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Abstract 

Accessing the Functional Capabilities of the Tick Microbiome Through Metagenomics 

Darin Lee Shrewsberry Jr. 

The black-legged tick Ixodes scapularis is a common ectoparasite of animals and an obligate 

blood feeder, attaching to a host animal and taking a blood meal once per life stage (i.e. 3 times during its 

life). Unfortunately for the tick, blood represents a nutrient poor diet largely consisting of lipids and 

proteins but notably lacking in essential nutrients such a B vitamins (e.g., biotin, riboflavin, niacin) Other 

exclusive blood feeders such as the tsetse fly harbor symbiotic bacteria that provision B-complex vitamins 

to their host. I. scapularis harbors Rickettsia buchneri an endoparasitic bacterium that intriguingly 

possesses two copies of a complete biotin synthesis operon; however, there is no evidence that R. 

buchneri is required for I. scapularis fitness, or that it provisions biotin to its host. Consequently, it 

remains an open question how I. scapularis and other ticks without endosymbionts thrive on nutrient-poor 

blood alone. In the current work, I present a method to isolate the tick microbiome away from host cells 

to interrogate the complete microbial metagenome for metabolic capabilities related to nutrient 

supplementation. This method will allow us to analyze the entire microbial metagenome of small 

arthropods such as ticks – previously inaccessible due to overwhelming amounts of host DNA – and 

enable characterization of host-microbiome metabolic interdependency, providing novel insight into 

microbial ecology within ticks and other hematophagous arthropods. 
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Tick Microbiomes: The State of the Field 

 

Introduction 

 

Ticks: background and lifestyle 

Ticks (Order: Ixodida) are obligate sanguivorous ectoparasites composed of 3 families: Ixodidae 

(hard ticks, >700 species), Argasidae (soft ticks, > 200 species), and Nuttallielidae (1 species).  At least 

28 species transmit human pathogens across the globe and the list of pathogens known to be transmitted is 

increasing, in part, due to climate change (Anderson & Magnarelli, 2008; Gray et al., 2009; Spolidorio et 

al., 2010). Ticks are introduced to microbial communities of bacteria, including both pathogens and non-

pathogens, during feeding on varied hosts as well as during their extensive time off-host. Hard ticks range 

widely and feed on multiple different host species, whereas most soft ticks are restricted to a single host 

animal, usually inhabiting a burrow. Consequently, the feeding and lifestyle habits of different tick 

species suggest they will be colonized by highly variable microbial communities; it also points to 

differences in pathogen acquisition.  Once a tick is infected with a pathogen, colonization is typically 

maintained throughout the lifespan of the tick, although some pathogens see a dramatic decrease in 

numbers during transstadial transmission (Soneshine, 1991). In some cases, bacteria can be transovarially 

transmitted to offspring where the infection is maintained (Soneshine, 1991). 

A tick’s life span is comprised of 3 life stages: larvae, nymph, and adult. Hard ticks (family 

Ixodidae) generally take one blood meal at each stage of development while soft ticks (family Argasidae) 

often feed multiple times (Anderson & Magnarelli, 2008). Hard ticks are different in that they do not take 

bloodmeals from multiple hosts in the way that other arthropods such as mosquitoes do. Instead, once 

they have found a compliant host, such as a small mouse or a deer, they will attach and remain attached 

until they have fed to repletion. This process can take a few days up to several weeks and is in stark 

contrast to a mosquito, that takes a brief meal (lasting up to a few minutes) from one individual and leaves 

once feeding is complete. This feeding mechanism has led to an evolutionary pressure in ticks for 

mouthparts that are extremely specialized for attaching and remaining so through extended feeding. They 

have also evolved powerful analgesics that are excreted in their saliva to numb the site of attachment, in 

order to remain undetected while feeding, as well as blood thinners to aid in uptake of a meal (Chmelar et 

al., 2012). 

Ticks of the eastern United States 

Behind mosquitoes, ticks are responsible for the greatest level of vector-borne disease 

transmission on the planet (Herrmann et al., 2014). Ixodes scapularis (the Eastern black-legged tick) has a 

widespread and increasing geographical range in the Eastern US and harbors a myriad of human 

pathogens, including Borrelia burgdorferi (Lyme disease), Anaplasma phagocytophilum (human 

granulocytic anaplasmosis), and Powassan virus (Powassan virus encephalitis) (Eisen & Eisen, 2018). In 

the US, ~30,000 cases of tick-borne Lyme disease cases are reported in the US every year -- with 

estimates suggesting 300,000 infections -- making it the most common tick-borne disease (TBD) in the 

nation. In addition to the health costs, Lyme disease is estimated to cost patients an average of $3,000 in 

the US, with a total national economic burden of ~$3 billion annually (Adrion et al., 2015).Other serious 

but less common TBDs include Anaplasmosis/Erhlichiosis (6,123 US cases in 2018), spotted fever 

Rickettsioses (5,544 cases), Babesiosis (2,160 cases), Tularemia (229 cases) and Powassan virus (21 

cases); these are likewise responsible for hospitalizations as well as economic burden on patients due to 

treatment and potentially hours of work lost (Centers for Disease Control and Prevention, 

https://www.cdc.gov/ticks/data-summary/index.html).  

https://www.cdc.gov/ticks/data-summary/index.html
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Among these (and other) human pathogens, I. scapularis also harbors non-pathogens as well. For 

example, various species of endosymbiotic bacteria have been described such as Rickettsia buchneri, 

which resides in the ovaries of I. scapularis and has recently been detected in the salivary glands (Al-

Khafaji et al., 2020; Kurtti et al., 2015). This bacterium is intriguing as it possesses two functional copies 

of the biotin (B7) synthesis operon located on a plasmid, pREIS2. This suggests the possibility of R. 

buchneri as a nutritional endosymbiont in I. scapularis (Gillespie et al., 2012).   

Dermacentor variabilis (the American dog tick) is the most widely distributed tick in North 

America (Sonenshine DE, Roe RM. Biology of ticks. vol. 2. 2nd ed. New York: Oxford University Press; 

2014.) It is responsible for the transmission of spotted fever group Rickettsia (SFGR), a group of bacteria 

that include the causative agents of Rocky Mountain Spotted Fever (RMSF) (R. rickettsii) and other 

rickettsioses, as well as Francisella tularensis (tularemia), Coxiella burnetii (Q Fever), and Anaplasma 

spp. (anaplasmosis in both humans and animals; de la Fuente et al., 2008). SFG Rickettsioses are 

particularly difficult to assess in terms of health and economic costs: they present with fairly nonspecific 

symptoms (fever, malaise, headache) making diagnosis difficult; they cover a wide spectrum of severity 

from mild to highly fatal; and they often resolve without requiring treatment or hospitalization. For 

example, RMSF is estimated to cost the state of Arizona $13million/year although the authors believe this 

to be a significant underestimate (Drexler et al., 2015). Livestock also suffer from pathogens transmitted 

by D. variabilis; for example, bovine anaplasmosis is estimated to cost US farmers $300 million/year 

(Aubry & Geale, 2011). 

Amblyomma americanum (Lone-Star tick) is another important vector of TBD in the US (Childs 

& Paddock, 2002). It is a known vector for Erhlichia chaffeensis (human monocytic ehrlichiosis) and E. 
ewingii (canine and human granulocytic erhlichioses), and is suspected to transmit Borrelia lonestari 

(Southern Tick-Associated Rash Illness or STARI) as well as the protozoan Theileria cervi (Ewing et al., 

1995; Samuel & Trainer, 1970; Varela et al., 2004). Recently, it has been reported that A. americanum is 

potentially responsible for alpha-gal allergies, IgE-mediated reactions against a carbohydrate found in 

mammalian meat, excluding primates (Jackson, 2018).   

