Classification Model, for the classification of Iris 

Phenotypes. The Random Forest methodology utilizes the development of 

multiple decision trees that are then used to aggregate the data into a 

classification model. These models work in 3 steps. In step one trees are drawn based on the 

value of ntree, or number of trees within the model, of the bootstrap samples. In the second step 

each of the bootstrap samples grow into unpruned trees that split based on sampling of predictors 

at each node. These predictors are referred to as mtry, which for classification based models is 

determined based off of the square root of p, where p is defined as the number of variables or 

features within the model. The final step is then to make a decision of the models classification 

based on the majority vote when taken into account the decisions of each individual tree within 

the Random Forest.        
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This was done using the ‘randomForest’ Package version 4.6 -14 within R. The R script 

used to create the Random Forests in the study can be found in Supplemental Document 4 and 

5 respectively.  

 

4.1.2 Five Class Classification Random Forest Model 

The first Random Forest created in this study was completed by using a model with five 

classifications, based on the eye color phenotype options contained within the phenotype history 

survey collected from each participant. The self-identified phenotype of the individuals that the 

images were collected from, was assumed to be their true classification of the images for the 

purpose of creating the model. The five classes were defined within the dataset using the 

numerical values contained within Table 5.      

 

Table 5. Numerical key for iris phenotype classification within Random Forest Model One.   

Numeric Value Iris Phenotype Classification 

1 Blue 

2 Brown 

3 Green 

4 Blue/Green Hazel 

5 Brown/Green Hazel 

    

The data contained 135 observations and 37 variables, and was partitioned into a 70/30 

split between a training dataset and a testing dataset for the construction and evaluation of the 

Random Forest. This created a training dataset which contained 96 observations and a testing set 

with 39 observations.  The default ntree value of 500 was used for the creation of this model. 

 

 

4.1.3 Five Class Classification Random Forest Model Results 

 The Random Forest Model constructed from the bootstrapped training data set with the 

five class classification categories produced from the iris phenotype image data was found to 

have an accuracy equal to 1, with a 95% CI [0.9623,1], and a p-value of <2.2e-16. However, 
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when the prediction error within the model was evaluated using the non-bootstrapped testing 

data an Out of the Bag (OOB) error rate of 9.38% was calculated. While the model had a zero 

percent classification error rate for both blue and brown eye color phenotype categories, the three 

intermediate eye color phenotype categories had classification error rates of 21.4%, 33.3%, and 

4.0% for Green, Blue/Green Hazel and Brown/Green Hazel respectively. The Confusion Matrix 

for the Five Class Classification Random Forest can be found in Figure 16.      

Confusion matrix: 

   1  2  3  4  5 class.error 

1 22  0  0  0  0   0.0000000 

2  0 20  0  0  0   0.0000000 

3  0  0 11  2  1   0.2142857 

4  1  0  2 10  2   0.3333333 

5  0  1  0  0 24   0.0400000 

 

Figure 16. Random Forest Confusion Matrix for the Five Class Classification RScript found in 

Supplementary Document 4.  

 

4.1.4 Three Class Classification Random Forest Model  

 Due to all misclassifications errors within the Five Class Classification Random Forest 

Model being contained within the classification of the three different types of intermediate eye 

color phenotypes, a second Random Forest Model was created utilizing only 3 classes for 

classifications as laid out in Table 6.    

 

Table 6. Numerical key for iris phenotype classification within Random Forest Model Two.   

Numeric Value Iris Phenotype Classification 

1 Blue 

2 Brown 

3 Intermediate (ie. Green, Blue/Green Hazel, or Brown/Green Hazel)  

 

With keeping all other information the same within the model, but decreasing the 

possible classification categories to only three the resulting Random Forest Model produced for 

the iris phenotype image data was found to have the same accuracy equal to 1, with a 95% CI 

[0.9623,1], and a p-value equal <2.2e-16 as the five class classification model. However, the 
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OOB error rate of the second model was calculated to be 4.17%. While the second Random 

Forest model still had a zero percent classification error rate for the brown eye color phenotype 

category, it was found to have classification error rates for blue and intermediate eye color 

phenotype categories of 4.5%, and 5.5% respectively. The Confusion Matrix for the Three Class 

Classification Random Forest can be found in Figure 17.   

