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Abstract 

Analytical Solution to the Wave Equation with Discrete 
Pressure Sources: A Model for the Rijke Tube 

Eduardo G. Perez 

Despite of having been studied for several decades the phenomena of combustion 
instabilities are not well understood. Pressure waves due to the combustion instabilities 
can become violent being detrimental for both the performance and combustor life. A 
good prediction of the pressure distribution inside the combustor is important in order to 
prevent the occurrence of this phenomenon. In this work a technique for solving the wave 
equation with discrete sources (or sinks) using the Green's functions was developed. One 
and two-dimensional approaches for cylindrical and Cartesian coordinates with constant 
speed of sound were solved. Also the case of one-dimensional axially varying 
temperature is presented. This technique was validated with results found in the literature 

· and experimental data showing excellent agreement. By combining the 2-D solution with 
constant speed of sound plus the 1-D with axially varying speed of sound this technique 
accounts for the contributions of the fuel composition since the different blends of fuel 
produce different temperature profiles and therefore different speeds of sound. The 
technique is proposed to solve the 2-D pressure distribution of the Rijke tube, which can 
be considered as the simplest combustor configuration. The study of the pressure 
distribution in the Rijke tube is fundamental for the understanding of the phenomenon of 
combustion instabilities. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

DEDICATION 

To my son, to be born soon ... my motivation already 

iii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ACKNOWLEDGMENT 

Morgantown, where West Virginia University is located, is full of incredibly nice 

people that I would like to express my deepest thankfulness; people at WVU, the 

National Energy Technology Laboratory (NETL) and friends that I met while living in 

Morgantown. 

In WVU I would like to express my gratitude to my advisor Dr. Gautam for his 

guidance, advice and support even after leaving Morgantown; to Dr. Prucz for his support 

· and willingness to help. Also I would like to express my gratitude to the other members 

of my committee Dr. John Loth and Dr. Gary Morris. My special thanks to Dr. Barbero 

for not only making us feel as students but as family; his support, guidance and friendship 

were always there whenever I needed it. 

In NETL I would like to thank Dr. Ferguson for being always supportive, for his 

friendship and academic advising. I would like to express my gratitude to Dr. Richards 

for being supportive and optimistic with my work. Also I would like to thank Douglas 

Straub M.S., Dr. Kent Caleston, Dr. Steven Woodruff and Dr. Daniel Maloni for giving 

me the opportunity to work my research at the Department of Energy - NETL. 

I also would like to thank my friends and colleagues Omar Meza, Julio Noriega, 

Francisco "Fito" Pino, Francisco Elizalde, Alex Tsai, Herman Alcazar; and also to the 

Inter-American University of Puerto Rico specially to my friend Amilcar Rincon. 

Finally I would like to thank my wife; her always unconditional love, support and 

encouraging words were very important for reaching this goal. 

iv 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table of Contents 

Chapter I: Introduction 

Introduction 

Chapter II: Literature Review 

Literature Review . . . .. .. . . . . .. . . . . . .. . . . . . . .. . . .. . . . . .. . . . . .. . . . . .. . . . . . . . .. .. . . . . . . . .. . . . . .. . .. 6 

Chapter III: Theoretical Background 

3. l The Green's Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

3.2 Theory Review . . .. . . . . . . . . . . .. . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . .. . . . .. 18 

3.2.1 Dirac-Delta function ......................................................... 18 

Chapter IV: Mathematical Development 

4.1 The Proposed Mathematical Model .................................................. 22 

4.2 Green's Function Solution Equation for the Wave Equation 

With Constant Speed of Sound .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 24 

4.2.1 One-Dimensional Wave Equation in Rectangular Coordinates ......... 24 

4.2.1.1 The Helmholtz Equation .......................................... 25 

4.2.1.2 The Wave Equation ................................................ 27 

4.2.2 Two-Dimensional Wave Equation .......................................... 30 

4.2.2. l Cartesian Coordinates .. .. .. .. .. . .. .. .. . .. .. . .. .. . .. .. .. .. .. .. . .. .. . 30 

4.2.2.2 Cylindrical Coordinates ............................................ 32 

4.3 Green's Function Solution Equation for the Wave Equation With Axially 

Variable Speed of Sound ....................................................................... 33 

4.4 Finding the Green's Functions ........................................................ 35 

V 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.4.1 OF for the 1-0 Wave Equation With Dirichlet Boundary Conditions 

and Constant Speed Of Sound in Cartesian Coordinates . . . . . . . . . . . . . . . . 36 

4.4.2 · OF for the 1-0 Wave Equation With Dirichlet Boundary Conditions 

and Variable Speed of Sound in Cartesian Coordinates . . . . . . . . . . . . . . . .. 40 

4.4.2.1 Parabolic Temperature Profile ................................... 42 

Chapter V: Results and Discussion 

5.1 One-Dimensional Triangular Initial Distribution ................................. 49 

5.2 One-Dimensional Case with a Distributed Periodic Source ..................... 53 

5.3 Rectangular Membrane with Parabolic Initial Distribution . . . . . . . . . . . . . . . . . . . . . 56 

5.4 Thin Circular Membrane ............................................................. 59 

5.5 Variable Speed of Sound ............................................................. 62 

5.6 Validation with Experimental Results: Side Branch Pipe ........................ 67 

5.7 The Rijke Tube Model ............................................................... 77 

Chapter VI: Conclusions and Future Works 

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

6.2 Future vVorks ........................................................................... 83 

References ........................................................................................ 84 

Appendices ................................. _. ............................... : ..................... 89 

VI 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

List of Figures 

Figure I. I. Schematic of thermo-acoustic instability feedback loop....................... 3 

Figure 3.1. Applied Force ........................................................................ 18 

Figure 3.2. Force Distribution .................................................................... 18 

Figure 3.3. Intuitive idea of Dirac-Delta function ..... · ...................................... 19 

Figure 3.4. Dirac-Delta function ................................................................ 19 

Figure 3.5. Dirac-Delta function, general gorm ................................................ 20 

Figure 4.1.a Rijke tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Figure 4.1.b Rijke tube regions distribution for study ....................................... 23 

Figure 5.1 Initial triangular distribution equation (69) ....................................... 49 

Figure 5.2 Plot of equations (5.5) and (5.6) for the wave equation with initial 

Triangular distribution .. .. . .. . . . . .. . .. . .. . .. . . . . . . .. . . .. . . . . . . . .. . . . . . .. .. . . . . . ... . .. .. .. . . . . . . . .. 51 

Figure 5.3 Solution at different times for the non-homogeneous wave equation with a 

distribqted periodic source ...................................................................... 55 

Figure 5.4 Solution at different distances for the non-homogeneous wave equation with a 

. distributed periodic source .. . . . . .. . . . . . . . . .. . . . . . . . .. . . .. . . . . .. .. .. .. . . . . .. .. . . . . . .. . . .. .. . .. . . . 55 

Figure 5.5.a Equations 5.19 and 5.21 at two different points in the membrane as 

function of ti1ne ................................................................................... 58 

Figure 5.5.b Equations 5.19 and 5.21 along the centerline .of the membrane at 

different times as function of x .................................................................. 58 

Figure 5.6 Membrane displacement .............................................................. 58 

Figure 5.7 Membrane displacement. Equations (5.26) and (5.27) at 0, 0.2 and 0.35s ... 61 

vii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 5.8 Membrane displacement, surface plot ............................................. 62 

Figure 5.9 Parabolic temperature profile ...................................................... 62 

Figure 5.10 Parabolic and linear temperature profiles ....................................... 63 

Figure 5.11 Experimental set up for the side branch pipe .................................... 68 

Figure 5.12 Source and sink considered for the analytical model of the side branch 

pipe ........................................................................................................ 70 

Figure 5.13 Measured and calculated power spectrum for an input of 200Hz ............ 74 

Figure 5.14 Measured and calculated power spectrum for an input of 300Hz ............ 75 

Figure 5.15 Measured and calculated power spectrum for an input of 4001-Iz ............ 75 

Figure 5.16 Pressure distribution at the neighborhood of the side branch pipe .......... 76 

Figure 5.17 Rijke tube configuration ........................................................... 79 

Figure 5.18 Two-dimensional pressure distribution for constant speed of sound .......... 80 

Figure 5 .19 One-dimensional pressure distribution for variable speed of sound ........... 80 

Figure 5.20 Pressure distribution for combination of 2-D constant speed of sound and 1-D 

variable speed of sound ............................................. .......................... : ............ 80 

Figure 5.21 FT for the 2-D pressure distribution with constant speed of sound .......... 81 

Figure 5.22 FT for the 1-D pressure distribution with variable speed of sound ........... 81 

Figure 5.23 FT for the combined 2-D pressure distribution with constant speed of sound 

and 1-D pressure distribution with variable speed of sound ................................. 81 

viii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

List of Sy1nbols 

Arbitrary constants 

C speed of sound 

F Source ( or sink) function 

G or G(x,x') Green's Function 

hand g Initial conditions 

H Characteristic width 

H(x-a) Step function 

.Iv Bessel functions or order v 

k Wave number 

K Kelvin degrees 

L Characteristic length 

11 Integer positive number 

p Acoustic pressure 

R Gas constant 

r Radial distance 

'ii Characteristic radius 

t Time 

T Absolute temperature 

X Field point 

x' Source point 

x andy Cartesian coordinates 

IX 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

z 

a 

~ 

y 

8(x-a) 

E 

V 

A 

0 

Axial distance 

Source frequency 

Argument of the Bessel function 

Specific heats ratio 

Dirac-Delta function 

Source time 

Very small number (ie. E-----+0) 

Order of the Bessel functions 

Strength of the source 

Angular displacement for cylindrical coordinates 

X 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER I 

INTRODUCTION 

The collective name for NO and NO 2 is NOx (oxides of Nitrogen). Its major 

source of production in the atmosphere comes as a product of fossil fuel combustion. 

NOx emissions are known to contribute to several health related problems, such as 

aggravation of asthmatic conditions. In addition, NOx contribute to the production of 

tropospheric ozone and acid rain; hence there are environmental imp I ications as well [I]. 

Continued concerns have lead to more restrictive regulations regarding NOx 

emissions from fossil fuel combustion, such those from gas turbine power generation 

systems. One means of complying with these demands is the use of the gas turbines 

operating under lean premixed (LP) combustion mode. As a consequence, the demand of 

this kind of system has recently increased. 

Unfortunately, without downstream dilution and acoustic damping offered by 

diffusion flames, LP combustion is sensitive to small heat release and flow fluctuations 

that may result in unstable combustion. Unstable combustion is detrimental to both 

performance and combustor life. Several factors as combustion acoustics, flame stability, 

pollutant emissions and combustor efficiency are affected by unstable combustion. 

Although extensive research has been clone on these topics, it is not very well understood. 

In order to prevent and control these instabilities, an appropriate understanding of the 

responsible mechanisms must be developed. 
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Thermo-acoustic instabilities are one of the maJor problems as pressure 

oscillations resulting from a number of sources can couple with heat release fluctuations 

causing violent vibrations directly affecting the combustor life and, as a consequence, the 

system performance and pollutant emissions. This leads to the added expense of shutting 

down the system for combustor maintenance and/or replacement. 

Several studies have shown that combustors operating under LP combustion are 

sensitive to equivalence ratio fluctuations [2], [3], [4]. These fluctuations are convected 

downstream eventually producing large amplitude disturbances in the heat release if the 

proper conditions are given. The heat release drives the combustor pressure oscillations 

and the pressure and velocity oscillations drive the equiv~lcnce ratio fluctuations closing 

the feedback loop that maintains the instabilities. This coupling is referred to as the 

Rayleigh criterion which is shown schematically in figure l. l. 

A number of researchers devoted to study the problem of thermo-acoustic 

instabilities have reported an extensive amount of works that characterize the conditions 

and set the operational limits under which the instabilities occur [5],[6], [2]. Others are 

theoretical studies that have attempted to bring more insight to the mechanisms that drive 

the instabilities and to predict their occurrence [7], [8], [9]. Also, to a lesser degree, there 

. 
are reports of CFO and computational models [ 10], [11 ], [ 12], [ 13]. All these works bring 

more understanding to this complex phenomenon. However, despite these efforts, there is 

a lack of complete agreement about the mechanisms responsible for the onset of 

combustion instabilities. 

The main goal of this research is to predict the pressure distribution in a Rijke 

tube. The 2-D proposed model includes a 1-D axial temperature variation. This 

2 
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temperature variation is expected to predict the effect of the fuel composition on the 

thermo-acoustic instabilities in the combustor since temperature profiles will depend on 

the fuel blend. Fuel composition, which affects both the chemistry and physics of the 

combustion process, might also affect the excitation of some instability mechanisms [ 1] 

-------------( 
Acoustic oscillations) 

on fuel line ::::=====> 
~ 

'c~)/ vanat1011s 

~ 

Fig. I. I. Schematic of thermo-acoustic instability feedback loop. 

In the absence of guidance of a strict regulatory standard, the large number of 

domestic and international fuel suppliers has lead to variations in fuel compositions, and 

also heating values. For example, synthetic gas (syngas) fuels are typically composed of 

l-12 and CO, and may also contain smaller amounts of CI-14, N2, CO2, H20 and other 

higher hydrocarbons. The fuel composition does not depend only on the site where the 

fuel has been originated from, but also on the processing technique. In addition, interest 

in utilizing other energy sources, fuel dependability and environmental concerns have 

motivated the use of biomass, landfill gas, or process gas. All these fuels can have widely 

differing properties. 