 

 In addition to transmitting microbial pathogens, ticks (like all other eukaryotes) harbor diverse 

and varied microbial communities (microbiomes). These communities include vertically-inherited, long-

term residents (e.g., R. buchneri, Rickettsia peacockii, Coxiella-like endosymbiont of A. americanum) as 

well as complex communities that inhabit tick midgut, ovarian, and salivary tissues. Microbiome studies 

from other systems strongly suggest that these communities have an important role to play in tick survival 

and fitness (Gillespie et al., 2012; Gurfield et al., 2017; Pachebat et al., 2013; Smith et al., 2015a; Snyder 

et al., 2010). 

Tick microbiomes: origins and major influences: 

 The term “microbiome” was first coined by Joshua Lederberg as the communities of commensal, 

symbiotic, and pathogenic microorganisms that occupy various niches within our body (Hooper & 

Gordon, 2001). While this was originally defined in the context of humans, the term broadly applies to 

any metazoan organism as they all rely on a consortium of microbes to survive. Arthropods (including 

ticks) do not stray from these requirements as essential microbes have been shown to influence tick life 

cycle, reproductive fitness, survival, and vectorial competence (Dennison et al., 2014; Weiss & Aksoy, 

2011; Zug & Hammerstein, 2015). 

The microbiome of the tick is important to the survival of the host, perhaps most notably as the 

members present can determine the host’s susceptibility to pathogens or provision nutrients to supplement 

the nutrient-poor blood meal (Beard et al., 2002; Gall et al., 2016; Macaluso et al., 2002; Smith et al., 
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2015a). Understanding the composition of I. scapularis and other tick microbiomes would provide the 

ability to pinpoint key members of the community that could be targets for vector control. Should an 

endosymbiont be identified, manipulating these could reduce infestations and lead to a decrease the 

prevalence of tick-borne infections (Greay et al., 2018). 

In ticks, larvae acquire endosymbionts from their mother via transovarial transmission. 

Additionally, it has been suggested that the maternal microbiota is the first to inoculate developing larvae 

(Narasimhan et al., 2014). It has also been suggested that paternally-transmitted microbes can be acquired 

through copulation, thus increasing microbiome diversity (Afzelius et al., 1989). The effect of the 

environment on the composition of tick microbiomes has been well-documented in comparisons between 

wild-caught ticks and those from laboratory colonies. For example, I. scapularis larvae hatched in sterile 

environments harbor a significantly different microbiome from their non-sterile counterparts (Narasimhan 

et al., 2014), indicating that the environment is involved in modulating the microbial diversity within 

ticks. Comparing the functional capabilities of microbiomes from laboratory reared ticks and wild-caught 

ticks will be valuable in characterizing the core microbiota conserved across individual ticks as well as 

allow for inference of the core functions of these microbiota within the tick. 

Wild tick microbiomes are subject to a wide range of factors that can affect their composition 

such as tick species and sex, geographical location (particularly, the humidity and temperature of those 

locations), the host a bloodmeal was taken from, and even the physical location within the tick (Andreotti 

et al., 2011; Carpi et al., 2011; Gurfield et al., 2017; Qiu et al., 2014; Trout Fryxell & DeBruyn, 2016; 

Van Treuren et al., 2015; Williams-Newkirk et al., 2014). It has also been shown that members of the 

microbiome can influence the composition of the community (Abraham et al., 2017; Gurfield et al., 

2017). In mammals, diet plays a key role in shaping the microbiome (Carmody et al., 2015); likewise it is 

reasonable to posit that the strict blood diet of ticks selects for certain genera in the microbiome. Host 

genetics may also play a role in microbiome composition. In D. melanogaster, microbiome diversity is 

low despite the wide variety of meals available for the fly (Broderick & Lemaitre, 2012). Conversely, 

ticks are restricted to a diet of blood but evince a more complex microbiome than flies (Narasimhan et al., 

2014). This diversity may be associated with the host that is fed upon (Zhang et al., 2014). Genetic 

influence of the host on the microbial diversity within it is one possible explanation for this, as one would 

expect that ticks to show a similar microbiome composition across species if diet were the sole driver of 

microbial diversity.  Combined, these factors present a challenge in uncovering the core microbial 

communities within ticks. 

Interestingly, it was recently reported that I. scapularis does not harbor a stable microbial 

community (Ross et al., 2018). This study found that wild-caught ticks possessed a limited microbiota 

dominated by endosymbionts such as Rickettsia, which the author suggests is the primary driver of 

microbial abundance in I. scapularis. Between all samples tested, only six taxa were present in all: 

Rickettsia, Bacillus, Borrelia, Francisella, Escherichia, and Enterobacteriaceae. Those samples that did 

not show an abundance of Rickettsia were dominated by either Bacillus, Pseudomonas, or 

Enterobacteriaceae. Intriguingly, when species in these three groups dominated the microbiota, B. 

burgdorferi load was decreased suggesting that B. burgdorferi colonization is potentially inhibited by 

Bacillus, Psuedomonas, Enterobacteriaceae or a combination of them. (Ross et al., 2018). Similar 

patterns were also noted in five other tick species tested: (two Amblyomma spp., two Dermacentor spp., 

and Ixodes pacificus). Francisella and Rickettsia dominated abundance in two Amblyomma spp., 

Francisella was the most abundant in two Dermacentor spp., and Rickettsia was most prominent in 

Ixodes pacificus. 
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Tick microbiome composition and the role of next-generation sequencing 

Nucleic acids have been sequenced since 1965 starting with Robert Holley generating the first 

sequence from Saccharomyces cerevisiae (Holley et al., 1965). Various techniques had been utilized for 

nucleic acid sequencing, but in 1977 ‘first generation’ sequencing had been born with the adoption of 

Maxim and Gilbert’s technique utilizing radiolabeled DNA treated with chemicals that cause breaks in 

specific bases in the DNA chain and running those cleaved fragments on a polyacrylamide gel to infer the 

sequences (Maxam & Gilbert, 1977). In 1977, Fred Sanger developed the chain-termination method 

which utilized both deoxyribonucleotides (dNTPs) and dideoxyribonucleotides (ddNTPs) that lacked the 

3’ hydroxyl group required for extension of DNA chains. Mixing radiolabeled ddNTPs into a reaction 

allowed for the generation of DNA strands of every possible length (Sanger et al., 1977). Pyrosequencing 

(eventually landing in the hands of 454 Life Sciences, then Roche) later became the first major ‘next-

generation sequencing’ (NGS) technology. This technology allowed for mass parallelization of 

sequencing, which allowed for greater amounts of DNA to be sequenced in a single run. This method 

requires libraries of DNA molecules to be attached to beads (by way of adapter sequences) which then 

undergo water-in-oil emulsion PCR (emPCR) to coat beads in clonal DNA (Margulies et al., 2005). The 

sequences are then amplified in the emulsion droplets. However, 454 pyrosequencing was discontinued in 