Confusion matrix: 

   1  2  3 class.error 

1 21  0  1  0.04545455 

2  0 20  0  0.00000000 

3  2  1 51  0.05555556 

 

Figure 17. Random Forest Confusion Matrix for the Three Class Classification RScript found in 

Supplementary Document 5. 

 

5. Discussion  

 In conclusion, the SNP peak data collected in relation to the HIrisPlex assay was 

determined to not be true peak data. In addition, due to the results of the positive and negative 

controls within the sample runs using the SNaPshot™ Multiplex assay, it can be concluded that 

the kit itself was working properly. Ruling out kit component related issues, the difficulties with 

the HIrisPlex assay can be concluded to most likely be associated with an issue in the binding of 

the primers. The cause of the primer issues however, could be due to a multitude of factors. Such 

factors include undocumented storage temperature issues, improper manufacturing of primers, 

thermocycling condition issues, and so on.  

On the other hand, the Random Forest Classification Models created from the collected 

ImageJ data has important applications within the advancement of Forensic DNA Phenotyping. 

One of the many topics of discussion within the field is how to objectively classify pigmentation 

based phenotypes, as color determination from individual to individual can be subjective. 

Utilization of the Iris Image Random Forest Classification Model built in this study removes the 

potential error of subjectivity in the classification of eye color phenotypes with the utilization of 

image color threshold data. Therefore, it could be used to standardize the determination of eye 

color phenotype classification for future Forensic DNA Phenotyping technologies as one of the 

first introduced objective classification methods for eye color phenotypes.          

 



36 



 

 

37 
 

6. References 

[1] F. Liu, K. van Duijn, J.R. Vingerling, A. Hofman, A.G. Uitterlinden, A.C. Janssens, et al., 

Eye color and the prediction of complex phenotypes from genotypes, Curr. Biol. 19 (2009) 

R192–R193. 

 

[2] S. Walsh, F. Liu, K.N. Ballantyne, M. van Oven, O. Lao, M. Kayser, IrisPlex: a sensitive 

DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry 

information, Forensic Sci. Int. Genet. 5 (2011) 170–180. 

 

[3] S. Walsh, F. Liu, A.Wollstein, L. Kovatsi, A. Ralf, A. Kosiniak-Kamysz, W. Branicki, M. 

Kayser, The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA, 

Forensic Sci. Int. Genet. 5 (2013) 98–115. 

 

[4] M. Kayser, Forensic DNA Phenotyping: Predicting human apperance from crime scene 

material for investigative purposes, Forensic Sci. Int. Genet. 18 (2015) 33–48. 

 

[5]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 

4th ed. New York: Garland Science; 2002. 

 

 [6] Watson JD, Crick FHC. Molecular structure of nucleic acids. A structure for deoxyribose 

nucleic acid. 1953. Ann Intern Med 2003;138(7):581. 

 

[7] https://www.mun.ca/biology/scarr/Franklins_crystallograph.html 

 

[8] http://encyclopedia.lubopitko-bg.com/Nucleic_Acids.html 

 

[9] https://digital.wwnorton.com/ebooks/epub/bionowcore/OPS/xhtml/Chapter07-3.xhtml 

 

[10] Butler J. Basics of DNA, biology, and genetics. In: Fundamentals of forensic DNA typing. 

3rd ed. Academic Press; 2009. 

 

[11] “Quality Assurance Standards for Forensic DNA Testing Laboratories,” Federal Bureau of 

Investigation. https://www.fbi.gov/file-repository/quality-assurance-standards-for-forensic-dna-

testing-laboratories.pdf  

 

[12] B. Sobrino, M. Brion, A. Carracedo, SNPs in forensic genetics: a review on SNP typing 

methodologies, Forensic Sci. Int. 154 (2005) 181–194. 