The topic on fuel variability is currently under investigation but very few reports 

can be found in the literature. Some concerns about the effects of fuel variability on the 

combustion process have been raised but most of the works reported deal with hydrogen-

3 
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enriched fuels [14], [15], [16]. Some of these concerns include flashback and flame 

anchoring, autoignition, static and dynamic stability, and achieving emissions goals [17]. 

lf the fuel composition is proven to be an important parameter in the excitation of 

combustion instabilities then this will have a great impact in several aspects such as 

regulations, combustor design and manufacturing. For combustors already in use new 

regulations and/or more strict fuel specifications will have to be issued in order to have 

systems that comply with the safety and emissions standards. For new equipment, design 

and manufacturing will have to be accommodated to allow a wide range of fuel 

compositions. Therefore, the economy of several industries could also be highly affected. 

Studies reported by some researchers on the effects of fuel variability suggest that 

fuel composition has a significant impact on some parameters of the combustion process. 

Schefer [15] reported that the addition of up to 20 1% hydrogen to a methane/air mixture 

extended the lean stability limits of a swirl-stabilized flame. Natarajan et al. [ 14] reported 

that the flame speed of a l-b/CO/CO2 mixture increased as the I-h content and equivalence 

ratios increased. Similar results are reported by Zhang et al. [ 16]. 

The previous statements highlight the importance of having a model able to 

predict the effect of fuel composition on the thermo-acoustic instabilities in a combustion 

process. In order to achieve the main goal of this project a 2-D mathematical acoustic 

model that included a 1-D spatially variable temperature distribution was developed to 

predict how changes in fuel composition may alter the acoustic characteristics of a 

combustor under lean premixed conditions. Some basic cases were solved with this 

technique and the results were compared to those obtained from traditional theoretical 

4 
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techniques, such as the Separation of Variables technique. Results were also compared to 

those obtained from experiments for a pipe with a side branch and an acoustic source. 

The Rijke tube arrangement was employed to theoretically predict changes in the 

acoustic response as a result of varying temperature in the combustor. These varying 

temperatures can be related to the quantities of methane, ethane and propane in the fuel 

along with the equivalence ratio. For the acoustic part of the problem an analytical 

mathematical model was proposed that considered a 2-D spatial distribution (since no 

variation is expected with angular position) with constant speed of sound except where 

the flame and combustion gases are present. Where the flame and combustion gases are 

present the model considered an axially varying speed of sound. This feature is expected 

to account for the fuel compositions effects since the different blends of fuels have 

different heating values, which affect the heat release which in turn produces different 

gas temperatures. The speed of sound ( c) is related to the temperature of the ideal gas by 

the relation c = .J y.R.T where y is the specific heats ratio, R is the gas constant and T is 

the temperature of the gas; therefore accounting for the temperature variation also implies 

accounting for the speed of sound variation. 

The Green's functions were used as the main mathematical tool for the 

development of the analytical model. Green's functions have been proven to be powerful 

in other fields such as electrodynamics, fluid mechanics, heat transfer and others [18], 

[19], [20], [21], [22], [23]. There are few reports on the use of Green's functions in 

acoustics [24], but to the author's knowledge there are no reports on the use of discrete 

acoustic sources. This played a key role in the development of the mathematical model 

proposed in this work. 

5 
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CHAPTER II 

LITERATURE REVIEW 

This chapter provides a review of some of the most representative works done in 

the topics of thermo-acoustic instabilities and fuel variability. 

One of first reported works in thermo-acoustic instabilities may be tracked back to 

the ninetieth century when Higgins (1802) discovered what he called "singing flames" 

[ 12]. The sound produced when a jet of ignited gas was inserted into a tube open at both 

ends. The frequency of singing coincided with the muural frequency of the tube. Sound 

was produced only at certain ranges of system parameters. Years later, in 1859, Rijke 

made modifications to the Higgins experimental setup and reported what it is now known 

as the Rijke tube [25]. Rijke placed a heated wire screen in an open-ended vertical pipe. 

He noticed that strong oscillations occurred when the wire was placed in the bottom half 

of the pipe. When the heater was placed in the upper half, the oscillations were damped 

instead of driven. Rijke also reported that the oscillations stopped when the upper end of 

the pipe was sealed suggesting that the upward convective air currents were essential for 

the thermo-acoustic oscillations to take place. 

The Rijke tube is the fundamental device used for the study of thermo-acoustic 

instabilities. The geometry of this device typically has· a large length-to-diameter ratio 

and is much simpler than a full scale combustor of a gas turbine. 

Rijke and several researchers of the ninetieth century expended a lot of time and 

effort trying to explain the phenomenon of thermo-acoustic instabilities. The success 

6 
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came when Lord Rayleigh (in 1878) stated the fundamentals for the occurrence of this 

phenomenon. Lord Rayleigh's famous criterion states: "If heat be periodically 

communicated to, and abstracted from, a mass of air vibrating (for example) in a cylinder 

bounded by a piston, the effect produced will depend upon the phase of the vibration at 

which the transfer of heat takes place. If heat be given to the air at the moment of greatest 

condensation, or be taken from it at the moment of greatest rarefaction, the vibration is 

encouraged. On the other hand, if heat be given at the moment of greatest rarefaction, or 

abstracted at the moment of greatest condensation, the vibration is discouraged." 

Rayleigh Criterion establishes the basis for the occurrence of the thermo-acoustic 

instabilities but it does not provide sufficient detail to explain all of the characteristics of 

the thermo-acoustic instabilities response of a combustor. 

In 1953 Putnam and Dennis [26] studied the oscillations in three different 

configurations. These configurations were: open-open tube with pre-mixed flame; closed­

open tube with pre-mixed flame and, closed-open flame with diffusion flame. Their 

conclusion was that amplification of the oscillations occurs when two conditions were 

satisfied simultaneously: first, the difference between the rate of heat release and the 

pressure fluctuations was less than n/4; second: the point of heat release was close to a 

point of maximum pressure amplitude. They also demonstrated the validity of Rayleigh 

Criterion from the thermodynamic point of view. The authors presented a thermodynamic 

analysis in detail determining the phase requirements for the thennal oscillations to be 

driven. In 1954 the same authors [27] investigated the oscillations in a combustion 

chamber with a mesh-screen flame holder. In this research the gases were allow to pass 

through a converging nozzle and stack where the length of the stack and the depth of the 

7 
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flame holder could be varied. Again, in 1956, Putnam and Dennis [28] conducted a 

survey on organ-pipe oscillations in combustion systems. Later, in 1971, Putnam [29] 

states the Rayleigh Criterion in an integral form and provides the condition for the 

combustion driven oscillations to occur. This condition was also expressed in integral 

form as a function of the acoustic pressure, the heat release and the angular frequf:ncy. 

Blackshear [5], instead of examining the spontaneous excitation, in his 

experimental work analyzed the effect of a flame on a standing wave by measuring the 

ability of the flame to damp an imposed standing wave. In this paper the author explains 

the mechanism by which the heat addition can damp or drive an oscillation which 

basically reduces to satisfying the Rayleigh criterion. 

By applying linear perturbation analysis to the conservation equations, Carrier 

[30], obtained a set of linearized partial differential equations describing oscillating 

properties in the cold and hot gases. Unlike Neuringer and Hudson [8], Carrier's 2-D 

analysis in cylindrical coordinates included the effects of viscosity at the tube walls. His 

solution, obtained by the separation of variables technique, for the fluctuating velocity 

potential was in the form: 

I'( ) Al () i(rnt-k-x) oj x, r, t = oj r e J 

where r is the radial coordinate, k is the wave number and m the angular frequency. 

In 1960, Crocco et al. [7] developed a time lag model (also referred as the n-T 

model) for combustion instabilities in liquid-rocket engines. The model provided a way 

to couple heat perturbations with flow-field perturbations. This was achieved by a 

pressure-interaction index n, describing how the pressure oscillation affects combustion, 

and a time lag T between the two fluctuations. The time lag was defined by Putnam [29] 

8 
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as the interval between the time when the pressure disturbance occurs at the flame and 

the time when the heat is released at that location. Later, in 1969, Crocco and Mitchell 

[31] considered the time lag model but the oscillations were considered to be nonlinear. 

Several researchers have published reviews in the area of thermo-acoustics and 

Rijke tubes along the years. Feldman [32] provided a short review of literature on 

thermo-acoustic oscillations in Rijkc tubes and the previously mentioned survey by 

Putnam and Dennis [28]. Raun et al. [33] gave an extensive review of thermo-acoustic 

devices, especially Rijke tubes. They discussed the history, mechanisms of heat-driven 

acoustic instability, and experimental and analytical works on the Rijke tube. Oycdiran ct 

al. [24] presented a review on a variety of combustion devices focusing on theoretical and 

experimental investigations of unsteady heat release rate. The authors concluded that the 

boundary conditions had been well documented for rockets but more studies needed to be 

done for other combustion systems. 

In 1987, Culik [8] presented a short communication on the Rayleigh criterion. In 

this work he was concerned with direct transfer of heat to the mechanical energy of 

acoustical motion. Culik provided an explicit formulation of the Rayleigh Criterion 

showing how it may be accommodated in a general analysis of pressure oscillations. The 

author started from a wave equation for the pressure fluctuation and an equation for the 

normal acoustic modes, which are the solution to the eigenvalue problem with Neumann 

boundary conditions: V2
\jl 11 + k~\I' 11 = 0. Culik combined these two equations, after using 

the Green's theorem and further simplifications he found an expression for the change of 

energy as a function of heat release fluctuation and pressure normal modes with time 

dependent amplitudes. 

9 
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Dowling [6] used a simple geometry to determine the influence of several flow 

parameters on the frequency of the oscillations. With basic examples the author 

established that it has a critical effect the form of the coupling between the heat input and 

the unsteady flow in the frequency of the oscillations. Furthermore, Dowling used the 

same elementary examples to compare with the different methods found in the literature. 

The author concluded that those methods do not fully account for this effect. The cases 

considered for comparison were a homogeneous wave equation, the Green function 

technique reported by Hedge et al. [34], and finally the linearized Galerkin method 

employed by Culik [35]. In a posterior section of her paper, Dowling considered the 

effects of the mean flow, effects of drag, and the effects of distributed heat input. The 

author reported that mean flow effects in the thermo-acoustic oscillations can be 

important for Mach numbers as low as 0.15. For the drag force, she affirms that a 

flameholder with a blockage ratio of 25% or less has a negligible effect on the frequency 

of thermo-acoustic oscillations for inlet Mach numbers 0 :S M :S 0.15. The author also 

reported that a distribution of the heat input over an axial distance (d) can lead to a 

significantly different frequency of oscillation from that when the heat input is 

concentrated. 

Several mechanisms identified to contribute to acoustic instabilities have been 

investigated by researchers. Some of those mechanisms are the equivalence ratio, vortex 

shedding, entropy waves, and also purely chemical-kinetic considerations. Equivalence 

ratio has been studied by Lieuwen and others [2], [3]. They found that combustors 

operating under lean premixed mode of combustion are highly sensitive to variations in 

the equivalence ratio (<J)). They found that such equivalence ratio fluctuations can be 
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induced by interactions of the pressure and flow oscillations with the reactant supply 

rates. The authors reported that the perturbations formed at the inlet duct are convected 

by the mean flow to the combustor were they produce large amplitude heat release 

oscillations. They suggested that passive control approaches may not be viable means of 

controlling the combustions instabilities due to the multiple number of modes that may be 

excited by the combustion process. A measurement technique to determine the 

fluctuations in the equivalence ratio was developed by Mongia et al. [36]. Peracchio and 

Proscia [37] developed a one-dimensional model describing the linear acoustics with the 

non-linear heat release that accounts for the equivalence ratio oscillations. Richards and 

Robey [4] showed that the thermo-acoustic oscillations could be actively controlled by 

oscillating the fuel flow rate and hence the equivalence ratio between the two values 

which exhibit stable operation and thus effectively avoiding the equivalence ratio which 

is unstable. This process generates oscillations around a mean value of equivalence ratio 

that nullifies the oscillations produced by thermo-acoustic instabilities. 

Vortex shed at the flame holder as a possible source of combustion instability was 

investigated by Poinsot et al. [38]. They reported that the instability is triggered when the 

vortices shed at the flame holder entrain unburned mixture, which propagates and causes 

a sudden change in heat release at some point downstream. This triggers an acoustic 

wave that propagates upstream closing the feedback loop. This mechanism is believed to 

be important in the distortion of the flame front by flow oscillations [39]. These flow 

oscillations can arise from either acoustic velocity oscillations that accompany the 

pressure perturbations, or from vortices that are carried with the flow. The flame can 

become wrapped up in these vortices so that its surface area and local rate of propagation 
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fluctuate in time. This latter mechanism has also been a major contributor to combustion 

oscillations in ramjets and afterburners [40]. A number of studies have been devoted to 

study the response of the flame to an acoustic disturbance. 

An upstream acoustic wave is propagated when the hot spots present in a mean 

gas flow reach the inlet of a choked nozzle, causing acoustic instabilities; this 

phenomenon is known as entropy waves [4 l]. Effects of entropy waves had been 

assumed to exist at low frequencies [42]. 

A comprehensive review of these mechanisms has been done by Ibrahim et al. 

[ 41]. In this document they discussed extensively the mechanisms that contribute to 

combustion instabilities summarizing the theory used by previous researchers. In other 

section of this work they summarize the methods used to analyze and/or predict the onset 

of combustion instabilities. They also included a section to summarize the main 

parameters and studies done on the damping of the oscillatory combustion instabilities. 