2013. Illumina sequencing rode on the heels of 454’s success and quickly rose in popularity after the 

development of paired-end read generation. Having paired-end reads provides a greater amount of data 

and allows for greater accuracy in mapping reads to reference genomes, particularly across repetitive 

regions (Heather & Chain, 2016). This was built on with the development of the HiSeq and MiSeq 

platforms which were capable of greater read length/depth and faster turnaround (but lower throughput) 

with greater read length, respectively. The success of Illumina is generally considered to be the greatest 

contribution of second-generation sequencing techniques (Balasubramanian, 2011; Quail et al., 2012) 

Third-generation sequencing introduced single molecule sequencing (SMS) as well as real-time 

sequencing. SMS eliminated the requirement for DNA amplification, which was necessary for all 

previous sequencing techniques (Schadt et al., 2010). The first to do this was Stephen Quake and the 

technique was purchased by Helicos Biosciences. Helicos went bankrupt in 2012, however it was not long 

before another company took over (Heather & Chain, 2016). Pacific Biosciences developed the single 

molecule real time (SMRT) technique which is utilized on their platforms. With PacBio sequencing 

platforms, reads exceeding 10 kb can be generated. This length is useful for bridging the gaps of highly 

repetitive regions that may otherwise hinder shorter red length sequencing platforms (van Dijk et al., 

2014).  

Next-Generation Sequencing is generally used to describe any high-throughput, massively 

parallel sequencing technology. NGS has enabled researchers to understand how the interactions between 

microbes influences the composition of the microbiome. Using NGS to identify the factors that influence 

microbiome composition may be crucial to the development of novel TBD control methods. Currently, 

acaricides and vaccines are the two most common strategies, but each presents challenges to future use. 

Tick populations that are resistant to acaricide treatments are becoming more common (de la Fuente & 

Contreras, 2015). Vaccine development, while promising, requires a large up-front investment in money 

and time, sometimes up to ten years (de la Fuente & Contreras, 2015). Alternative TBD control strategies 

could take shape in the form of manipulating the tick microbiome. Inoculating ticks with microbes that 

are capable of excluding or decreasing TBD pathogens would ultimately lead to a decrease in circulation 

of TBD as well as a long-term decrease in TBD cases. Similar strategies have been employed in arthropod 

vectors such as Culex pipiens and Aedes spp. using Wolbachia pipientis, which has been shown to inhibit 

dengue virus colonization (Jeffries & Walker, 2016). Further research on the tick microbiome and the 
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interactions between members will increase our understanding of the molecular basis of these interactions 

and inform ways that similar disease control methods can be employed in ticks.  

Typically, studies on tick microbiomes have used NGS to sequence the PCR-amplified 

hypervariable regions of bacterial 16S rRNA, primarily from whole tick samples (Petrosino et al., 2009). 

This approach neatly sidesteps the considerable challenge posed by trying to isolate microbial DNA from 

a tick in enough purity and quantity to be sequenced. One limitation presented with the use of whole ticks 

is that it limits the ability to define tissue-specific microbiomes, including important information 

regarding the context of host-microbe and microbe-microbe interactions (Schabereiter-Gurtner et al., 

2003). It is also more difficult to separate bona fide members of the community from those that are 

present on the exoskeleton which may be environmental contaminants. Although surface sterilization can 

help, when it is carried out, there is currently no widely-accepted standard treatment and the effectiveness 

is often unclear. 

  Despite the observed diversity, all tick species studied to date have shown common broad themes 

in the composition of their microbiomes (table 1). In order of occurrence, the following phyla 

predominate: Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Phyla such as 

Acidobacteria, Cyanobacteria, Fusobacteria, and candidate phyla TM7 are also present, though in 

reduced abundance (Budachetri et al., 2014; Narasimhan et al., 2014). The most abundant bacterial 

species that are frequently identified include endosymbionts such as Coxiella spp, Rickettsia spp. 

Francisella spp., “Candidatus Midichloria mitochondrii” as well as assorted pathogenic, environmental, 

and vertebrate skin-associated bacteria (Andreotti et al., 2011; Hawlena et al., 2013) (summarized in 

Table 2). 

The microbiome of Ixodes spp. 

Two Ixodes species (I. scapularis and I. pacificus) are the major TBD vectors in the US (Piesman 

& Eisen, 2008). In Europe, that title goes to I. ricinus (Sprong et al., 2018).Consequently, these species 

have received considerable amounts of attention regarding the microbial communities within them.  

In I. scapularis, two microbiome studies were conducted using 454 pyrosequencing of dissected 

gut tissue (Narasimhan et al., 2014) and temporal temperature gradient gel electrophoresis of whole tick 

samples (Moreno et al., 2006). Despite the use of two different methodologies, it was concluded that four 

genera are typically present: Stenotrophomonas, Sphingobacterium, Pseudomonas, and Acinetobacter. 

The overlap of these genera between the two different methods corroborates the presence of these bacteria 

in the I. scapularis microbiome. The agreement between these two methodologies allows for the 

identification of exoskeleton-associated bacteria that are unlikely to be part of the internal microbiome. 

These genera, as well as Enterobacter are found across several hard tick species as well (Narasimhan & 

Fikrig, 2015). In the ovaries, it was found that only bacteria closely related to SFGR were present, and 

PCR amplification only detected these bacteria in ~50% of ticks indicating that the bacteria is cleared in 

males after molting from larvae to nymphs. Further testing of specific tissues confirmed this as only ovary 

samples yielded PCR amplification of SFGR (Noda et al., 1997). Interestingly, R. buchneri was detected 

in I. scapularis gut tissue and in >50% of adult ticks (Hagen et al., 2018). 

When the composition of the tick gut microbiota is altered via gentamicin treatment, the integrity 

of the peritrophic matrix (PM), a non-cellular matrix that separates the food from the midgut epithelium, 

in the tick gut is compromised. The PM prevents pathogens and indigenous gut bacteria from breaching 

the gut epithelium. The reduced integrity of the PM leads to a reduction in colonization of B. burgdorferi, 

as it shields B. burgdorferi from the blood-filled gut lumen(Narasimhan et al., 2014). This suggests that 

members of the microbiome are necessary, either directly or indirectly, for the colonization of B. 

burgdorferi in I. scapularis (Hawlena et al., 2013). It was also found that Rickettsia was always present. 



 
 

6 

In addition, the human pathogen A. phagocytophilum induces transcription of an antifreeze glycoprotein 

(IAFGP) in I. scapularis, which leads to a decrease in Enterococcus and Rickettsia numbers and an 

increase in Pseudomonas counts. These results further support a crucial role for host-microbiome 

interactions in influencing pathogen success in I. scapularis (Abraham et al., 2017; Heisig et al., 2014). 

Because of its medical importance in Europe, I. ricinus has been investigated frequently using 

16S NGS platforms. Ticks acquired from regions endemic for Lyme disease were found to carry various 

pathogenic species within the Borrelia genera, including B. burgdorferi, Borrelia garinii and Borrelia 

afzelii as well as Anaplasma phagocytophilum, Rickettsia helvetica and “Candidatus Neoehrlichia 

mikurensis” (Almeida et al., 2012; Carpi et al., 2011; Gofton et al., 2015; Nakao et al., 2013; Vayssier-

Taussat et al., 2013). In addition to pathogens, a potential endosymbiont “Candidatus Midichloria 

mitochondrii” was identified in ~94% of field-collected females. The endosymbiont propagates in the tick 

oocytes and are transmitted transovarially to offspring, suggesting that it may play a role in fitness of the 

host (Beninati et al., 2004). Intriguingly, lab colonies of I. ricinus show a decreased level of “Candidatus 

Midichloria mitochondrii” indicating that the true advantage of the endosymbiont is likely to be better 

understood in a field setting (Lo et al., 2006). Surprisingly, humans bitten by I. ricinus have tested 

seropositive for the endosymbiont, which was subsequently discovered in the salivary glands of adult 

female ticks (Mariconti et al., 2012). Bacteria similar to “Candidatus Midichloria mitochondrii” have also 

been identified in Ixodes, Dermacentor, Amblyomma, and Rhipecephalus ticks (Epis et al., 2008), 

pointing to a fairly widespread distribution of this species. 