 

[13] S. Walsh, A. Lindenbergh, S.B. Zuniga, T. Sijen, P. Knijff, M. Kayser, K. N. Ballantyne, 

Developmental validation of the IrisPlex system: Determination of blue and brown iris colour for 

forensic intelligence, Forensic Sci. Int. Genet. 5 (2011) 464–471. 

 

[14] R.K.Valenzuela, M.S. Henderson, H.M. Walsh, et al. Predicting phenotype from genotype: 

normal pigmentation, J. Forensic Sci. 55 (2010) 315-322. 

 



 

 

38 
 

[15] E. Branicki, F. Liu, K van Duijn, J. Draus-Barini, E. Pospiech, S. Walsh, T. Kupiec, A. 

Wojas-Pelc, M. Kayser, Model-based Prediction of Human hair color using DNA variants, Hum. 

Genet. 129 (2011) 443-454.  

 

[16] https://hirisplex.erasmusmc.nl/, link to HIrisPlex spreadsheet and manual   

 

[17] S. Walsh, L. Chaitanya, L. Clarisse, L. Wirken, J. Draus-Barini, L. Kovatsi, et al., 

Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for 

forensic and anthropological usage, Forensic Sci. Int. Genet. 9 (2014) 150–161. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://hirisplex.erasmusmc.nl/


 

 

39 
 

 

 

Supplemental Document 1 - 

Phenotype History Survey  

 

 

 

`  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

40 
 

Sample Identification #:___________________________ 

 

Phenotype History Questionnaire for American Population Study of Pigmentation Based 

Genotype Interpretation for Phenotypic Determination of Hair and Eye Color using HIrisPlex 

 

Conducted by Emma L. Combs, B.S. 

 

Name of Sample Donor:_________________________________________________________ 

 

Biological Sex: ________________________________________________________________ 

 

Race:_________________________________________________________________________ 

 

Please list all known possible ancestral origins (be as specific as possible):   

 

______________________________                     _______________________________ 

 

______________________________                     _______________________________ 

 

______________________________                     _______________________________ 

 

______________________________                     _______________________________ 

  

 

1. What would you classify your eye color as? 

 

______________________________________________________________________________ 

 

 

2. Pick one of the categories below that best describes your eye color  

a. Blue 

b. Green  

c. Blue/Green Hazel 

d. Brown/Green Hazel 

e. Other Hazel 

f. Brown  

g. Heterochromia 

 

 

3. Have your eyes ever changed color in your lifetime? 
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a. Yes  

b. No 

c. Unsure 

 

4. If yes to question 3, please explain in detail below: 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

5. What would you classify your natural hair color? 

 

______________________________________________________________________________ 

 

6. Selected the hair color and hair shade that best represents your hair appearance: 

 

a. Black   a. Dark 

b. Brown   b. Light 

c. Red 

d. Blonde 

 

7. Have you ever dyed your hair? 

a. Yes 

b. No 

 

8. If yes to question 7, when was the last time you dyed your hair? What color was it dyed? 

 

______________________________________________________________________________ 

 

 

 

9. Has your hair ever changed color naturally in your lifetime?  

Example: Your hair was lighter as a child or your hair had begun to gray? 
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a. Yes  

b. No 

c. Unsure 

 

10. If yes to question 9, please explained in detail below: 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

 

Please print your name, sign and date at the bottom of the page authorizing that all information 

given in the above questionnaire is the truth, to the best of your current knowledge.   