All works mentioned above give more insight to the phenomenon of combustion 

instabilities. For a given fuel, particular mechanisms that are believed to be responsible 

for the onset of the combustion instabilities were studied, however few reports on effects 

of fuel variability are found in the literature. Moliere [43] discussed the influence of fuels 

in gas turbines. In this work the author presented a qualitative description on what aspects 

of the combustion are expected to be affected. Based on a thennodynamic analysis 

Moliere discussed the influence of fuels on blow-off, flash-back, auto-ignition, 

characteristic reaction time, and deflagration-to-detonation transitions but no concerns on 

thermo-acoustic instabilities were addressed. Schefer [15] studied the stability 

characteristics of a pre-mixed, swirl-stabilized flame to determine the effects of hydrogen 
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addition. The author used OH planar laser-induced fluorescence (PLIF) to study the 

behavior of OH mole fraction as the lean stability limit was approached. In his 

experimental results the author reported a significant increase in the OH concentration 

and extended lean stability limits of the burner with the addition of up to 20% hydrogen 

to the methane/air mixture. A study on the infiuence of variations in the natural gas 

properties on the combustion process in terms of emissions and pulsations for a heavy­

duty gas turbine was reported by Nord and Andersen [ 44]. The authors collected and 

analyzed data from a commercially operational gas turbine (ALSTOM GT 11 N l) 

concluding that normal day-to-day variations in the natural gas properties do no have a 

significant effect on the emissions and combustion instabilities; however, larger sudden 

changes could lead to considerable changes in the combustion behavior of the unit. 

Natarajan et al. [ I 4] studied the effects of H2/CO/CO2 mixtures but they restricted their 

work to the laminar fiame speed. In this study the authors measured the laminar fiame 

speed over a range of fuel compositions, lean equivalence ratios, and reactant pre-heat 

temperatures. They reported that the flame speed increased as the H2 content of the fuel 

raised and for higher equivalence ratios. Similar conclusions were reported by Zhang et 

al. [16]. In this work the fuel consisted of H2/CO/CH 4 mixtures. In a more recent work, 

Hendricks and Vandsburger [45] studied the response in heat release rate of the fiame to 

acoustic pertmbations of three gases: methane, ethane and propane which are the major 

components of natural gas. The authors concluded that changes in the fuel composition 

are tied to the thermo-acoustic stability of the system by affecting its fiame dynamics. 

It is seen that an accurate measurement of the heat release is an important task in 

studying thermo-acoustic oscillations. Unfortunately there is not a direct method of 

13 
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measuring the heat release; instead indirect methods have to be used. For measurements 

of the heat release oscillation, OH* radiation is used. OH* are excited OH-radicals 

which, when going from their excited state to their ground state, emit light in the 

ultraviolet range, and assumed to be proportional to the heat release. Some researchers as 

Gaydon [ 46] and Diederichsen and Gould [ 47], have studied this phenomena giving more 

insight into this area. 

The principle of particle image velocimetry (PIV) has been used in the scientific 

community to plot vector maps of instantaneous velocity fields. In most applications of 

PIV,"tracer particles have to be added to the flow. These particles have to be illuminated 

in a plane of the flow at least twice within a short time interval. The light scattered by the 

particles has to be recorded either on a single frame or on a sequence of frames. The 

displacement of the particles images between the light pulses has to be determined 

through evaluation of the PIV recordings" (Raffel [ 48]). An extensive explanation of this 

technique can be found in Ferguson [ 49]. In this work the author used time-resolved PIV 

to quantify the near-field acoustics and the dilatation rate field in the pre- and post-flame 

regions of the flow. In his experiments the author observed that multi-dimensional 

acoustics dominate the pre-combustion flow field with radial and axial acoustic velocities 

of similar magnitudes. 

In summary, the use of the Green's functions has not been very extensive in the 

study of acoustics. There are in the literature very few analytical solutions for the wave 

equation using Green's functions, such those solved by Sirna and Mechefske [50]. In their 

work the authors used the GF to find an approximation model to describe the sound 

radiation of magnetic resonance imaging (MRI) scanners. At difference to this work, they 
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did not considered acoustic sources in their model. In conduction heat transfer 

Venkataraman et al. [23] used the OF technique to find analytical solutions for the 

temperature distribution for thin circular plates and spheres with discrete heat sources. In 

this study the authors applied the OF technique with the method of images (also known 

as physical approach). The main restriction in this work was that their technique is only 

applicable for steady state cases, which is not applicable to the wave equation because of 

the oscillatory behavior of this phenomenon. In this work the OF was applied with a more 

classical approach using the expansion in infinite series obtained from separation of 

variables. 
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CHAPTER III 

THEORETICAL BACKGROUND 

3.1 THE GREEEN'S FUNCTION 

It is known that analytically solving the wave equation with acoustic generating 

sources (i.e. non-homogeneous problem) can be complicated and challenging. Usually 

these kinds of problems have to be solved using numerical methods which in turn can 

produce inaccuracies, especially at points close to the acoustic source. Also, it is well 

known that hyperbolic equations (wave equation) are usually unstable when using finite 

difference methods. The problem becomes even more difficult if in addition to being non­

homogeneous, a variable speed of sound is also considered. In this work, using a novel 

Green's functions technique, one and two dimensional solutions for the wave equation 

with discrete sources and various boundary conditions are proposed. Cartesian and 

cylindrical coordinates were considered. The one-dimensional case of variable speed of 

sound was also considered. These individual solutions were then added to build up the 

proposed model for the Rijke tube. Since Green's function is a cause-effect function, 

complex geometries can be solved by breaking them into more simple ones and adding 

their corresponding solutions. This characteristic of adding solutions is one of the 

advantages of the Green's Functions technique proposed in this work. In addition, a 3-0 
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problem of a pipe with a side branch in cylindrical coordinates is presented for validation 

purposes. 

George Green first introduced Green's Function as early as 1828 in the essay 

entitled "On the Application of Mathematical Analysis to the Theories of Electricity and 

Magnetism" [51 ]. In this essay he derived the integral identities and used them to obtain 

integral representations for the solution of problems involving the Laplacian operator 

where G(x, x') is the effect at the field point .x due to a unit source applied at the source 

point x'. 

Green's Functions are very powerful tools and have been used for many decades 

for obtaining solutions in electromagnetic theory, elasticity, fluid mechanics, and heat 

conduction, etc [ 18], [ 19], [20], [21 ], [22], [23]. However, their use in acoustics has not 

been very common especially among engineers. There are in the literature some 

analytical solutions for the wave equation using Green's functions such as those solved 

by Shao and Mechefske [50]. Jn this work the authors used the GF to find an 

approximation model to describe the sound radiation of magnetic resonance 1magmg 

(MRJ) scanners. At difference to this work, they did not consider acoustic sources in their 

model. 

The GF are expressions that depend on the geometry and the boundary conditions 

of the problem at hand. GF are found and presented later in this chapter. 
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3.2 THEORY REVIEW 

For a better understanding of the development of the proposed model and the 

solutions for the particular cases, the Dirac-Delta and the Heavyside functions are briefly 

introduced as a necessary mathematical background. These functions are especially 

useful when mathematically expressing the sources. 

3.2.l Dirac-Delta function 

Suppose that a vertical unit force is applied at a point resting on a plate, which 

extends along x-axis (with -co<x<co), as shown in Figure 3.1. The interest is in the force 

distribution F(x), in which function F is unknown but it can be asserted that it is 

concentrated (Figs. 3.1 and 3.2) in such a way that the net force is the unity. Therefore, 

F(x) must satisfy the following condition: 

CJJ 

f F(x)dx = I 

y 

force 

X 

Figure 3.1 Applied force. 

(3.1) 

Figure 3.2 Force distribution. 

Function F(x) is closely related to the notion of Dirac-Delta function. Here F 

represents not only the force in the example but a mass in gravitational field, a heat 

source in heat conduction, a charge in electrostatics or any other phenomena applied on a 

point. As said before, Green's Function is a cause-effect function where G(x,x') is the 
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effect at the field point x due to the unit source applied at the source point x'. ln this 

context it can be said that the Dirac-Delta function is also related to Green's function. 

Consider a function as shown in figure 3.3 

1 
f(x) = -

a 

f(x) =0 

a a 
if --< X <-

2 2 

f
.
1
. a a 

x<-- orx>-
2 2 

Area of rectangle ABCD = I 

1, f(x) 

B C 

T 
1/a 

A D , 

-a/2 0 a/2 

. . .. (3.2) 

X 

Figure 3.3 Intuitive idea of Diruc-Dclta function. 

. . 
• o(x) 

Figure 3.4 Dirac-Delta function. 

► 
X 

Figures 3.3 and 3.4 together with the previous paragraphs give an intuitive idea of 

the Dirac-Delta function as "a" becomes smaller; f(x) tends to infinity in such a way that 

the area is constant and equal to the unity. 

Dirac-Delta function o(x) is a function defined such that it satisfies the following 

conditions: 
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O(X) = 0 if X :;t: 0 

O(X) ➔ CO if X = 0 

CFJ 

J o(x)dx = I 
-rl) 

Dirac-Delta function 
(special case) 

In general (see Figure 3.5): 

8(x-a) = 0 if x :;t: a 

O(x-a) ➔ CO if X = a 

,,., 

J 8( x - a )dx = I 

General form of 
Dirac-Delta function 

y 

o(x) 

Fig. 3.5 Dirac-Delta Function, General Form 

In addition to equation (3.2) Dirac-Delta conditions can be satisfied by several 

functions such as: [ , l I ~ 
8(x) = lim ---c-=-c-,e4·"' 

cr->0~.cr 

Some properties of Dirac-Delta function are used along the development of this 

work. These properties are the following: 

CfJ fl 

I. f 8( x - a )dx = f 8( x - a )dx = I a<a<p 
fl 

b 

2. f f(x)8(x - s)dx = f(s) a<s<b 
u 

C 

3. f f(x)8'(x - a)dx = -f'(a) b<a<c 
b 

4. 0( X - a) _ c;:_ '( ) -----u x-a 
(x-a) 

The primes inf and 8 indicate first derivative. 
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Proofs of these properties are out of the scope of the present work, however proof 

of the second property which is used extensively in the development of the Green's 

Functions Solution Equation, can be found in appendix [A]. 

Dirac-Delta function can be extended to two and three-dimensional cases as well. 

For example three-dimensional Delta function is defined as: 

8(x - x') = 8(x - x')8(y-y')8(z- z') 

x-x' 

where: 

point P location is represented by x = (x,y,z) 

point: Q location is represented by x'= (x',y',z'). 

The properties remain the same as in the 1-D case: 

ff f o(x - ."t')d3."t'= 1 

f ff f(x')J(x-x')d 3.x'= f(x) 
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CHAPTER IV 

MATHEMATICAL DEVELOPMENT 

4.1 . THE PROPOSED MATHEMATICAL MODEL 

The Green's Function Solution Equation (GFSE) and the Green's function itself 

played a major role in the development of the mathematical model presented in this 

study. For a given geometry the GFSE is unique and it is an integral expression in terms 

of the Green's function (represented by G in the equation) and the boundary conditions. 

After the GFSE was found the next step was to find G for the specified geometry and its 

particular boundary conditions. The final step was to express the source in a 

mathematical form and plug it into the GFSE. The source can be discrete or uniformly 

distributed along the geometry under study. 

Green's functions technique has the advantage that complex geometries can be 

solved by breaking them into simple ones and adding the results. This advantage was 

used in this study for the proposed model of the Rijke tube combustor. 

Figure 4.1 a shows a schematic of the Rijke tube. This apparently simple 

geometry, in fact produces a complex pressure distribution when an acoustic source acts 

in the inner pipe. Classical analytical solutions fail for cases such as this. In fact, classical 

analytical solutions do not work for cases where discrete sources are considered. In this 

study the proposed model separates the Rijke tube in different regions as shown in figure 
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4.1 b. Region I includes the inner pipe. A 2-D model with constant speed of sound was 

considered for this region however, results showed a 1-D behavior (i.e. no variation in the 

radial direction was found). 

I 

REGfON II 

------r-- ------

- -- -- -z z 
C C - -c..:: >-< c..:: 
ii: z ii: 
~ 0 ~ 

>-< 
d 

~ 

Fig. 4.1 a.- Rijke tube Fig. 4.1 b.- Rijke tube regions distribution for study 

Region Tl includes the outer pipe and starts at the point where the inner pipe ends. 

The pressure at the end of the inner pipe was taken as the source for region II. For this 

region a 2-D model with axially variable speed of sound was considered. The solution 

presented is a superposition of a 2-D with constant speed of sound plus a 1-D axially 

variable speed of sound models. Region III is considered as a 2-D case. The complete 

solution was found by adding the solutions of regions T, JI and ITI. 
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4.2. GREEN'S U'UNCTION SOLUTION EQUATION FOR THE WA VE 

EQUATION WITH CONSTANT SPEED Oli' SOUND 

In this part of the work a general Green's function solution equation (GFSE) for 

the wave equation was developed. Two approaches were given, the first approach was 

when an oscillatory behavior was assumed for the time; this assumption reduces the wave 

equation into the Helmholtz equation. The second approach did not consider any 

assumption for the time. For both approaches one dimensional and two dimensional cases 

were considered and some elementary problems were solved and compared with other 

methods for validation purposes of the technique presented here. In addition a pipe with a 

side branch was analyzed and compared against experimental results. For the side branch 

problem, a three dimensional model was developed. 

During the development of the equations G(x,tlx' ,1:) or p(x,t) was written only 

when necessary to avoid ambiguity or confusion, otherwise just G or p was written for 

simplicity. For the 1-D Helmholtz approach G means G(xlx'). For two-dimensional cases 

of the wave equation G means G(x,y,tix',y',1:) in Cartesian coordinates and G(r,z,tlr',z',1:) 

for cylindrical coordinates. For the cylindrical problem it was assumed azimuthally 

symmetry (i.e. _!!.._ = 0) for all cases in this study except for the side branch pipe case. 
80 

4.2.l One-Dimensional Wave Equation in Rectangular Coordinates 

ln this section two different GFSE for solving the wave equation are presented. 