 I.ricinus and I. scapularis ticks have also been associated with Wolbachia, a pervasive 

endoparasite found in most arthropods on the planet (Benson et al., 2004; Hartelt et al., 2004). In addition, 

Arsenophonous-like endosymbionts have been identified in I. ricinus, and it is possible that these bacteria 

may manipulate the reproduction of their tick host in order to increase their long-term maintenance in 

natural populations (Nováková et al., 2009; Subramanian et al., 2012). 

Finally, in 2011, a novel Rickettsial endosymbiont was characterized in I. pacificus (Rickettsial 

endosymbiont of Ixodes pacificus; REIP) (Phan et al., 2011). It possesses all of the genes necessary for 

folate synthesis, suggesting a potential role in provisioning this B-vitamin to its tick host; however, curing 

the tick of REIP has no obvious effect on host fitness (Hunter et al., 2015; Kurlovs et al., 2014). In 

addition, follow-on genomic analysis showed that key genes in the folate synthesis pathway of REIP were 

pseudogenized, leaving the ecological role of this species in question (Driscoll et al., 2017). 

 

The microbiome of Dermacentor spp. 

Some of the most abundant species detected in tick microbiomes include members of the genera 

Coxiella, Francisella, and Rickettsia in which species of all three have been identified as endosymbionts 

in other hard ticks (Ahantarig et al., 2013; Hawlena et al., 2013; Lalzar et al., 2012). Francisella 

phylotypes 1 & 2 are pervasive among D. variabilis populations, and Arsenophonous is also highly 

prevalent (Hawlena et al., 2013). The Francisella spp. present are similar to previously characterized 

endosymbionts, suggesting that they are stable members of the D. variabilis microbiome.  Recently, an 

inverse relationship between Fransicella-like endosymbionts (FLEs) and SFGR pathogen abundance in 

D. occidentalis was reported, suggesting that FLEs may interfere with the colonization by SFGR 

(Gurfield et al., 2017). Similar inhibitory interactions occur in other tick microbiota. For example, 

populations of D. andersoni ticks from Western Montana also harbor SFGR called Rickettsia peacockii, 

which localizes within the tick oocytes. The presence of R. peacockii does not allow the closely-related 

human pathogen R. rickettsii to establish colonies (Childs & Paddock, 2002; Niebylski et al., 1997). 
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It was discovered that the microbiome of D. andersoni includes members such as those in the 

genus Acinetobacter that may impact reproductive fitness as well as susceptibility to environmental 

contaminants. Antibiotic treatment of D. andersoni ticks was associated with a 25% decrease in ticks 

surviving to adulthood compared to untreated populations. Antibiotic-treated ticks were also less 

competent at feeding and molting. The presence of Francisella and Arsenophonous-like bacteria in D. 

andersoni provides insight into the possibility that these members are endosymbionts (Dergousoff & 

Chilton, 2010; Niebylski et al., 1997). Additionally, it was discovered that the microbiome composition 

fluctuated generationally, further adding to the complex story that is the tick microbiome (Clayton et al., 

2015). 

The microbiome of Amblyomma spp. 

In 2006, a novel Coxiella species was discovered in A. americanum. Due to the ubiquitous 

presence in tick sample, the presence in eggs, and the appearance of a reduced genome, a common 

indicator of endosymbionts, researchers concluded that this novel species was likely an endosymbiont of 

the tick however, its importance could not yet be suggested (Jasinskas et al., 2007; Smith et al., 2015a). It 

was then found that curing the tick of their Coxiella endosymbionts reduced the fitness and survival of A. 

americanum. This result is due to the presence of complete or near complete B-complex biosynthesis 

pathways including thiamine (B1), riboflavin (B2), nicotinamide (B3), pantothenic acid (B5), pyridoxine 

(B6), biotin (B7), and folic acid (B9) indicating that this endosymbiont likely provides its host tick with 

some or all of these nutrients (Smith et al., 2015a; Zhong et al., 2007). Later, it was shown via 

fluorescence in situ hybridization and microscopy that these endosymbionts are present in the midgut, 

Malpighian tubules as well as bright signals from the salivary glands, and oocytes. Oocyte presence is 

consistent with vertical transmission of the bacterium as they are present in all A. americanum ticks. Their 

presence in the salivary glands give rise to the possibility that they are transmitted to animals when fed on 

by the tick; alternatively, it is also possible that they localize as a mechanism for inhibiting transmission 

or acquisition of pathogens such as E. chaffeensis (Klyachko et al., 2007).  

 

 Wolbachia is commonly associated with arthropods and filarial nematodes ( Zhang et al., 2011). 

Members of this genus have been found to be associated with I. ricinus and I. scapularis (Benson et al., 

2004; Hartelt et al., 2004). A novel Wolbachia was detected in female A. americanum ticks with infection 

rates ranging from 3.5% to 25% and was not detected at any level in males. Presence at these low levels 

typically indicates a male-killing role (Zhang et al., 2011).  Phylogenetic estimation placed this novel 

bacterium in supergroup F, typically observed in filarial nematodes, Osmia caeruescens, and the genus 

Mengenilla, making it the first time a member of this supergroup was detected in ticks (Gerth et al., 2014; 

Zhang et al., 2011). 

Microbiomes in other tick species 

Bacteria related to Coxiella burnetii (the causative agent of Q Fever) were found to reside in the 

ovaries of Ornithordoros moubata, Rhipicephalus sanguineus, and Heamaphysalis longicornis.  O. 

moubata also harbored an endosymbiont closely related to Francisella tularensis (causative agent of 

tularemia) (Burgdorfer & Owen, 1956); however, the impact on the host is not yet understood. 

 

Tick viromes/protozoans 

As for viruses, few shotgun sequencing studies (targeting viral cDNA) on the virome of ticks 

have been conducted, this neglected realm can potentially unveil novel viral species as was the case when 

a shotgun sequencing study on the microbiome of Rhipicephalus spp. revealed novel anellovirus and 

nairovirus species (Xia et al., 2015). In 2018, researchers performed NGS on the salivary glands of the 

eastern paralysis tick, I. holocyclus. They found evidence for a novel virus in the Iflaviridae family 
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dubbed Ixodes holocyclus iflavirus (IhIV) where it has been discovered in tick populations in New South 

Wales, and Queensland, Australia (O’Brien et al., 2018). A study in I. scapularis, D. variabilis, and A. 

americanum expanded on the understanding of tick viromes as 24 putative novel viruses were discovered. 

Those frequently detected include members of the Bunyaviridae, Rhabdoviridae, and Chuviridae families. 

Those members included 8 Bunyavirales-like species, 7 being identified in I. scapularis samples. This 

study also highlighted the drastic differences in viral presence between tick species. An average of 4 

viruses were detected in each I. scapularis pool while A. americanum pools rarely tested positive for more 

than one virus (Tokarz et al., 2018).   