 

 

__________________________________ 

Name 

 

__________________________________     __________________ 

Signature         Date 
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Supplemental Document 2 -  

HIrisPlex Panel file for 

GeneMapper Software   
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Version GMID-X v 1.4 

Kit type: MICROSATELLITE 

Chemistry Kit SNaPshot none 

Panel HIrisPlex test 5-31-2020 

rs1805005_G blue 0.0 999.0 - 1 none false  

rs683_G blue 0.0 999.0 - 1 none false  

rs1393350_G blue 0.0 999.0 - 1 none false  

rs12896399_G blue 0.0 999.0 - 1 none false  

rs2378249_G blue 0.0 999.0 - 1 none false  

rs12913832_G blue 0.0 999.0 - 1 none false  

rs2402130_G blue 0.0 999.0 - 1 none false  

rs1800407_G blue 0.0 999.0 - 1 none false  

rs1042602_G blue 0.0 999.0 - 1 none false  

rs12203592_G blue 0.0 999.0 - 1 none false  

rs1805008_G blue 0.0 999.0 - 1 none false  

rs885479_G blue 0.0 999.0 - 1 none false  

rs11547464_G blue 0.0 999.0 - 1 none false  

N29insA_G Blue 0.0 999.0 - 1 none false  

rs4959270_G blue 0.0 999.0 - 1 none false  

rs12821256_G blue 0.0 999.0 - 1 none false  

rs16891982_G blue 0.0 999.0 - 1 none false  

rs28777_G blue 0.0 999.0 - 1 none false  

rs1110400_G blue 0.0 999.0 - 1 none false  

rs2228479_G blue 0.0 999.0 - 1 none false  

Y1520CH_G blue 0.0 999.0 - 1 none true  

rs1805009_G blue 0.0 999.0 - 1 none false  

rs1805007_G blue 0.0 999.0 - 1 none false  

rs1805006_G blue 0.0 999.0 - 1 none false  

rs1805008_A Green 0.0 999.0 - 1 none false  

rs683_A Green 0.0 999.0 - 1 none false  

rs1393350_A Green 0.0 999.0 - 1 none false  
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rs12896399_A Green 0.0 999.0 - 1 none false  

rs2378249_A Green 0.0 999.0 - 1 none false  

rs12913832_A Green 0.0 999.0 - 1 none false  

rs2402130_A Green 0.0 999.0 - 1 none false  

rs1800407_A Green 0.0 999.0 - 1 none false  

rs1042602_A Green 0.0 999.0 - 1 none false  

rs12203592_A Green 0.0 999.0 - 1 none false  

rs885479_A Green 0.0 999.0 - 1 none false  

rs11547464_A Green 0.0 999.0 - 1 none false  

N29insA_A Green 0.0 999.0 - 1 none false  

rs4959270_A Green 0.0 999.0 - 1 none false  

rs12821256_A Green 0.0 999.0 - 1 none false  

rs16891982_A Green 0.0 999.0 - 1 none false  

rs28777_A Green 0.0 999.0 - 1 none false  

rs1110400_A Green 0.0 999.0 - 1 none false  

rs2228479_A Green 0.0 999.0 - 1 none false  

Y1520CH_A Green 0.0 999.0 - 1 none true  

rs1805009_A Green 0.0 999.0 - 1 none false  

rs1805007_A Green 0.0 999.0 - 1 none false  

rs1805006_A Green 0.0 999.0 - 1 none false  

rs1805005_A Green 0.0 999.0 - 1 none false  

rs1805008_C Yellow 0.0 999.0 - 1 none false  

rs683_T Yellow 0.0 999.0 - 1 none false  

rs1393350_T Yellow 0.0 999.0 - 1 none false  

rs12896399_T Yellow 0.0 999.0 - 1 none false  

rs2378249_T Yellow 0.0 999.0 - 1 none false  

rs12913832_T Yellow 0.0 999.0 - 1 none false  

rs2402130_T Yellow 0.0 999.0 - 1 none false  

rs1800407_T Yellow 0.0 999.0 - 1 none false  

rs1042602_C Yellow 0.0 999.0 - 1 none false  

rs12203592_C Yellow 0.0 999.0 - 1 none false  
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rs885479_C Yellow 0.0 999.0 - 1 none false  