The first approach was done by reducing the wave equation to the Helmholtz equation; 

the second approach was by solving the wave problem itself. 
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The one-dimensional homogeneous wave equation in Cartesian coordinates can 

be found in any acoustics book as: 

(4.1) 

Where pis a function of x and t (i.e. p = p(x,t)) 

4.2.1.1 The Helmholtz Equation 

One way of finding a solution for the wave equation is by assuming a periodic 

solution for the time variable such that: 

Again, p=p(x,t) and c/J=<P(x,t) 

By substituting ( 4.2) in ( 4.1 ), the following expression was obtained: 

Equation (4.3) is the one-dimensional homogeneous Helmholtz equation. 

Now consider the non-homogeneous case: 

(4.2) 

(4.3) 

(4.4) 

A change of variable from x to x' has been clone for convenience. In the previous 

equation the non-homogeneous term f can be also a function of x. Now consider the 

following non-homogeneous Helmholtz equation: 

(4.5) 

Here G = G(x,x') is the Green's function and o(x' -x) is the Dirac-delta function 
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By multiplying equation (4.4) by G, equation (4.5) by c/J and subtracting the 

resulting expressions from each other, the following expression was found: 

(4.6) 

f ntegrating equation ( 4.6) from O to L (where L is the characteristic length of the 

geometry under study) and after re-arrangement, the following expression was obtained: 

1
· 

1
• a20 1

• a2¢ 1
• 

f ¢(x')5(x'-x)dx'= f ¢-- 2 dx'-f o--;.dx'+ f GJdx' 
O O ax' O ax' O 

(4.7) 

Next, integration of expression ( 4. 7) is performed term by term. 

Applying the second of the properties of Dirac-delta function (shown in page 20) 

to the first term on the left hand side: 

/, 

f ¢(x')5(x'-x)dx'= rp(x) (4.7a) 
() 

By performing integration by parts to the first and second term on the right the 

following was obtained: 

/, a20 aol/, '· ao a¢ f ¢-dx'= ¢- - f--dx' 
0 8x'2 ax' () () ax' ax' 

(4.7b) 

(4.7c) 

Substitute (4.7a), (4.7b) and (4.7c) in (4.7) to obtain: 

¢=(¢a~),. -(oa~I) ,. + f Qf'dx' 
ax O ax O o 

(4.8) 
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This last expression is the GFSE for the Helmholtz equation. 

Note that the first two terms on the right are evaluated at the ends of the body; 

therefore, they represent the contribution of the boundary conditions. The last term on the 

right accounts for the contribution of the source. 

Substitute equation (4.8) into equation (4.2) to obtain the solution for the non­

homogeneous wave equation provided that the source term F (i.e. the non-homogenous 

term) can be expressed as F= f.ei(l)1, which allows the source to be either uniformly 

distributed or discrete. 

4.2.1.2 The Wave Equation 

In this section the wave equation 1s analyzed without being reduced to the 

Helmholtz equation. 

The non-homogeneous case of the wave equation can be expressed as: 

(4.9) 

And the auxiliary equation considered for this case was: 

(4.10) 

In equation ( 4.9), p is a function of x and t only, which can be renamed to dummy 

variables x' and -r respectively. 

In equation (4.10) G is a function of x, x' ,t and -r (i.e. G=G(x,x'[t;r)). Because of 

the causality principle satisfied by the Green functions, x and x'; t and -r can trade places 

without affecting the equation. 
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Therefore, expressions ( 4.9) and ( 4.10) can be re-written as: 

(4.9a) 

(4.1 Oa) 

Multiply (4.9a) by G, multiply (4.10a) by p and by subtracting the resulting 

expressions from each other and after re-arrangement the following expression was 

found: 

, a2c a2 P I a2G I a2 P pS(x-x)S(r-t) = p-
2 

-G-? --p-+-
2 

G-+ Gx F 
8x' 8x'- c 2 ar2 

C a, 2 
(4.11) 

Then integrate equation (4.11) in x' and T from O to L and from O to (t+E) 

respectively, with E being a very small positive real number. And by performing the 

integrations in a similar fashion as for the previous case the next expression was 

obtained: 

p(x,t)=f p-_, - G~ dr+~f p- - G_p_ dx'+f fGFdrdx' 
1
+

1 
.. {( ac) '· ( a ) ,, } 1 ,. [( ac) 1

+" ( a ) /+I .. J ,. 1
+

1
' 

0 ax O . ax O C O ar O ar O O 0 

(4.12) 

When integrating in space the starting and ending points are clearly defined; in 

this particular case the integration was evaluated at distances zero and L therefore the 

first two terms enclosed in brackets in the right hand side represent the boundary 

conditions. The situation is different when performing the integration in time. When the 

integration is evaluated at the "starting point" this is well defined since time zero 
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represents the initial conditions however, there is not a clearly defined "ending point" 

since t can be any point in time. Without solving this problem the previous equation can 

not be used since the two terms in the second bracket on the right hand side could not be 

evaluated at r = t+a. Therefore the simplification of these terms is critical in the 

development of the model proposed here. 

The two terms of the previous expression under discussion are the following: 

(Pao) H-,: -(o ap) f+,: 

ar O ar O 
(*) 

Following, these terms are analyzed with the help of the Dirac-delta function. 

From equation ( 4.10) recall that the Dirac-delta function is given by: 

o(x- x')5(t - r) 

Recalling from the general form of the Dirac-delta function o(x-a) represents a 

source of unit strength concentrated around point "a" in space. Similarly o(t-r) represents 

the source around point r in time. When r = 0 then (t - r) = t and the Dirac-delta function 

becomes o(t) which represents the initial impulse and therefore the expression (*) 

evaluated at time zero becomes the initial conditions. 

When r = t+a then (t - r) = -a. Since a was defined as a very small real number 

then a time -8 represents a time before the impulse. The Green's function is the response 

of the system to an impulse, but before the impulse there is no response. Therefore 

expression (*) vanishes when evaluated at r = t+a. Then expression (*) can be re-written 

as: 

( ao) (a ap) par O - ar O 
(**) 
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Substituting expression(**) and after taking the limit as £-0, equation (4.12) can 

be expressed as: 

p(x,t)= f p-
1 

- G~ ch+- 2 f p-' - o-2. dx'+f fGFd-rdx' ' {( ao) '-( a ) "} 1 I,(( ao) ( a ) J "' 
0 ax O ax O C O a-r t=O a-r t=O o o 

(4.13) 

Equation (4.13) is the GFSE for the 1-D wave equation. The first integral on the 

right hand side represents the contribution of the boundary conditions; the second term 

represents the contribution of the initial conditions and the last one is the contribution of 

the source, therefore this is a general solution for the 1-D wave equation. 

Again, note that no restrictions were applied to the source during the derivation of 

the GFSE, therefore, the source can be a function of x, t, or both and can be either 

uniformly distributed or discrete. The GFSE is even valid for the case of zero source (i.e. 

homogeneous problem). 

4.2.2 Two-Dimensional Wave Equation 

4.2.2.l. Cal'tesian Coordinates 

The two-dimensional wave equation is given by: 

And the auxiliary equation is given by: 
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By following the same procedure previously used for the one-dimensional case, 

the next expressions were found: 

For the Helmholtz approach: 

¢(x,y) = f ¢-_, - G~ cly' + f ¢-, - G~ clx' +ff q/dx'cly' "{( aaJ'· ( a¢1)''} /,{( ac)'· ( a¢]''} "'· 
O ax O ax O O ay O ay O O O 

(4.15) 

And for the wave equation: 

p(x,y,t)=ff pa~ - G
81

~, dy'dr+JJ pa~ - c 8
P, dx'clr+ t II {( J /, ( J /, } / / {( ) II ( ) II } 

() () ax () ax () () (I ay () ay () 

-;-if I p- - G_E_ dx'dy'+f ff GFdrdx'cly' I " '· [( 8G J ( a J J " '· 1 

C () () Br r=O ar r=O () () () 

(4.16) 

Integration was considered from O to L in the x direction and from O to H in they 

direction. L and H are the characteristic lengths of the geometry. Here, the two terms in 

the first double integral on the right hand side represent the contribution of the boundary 

conditions on the x axis; the two terms on the second double integral represent the 

contribution of the boundary conditions on the y axis; the two terms on the third double 

integral represent the contribution of the initial conditions, and the triple integral 

represents the contribution of the source. 
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4.2.2.2. Cylindrical Coordinates 

The two-dimensional wave equation in cylindrical coordinates for the case with 

radial and axial dependence is given by: 

(4.17) 

The auxiliary equation used for this case was: 

.!_~(r00 )+02
G -~

02
G =5(r-r')5(z-z')5(t-r) 

r Or Or OZ2 
C Ot2 (4.18) 

The OFSE was obtained to be: 

p(r,z,t) =ff r0 p-_, - 0~ dz'd1:+ ff p-r-, - 0~ r'dr'd1:+ 

1 

1. {( ao ) ( a ) } 
1 

"" {( 
80 ) 1. ( 

8 ) L } 

0 () a, r'=1;, a, r'=ro () () oz () oz 0 

- 2 ff p- - 0_£_ r'dr'dz'+f ff OFr'dr'dz'd1: 
1 I. 'i, (( o0) ( 0 ) J I L Iii 

c o o ai:: ,=o ai:: ,=o o o o 

(4.19) 

Here '<, is the characteristic radius of the cylindrical geometry under study. 

Equation (4.19) was found under the same procedure as before. Just notice that 

the integration was performed including the Sturm-Liouville weight function "r" [53) (i.e. 

f f(r, z)rdrdz ). 

NOTE: A detailed development of the OFSE for cylindrical coordinates is given 

for the 3-0 case when the side branch pipe problem is analyzed. 

By assuming a periodic behavior in time, the cylindrical Helmholtz version was 

also obtained as follows: 
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L {( a 1 ) ( a 1 ) } 'i, [( ao ) " ( a I ) " J " ,;, <l>(r,z) = f r0 pa:~ - Ga:~ dz'+ f <I> oz - G 0~ r'dr'+f f Gfr'dr'dz' 
0 r'=1;1 r'=r11 O O O O 0 

(4.20) 

4.3. GREEN'S FUNCTION SOLUTION EQUATION FOR THE WA VE 

EQUATION WITH AXIALLY VARIABLE SPEED OF SOUND 

Up to this point it was assumed that the speed of sound c was constant along the 

body under study. All the previous equations were derived with this consideration. 

Although this assumption is useful and give excellent results for some cases, it may fail 

when the calculation is perform for an environment where the temperature profile varies 

significantly. This is the case when combustion takes place inside the geometry under 

investigation. 

It is well known that the speed of sound of gases is a function of its temperature. 

For ideal gases the dependency of the speed of sound with respect to its temperature is 

given by the following equation: 

c = ,Jy.R.T (m/s) (4.21) 

Where y is the ratio of specific heats, R is the gas constant and T is the 

temperature in Kelvin. 

Now a temperature profile varying along the x-axis or axially for the Cartesian 

and cylindrical coordinates respectively is considered. For varying speeds of sound the 

wave equations were found to be: 

For 2-0 Cartesian coordinates: 
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(4.22) 

For 2-D Cylindrical coordinates: 

(4.23) 

ln this section c = c(x) since c is a function of temperature and it is assumed that 

the temperature varies along x. 

By following the same procedure as the previous cases the GFSE were found as 

shown: 

p(x,t) = f c 2 p-_, - c 2 G~ cir+ f p- - G__J!_ dx'+f f GFdrcb:.:' , {( ao ) '· ( a ) 1. } '· [( ao ) ( a ) J '· , 
0 ax O ax O O a -C r=O a "C r=O O 0 

(4.24) 

Equation (4.24) is the GFSE for 1-D in cylindrical coordinates with speed of 

sound varying axially. This equation is also valid for 1-D Cartesian coordinates. 

p(x,y,t) =ff (c2 p-_,) -(c2G i~,) dy'dr +ff c
2 

p-
1 

- G~ dx'dr + 

1 11 
{ aG 1, a /, } 1 

/, {( aG) 
11 

( a ) 
11 

} 

0 () ax O ax () .. 0 0 ay O ay 0 

ff p- - G__J!_ dx'dy'+f ff GFdrdx'dy' 
11 

1, [( aG) ( a ) J 
11 

'· 

1 

O O ar r=O ar r=O O O 0 

(4.25) 

Equation ( 4.25) is the 2-D GFSE for the wave equation in Cartesian coordinates 

with the speed of sound varying along the x axis. 
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p(r,x,t) = J f c2 R{(/J a~)I -(c a~,)I }dx'dr + J f {(c2 
/J a~)I/, -(c2G a1

~,)l''}r'clr'dr + 
0 o a, r'=/1 a, r'=II O O ax IJ ax O 

fJ p- - GL r'dr'dx'+f ff GFr'clr'dx'clr ,, 

11 

(( ac )I ( a )I J , ,, 11 

00 a, r=O a, r=O 000 

(4.26) 

Equation ( 4.26) is the 2-D GFSE for the wave equation in cylindrical coordinates 

with the speed of sound varying along the axis of the cylinder. 

Notice the similitude of these equations with their pairs for constant speed of 

sound. In these cases the speed of sound was integrated together with p, G or its 

derivatives. In other terms the speed of sound is evaluated at the boundaries. 

4.4. FINDING THE GREEN'S FUNCTIONS 

Equations (4.8), (4.13), (4.15), (4.16), (4.19) and (4.20) are the GFSE's for the 

wave equation for the different cases considered above. All these expressions are the 

general solution to the wave equation for one and 2-D in Cartesian and cylindrical 

coordinates. These solutions are expressed as function of the boundary values, the initial 

conditions, the source and the Green's function. Boundary and initial values for a given 

problem have to be known, also the source is known if the problem is non-homogeneous, 

therefore the next unknown to be determined is the Green's function itself which depends 

on the problem at hand. 