One major tick-borne virus is Powassan Encephalitis Virus. It was first recognized as a human 

pathogen in 1958, when a child in Powassan, Ontario died due to encephalitis (Donald M. McLean & 

Donahue, 1959). It is the only member of the tick-borne encephalitis serological complex of flaviviruses 

in North America. It was first isolated in D. andersoni and has since been discovered in I. scapularis, I. 

cookeii, I. spinipalis, and I. marxi (McLean et al., 1964; McLean & Larke, 1963; Telford III et al., 1997; 

Thomas et al., 1960). As of 2019, several studies have identified a variety of viruses across both soft and 

hard ticks. These viruses include, but are not limited to, Phleboviruses, Rhabdoviruses, Nairoviruses, 

Churiviruses, and Orthomyxoviridae (Vandegrift & Kapoor, 2019). 

 Protozoans such as those in the genera Babesia and Theileria are harbored by some species of 

ticks (Jongejan & Uilenberg, 2004); however, shotgun sequencing has been under-utilized in the 

discovery of protozoans in the tick microbiome (Greay et al., 2018). 

 Given the current understanding of tick microbiomes and the diversity among them, one question 

still lingers. What are the major players in the I. scapularis and D. variabilis microbiomes particularly 

regarding host diet supplementation?  Amblyomma americanum as well as other obligate blood feeders 

such as Tseste flies and body lice are known to harbor bacteria that synthesize and provision B-complex 

vitamins to their host(Nikoh et al., 2014; Nogge, 1976; Smith et al., 2015b). Thus far, no member of the I. 

scapularis or D. variabilis microbiome has been confirmed to fill this role outside of one potential suspect 

in R. buchneri. In this, we hypothesize that the microbiomes of these two species contain members that 

are capable of synthesizing and provisioning one or multiple B-complex vitamins to supplement the 

nutrient poor blood diet of the hosts. Our novel approach to addressing this question aims to address this 

question. 
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Table 1: Summary of microbiome 

studies in major tick species. Adapted 

from Narasimham & Fikrig. 2015 and 

Greay et al. 2018. 
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Known Genera Present Citation 
Rickettsia   

 

 

 

 

 

 

 

Moreno et al. 2006 

Anaplasma 

Alfia 

Ralstonia 

Enterobacter 

Photorabdus 

Raoultella 

Shigella 

Acinetobacter 

Pseudomonas 

Stenotrophomonas 

Rhodococcus 

Williamsia 

Borrelia 

Sphingobacterium 

Corynebacterium 

Geobacillus  

 

 

 

 

 

 

Narasimhan et al. 2014 

Simplicispira 

Diaphorobacter 

Massilia 

Streptococcus 

Staphylococcus 

Brevundimonas 

Brevibacterium 

Flavobacterium 

Acidovorax 

Aquabacterium 

Delftia 

Comamonas 

Thioclava 

Flaviviridae 

Bunyavirales (nairovirus-like)  

 
 

Tokarz et al. 2018 

Bunyavirales (phlebovirus-like) 

Bunyavirales 

Chuviridae 

Partitiviridae 

Circoviridae 

Picornaviralse 

Rhabdoviridae 

  

Table 2: Summary of bacterial and viral genera detected in Ixodes scapularis. Sources were obtained 

from a Pubmed search using the terms “microbiome of Ixodes scapularis” and manually assessing for 

relevance.   
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Known Genera Present Citation 

Francisella Hawlena et al. 2013 

 Arsenophonus 

Sphingomonas   

Travanty et al. 2019 Delftia 

Hymenobacter 

Bunyaviridae (phlebovirus-like) Tokarz et al. 2019 

Rhabdoviridae  

Chicana et al. 2019 Methylobacterium 

  

Table 3: Summary of detected bacterial and viral genera in Dermacentor variabilis. Sources were 

obtained from a Pubmed search using the terms “microbiome of Dermacentor variabilis” and 

manually assessing for relevance.   
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  Figure 1: Life cycle of Ixodes 

scapularis. (Credit: CDC.gov) 
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Accessing the tick microbial metagenome 

 

Introduction 

 

Ticks are major vectors for disease across the globe. Understanding the complex interactions 

between ticks and their harbored microorganisms specifically regarding pathogen acquisition and 

transmission, and B-complex vitamin biosynthesis and provisioning will enable researchers to identify 

targets for TBD control potentially by modifying the microbiome composition to prevent acquisition of a 

pathogen or by restricting the colonization of the symbionts that provide nutrients to supplement the 

nutrient poor diet of blood. Little is understood regarding nutrient acquisition in I. scapularis or D. 

variabilis outside of two possible endosymbionts, R. buchneri in I. scapularis and a Francisella-like 

member of the D. variabilis microbiome, however it is not well understood how these bacteria are 

affecting the survival of these ticks.  

Challenges 

The two most common ways to sequence the microbiome include amplicon sequencing (such as 

16s rRNA studies) and shotgun sequencing (such as metagenomics and transcriptomics) (Smith et al., 

2015b). Next-generation sequencing (NGS) has expanded researchers’ abilities to sequence the genomes 

of single cells as well as further explore the members in a host’s microbial community. The first use of 

NGS (via 454 pyrosequencing) in a tick microbiome was performed on Rhipicephalus (Boophilus) 

microplus where bacteria in the genera Wolbachia, Coxiella, and Borrelia were identified as well as 

multiple Staphylococcus species (Andreotti et al., 2011). In fact, most microbiome studies rely on 

amplicon sequencing with many of them using the Roche 454 platform to target the V1-V4 regions of 16s 

rRNA. This platform is advantageous given its ability to generate long reads (up to 1 kb) whereas 

Illumina’s MiSeq and Thermofisher’s Ion Torrent are capable of generating up to 50million reads of up to 

600bp (single-end; 300bp paired-end) and 20 million 400bp single-end reads respectively. However, 

Roche discontinued their 454 platforms in 2013 and existing platforms lost support in 2016. 

 The consequence of utilizing 16S amplicon sequencing is that it is generally unable to identify 

bacteria at greater than genus level. It is also unable to inform us about the function of the bacteria within 

the host. To address this challenge, we opted for whole metagenome sequencing of the tick microbiome.  

One major obstacle in microbial metagenome sequencing is efficiently purifying the microbiome 

from the host. This leads to inefficient sequencing as many of the sequences will end up originating from 

the host, dominating the microbial sequences that are of real interest in these studies. This causes an 

increase in cost as one would need more sequencing runs to account for the underrepresented microbial 

sequences. We address this challenge by utilizing flow cytometry to separate cells based on size and 

fluorescent markers to exclude host cells and retain microbial cells.   

 Here, we have developed a novel method utilizing Fluorescence-Activated Cell Sorting for the 

purification of microbial cells from their tick host and efficiently sequence the microbial metagenome to 

uncover the composition of the microbial community within the midgut of the tick. Through this method, 

we are able to estimate the microbial cell load, as well as identify potential endosymbionts that are able to 

provide key nutrients such as B-complex vitamins to supplement the host bloodmeal or exclude TBDs by 

synthesis of antibiotic proteins to directly kill the TBD pathogen. 
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Methods 

Dissection & cell sorting 

Adult male and female I. scapularis and D. variabilis were acquired from the Oklahoma State 

University tick rearing facility. Tick midguts from each species (n=5 per sex) were dissected and placed 

into three pools. To prepare for Fluorescence Activated Cell Sorting (FACS), the tissues were digested by 

adding Fetal Bovine Serum at a 5% concentration along with collagenase D (3mg/ml), hyaluronidase 

(1.5mg/ml) and DNase I (0.2mg/ml). The digests were incubated for 1 hour at 37°C, then passed through 

a 70-micron filter, centrifuged at 4000 RPM for 10 minutes, and the pellets washed twice with 0.85% 

NaCl and each cell sample was suspended in a final volume of 1mL 0.85% NaCl. Preparations were 

stained with SYTO-9 and Propidium Iodide (PI) and diluted 1:100 with 0.85% NaCl prior to being sorted. 