rs11547464_C Yellow 0.0 999.0 - 1 none false  

N29insA_C Yellow 0.0 999.0 - 1 none false  

rs4959270_C Yellow 0.0 999.0 - 1 none false  

rs12821256_C Yellow 0.0 999.0 - 1 none false  

rs16891982_C Yellow 0.0 999.0 - 1 none false  

rs28777_C Yellow 0.0 999.0 - 1 none false  

rs1110400_C Yellow 0.0 999.0 - 1 none false  

rs2228479_C Yellow 0.0 999.0 - 1 none false  

Y1520CH_C Yellow 0.0 999.0 - 1 none true  

rs1805009_C Yellow 0.0 999.0 - 1 none false  

rs1805007_C Yellow 0.0 999.0 - 1 none false  

rs1805006_C Yellow 0.0 999.0 - 1 none false  

rs1805005_C Yellow 0.0 999.0 - 1 none false  

rs1805008_T Red 0.0 999.0 - 1 none false  

rs1805005_T Red 0.0 999.0 - 1 none false  

rs1805006_T Red 0.0 999.0 - 1 none false  

rs1805007_T Red 0.0 999.0 - 1 none false  

rs1805009_T Red 0.0 999.0 - 1 none false  

Y1520CH_T Red 0.0 999.0 - 1 none true  

rs2228479_T Red 0.0 999.0 - 1 none false  

rs1110400_T Red 0.0 999.0 - 1 none false  

rs28777_T Red 0.0 999.0 - 1 none false  

rs16891982_T Red 0.0 999.0 - 1 none false  

rs12821256_T Red 0.0 999.0 - 1 none false  

rs4959270_T Red 0.0 999.0 - 1 none false  

N29insA_T Red 0.0 25.0561 - 1 none false  

rs11547464_T Red 0.0 999.0 - 1 none false  

rs885479_T Red 0.0 999.0 - 1 none false  

rs12203592_T Red 0.0 999.0 - 1 none false  

rs1042602_T Red 0.0 999.0 - 1 none false  
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rs1800407_C Red 0.0 999.0 - 1 none false  

rs2402130_C Red 0.0 999.0 - 1 none false  

rs12913832_C Red 0.0 999.0 - 1 none false  

rs2378249_C Red 0.0 999.0 - 1 none false  

rs12896399_C Red 0.0 999.0 - 1 none false  

rs1393350_C Red 0.0 999.0 - 1 none false  

rs683_C Red 0.0 999.0 - 1 none false  
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Supplemental Document 3 -  

HIrisPlex Bin set file for 

GeneMapper Software   
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Version GMID-X v 1.2 

Chemistry Kit SNaPshot 

BinSet Name HIrisPlex 

Panel Name HIrisPlex 

Marker Name rs1805005_G 

A 36.0 0.5 0.5 virtual 

Marker Name rs683_G 

G 96.0 1.0 1.0 virtual 

Marker Name rs1393350_G 

G 93.0 1.0 1.0 virtual 

Marker Name rs12896399_G 

G 89.0 1.0 1.0 virtual 

Marker Name rs2378249_G 

G 87.0 1.0 1.0 virtual 

Marker Name rs12913832_G 

G 84.0 1.0 1.0 virtual 

Marker Name rs2402130_G 

G 81.0 1.0 1.0 virtual 

Marker Name rs1800407_G 

G 78.0 1.0 1.0 virtual 

Marker Name rs1042602_G 

G 74.0 1.0 1.0 virtual 

Marker Name rs12203592_G 

G 70.0 0.5 0.5 virtual 

Marker Name rs1805008_G 

G 34.0 0.5 0.5 virtual 

Marker Name rs885479_G 

G 35.0 0.5 0.5 virtual 

Marker Name rs11547464_G 

G 29.0 1.0 1.0 virtual 

Marker Name N29insA_G 
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G 24.0 1.0 1.0 virtual 