But how can the GF be found? The next pages are devoted to illustrate the process 

of finding the GF. Only two cases are presented here, one for 1-D in Cartesian 

coordinates with constant speed of sound plus a 1-D case with variable speed of sound. 
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Several 1-D and 2-D cases in Cartesian and cylindrical coordinates can be found 111 

Appendix B. 

4.4.1 GF For The 1-D Wave E<Juation With Dirichlet Boundary Conditions and 

Constant Speed Of' Sound In Cartesian Coordinates: 

Consider the homogeneous one-dimensional problem for a body of length L, with 

no sources and the following Dirichlet (or first kind) boudary conditions: 

Boundmy conditions: 

Initial conditions: 

p(O,t)=O 

p(L,t)=O 

p(x,O)=h(x) 

P1(x,O)=g(x) 

(4.27a) 

(4.27b) 

(4.27c) 

( 4.27d) 

The problem can be solved by the classical separation of variables method. A 

fully explanation of the separation of variables method can be easily found in any 

advanced mathematics, Heat Conduction or other applied Mathematics books such as 

[ 18], [22], [52], and [53]. Because of its importance, during the process of finding the OF 

the separation of variables technique is revisited in this part without further details. 

Recall the 1-D homogeneous wave equation: 

Assuming that the solution is the product of two new functions of a single 

variable as shown (for the 2-D case the solution is assumed to be the product of three 

functions, one for x and one for yin space plus one function for time): 

p(x,t) = X(x).r(t) (4.28) 
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By substituting these two functions into the wave equation, then dividing by X.r 

and after re-arrangement, the following expression was obtained: 

X" 1 f" 
X =~r (4.29) 

Since the first term on the right is only a function of x and the second term is only 

a function oft the only way of this to be true is if and only if they both are equal to a 

constant. For convenience the constant chosen is - le2 where k is a real number. 

Therefore: 

X" 2 
-=-le 
X 

And 

I f" 2 ---=-le 
c 2 [ 

Typical solutions for these kinds of expressions are: 

X(x) = a 1 .sin(/cx) + a2 .cos(kx) 

r(t) = b1 .sin(cut) + b2 cos(cut) 

(4.30a) 

(4.30b) 

(4.31a) 

(4.31 b) 

Where a1,a 2 JJi,b2 are constants to be determined after applying the boundary 

and initial conditions and w=kc is the angular frequency. 

By applying boundary condition (4.27a) it was found thata 2 = 0 and by applying 

the boundary condition ( 4.21 b) it was determined that le = 11Jr with n= 1,2,3 ... 
L 

The complete solution to the problem is the summation of all values of n. By 

substitution of these constants into expression ( 4.31 a) and with expression ( 4.31 b) in 

equation ( 4.28) the following was obtained: 
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~ . (n:rr )[ . (n:rr ) n:rr ] p(x,t) = L.ism -x b1 sm -c.t +b 2 cos(-c.t) 
11=1 L L L 

(4.32) 

In this last expression the constant a
1 

has been absorbed by b
1 and b2 • 

Applying the initial conditions (4.27c) and (4.27d) to equation (4.32) the 

following expressions were obtained: 

h(x) = Lb2 sin -x C/J ( /7 ;rr ) 

11=1 L 
(4.33a) 

g(x) = Lb
1 

-c .sin -x Cf) (n:rr ) (/llr ) 
11=1 L L 

(4.33b) 

By applying orthogonality of functions to equations (4.33a) and (4.33b) the 

constants b
1 

and b2 were found respectively as: 

2 L 

b1 = --f g(x')sin(x')dx' 
n :rr.c 

0 

2 /, 
b2 = -f h(x')sin(x')dx' 

Lo 

(4.34a) 

(4.34b) 

Alter substitution of expressions (4.34a) and (4.34b) into equation (4.32) and 

further re-arrangement the solution to the problem was obtained as: 

L2 w 1.2w 
p(x, t) = f-Lsin(kx)sin(rnt)sin(kx')g(x')dx'+ f- Lsin(kx)cos(mt)sin(kx')h(x')dx' 

() mL 11=1 O L n=I 

n:rr 
Where: k=­

L 

And 

(4.35) 
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11 Ji 
OJ= Ice =-c 

L 

Equation ( 4.35) is the solution for the 1-D wave equation with no sources with 

Dirichlet boundary conditions and initial conditions (4.27c) and (4.27d). 

Next, the same problem was solved by applying the GFSE. Recall the GFSE for 

the 1-D case, equation (4.12): 

p(x,t)=f p-
1 

- G~ dt+- 2 f p- - o---1: dx'+ffGFdtdx' 

1 

{( ao ) 1. ( a ) 1.} , L (( 
80 ) ( a ) J 1. 

1 

0 8X O OX O C O 8t t=O 8t t=O O 0 

The usual practice is, conveniently, to choose the boundary conditions for the 

auxiliary problem to be homogeneous and of the same kind of the boundary value 

problem to be solved. In this case G(x,t!O,t) = G(x,t!L,t) = 0 

Recall that p=p(x,t). Since the two terms in the first integral arc evaluated at x=O 

and x=L then p(x,t) becomes p(O,t) and p(L,t) which arc equal to zero since they are the 

boundary conditions. Therefore the two terms on the first integral vanishes. Similarly the 

last term on the double integral vanishes since F = 0 (i.e. no source). After applying all 

these simplifications equation (4. I 2) becomes: 

p(x,t) = -i" J((JJ 80
) -(a 8

P) )dx' 
C O 8r r=O 8r r=O 

(4.36) 

Furthermore, the two terms inside the integral are evaluated at time zero therefore 

they represent the initial conditions. Then p(x,O) = h and p 1 (x,O) = g therefore equation 

( 4.36) becomes: 

1 ,, (8G) I ,, 
p(x,t) = ~ f h(x') - cfr'-~ f g(x')(Gt=

0
dx' 

(; 0 8r r=O C O 

(4.37) 
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Equations ( 4.35) and ( 4.3 7) are the solutions to the same problem. By comparing 

these expressions it can be concluded that: 

Cf) - 2c: 
G = I--sin(kx')sin(kx)sin(m[t-i-]) 

11=1 11 Jr 

Were: 

/c = lllr 
L 

and m = kc 

(4.38) 

Equation ( 4.38) is the OF for the 1-0 wave equation with Dirichlet boundary 

conditions. This OF is valid whether the problem is homogeneous or not. 

Notice that the OF was found from the solution of the homogeneous case with 

homogeneous boundary conditions. These kinds of problems are relatively simple to 

solve. Then the OF can be applied to the GFSE to solve more complex problems. 

Using a similar procedure as the case discussed above, the problem of the wave 

equation with various homogeneous boundary conditions can be solved and provide the 

OF. Several GF's for one and two dimensional cases in Cartesian and cylindrical 

coordinates can be found in Appendix B. 

4.4.2. GF For The 1-D Wave Equation With Dirichlet Boundary Conditions And 

Variable Speed Of Sound In Cartesian Coordinates: 

From equation (4.22) the 1-0 wave equation in Cartesian coordinates for varying 

speeds of sound was obtained when no variation in the "y" direction was considered. This 

equation can be expressed as: 
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_3_(c2 ap)-a2 p -0 
ax ax a12 

-
(4.39) 

Notice that the same expression can be obtained from equation (4.23) when there 

is no change in the radial direction therefore equation (4.39) is valid for axially varying 

speed of sound in cylindrical coordinates. 

Since the speed of sound c is a function of x, equation ( 4.39) can be expanded to 

obtain the following expression: 

(4.40) 

By assuming a solution of the form: 

p(x,t) = X(x).f(t) ( 4.41) 

Applying the separation of variables technique the solution for the time dependant 

part of the problem and a differential equation for the space dependant part were obtained 

as: 

r(t) = a, .sin(rvt) + h1 .cos(cvt) (4.42) 

d 2 de d 
c

2 
- 2 [X(x)]+ 2c-.-[X(x)]+ o.i X(x) = 0 
dx dx dx 

(4.43) 

Since neither initial conditions nor boundary conditions have been specified, 

equations (4.42) and (4.43) are valid for any kind of boundary and initial conditions. 

Furthermore, these equations are also valid for any temperature profile, in other words 

valid for any speed of sound profile as long as this varies only with distance. 
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4.4.2.1. Parabolic Temperature Profile 

Consider the case where the temperature profile is given by: 

T(x) = a.(h.x + 1)2 (4.44) 

Where "a" and "b" are constants. 

By substitution of equation ( 4.44) into equation ( 4.21) the speed of sound c can be 

expressed as: 

c = .J y.R.a.(b.x + 1 )2 = ~(b.x + 1) 

Where r; = y.R.a 

(4.45) 

(4.46) 

After substitution of equation ( 4.45) into ( 4.43) the following expression was obtained: 

2 c/
2 

[ ] cl [ ] 2 r;.(b.x + I) -
2 

X(x) + 2.b.r;.(b.x + I)- X(x) + cv X(x) = 0 
dx dx 

Defining a new variable: 

1 
z = -lnlb,x + ti 

b 

( 4.4 7) 

( 4.48) 

Substitute the new variable z from equation (4.48) into equation (4.47), with the 

use of the chain rule and some simplifications, the following was obtained: 

d2 [ ] cl [ ] cv2 
-

2 
Z(z) +b- Z(z) +-Z(z) = 0 

dz dz r; 
( 4.49) 

Equation (4.49) is an ODE with constant coefficients and its characteristic 

equation is given by: 

l[ ~i 111= 2 -h±vb -4T (4.50) 

Let D be the determinant, then: 
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2 oi 
D=b -4-

~ 

Then m = _!_ [- b ± ✓D] 
2 

(4.51) 

(4.52) 

Three possibilities for the solution in the space domain can be obtained from the 

characteristic equation depending on the values of the parameters in the determinant D. 

These solutions are as follow: 

IfD =0 

-h -h 

Z(z) = A.e 2 - + B.z.e 2 (4.53a) 

IfD>O 

-/,"[ (✓D J (✓D J] Z(z) = e 2 A.sinh 2 z + B.cosh -
2
-z (4.53b) 

lfD<O 

-"=[ (✓--J5 i (✓--J5 ]] Z(z) = e 2 A.sin - 2 z) + B.cos -
2
-z (4.53c) 

Or by substituting back x and D expressions (4.53a), (4.53b) and (4.53c) can be 

re-written as: 

lfD=O 

1 Inlb,x + II 
X(x)=A---+B---

✓h.x + 1 b.,Jbx + I 
(4.54a) 
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lfD>O 

X(x) = ~ [A.sinh[-1 
{1/ -4 rv

2

} tnlb,x+ ti]+ B.cosh[J_ Jlb2 -4 cv
2

} tnlb,x+ 11]] (4.54b) 
b.x + I 2b r; 2b r; 

IfD<O 

X(x)= ~[A.sin[-1 
Jl4rv

2 

-b2 }tnlb,x+Il]+B.cos[-1 Jl4a/ -b2 }tnlb,x+tl]] (4.54c) 
b.x + 1 2b r; 2b r; 

The boundary conditions of interest for this study are of first kind, second kind or 

a combination of both. The most important cases are those where both boundary 

conditions are of the first kind and the case where one boundary condition is of first kind 

and the other of second kind. 

Consider the boundary conditions given by equations (4.27a) and (4.27b); and the 

initial conditions given by equations (4.27c) and (4.27d). 

The boundary conditions imply: 

X(O) = 0 and X(L) = 0 (4.55) 

An analysis of each possible value of D is shown next: 

CASE I: D =O 

Equation (4.54a) is the mathematical solution for case D=O but the boundary 

conditions given by ( 4.55) are satisfied only if the constants A and B are equal to zero 

which leads to a trivial solution. 

CASE II: D>O 

The mathematical solution for this case is given by equation ( 4.54b ). Again, 

consider the same boundary conditions given by ( 4.55). Similarly to the previous case the 
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boundary conditions are satisfied only if the constants A and B are equal to zero leading 

to a trivial solution. 

CASE III: D<0 

When D<0 the solution for the space domain is given by (4.54c). Consider the 

boundary conditions given by ( 4.55). The boundary condition Z(0)=0 ( or its equivalent 

X(0) = 0) is satisfied only if B=0 then the solution is reduced to: 

. -/,= [~ J Z(z) = A.e 2 .sin -
2
-z (4.56) 

Or 

X(x) =A.~ .sin[-' {4 0:2 -b2 lf lnlb,l + 11] = 0 
b.x+l 2b '=' 

(4.57) 

By applying the boundary condition at x=L equation ( 4.57) is satisfied only if: 

n=l,2,3 ... (4.58) 

By solving for co the eigenfrecuencies were obtained as: 

1 
OJ=-

2 ([ ]

2 ] 2111rb 2 
y.R.a I I +b lnbL+l 

(4.59) 

The complete solution was obtained by substitution of equations (4.42) and (4.57) 

into equation ( 4.41) and considering all values of n accordingly with the separation of 

variables technique. The expression obtained was the following: 

er, [ ( [ { {VZ } l p(x,t)=I:~,sin - 4--b 2 lnlb,x+ll (a1.sin(m.t)+b 1.cos(m.t)) 
11~1 b.x + I 2/J q 

(4.60) 
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In equation (4.60) the constant A from expression (4.57) have been absorbed by 

the constants a I and b1 • 

NOTE: Other combinations of boundary conditions were also applied to equations 

(4.53a) and (4.53b) showing that they are not possible solutions. Therefore the only 

allowed solution is given by equation (4.53c). Therefore the complete solution for the 

acoustic pressure for any combination of first and second kind boundary conditions is 

given by: 

P(x,t) = ~ [A.sin(-
1 .J-D Inlb.x + 11) + B.cos(-

1 .J-D Inlb,x + 11)]{a1 sin(cv.t )+ h1 cos(cv.t )} 
b.x + I 2/J 2b 

(4.61) 

The values of A11 and 8 11 will depend on the given boundary and initial conditions. 