SYTO-9-positive cells <5 microns in size were isolated via FACSAria III machine at the West Virginia 

University Flow Cytometry & Single Cell Core Facility. Control samples included SYTO-9 only, PI only, 

and an unstained sample. 1 million microbial cells per sample was estimated to obtain the target 5ng of 

DNA to be used for sequencing. This estimation was made by multiplying the known range of bacterial 

genome sizes (112kbp,130kbp-14Mbp) (Bennett & Moran, 2013; Han et al., 2013; McCutcheon & 

Moran, 2012) by the weight of a DNA base (650 daltons) giving a bacterial genome weight range of .1 

femtograms to 0.01 picograms and a range of 331,125 – 41,356,493 cells assuming 1 genome per 

microbial cell, ~50% GC content, and an average genome length of 5Mb, higher than that of the reported 

average of ~3.8Mb (diCenzo & Finan, 2017). 

DNA extraction & analysis 

Sorted cells were centrifuged at (16,000 x g) for 20 minutes to pellet the cells. The supernatant 

fluid was discarded, and the pellets were resuspended in distilled water and placed in a microcentrifuge 

tube. DNA extraction was performed using the Arcturus PicoPure DNA extraction kit. 50ul of Proteinase 

K was added to each cell sample and incubated for 1 hour at 60°C followed by a 5-minute deactivation of 

proteinase K at 90°C. 

DNA concentration was measured using the dsDNA High Sensitivity assay on the QUBIT 3.0 

platform. qPCR was performed to detect I. scapularis and D. variabilis B-actin levels pre/post FACS 

while 16S was detected using traditional PCR and 1.5% agarose gel electrophoresis. qPCR reaction total 

volume was 25l (12.5l of Universal SYBR green supermix, 1l of forward primer, 1l of reverse 

primer, 1l of DNA, and 9.5l of PCR grade water). Conditions were denaturation for 2 minutes @ 95C, 

40 cycles of 15 second denaturation @ 95C and annealing/extension for 15 seconds @ 60C followed by 

a melt curve starting @ 65°C for 5 seconds increasing to 95°C for 5 seconds. Traditional PCR conditions 

were 95°C for 10 minutes, 30 cycles of denaturation @ 95°C for 30 seconds, annealing @ 60°C for 30 

seconds, and extension @ 72°C for 30 seconds), and a final extension @ 72°C for 5 minutes. Primers 

sequences are as follows; 16S Primers (5’-CCTACGGGNGGCWGCAG-3’-f; 5’-

GACTACHVGGGTATCTAATCC-3’-r), I. scapularis B-actin (5’-GGTATCGTGCTCGACTC-3’-f; 5’-

ATCAGGTAGTCGGTCAGG-3’-r) D. variabilis B-actin (5’-CTTTGTTTTCCCGAGCAGAG-3’-f; 5’-

CCAGGGCAGTAGAAGACGAG-3’-r)  

Sequencing & analysis 

Sequencing was performed by the West Virginia University Genomics Core Facility. Paired-end 

150 sequencing was performed via Illumina MiSeq platform. Sequences were quality checked using 

FastQC and trimmed/clipped accordingly using Trimmomatic (Bolger et al. 2014). SPAdes metagenome 

assembler was chosen for metagenome assembly. The assembly was quality checked using QUAST 

(Gurevich et al., 2013). Finally, the assembled genomes were uploaded to MG-RAST for annotation 

(Meyer et al., 2008).Contigs of interest were uploaded to BLAST for species level identification.  
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Results 

In total we obtained three pools (n=5 ticks per pool) of adult female D. variabilis and three pools 

(n=5 ticks per pool) of adult male gut samples. 

qPCR detection of D. variabilis beta-actin shows a substantial decrease in the sample after FACS 

compared to pre-FACS, decreasing from >19,000 copies/µl to <1 copy/µl (Fig. 3) 16S rRNA 

amplification shows a retention of bacterial DNA in the post-FACS samples: DNA quantification shows a 

retention of 0.454 ng/µl of DNA a drastic decrease from the pre-FACS measurement of 13.9 ng/µl (Fig. 

4). Traditional PCR amplification of bacterial 16S shows retention after FACS (Fig 5). 

QUAST analysis of the SPAdes assembled metagenome shows 68.6Mb in 164,531 assembled 

contigs. The largest contig was ~300kb while the N50 was 8.4kb (Table 1). MG-RAST annotation shows 

that 86.97% of the annotated contigs from the metagenome assembly of D. variabilis were of bacterial 

origin, 12.87% were of eukaryotic origin, 0.13% were viral, and the remaining sequences were either 

Archaeal or unclassified (Fig. 6).  

Genus level annotation of the bacterial contigs show that 27.44% were identified as 

Bradyrhizobium spp. The next annotations show Pseudomonas (14.95%), Propionibacterium (13.10%), 

Mycobacterium (5.83%) Ralstonia (4.84%) Acidovorax (3.97%) and Acinetobacter (1.11%) (fig. 4) 

Members of the Francisella genus were also present in ~74kb of sequences in 200 contigs, or roughly 

0.18% of the total microbial metagenome (Fig. 7). These members are expected members as Francisella-

like bacteria have been identified in D. variabilis. Taxonomic richness calculated in MG-RAST of the 

metagenome is 92 species. 

Top 5 hits of subsystem annotation show carbohydrates (12.43%); amino acids and derivatives 

(10.91%); cofactors, vitamins, prosthetic groups, and pigments (6.54%); and protein metabolism (5.23%) 

as the most prominent functions in the assembly (Fig. 8). Of those, we chose to further analyze the 

cofactors, vitamins, prosthetic groups, and pigments subsystem as this group would contain gene 

annotations for B-complex vitamin biosynthesis.  

 Biotin (vitamin B7) biosynthesis genes were identified in the D. variabilis metagenome. 6 copies 

of bioC were identified as well as 1 copy of bioH, 7 copies of bioF, 18 copies of bioA, 7 copies of bioD, 6 

copies of bioB and 3 copies of bioW divided among multiple bacterial genera, including Bradyrhizobium, 

Acinetobacter, Acidovorax, Pseudomonas, and Ralstonia. Genes for the biosynthesis of the remaining B-

complex vitamins were detected as well. 135 copies of 10 thiamin biosynthesis genes, 92 copies of 13 

niacin genes, 63 copies of 5 pyridoxine genes, 42 copies of 13 cobalamin genes, 38 copies of 5 folate 

genes, 23 copies of 2 pantothenic acid genes, and 19 copies of 2 riboflavin genes were identified in the D. 

variabilis metagenome (Figs. 9-16).  These genes were identified as members of the genera 

Bradyrhizobium, Pseudomonas, Acidovorax, Stenotrophomonas, Cutibacterium, Francisella, 

Sphingobacterium, Acinetobacter, and Ralstonia. 