Marker Name rs4959270_G 

G 69.0 0.5 0.5 virtual 

Marker Name rs12821256_G 

G 67.0 1.0 1.0 virtual 

Marker Name rs16891982_G 

G 63.0 1.0 1.0 virtual 

Marker Name rs28777_G 

G 59.0 1.0 1.0 virtual 

Marker Name rs1110400_G 

G 57.0 1.0 1.0 virtual 

Marker Name rs2228479_G 

G 55.0 1.0 1.0 virtual 

Marker Name Y1520CH_G 

G 52.0 1.0 1.0 virtual 

Marker Name rs1805009_G 

G 49.0 1.0 1.0 virtual 

Marker Name rs1805007_G 

G 45.0 1.0 1.0  

Marker Name rs1805006_G 

G 39.0 0.5 0.5 virtual 

Marker Name rs1805008_A 

A 34.0 0.5 0.5 virtual 

Marker Name rs683_A 

A 96.0 1.0 1.0 virtual 

Marker Name rs1393350_A 

A 93.0 1.0 1.0 virtual 

Marker Name rs12896399_A 

A 89.0 1.0 1.0 virtual 

Marker Name rs2378249_A 

A 87.0 1.0 1.0 virtual 
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Marker Name rs12913832_A 

A 84.0 1.0 1.0 virtual 

Marker Name rs2402130_A 

A 81.0 1.0 1.0  

Marker Name rs1800407_A 

A 78.0 1.0 1.0 virtual 

Marker Name rs1042602_A 

A 74.0 1.0 1.0 virtual 

Marker Name rs12203592_A 

A 70.0 0.5 0.5 virtual 

Marker Name rs885479_A 

A 35.0 0.5 0.5 virtual 

Marker Name rs11547464_A 

A 29.0 1.0 1.0 virtual 

Marker Name N29insA_A 

A 24.0 1.0 1.0 virtual 

Marker Name rs4959270_A 

A 69.0 0.5 0.5 virtual 

Marker Name rs12821256_A 

A 67.0 1.0 1.0 virtual 

Marker Name rs16891982_A 

A 63.0 1.0 1.0 virtual 

Marker Name rs28777_A 

A 59.0 1.0 1.0 virtual 

Marker Name rs1110400_A 

A 57.0 1.0 1.0 virtual 

Marker Name rs2228479_A 

A 55.0 1.0 1.0 virtual 

Marker Name Y1520CH_A 

A 52.0 1.0 1.0 virtual 

Marker Name rs1805009_A 
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A 49.0 1.0 1.0 virtual 

Marker Name rs1805007_A 

A 45.0 1.0 1.0 virtual 

Marker Name rs1805006_A 

A 39.0 0.5 0.5 virtual 

Marker Name rs1805005_A 

A 36.0 0.5 0.5 virtual 

Marker Name rs1805008_C 

C 34.0 0.5 0.5 virtual 

Marker Name rs683_T 

T 96.0 1.0 1.0 virtual 

Marker Name rs1393350_T 

T 93.0 1.0 1.0 virtual 

Marker Name rs12896399_T 

T 89.0 1.0 1.0 virtual 

Marker Name rs2378249_T 

T 87.0 1.0 1.0 virtual 

Marker Name rs12913832_T 

T 84.0 1.0 1.0 virtual 

Marker Name rs2402130_T 

T 81.0 1.0 1.0 virtual 

Marker Name rs1800407_T 

T 78.0 1.0 1.0 virtual 

Marker Name rs1042602_C 

C 74.0 1.0 1.0 virtual 

Marker Name rs12203592_C 

C 70.0 0.5 0.5 virtual 

Marker Name rs885479_C 

C 35.0 0.5 0.5 virtual 

Marker Name rs11547464_C 

C 29.0 1.0 1.0 virtual 
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Marker Name N29insA_C 