By applying the initial condition (4.27c) and (4.27d) the following expressions 

were obtained: 

"' J ·[' { 

2 

} ] h(x) = 2>1 • .[i;;+).s111 - 4: -// lnlb.x+ II 
11=1 b.x + I 2b '=' 

(4.62a) 

m OJ [ I { a/ } ] g(x) = Ia 1 . .[i;;+).sin - 4--li lnlb.x+ II 
11=1 b.x + L 2b c; 

(4.62b) 

At this point is more convenient to express these last two equations in terms of the 

new variable z as: 

(4.63a) 
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(63.b) 

Constants a 1 and b1 were found from these last two equations with the use of 

orthogonality of functions obtaining the following expressions: 

(4.64a) 

(4.64b) 

Where z ,. = * lnlb.L + II was obtained from equation ( 4.48) when x=L. By 

returning to the original variable x, equations (4.64a) and (4.64b) can be expressed as: 

21 '· [ I { 
2 

} J b1 = I J If h(x).✓lb,x+lj.sin - 4~-b 2 .lnjbx+ll dx 
In bl + I O 2.b r; 

2b.w J'· . [ I g(x').Slll -
.,. lnlbL + 11 0 2.h 

11cx,1> = I 
11001 

2b fl . [ I /,(x').Slll -
lnlbL+ 110 2.b 

{ 
a/ 2} ., ] ~ .· [ I 4-, -b .lnlh1+II' ~-Sill -':, vlb,x+ 11 2b 

{ 
a/ 2 } ., ] ~ •• [ I 4--b .!nib.I +Ji . ~-sill -
c; vlb,x+ 11 2/J 

(4.65a) 

(4.65b) 

{47-//} ln[h.x+Ji}in(w.t)dx'+ ... 

{ 4 (~
2 

-h 2
} lnlh,x+ 11]cos(w.t)dx' 

(4.66) 

Solving the same problem with the use of the GFSE equation (4.24) considering 

the boundary conditions given by (4.27a) and (4.27b) and no source the following 

expression was obtained: 
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(4.67) 

By comparing equations (4.66) and (4.67) it can be extracted the Green's function 

for the case under discussion: 

, _ ' [ 2/J.w .· [ I { 01

2 
2 } ., J ~ .· [ I { a/ } J l G-~ I 

1 

.. slll- 4--h .lnl/n+q.~.s111- 4--:;:-b 2 lnlb.x+ll sin(lu.[/-r]) 
,, 1 lnhl+I 2.b <; lb,x+q 2b ., 

(4.68) 

Where: 

I 
OJ=-

2 [[ ]

2 ] 2nrcb 2 
y.R.a j j +b 

lnhL+ I 
(4.68a) 

Equation ( 4.68) is the GF for the 1-D wave equation with variable speed of sound 

with parabolic profile and Dirichlet boundary conditions. 
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CHAPTERV 

RESULTS AND DISCUSSION 

In order to validate the technique proposed in the present work some simple cases 

were solved in this chapter. The results obtained using the Green's functions technique 

were then compared with the results found in the literature. The case of a pipe with a side 

branch pipe was also solved and compared with experimental data. 

5.1. ONE-DIMENSIONAL TRIANGULAR INITIAL DISTRIBUTION 

Consider the initial distribution given by equation (5.1) and shown in figure 5.1 

below: 

!
2

ax O~x<L/2 
p(x,O) = f(x) = 

2
~ 

-(L-x) L/2~x~L 
L 

(5.1) 

p 1 (x,O) = g(x) = 0 (5.2) 

p(x,O) 

L/2 L 
X 

Fig.5.1. Initial triangular distribution equation (4.69) 
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The boundary conditions considered for this case were of the first kind given by: 

p(0,t) = p(L,t) = 0. 

Since this is a 1-D problem in Cartesian coordinates the corresponding GFSE is 

given by equation ( 4.13) recalled below: 

p(x,t)=f p-
1 

- G~ dt+- 2 f p- - G___E_ dx'+ffoFchdx' I {( ao) L ( a ) L} 1 I (( ao) ( a ) J I I 
O ax O ax O C O at t=O at t=O o o 

First and second terms on the right hand side are equal to zero because those 

terms are evaluated at x=0 and x=L corresponding to the boundary conditions. The fourth 

term is also equal to zero because of initial condition equation (5.2). Fifth term is also 

eliminated since there are not sources. Therefore for this case the GFSE equation was 

reduced to the following: 

1 L ( ao) p(x,t) = - 2 f p- dx' 
C O ar r=O 

(5.3) 

Equation ( 4.38) is the GF for the 1-D wave equation with Dirichlet boundary 

conditions. After substitution of equations ( 4.38) and (5.1) into expression (5.3) the 

following was obtained: 

p(x, t) = f -I ~x' .sin(kx') sin(kx) sin(co[t - r]) dx' + ... 
1
•
12

( a en 4 ) 

0 ar 11=1 nrrcL 

(5.4) 

f -I ~(L-x').sin(/a')sin(kx)sin(co[t - r]) dx' 1.1
2 

( a "' 4 ) 

0 ar 11=1 n rrcL 
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After performing the integrations and some simplifications of the expressions, the 

result was obtained as: 

~ 8a . (mt) . (nn ) (nn ) p(x, t) = L,;--
2 sm - sm -x cos -ct 

n=I (nn) 2 L L 
(5.5) 

The solution to this problem can be found also in Krayzig [52] and the result is 

presented as: 

~ 8a ( I . (,r ) (,r ) l . (3,r ) (3,r ) ) p(x,t) = L;-
2 2 sm -x cos -ct --

2 
sm -x cos -ct +- ... 

11=-I 1C 1 L L 3 L L 
(5.6) 

Equation (5.6) is an equivalent expression to equation (5.5) which was obtained 

using the Green's functions technique. Figure (5.2) below shows plotting of results for 

equations (5.5) and (5.6) for several values of time. Both results are exactly the same and 

lines superimpose to each other. 

l'r(x,0) 

l'(x,0) 

l'r(x,0.0025) 

I'( X, 0,0025) 

l'(x,0.0075) 

l'r(x,0.0075) -5 - -

-10 ,.._ ____ __Jl.___ ____ --'1 __ ___. 
0 2 4 

Legend: 
Pr(x,t) = eq. (5.5) 
P(x,t) = eq. (5.6) 

Fig. 5.2. Plot of equations (5.5) and (5.6) for the wave equation 

with initial triangular distribution. 
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NOTE: This problem was also solved using the Helmholtz equation. In this case 

the GFSE used was equation (4.8) together with equation (4.2). During the development 

of the Green's function it was considered orthonormal functions instead of orthogonal 

functions to get the constants of the differential equation results. The resulting expression 

for G was: 

G = Z:-sin -x' sin -x m 2 (l1TC ) (l1TC ) 
11=1 L L L 

(5.7) 

After plugging equation (5.7) into equation (4.8) and then into equation (4.2), 

performing the integrations and further simplification the following result was obtained: 

"J 8a (l1TC) (l1TC ) -;,"·1r.c1 
p(x,t) = Z:-- 2 sin - sin -x .e 1

· 

11= 1 (nrc) 2 L 
(5.8) 

Equation (5.8) is also an equivalent expression to equations (5.5) and (5.6). The 

two approaches of the Green's function technique presented in this work were used to 

solve the problem and compared with the results found in the literature obtained by the 

classical separation of variables technique. Final results were exactly the same which 

validate the technique proposed here. The Helmholtz approach has the advantage of 

simplicity because it eliminates the time variable in the equation, however this approach 

may present some difficulties for more complex cases especially when sources are 

considered. Another advantage of using the wave equation instead of the Helmholtz 

equation is that the result can be split into the two waves traveling in opposite directions 

that compose the final result. For example after some algebraic manipulation equation 

(5.5) can be re-written as: 

52 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

f, 4a . ( n ,c) . ( n ,c [ J) f, 4a . ( n ,c) . ( n ,c [ J) p(x,t) = L..-- 2 sm - sm - x-ct + L..-- 2 sm - sm - x+ct 
11=1 (n,c) 2 L 11=1 (n,c) 2 L 

(5.9) 

In equation (5.9) the first term on the right hand side represents a wave traveling 

to the right and the second term represents a wave traveling to the left. The advantage of 

using this presentation is that it allows a reflection coefficient. By including different 

functions for the reflection coefficient until matching experimental results an accurate 

reflection coefficient function can be determined. 

5.2 ONE-DIMENSIONAL CASE WITH A DISTRIBUTED PERIODIC SOURCE 

Consider the one-dimensional non-homogeneous case with the non-homogeneous 

term given by: 

F(x) = sin(at) (5. I 0) 

Similar to the previous case consider homogeneous boundary conditions of the 

first kind given by p(0,t) = p(L,t) = 0 but zero initial conditions (i.e. p(x,0)=0 meaning 

that initially the system is initially undisturbed or at rest). 

For this problem the GFSE is also equation (4.13). By applying the boundary and 

initial conditions all terms on the right hand side of equation ( 4. 13) vanishes except for 

the last term which contains the source term F. Then the GFSE was reduced to: 

/, I 

p(x,t) =ff GFdrdx' (5.11) 
0 () 

Where F is given by equation (5.10) and the OF comes from equation (4.38). 

After substitution of these two equations into expression (5.11) the next was obtained: 
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p(x,t) = f Jf-2
c sin(

11
1C x')sin(

11
1C x)sin(n;rc [t -r])sin(ai-)di-dx' 

() () 11=1 /1 TC L L L 
(5.12) 

An equivalent expression for equation (5.12) is given by equation (5.13) which is 

easier to integrate: 

p(x, t) = f- c sin(kx )f sin(kx')dx'[sin(!cct )J [sin([a + kc ]i-)+ sin([a - kc]r )]ch - ... 
11=1 11 TC o o 

Where: 

I 

- cos(kct) f [ cos([ a - kc ]i-)- cos([ a + kc J)r }! r 

k = lllC 

L 

() 

(5.13) 

After performing the integrations and with the help of trigonometric identities and 

some algebraic simplifications equation (5.13) was reduced to the following expression: 

m 2c
2 

[(-1)
11-t] (nTC )(al (nTCc) ) p(x,t)= L [ ]sin -x -sin -t -sin(at) 

11=1 nTC (111Cc)2 2 L n;rc L -- -a 
L 

(5.14) 

A similar problem has also been solved in [53] pp. 754-757. In this reference the 

authors leave the solution for the constants expressed as integral function of cp(x) where 

cp(x) is any function to be defined. By considering the factor I/ c 2 equivalent to g/w in the 

reference, by making cp(x)=l and performing the integrations the solution obtained is the 

same as equation (5.14) as expected. 

In the reference the authors assumed the solution to be the superposition of two 

solutions; one for the homogeneous part and one for the non-homogeneous part. The 

homogeneous part of the problem was found using the separation of variables technique. 

For the non-homogeneous part some physical considerations were made together with 
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half-range sine expansions with known coefficients for the function cp(x) was used to find 

the solution. The complete solution is the superposition of both the homogeneous and the 

non-homogeneous parts. Although the source term is distributed in the geometry under 

study which makes the problem relatively simple notice that the mathematics used in the 

reference are more involving and the technique more complex than the Green's function 

technique. This is another advantage of the technique proposed in the present work, its 

simplicity. Figures (5.3) and (5.4) show some results of equation (5.14) 

p(x,0.025) 

p(x,0.05) 

p(x,0) 

p{x,t) 
p(x,0.075) 

p(x,0.1) 
-0.2 .___ __ ....__ __ ...._ __ _.__ __ ..._ __ _. 

0 0.2 0,4 0.6 0.8 

Figure 5.3. Solution at different times for the non-homogeneous wave equation with 
a distributed periodic source 

0.1 

p(x,t) 

-0.1 
p(0.8,t) -. 

-0.2 O 
().()2 0.04 (),()fl 0,08 

Figure 5.4. Solution at different distances for the non-homogeneous wave equation 
with a distributed periodic source 

55 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

5.3. RECTANGULAR MEMBRANE WITH PARABOLIC INITIAL 

DISTRIBUTION 

This 2-D case considers a rectangular membrane with a parabolic initial 

distribution as indicated below: 

p(x, y,O) = f(x) = 0.1.( 4x- x 2 ).(2y- Ji) (5.15) 

The rectangular membrane extends from zero to L in the x direction and from 

zero to H in the y direction. The boundary conditions are of the first kind in all 

boundaries and given by: 

p(O,y,t) = p(l,y,t) = 0 

p(x,O,t) = p(x,H,t) = 0 

(5.16) 

(5.17) 

The corresponding GFSE for this 2-D problem is given by equation (4.16) and the 

GF for this case is given by equation (8.6). Equation (4.16) is recalled below and 

analyzed term by term: 

p(x,y,t) =ff pa~ -- Ga~, c6J'c!i-+ff pa~ - G a1~, dx'dr + I II {( J /, ( J /, } I / {( ) II ( ) II } 

0 () ax () ax () () () ay () a) () 

~ff p- - G_E_ dx'dy'+ ff f GFdrdx'dy' 1 
11 

/, (( ao J ( a J ) 11 
,, , 

C O o a f r=O a f r=O o o o 

Since all boundary conditions on are homogeneous and of the first kind, the first 

two double integrals on the right hand side vanish since the terms inside these integrals 

represent the boundary conditions along axis x and y respectively. In the third integral 

only the first term remains since it represents the initial condition (given by equation 

(5.15) for this case). The last term also vanishes since there is not source in this problem. 