Metagenome sequencing for I. scapularis was not possible due to a low DNA yield.  

To estimate a cell count target to be obtained from each pool of ticks, assumptions of an average 

genome length of 5Mb, ~50% GC content, and 1 genome per cell were made. Sorting of the full samples 

was not performed due to time constraints and cost. The average recovered cells from each 5-tick pool 

was 816,781 and 1,007,323 for female and male I. scapularis and 1,539,405 and 1,504,343 for female and 

male D. variabilis. This average was then used to calculate the average microbial cells obtained per pool 

and tick.  These numbers were then used to estimate the total microbial load in each tick by factoring in 

the 1:100 dilution of samples prior to FACS being performed. Based on these estimations, a 2-Way 
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ANOVA was performed using the AOV function in R with two factors, sex and species. Estimated 

microbial load was significantly different between I. scapularis and D. variabilis (p= 0.000291) while 

there was no significant difference in estimated microbial cell load between sexes (p = 0.459517) or the 

combination of species and sex (p= 0.292236). (Fig. 17) 

Discussion 

 

 To uncover the functional capabilities of the tick microbiome, a method to extract and purify the 

microbiome from the host was developed. With this method, host DNA was drastically decreased to 

~12% of the metagenome composition. Functionally, microbial genes were identified in every B-vitamin 

complex pathway. Multiple copies of biotin biosynthesis genes were identified; however, only 1 copy of 

bioH was annotated in the metagenome. Several factors may be responsible for this finding; First, bioH is 

often lost in biotin-synthesizing bacteria; however, many bacteria have evolved alternative methods that 

accomodate the absence of bioH such as bioU in E. chaffeensis (Hang et al., 2019). Second, bioU was not 

identified in the metagenome, but it is possible that alternate pathways for biotin biosynthesis exist but 

have not yet been discovered. Third, an apparent lack of bioH may arise from annotation errors in MG-

RAST. Uploaded sequences are clustered using an algorithm. Each of these clusters is considered a 

subsystem in MG-RAST. These subsystems are annotated based on similarities to sequences already 

present in the MG-RAST system. The sequence diversity in bioH as well as the aforementioned 

alternative strategies that exist for generating pimeloyl-CoA, may lead to suboptimal clustering in MG-

RAST therefore an inability to discover bioH in the metagenome.  

 The identification of multiple genes across the B-complex vitamin biosynthesis pathways is the 

first step in identifying novel endosymbionts and characterizing the host-endosymbiont relationship in 

ticks where the mechanisms are not well understood. Such is the case with I. scapularis and D. variabilis 

outside of their respective Rickettsia and Francisella endosymbionts whose role in nutrient provisioning 

has not yet been determine. While direct function of the bacteria that possess the genes for B-complex 

vitamin biosynthesis was not studied, their identification enables a specific targeting of those members to 

further study their impact on host fitness.  

Thiamine (Vitamin B1) 

 135 copies of 10 thiamine biosynthesis genes were identified in the D. variabilis metagenome. 

Interestingly, one copy of thiL that is identified in the metagenome was identified to be that of 

Arsenophonous nasoniae, a bacterium that resides in the parasitic wasp Nasonia vitripennis and is known 

to synthesize thiamine as well as other B-complex vitamins (Darby et al., 2010). However, this 

Arsenophonous, if present, is potentially a relative of this bacterium as Arsenophonous-like bacteria have 

been identified in D. variabilis or the presence is due to a horizontal transfer event (Dergousoff & 

Chilton, 2010).  

Members of the genus Arsenophonous are also capable of synthesizing thiamine. Three 

Arsenophonous species present in whiteflies (Aleurodicus dispersus, ARAD; A. floccissimus, ARAF; and 

Trialeurodes vaporariorum, ARTV) were sequenced and their functional capabilities were compared 

(Santos-Garcia et al., 2018). ARAD possesses a complete thiamine pathway with the exception of thiH; 

however, it was posited that a host-encoded gene may be capable of replacing the function of this missing 

gene. In contrast, ARTV was missing most of the thiamine biosynthesis pathway and appears incapable of 

de novo thiamine synthesis. 
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Thiamine is known to be synthesized by Wigglesworthia glossinidia, a nutritional endosymbiont 

of the tsetse fly, Glossina morsitans (Akman et al., 2002). Wigglesworthia, has a highly reduced genome 

of ~700 kb in size, and has lost a significant number of core metabolic functions; however, it has retained 

the complete pathways for thiamine (B1) pyridoxine (B6), and folate (B9) biosynthesis (Rio et al., 2012). 

Antibiotic elimination of Wigglesworthia from the tseste results in a loss of fecundity in the fly, as early-

stage larva are aborted, while supplementation of the tsetse diet leads to a recovery in deficient females, 

supporting a role for Wigglesworthia in nutritional supplementation. Rhodococcus rhodnii, an 

endosymbiont of the Chagas disease vector, Rhodnius prolixus (reduviid bug), is able to synthesize 

thiamine and retains genes for 7 remaining b-complex vitamins. Reduviid bugs that lack this bacterium 

die prematurely, however the mechanism by which R. rhodnii provisions nutrients is not well understood 

as it could be a result of the host digesting the symbiont or the symbiont directly functions to supplement 

the host diet (Pachebat et al., 2013). 

Riboflavin (Vitamin B2) 

19 copies of 2 riboflavin genes ribA (11 copies) and ribE (8 copies) were annotated in the D. 

variabilis metagenome. The common bed bug, Cimex lectularis, harbors a Wolbachia endosymbiont 

(wCle) whose genome encodes a complete riboflavin synthesis pathway(Hosokawa et al., 2010a). 

Elimination of wCle from the bed bug results in decreased fitness of the host, suggesting it is providing 

riboflavin to the host (Moriyama et al. 2015). Interestingly, all insect-associated Wolbachia appear to 

retain the ability to synthesize riboflavin (Nikoh et al., 2014).  

Niacin (Vitamin B3) 

92 copies of 13 niacin pathway genes were detected in the metagenome of D. variabilis. The 

Sodalis present in the seal louse possesses a partial niacin synthesis pathway, and it is not clear whether 

the host was able to complement this pathway or if annotation error accounted for the missing piece of the 

pathway (Boyd et al., 2016). Other bacteria capable of synthesizing niacin include R. rhodnii (as 

discussed) as well as Bacteroides fragilis, Prevotellai copri, Ruminococcus lactaris, Clostridium dificile, 

Bifidobacterium infantis, Helicobacter pylori, and Fusobacterium varium (Deguchi et al., 1985; Said, 

2011). Members of all these genera (excluding Rhodococcus) were identified in the D. variabilis 

metagenome. 

Pantothenic Acid (Vitamin B5) 

23 copies of two pantothenic acid synthesis genes were identified in the D. variabilis 

metagenome. In the human gut microbiome, B. fragilis, P. copri, Ruminococcus lactaris, Ruminococcus 

torques, and Salmonella enterica have been shown to encode complete pantothenic acid biosynthesis 

pathways (Magnúsdóttir et al., 2015). The human body louse Pediculus humanus humanus harbors a 

primary endosymbiont ("Candidatus Riesia pediculicola") that also possesses a complete pathway. When 

cleared from the host, nymphs perish during their first molt indicating that "Candidatus Riesia 

pediculicola" is necessary for survival of the host louse and suggesting it relies on pantothenate generated 

by its endosymbiont (Kirkness et al., 2010; Sasaki-Fukatsu et al., 2006). Finally, R. rhodnii in the 

reduviid bug also possesses genes required for the synthesis of pantothenic acid (Pachebat et al., 2013). 