C 24.0 1.0 1.0 virtual 

Marker Name rs4959270_C 

C 69.0 0.5 0.5 virtual 

Marker Name rs12821256_C 

C 67.0 1.0 1.0 virtual 

Marker Name rs16891982_C 

C 63.0 1.0 1.0 virtual 

Marker Name rs28777_C 

C 59.0 1.0 1.0 virtual 

Marker Name rs1110400_C 

C 57.0 1.0 1.0 virtual 

Marker Name rs2228479_C 

C 55.0 1.0 1.0 virtual 

Marker Name Y1520CH_C 

C 52.0 1.0 1.0 virtual 

Marker Name rs1805009_C 

C 49.0 1.0 1.0 virtual 

Marker Name rs1805007_C 

C 45.0 1.0 1.0 virtual 

Marker Name rs1805006_C 

C 39.0 0.5 0.5 virtual 

Marker Name rs1805005_C 

C 36.0 0.5 0.5 virtual 

Marker Name rs1805008_T 

T 34.0 0.5 0.5 virtual 

Marker Name rs1805005_T 

T 36.0 0.5 0.5 virtual 

Marker Name rs1805006_T 

T 39.0 0.5 0.5 virtual 

Marker Name rs1805007_T 
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T 45.0 1.0 1.0 virtual 

Marker Name rs1805009_T 

T 49.0 1.0 1.0 virtual 

Marker Name Y1520CH_T 

T 52.0 1.0 1.0 virtual 

Marker Name rs2228479_T 

T 55.0 1.0 1.0 virtual 

Marker Name rs1110400_T 

T 57.0 1.0 1.0 virtual 

Marker Name rs28777_T 

T 59.0 1.0 1.0 virtual 

Marker Name rs16891982_T 

T 63.0 1.0 1.0 virtual 

Marker Name rs12821256_T 

T 67.0 1.0 1.0 virtual 

Marker Name rs4959270_T 

T 69.0 0.5 0.5 virtual 

Marker Name N29insA_T 

T 24.0 1.0 1.0 virtual 

Marker Name rs11547464_T 

T 29.0 1.0 1.0 virtual 

Marker Name rs885479_T 

T 35.0 0.5 0.5 virtual 

Marker Name rs12203592_T 

T 70.0 0.5 0.5 virtual 

Marker Name rs1042602_T 

T 74.0 1.0 1.0 virtual 

Marker Name rs1800407_C 

C 78.0 1.0 1.0 virtual 

Marker Name rs2402130_C 

C 81.0 1.0 1.0 
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Marker Name rs12913832_C 

C 84.0 1.0 1.0 virtual 

Marker Name rs2378249_C 

C 87.0 1.0 1.0 virtual 

Marker Name rs12896399_C 

C 89.0 1.0 1.0 virtual 

Marker Name rs1393350_C 

C 93.0 1.0 1.0 virtual 

Marker Name rs683_C 

C 96.0 1.0 1.0 virtual 
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Supplemental Document 4 - R 

Script for Five Class Classification 

Random Forest Regression Model  

 

 

 

`  
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#install.packages("tidyverse") 

#install.packages("janitor") 

 

library("tidyverse") 

library("readxl") 

 

 

data <- R_Code_Data_sheet 

 

original_names <- colnames(data) 

 

data <- data %>% 

  janitor::clean_names() 

 

new_names <- colnames(data) 

names(new_names) <- original_names 

names(original_names) <- new_names 

 

 

 

str(data) 

data$color <-as.factor(data$color) 

table(data$color) 

 

#Data Partition 

set.seed(123) 

#ind for Independent samples 

ind <-sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3)) 

train <- data[ind==1,] 

test  <- data[ind==2,] 
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#Random Forest 

library("randomForest") 

#rfNews() 

set.seed(222) 

rf <- randomForest( color ~ . , data=train,importance=TRUE, ntree = 500) 

print(rf) 

 

attributes(rf) 

rf$confusion 

 

 

#Dr. Jelsema plt code 

rf_out01 <- importance( rf  ) 

rf_out02 <- data.frame(rf_out01) %>% rownames_to_column() 

rf_out03 <- rf_out02 %>% arrange( -MeanDecreaseGini ) %>% 

  mutate( Variable = recode_factor( rowname, !!!original_names )) %>% 

  dplyr::select( Variable, MeanDecreaseAccuracy, MeanDecreaseGini ) 

 

 