Therefore, after plugging the GF into the simplified GFSE the solution was reduced to: 
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(5.18) 

After performing the derivation and integrations as indicated in equation (5.18) 

and after further simplification the result for this problem was: 

Where: 

I - lllTC ,c, --
~ H 

(5.20a) 

(5.20b) 

(5.20c) 

The solution to this problem can be also found in Kreyszig [52] for the following 

values to the parameters: 

L=4 I--1=2 c=5 

The solution in the reference has the following presentation: 

p(x,y,t)=0.42605L L ~cos - ✓m 2 +4n 2 
t sin -x sin -y '" ,,, I ( Sn [ ] J ( nn J ( mn J 

11,-odd m,,udd ITI 11 4 4 2 

(5.21) 

This is an equivalent expression to that obtained with the use of the Green's 

function technique for the given values of L, H and c. Figures below show some results. 
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p( I, I. I) 

p(2, I, I) 

pl( I, I, I) 

pl(2, I, t) 

-o.5 
0 

I 

0.5 

I I 

1.5 

Fig. 5.5a. Equations 5.19 and 5.21 at two different 
points in the membrane as function of time 

p(x.1,0) 0.2 

p(x, l,!U5) 

p(x, 1.0.5) 
() 

-0.2 O 

X 

Fig. 5.Sb. Eqns. 5.19 and 5.21 along the centerline of 
the membrane at different times as function ofx 

Figure (5.5a) shows the membrane displacement as function of time at two 

different points from both equations (5.19) and equation (5.21 ). The solutions from both 

equations superimpose to each other as expected. Figure (5.5b) shows results for the 

membrane along the centerline at different times along the x axis. Figures (5.6a) through 

(5.6d) show the surface of the membrane at four different times. 

0.1-• 
0.4-

0.2-· 
0.2-

0, 

-0.2 

-0.2 --
,0.I o.s- 1_1,~--l.-· cro ... ~--1--- ..... ,,... ..... __ 

3 
_____ _ 

(5.6a) (5.6b) 

0.4 

0,2 

(5.6c) (5.6d) 

Fig. 5.6. Membrane displacement 
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5.4. THIN CIRCULAR MEMBRANE 

The previous cases validate the technique proposed in this work for Cartesian 

coordinates however for the Rijke tube is important to test the technique in cylindrical 

coordinates. As an example, the next case considers the problem of a circular membrane 

with an initial distribution given by: 

p(r,O) = f(r) = 1 - r2 

The boundary conditions are of the first kind given by: 

p( '<> ,t) = 0 

p(O,t) = finite 

,11 is the characteristic radius of the cylinder. 

(5.22) 

(5.23a) 

(5.23b) 

Since this case considers a thin circular membrane it can be considered as a 

problem with no axial dependence. The GFSE for this cylindrical coordinates for cases 

with neither axial nor angular dependence is recalled below. Following the same 

technique the GFSE was determined to be: 

The first term in the first integral in braces is the only term that remains in the 

right hand side since it represent the initial condition given by equation (5.22). All the 

other terms vanish. The two terms in the second integral vanish since they represent the 

boundary conditions given by equations (5.23a) and (5.23b). The last term in double 

integral also vanishes since it represents the source which is zero for this problem. 

Therefore the GFSE was reduced to: 

59 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1 Ii,( aoj 
p(r,z,t)=- 2f p- r'dr' 

C O 8r r=O 

(5.24) 

The corresponding Green's function for this case (recalled below) was found in 

as: 

G -2cf, J 0 (k 111r') J (, ) . ( [ ]) = -. 2-L, [ . . ] 2 • 0 ,c111r sm mt - r 
, 0 111=1 J 1(k1111) .k111 

With m = ck111 

k111 are the zeroes of the eigenfunction J0(k111r0)=0 

Substitution of the Green's function together with equation (5.22) into equation 

(5.24) leads to: 

i;, 2c2 '0 J (k r') 
p(r,z,t)= f-.-2 L · 0 

l'." 2 • J 0 (k111r)cos(m.t).(l-r' 2 )r'dr' 
O lo 111=1 [JI (fcmt )] _Am 

(5.25) 

After performing the integrations taking into account the properties of the Bessel 

functions, the following result was obtained: 

( ·) ~ 3_ f, J 0(k 111r).cos(k 111ct) [J ('· . )[I -. 2 ___±_]-2111 J (, • )] P x,t L, [ ]2 I ll,,,'o lo + 2 o ,c,,,to 
1c1111=I J1(k111ro) .lc/11 kl/I kl/I 

Since Jo(k111r0) = 0 by condition of the eigenfunction, then the final result was 

obtained as: 

( . ·) _ 3_ f, JO (km r). cos(k m ct) (i _ . 2 _±__] p I , t - L, --'----"'------'-"--- IO + 
2 ro m=I J1(kmro).km km 

(5.26) 

The solution to this problem can also be found in Kreiszig [52] for r0= I and c=2. 

The solution given by the author has the following presentation: 
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p(r, t) = 1.1018..J O (2.4048.r).cos(4.8097.t)-0. I 40..J O (5.502 l.r).cos(I I .0402t)+ 

0.045..J O (8.6537.r).cos(l 7.3075.t)- ... 
(5.27) 

Equations (5.26) and (5.27) were plotted to show the membran..: 

displacement at times 0.35 seconds, 0.2 seconds and zero seconds to show the initial 

distribution. Results are shown in figure (5.7) below. Notice plots from both equations 

(5.26) and (5.27) are exactly the same and lines superimpose to each other. Figures (5.8a) 

through (5.8d) show the surface of the membrane at four different times. 

p(r,l) 0.5 

I 
I 

f 

.I 

,, 
I 

-o.5 

/ 

0 0.5 

~qs. (5.26) and (5.27) 
t=O 

Eqs. (5.26) and (5.27) 
t=0.35 

Fig. 5. 7 Membrane displacement. Equations (5.26) and (5.27) at times 0, 0.2 and 0.35 seconds 

0.5 

Fig. 5.8a. Fig. 5.8b 
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05-\ 

Fig. 5.8c 
Fig. 5.8d 

Pig. 5.8. Membrane displacement, surface plot 

5.5. VARIABLE SPEED OF SOUND 

In this part of the present work a case of variable speed of sound is analyzed. It 

was considered a one dimensional problem with parabolic temperature profile as shown 

in figure 5.9. This problem was already considered in page 42 where a general solution 

for any kind of boundary conditions was found and then boundary conditions of first kind 

were applied to arrive to a final solution. 

\ 
\ 
\ 

Temp. 

0 

\ 

' ' ' ' ' ' ' ' ' ' ' ' ' ' 

X 

L 

Fig. 5.9. Parabolic temperature profile 

Now, the case where one boundary condition is of first kind and the other of 

second kind is considered. A similar problem was solved by Sujith et al. [54). In their 
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work they solved the 1-D acoustic field for a length L=4m and a linear temperature 

profile for several values of the slope. They kept fixed the temperature at the exit at 300K 

and the values of the temperature at the entrance were 300K, SOOK, 700K, 900K and 

I IOOK. The parabolic temperature profile (Tp) of the present work (given by equation 

(4.44)) was carefully chosen such that it closely matches the linear temperature profile 

(Tl) of Sujith's work. Notice the similitude of both the linear and parabolic temperature 

profiles shown in Figure 5.10. 

500 ------,-----,.------.------, 
L5(J()J 

Tp(x) 
-- 400 
Tl(x) 

LJ00,300 ~--~--~~--~--~ 
0 2 3 4 

0 X L 

Fig. 5.10. Parabolic and linear temperature profiles 

In their study Sujith et al. considered the boundary conditions given by: 

apl =0 
ax x=O 

p(L,t) = 0 

(5.28a) 

(5.28b) 

From the separation of variables technique it was assumed that the complete 

solution of the problem is the product of two functions of a single variable given by 

equation ( 4.41 ). Therefore the boundary conditions can be rewritten as: 
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dXI =0 
dx x=O 

(5.29a) 

X(L) = 0 (5.29b) 

Similarly to the case analyzed previously in section 4.4.2, the three possible 

solutions given by equations (4.54a), (4.54b) and (4.54c) were analyzed for the boundary 

conditions given by equations (5.29a) and (5.29b) and the parameters used by Sujith et al. 

in their work: 

CASEI:O=0 

Equation ( 4.54.a) is the mathematical solution for case of D=0. This is not a 

physical possible solution for the problem because when it comes to satisfy the boundary 

conditions the solution fails. For the boundary condition (5.29a), the following was 

obtained: 

B ln(Jb.x + tJ)] = 0 
2 ✓~h.x + 1J)3 x=O 

(5.30) 

Therefore: 

B = A.b/2 (5.31) 

With equation (5.31) and the boundary condition (5.29b) plugged into (4.54a), the 

following was found: 

Lnjb.L + lj = -2 (5.32) 

If the case of temperature varying from SOOK to 300K is considered, then the only 

possible value of the length L that satisfies the eigenfunction equation (5.32) would be a 
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negative number (-15.344111) which is not physically possible. On the other hand, if 

L=4m is chosen, then equation (5.32) is not satisfied. 

CASE II: D>O 

The mathematical solution for this case is given by equation (4.54b). Considering 

boundary condition (5.29a), the following expression was obtained: 

-A [-~.sinh(_!__ {b2 
-4 w

2

} lnlh,x+ 11]+_!_ {b2 
-4 rv

2

} cash(_!__ {b2 
-4 r:2 } lnlh,x+ 11]]_, .. i, + .J(lb,x+ 11}1 2 2b ,; 2 ,; 2/J ., 

-B [-~.cash(_!__ {/J2 
-4 w

2 

lf lnlh,x+ 11]+_!_ {h2 
-4 rv

2

} sinh(_!__ fl// -4 r:
2

} lnlh,x+ 11:]_,·,.o = 0 .J~b.x + 11)3 2 2b ,; 2 ,; 2/J ., 

After simplification it was found: 

(5.33) 

By substitution of equation (5.33) and boundary condition (5.29b) into (4.54.b) 

the next expression was found: 

After some simplification this expression becomes: 

tanh- b2 -4- lnlb,l+ll +- b2 -4- =0 
[ 

I { w
2

} ] I { rv2 } 

2b { b { 
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Or: 

tanh(_J__ ✓D Inlb,l + 11) + J__ ✓D = 0 
2b b 

(5.34) 

This last equation 1s satisfied only if D=O which 1s contrary to the initial 

assumption of D>O. 

CASE lll: D<O 

Following the procedure as in the two previous cases, after substitution of the 

boundary conditions the eigenfunction was found to be: 

( 
I { o/ , 1 I I] I { cv" , } tan - 4--b-f lnh.L + I +- 4--_ -h- =0 

2b r; h r; 
(5.35) 

The characteristic frequencies (w) were found by determining the zeroes of 

equation (5.35) and then solving for w. The values of the first five frequencies for a 

temperature profile varying from SOOK to 300K are shown in table 5.1 and compare with 

the results from Sujith [54]. 

Temperature First Second Third Fourth Fifth 
Profile (Hz) (Hz) (Hz) (Hz) (Hz) 

Linear [54] 23.61 74.23 124.15 173.97 223.77 

Parabolic 23.408 73.625 123.142 172.594 221.976 

Table. 5.1. Characteristic frequencies for the linear and parabolic temperature profiles 
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The values of the frequencies are not expected to be the same since they come 

from different temperature profiles however; they have to be close since the profiles were 

chosen such that the linear and parabolic profiles were very similar (see. Fig. 5.10). Same 

behavior was found for temperature profiles with different slopes also shown in Sujith's 

paper [54]. 

5.6. VALIDATION WITH EXPERIMENTAL RESULTS: SIDE BRANCH PIPE 

All the previous cases helped to validate the Green's functions technique. Those 

relatively simple problems were solved using the Green's functions technique and 

compared with the solutions found in the literature. Now the technique is tested with 

actual data by solving the problem of a side branch pipe. The experimental setup for this 

case is shown in figure 5.11. The experimental setup and the data were kindly supplied 

by Douglas Straub from NETL. 

The speaker acted as an acoustic source that sent a sinusoidal signal of known 

frequency a to the system. The response of the system was measure at PI and P2. The 

different values given to a were 200Hz, 300Hz and 4001-Iz. 

Because of the geometrical configuration of the piping this is a 3-D cylindrical 

problem. Therefore a 3-D GFSE for cylindrical coordinates was developed by following 

the same procedure as the one used to arrive to equation ( 4.19) but this time variations in 

the azimuthal direction were included. 
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,t. 
I L3e: 487.638" (2 Semi-Infinite Coils) 

SPEAKER ENCLOSURE 

3.042" I.D. 