Pyridoxine (Vitamin B6) 

63 copies of 5 pyridoxine synthesis genes were identified in the D. variabilis metagenome. In the 

human gut microbiome, B. fragilis, P. copri, Bifidobacterium longum, Collinsella aerofaciens, and H. 

pylori are known to synthesize vitamin B6 (Deguchi et al., 1985; Magnúsdóttir et al., 2015). In tsetse 

flies, Wigglesworthia provides vitamin B6 to the host, and absence of Wigglesworthia results in lower 

levels of circulating B6 in host hemolymph (as well as reduced levels of proline). This results in increased 

larval abortion in female flies (Michalkova et al., 2014). R. rhodnii in reduviid bugs also possesses the 
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genes necessary for B6 synthesis (Pachebat et al., 2013). In A. americanum, a Coxiella-like endosymbiont 

(CLEAA) synthesizes and provisions B6 to supplement its host diet (Smith et al., 2015a; Zhong et al., 

2007). 

 

Biotin (Vitamin B7) 

 48 copies of 7 biotin synthesis genes were identified in the D. variabilis metagenome. 6 copies of 

bioC were identified as well as 1 copy of bioH, 7 copies of bioF, 18 copies of bioA, 7 copies of bioD, 6 

copies of bioB as well as 3 copies of bioW. In the human gut microbiota, a majority of Bacteroidetes, 

Fusobacteria, and Proteobacteria possess necessary genes for the synthesis of vitamin B7 (Magnúsdóttir 

et al., 2015). In arthropods, R. rhodnii (reduviid bugs), Wolbachia wCle (Cimex lectularis), and Coxiella 

(A. americanum & R. turanicus) have been shown to synthesize and provision biotin to supplement the 

host diet (Gottlieb et al., 2015; Hosokawa et al., 2010b; Pachebat et al., 2013). R. buchneri in I. scapularis 

possesses 2 copies of the biotin biosynthesis pathway on the pREIS2 plasmid however, its function within 

the tick is not yet understood (Gillespie et al., 2012). A recently discovered Wolbachia (wCfeT) present in 

the cat flea Ctenocephalides felis possesses a complete biotin biosynthesis pathway, and it is suspected 

that it provisions biotin to the host (Driscoll et al., 2020). 

Folate (Vitamin B9) 

38 copies of 5 folate genes (folA, folC, folB, folE, and folP) were found in the D. variabilis 

metagenome. In the human gut microbiome, nearly all members of Bacteroidetes, Fusobacteria, and 

Proteobacteria present possessed the complete vitamin B9 biosynthesis pathway accounting for 43% of 

the species tested in the human gut (Magnúsdóttir et al., 2015).In arthropods, R, rhodnii, Wigglesworthia, 

Coxiella, and R. buchneri (I. scapularis & I. pacificus) possess genes necessary for de novo folate 

biosynthesis (Hunter et al., 2015; Kurtti et al., 2015). 

Cobalamin (Vitamin B12) 

42 copies of 13 B12 biosynthesis genes were annotated in the D. variabilis genome composing 

both the aerobic and anaerobic synthesis pathways. In the human gut microbiome, 42% of members are 

capable of synthesizing cobalamin, including all Fusobacteria studied (Magnúsdóttir et al., 2015). Half of 

Bacteroides are shown to possess the pathway, though it is rarely observed in Actinobacteria or 

Proteobacteria (Magnúsdóttir et al., 2015).In arthropod microbiomes, only Rhodococcus rhodnii, the 

endosymbiont of Rhodnius prolixus, has been shown to possess vitamin B12 biosynthesis genes 

(Pachebat et al., 2013). An analysis of  >11,000 bacterial species predicted that 37% were capable of de 

novo B12 biosynthesis; 17% additional species possessed partial pathways, though they may still be able 

to synthesize B12 as annotation errors or overlaps in function may have led to the absence of the missing 

genes (Shelton et al., 2019). 57% of bacteria in the Actinobacteria phylum 45% of Proteobacteria, and 

30% of Firmicutes were predicted to produce vitamin B12 (Shelton et al., 2019). 

Although metagenomic data for I. scapularis was not obtained here due to low DNA yield from 

extraction, increasing the total microbial cells recovered from FACS as well as a more efficient DNA 

concentration method should allow for increased DNA recovery. AxyPrep beads were used for DNA 

purification; however, a loss in genomic DNA potentially resulted from larger DNA fragments failing to 

bind to the beads, thus leading to exclusion of this DNA in subsequent bead washes. This did not lead to 

obvious problems in the D. variabilis samples, though, so it is unclear if this is the reason for the issues 

with I. scapularis. A drastic decrease in DNA was observed in the post-FACS sample compared to the 

pre-FACS sample; however, this was to be expected as pre-FACS samples contained both eukaryotic and 

prokaryotic DNA. The appreciable levels of Bradyrhizobium contigs in the D. variabilis metagenome 

assembly may be due to contamination, as members of this genus have been identified as contaminants in 



 
 

19 

DNA extraction kits and can pose challenges for studies involving low microbial biomass (Salter et al., 

2014). On the other hand, Bradyrhizobium spp. have been identified in previous 16S studies of tick 

microbiomes (Thapa et al., 2019) and are also commonly present in soil (VanInsberghe et al., 2015), so it 

seems reasonable to encounter them in our samples. 

 With genes from each B-complex vitamin biosynthesis pathway being identified in the D. 

variabilis metagenome, as well as annotated contigs from Francisella spp. we can identify and further 

study members of the gut microbiome that are potential B-complex producers. This information will 

allow for more specific targeting of microbiome members for elimination from the host. Clearing these 

members will uncover their functional role within the host as well as identify potential targets for vector 

control to mitigate the spread of tick-borne diseases such as Lyme disease and Rocky Mountain spotted 

fever.  
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  Figure 1: Experimental Design 
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Figure 2: Separation of bacterial cells from eukaryotic cells (<5µm) (Left) and separation of live 

bacterial cells from dead bacterial cells (Syto9+) (Right) 
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Figure 3: qPCR detection of D. variabilis β-actin in 5-tick pool before and after FACS. 
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Figure 4: DNA quantification via QUBIT 3.0 of D. variabilis pools before and after FACS. 
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Figure 5: Traditional PCR amplification of bacterial 16S present in D. variabilis 5-tick pool before and after FACS 
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Table 1: D. variabilis metagenome assembly statistics. 
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Figure 6: MG-RAST read annotation: domain level abundance. 
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Figure 7: MG-RAST read annotation: genus level abundance. 
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Figure 8: MG-RAST read annotation: subsystem abundance. 
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Figure 9: Thiamin biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 10: Riboflavin biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 11: Niacin biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 12: Pantothenic acid biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 13: Pyridoxine biosynthesis pathway abundance in D. variabilis metagenome. 
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Figure 14: Biotin biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 15: Folate biosynthesis pathway abundance in the D. variabilis metagenome. 
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Figure 16: Anaerobic and aerobic cobalamin biosynthesis pathway abundance in the D. variabilis 

metagenome. 
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Figure 17: Mean estimation of microbial cell count per pool and per individual tick in each species and 

sex based on recovered cells from FACS. There was a significant difference between I. scapularis and D. 

variabilis in mean estimated cell count. 
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