 

ggplot( rf_out03 , aes(x=reorder(Variable, MeanDecreaseGini), y=MeanDecreaseGini ) ) + 

  geom_bar( stat="identity") +  

  coord_flip() +  

  labs( x="", y="Mean decrease in Gini Index") 
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ggplot( rf_out03 , aes(x=reorder(Variable, MeanDecreaseAccuracy), 

y=MeanDecreaseAccuracy ) ) + 

  geom_bar( stat="identity") +  

  coord_flip() +  

  labs( x="", y="Mean decrease in OOB Error") 

 

#prediction & Confusion Matrix - train 

library(caret) 

p1 <- predict(rf, train) 

head(p1) 

head(train$color) 

confusionMatrix(p1, train$color) 

 

#prediction & Confusion Matrix - test 

p2 <- predict(rf, test) 

confusionMatrix(p2, train$color) 

 

#error rate of Random Forest 

plot(rf) 
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Supplemental Document 5 - R 

Script for Three Class Classification 

Random Forest Regression Model   

 

 

 

`  
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data <- R_Code_Data_sheet_all_intermeidate_as_3 

 

#original_names <- colnames(data) 

 

#data <- data %>% 

#janitor::clean_names() 

 

#new_names <- colnames(data) 

#names(new_names) <- original_names 

#names(original_names) <- new_names 

 

 

 

str(data) 

data$Color <-as.factor(data$Color) 

table(data$Color) 

 

#Data Partition 

set.seed(123) 

#ind for Independent samples 

ind <-sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3)) 

train <- data[ind==1,] 

test  <- data[ind==2,] 

 

 

 

#Random Forest 

library("randomForest") 

set.seed(222) 

rf <- randomForest( Color ~ . , data=train,importance=TRUE ) 

print(rf) 
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#round two 

#install.packages("tidyverse") 

#install.packages("janitor") 

library("tidyverse") 

library("readxl") 

data <- R_Code_Data_sheet_all_intermeidate_as_3 

original_names <- colnames(data) 

data <- data %>% 

  janitor::clean_names() 

new_names <- colnames(data) 

names(new_names) <- original_names 

names(original_names) <- new_names 

str(data) 

data$color <-as.factor(data$color) 

table(data$color) 

#Data Partition 

set.seed(123) 

#ind for Independent samples 

ind <-sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3)) 
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train <- data[ind==1,] 

test  <- data[ind==2,] 

 

 

 

 

 

 

#Random Forest 

library("randomForest") 

#rfNews() 

set.seed(222) 

rf <- randomForest( color ~ . , data=train,importance=TRUE, ntree = 500) 

print(rf) 

 

attributes(rf) 

rf$confusion 

 

 

#Dr. Jelsema plt code 

rf_out01 <- importance( rf  ) 

rf_out02 <- data.frame(rf_out01) %>% rownames_to_column() 

rf_out03 <- rf_out02 %>% arrange( -MeanDecreaseGini ) %>% 

  mutate( Variable = recode_factor( rowname, !!!original_names )) %>% 

  dplyr::select( Variable, MeanDecreaseAccuracy, MeanDecreaseGini ) 

 

 

 

ggplot( rf_out03 , aes(x=reorder(Variable, MeanDecreaseGini), y=MeanDecreaseGini ) ) + 

  geom_bar( stat="identity") +  

  coord_flip() +  
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  labs( x="", y="Mean decrease in Gini Index") 

ggplot( rf_out03 , aes(x=reorder(Variable, MeanDecreaseAccuracy), 

y=MeanDecreaseAccuracy ) ) + 

  geom_bar( stat="identity") +  

  coord_flip() +  

  labs( x="", y="Mean decrease in OOB Error") 

#prediction & Confusion Matrix - train 

library(caret) 

p1 <- predict(rf, train) 

head(p1) 

head(train$color) 

confusionMatrix(p1, train$color) 

#prediction & Confusion Matrix - test 

p2 <- predict(rf, test) 

confusionMatrix(p2, train$color) 

#error rate of Random Forest 

plot(rf) 
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