® Flush 
Mounted 

-----13•~----1"1 

L23: 6.375" 

L 12: 22.2" 

OPEN END 

---------17''~--------

Fig. 5.11. Experimental set up for the side branch pipe (courtesy of Douglas Struub-NETL) 

The non-homogeneous 3-D wave equation in cylindrical and its corresponding 

auxiliary equation are given by: 

(5.36) 

(5.37) 

The spatial part of the Dirac-delta function in equation (5.37) was written as 

ci(r - r') for simplicity however, the actual Dirac-delta function for cylindrical 

coordinates is given by: 

_l 8(r- r')ci(0-0')ci(z - z') (5.38) 
rc.r 

Integration of the Dirac-delta function gives one as result (see properties of the 

Dirac-delta function in section 3.2.1) 
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Multiplying equation (5.36) by G, equation (5.37) by p, subtracting the results 

from each other and applying integrations in r,0,z and r, the following was obtained: 

ff ff p(r,z,O,t).5(r-r')5(t-r).r'dr'dz'd0'.dr= ff f j 1~-., r'-. ---:;--,, r'~ + 
1 2

/f/,l'o 
1 2

"
1
•

1ii{ 8 ( 8GJ G 8 ( 8 J 
o o o o 

O O O O 
, 8, 8, , 8, 8, 

P 82G a 82 P 82G 82 P P 82G a 82 
P } , , , , -------, + p---G------+---+G.F r cir dz c/0 cir 

r'
2 80'2 

r'
2 

80'· 8z'2 8z'2 
c

2 8r'2 
c

2 8r'2 

(5.39) 

Applying properties of Dirac-delta function to the left hand side, performing 

integrations by parts to all the terms on the right hand side and some further 

simplifications, the following was obtained: 

P =ff f 111 p-., - G ~' dz'd0'dr+f ff-:;-p-_, - G ~' dz'dr'dr+ 

1 2

"

1

· {( 
80JI ( 8 JI } 

1 

,;, '· 
1 

{( 
80Jl

2

" ( 
8 

·)1

2

"} 

0 0 0 8, ,;, 8, ,;, 0 0 0 , 80 0 80 0 

1 2;r,;, {( 
80JI'· ( 8 JI'·} ,;, 2

"'' , f( 8 JI ( aaJI } ff fr' P-::; - G~ dr'd0'dr+ ff f "7-l GL - p- dz'd0'dr'+ 
0 0 0 8,,, 0 8z O O O O C 8r r=O or r-ll 

r 2ffl, Iii 

ff ff GFr'dr'dz'd0'dr 
0 0 0 0 

(5.40) 

Equation (5.40) is the 3-D GFSE for cylindrical coordinates. The terms in the 

three first triple integrals accounts for the boundary conditions in r, 0 and z directions 

respectively. The terms in the fourth triple integral account for the initial conditions and 

the last term in the quadruple integral accounts for the source. 

For the analytical model of the side branch pipe the speaker was considered as a 

source of strength A at the entrance of the pipe. Also a sink of strength A I was considered 
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where the side branch is placed. The source and sink are shown in figure 5.12. Applying 

equation (5.40) to the case of the side branch pipe all terms but the source vanishes 

resulting in the following expression: 

I 2;r /. /I 

p(r,0,z,t) =ff ff GFr'dr'dz'd0'dr (5.41) 
() () () () 

source 

Fig. 5.12. Source and sink considered for the analytical model of the side branch pipe. 

The complete solution can be considered as the summation of two separate 

solutions, one for the source and one for the sink. The boundary conditions were: 

p(r,0,O,t) = 0 

p(r,0,L,t) = 0 

apl =0 
ar r=rO 

p(O,0,z,t) = finite real number 

(5.42a) 

(5.42b) 

(5.42c) 

(5.42d) 

The GF function for this case, which is presented next, was obtained by finding 

the solution for a pipe with boundary conditions (5.42a) through (5.42d) and initial 

condition p(r/J,z,O) = F where F = F(r,0,z). 
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(5.43) 

Were k1, k and Am are defined as follows: 

(5.44a) 

(5.44b) 

(5.44c) 

The source was assumed to be at a distance "a" from the entrance and applied to 

the whole cross sectional area of the pipe. The value of "a" was chosen to be a very small 

number such that a-o. The source was expressed mathematically as: 

F = A.sin(a.r).c5(x'-a) (5.45) 

Where: 

A is the strength of the source, 

a is the frequency of the source in rad/s 

Equation (5.45) guarantees that the source is a sinusoidal signal of strength A and 

is acting only at the entrance of the pipe. 

The mathematical expression for the sink was: 

(5.46) 

H is the step function 

A I is the strength of the sink. 
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Equation (5.46) guarantees that the sink is acting only at the area were the side 

pipe is placed. 

Solutions were found for the source and sink separately by substituting equations 

(5.43) and (5.45) into (5.4 I) for the source; and equations (5.43) and (5.46) into (5.4 I) for 

the sink. The expressions obtained are presented in the next page. Notice that the 

solutions can be easily separated into two waves, one wave traveling to the right and the 

other wave traveling to the left. In this way the reflected wave can be adjusted to match 

the experimental data, in this manner the amount of energy reflected at the boundaries 

can be accounted. Accurate account of the reflection coefficient may help to predict the 

onset of combustion instabilities. Figures (5.13), (5.14) and (5.15) show some results 

from the analytical analysis and from the experimental data for different values of input 

frequencies. 

The complete solution for the analytical analysis was given by: 

p(r,(-J,z,t) = Psc(z,t) + Psk1(z,t) + Psdr,0,z,t) (5.47) 

Since the complete expressions for equations Psc(z,t), Ps1<1(z,t) and Ps1drJJ,z,t) are 

very long they are shown in the next page by equations (5.48), (5.49) and (5.50). 
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Solution for the source: 

. (11Jr ) 
~ 4.c.A sm La . (n1r ) [ . (111r ) 111r . ] 

PsJz,t) = L.J [ , ] sm -z . a.sm -c.t --c.sm(a.t) 
11=1 11.Jr (llJr )- 2 L L L 

-c -a 
L 

For the sink the following expressions were found: 

( ( 
11.l[ ) ( 11.l[ )) cos -a, -cos -a 

( , )- 2.c.A 1.L.(02 -0 1)f, L - L 
1 

• (11.l[ .,.)111.l[ . ( )- . 111.l[ ]] 
Pski -J - ro.l[l L;: ( )2 [(/1.l[.C)2 2] sm L - r L c.sm a.t a.sml L c.t 

11.l[ . -- -a 
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(v=O) 

4 xx x [cos(v.02 )-cos(v.01)J{co{
1
i;a 2 )-cos(1;a 1)} 

p,, (r, 0, z, I) = :cA 2:; 2:; 2:; I , J,, (k., r0 ),sin( v ,BJ,sin( 11.l[ :::).J,. (k
111 

.r).[k.c. sin(a.t )- a. sin(k.c.t )] 
lo.l[ n 111 ,. • (ll.Jf )- 2 L 

,ur.k., 1 c - a 

Were: 

k=1{l~TCJ +(km)2 

(5.48) 

(5.49) 

(v-:f: 0) 

(5.50) 
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p 

The first term on the right hand side in equation (5.47) psc(z,t) is the solution for 

the source. Notice that psc(z,t) automatically came one dimensional. The pressure varies 

only in the axial direction. This was expected since the source was uniformly applied 

over the whole cross sectional area of the pipe. 

The second and third terms together are the solution for the sink. Since the 

problem is in cylindrical coordinates, the solutions are expected to come in terms of the 

Bessel functions. P,k 1 (z, t) is the part of the solution for v = 0 in the Bessel equation. 

Experimental and model results are shown in figures 5.13 through 5.15 for source 

frequencies of 200Hz, 300I-Iz and 400Hz respectively. Notice that the results are in good 

agreement with the experimental data. The frequency spectrum of the experimental d_ata 

was obtained by applying the Fourier transformation to the collected data. As for the 

analytical model the frequency spectrum was found by applying the Fourier 

transformation to the values calculated by the model. These values were obtained at the 

same intervals of time as the experimental data was collected. In this case the data was 

collected at a rate of 3000 data per second. 

-2 
200Hz model 

I 
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-6 

-8 ,;( 
·1,1 
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I I i 
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: I 

[111' 
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Fig. 5.13. Measured and calculated power spectrum for an input of2001-lz. 
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Fig. 5.14 Measured and calculated power spectrum for an input of300Hz. 
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The agreement between the experimental data with analytical model validates the 

technique proposed in this work. Figures 5. l 6a through 5. l 6d show some snapshots of 

the pressure distribution obtained from the analytical model at the neighborhood of the 

side branch pipe. 
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Figures 5.16a - 5. I 6d.- Pressure distribution at the neighborhood of the side branch pipe. 
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5.7. THE RIJKE TUBE MODEL 

Figure (4. lb) in section 4.1 showed the regions the Rijke tube was divided into in 

order to apply the technique proposed in this study. Regions I and II are the most 

important since this regions contributes the most to the pressure distribution. 

For example consider a periodic source of strength A placed at the entrance of 

region I. This is similar to the case of the sided branch pipe considering only the source. 

The solution was already presented in section 5.6. In this case the solution was given by: 

. (/11( ) 
S111 -a [ 

( ) ~-4.c.J\ L . (nrc ) . (nrc ) nrc . )] ( I) P, x,t = L..J [ 2 l sm -x . a.sm -c.t --c.sm(a.t 5.5 
u=I n.rc (nrc ) 2 L L L -c -a 

L 

Note: the solution started from the 2-D GFSE but automatically the solution 

became 1-D. This is expected since the source was applied over the whole area of the 

entrance. 

For region II the solution was obtained from the combination of a 2-D approach 

with constant speed of sound together with a 1-D with variable speed of sound approach. 

For the 2-D approach the following expression was obtained: 

( ) ~ - 2 .. /\..c.111
2 

• ( 17.TC ) • ( 17.TC [ l ]) I [ 17.TC • ( ) • ( 11.TC )) Puc x,r,t = L., 2 sm -.L 0 .sm -. x- •2 [ , i· -.c.sm a.t -a.sm -.c.t + 
""' n.TC.r1 L1 l 1 ( n.,c )- 2 L1 l 1 

-c -a 
L, 

(5.52) 

Where k is given by the following expression: 
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Ii = (/1.TrJ2 /32 ( + Ill 

LI 
(5.53) 

The values of /3
111 

are the zeroes of the equation below: 

(5.54) 

The zeroes of equation (5.54) give (/J
111

.r1 ), from there the value of /3
111 

can be 

easily obtained since r1 is known (see figure 5.17 for dimensions of r0, rl and the 

complete configuration). 

The 1-D variable speed of sound approach resulted in equation (5.56) shown in 

next page. 

The angular frequency co of equation (5.56) is given by the following equation: 

1 
OJ=-

2 [( J
2 l R 2.11.1r.b 12 

y. .a. ln(Jb.L
1 
+ 1J) + 7 (5.55) 

The values of the constants a and b depend on the maximum and minimum 

temperatures chosen for the parabolic profile given by equation (4.44). 

If the parabolic profile is chosen the same as the shown in figure 5.10 where the 

maximum temperature is 500 K and the minimum 300 K, then the first characteristic 

frequency obtained from equation (5.55) is co = 247 Hz for the dimensions of the Rijke 

tube considered in this work (see figure 5.17). NOTE: the value obtained from equation 

(5.55) is actually given in rad/s then it was converted to Hz. 

Equations (5.52) and (5.56) summarize the solution for regions I and 11 of the 

Rijke tube when a 200Hz sinusoidal source is considered. 
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Figures 5. l 8 a through d show snapshots of the 2-D solution with constant speed 

of sound obtained from a contour plot of equation (5.52). Figures 5.19 a through d show 

snapshots of the 1-D solution with variable speed of sound obtained from equation (5.56); 

figures 5.20 a through d show snapshots for a combination of equations (5.52) and (5.56) 

Fig. 5.18. Two-dimensional pressure distribution for constant speed of sound 

Fig. 5.19. One-dimensional pressure distribution for variable speed of sound 

Fig. 5.20. Pressure distribution for combination of 2-D with constant speed of sound and 1-D 
variable speed of sound 
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Figures 5.21, 5.22 and 5.23 are the Fourier transform (FT) of the numerical results 

obtained from equations (5.52) and (5.56). Figure 5.21 shows the FT for region II when 

only a 2-0 pressure distribution with constant speed of sound was considered. Figure 

5.22 shows the FT when only a 1-0 pressure distribution with axially variable speed of 

sound was considered. Finally, figure 5.23 shows the FT when the pressure distribution 

was considered as a combination of the two previous cases. Notice that several harmonics 

were triggered for the variable speed of sound. NOTE: the data was collected at a point 

close to the end of the small pipe (at x = 44 cm) 

Region 2 Two-D constant Speed or Sound 
3 . 

. 4 
0 200 4ll0 GOO 800 1000 1200 14001500 

F1oquency 

Fig. 5.21. rT for the 2-D pressure distribution 
with constant speed of sound 

3. 
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0. 
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.3 . 

• 4 • 
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0 200 400 GOO 800 1000 1200 14001500 
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Fig. 5.22. FT for the 1-D pressure distribution 
with variable speed of sound 

Region 2 Combined 2-0 constant speed and 1-D variable speed of sound 
2 

400 GOO 800 1000 1200 1400 I 500 
F1equency 

Fig. 5.23. FT for the combined 2-D pressure distribution with constant speed of sound 
and 1-D pressure distribution with variable speed 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1. CONCLUSIONS 

A technique using the Green's Functions for solving the wave equation was 

introduced in this work. This technique allows solving problems whether acoustic sources 

( or sinks) are present or not. If sources are present these can be distributed or discrete. 

The results found using this technique were compared with results found in literature 

showing to be in good agreement. One and two-dimensional problems with constant 

speed of sound and a one-dimensional model with axially variable speed of sound were 

considered. In addition a 3-0 model for a side branch pipe was considered and the results 

showed to be in good agreement with the experimental data. The solutions were closed 

form mathematical expressions which facilitate the tabulation of numerical results and 

eases the plotting in any mathematical software such as MatCad, Matlab even Excel. On 

the other hand, if finite differences techniques are used for this kind of problems the 

amount of computational resources needed are far more expensive and time consuming 

than using the technique proposed here. 

To arrive to this technique the GFSE's for the wave equation in Cartesian and 

cylindrical coordinates in one, two and three dimensions were found. Also, several GF 

for first and second kind boundary conditions were found to be used with their 
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corresponding GFSE. The GFSE is one and unique for a given geometry but the OF 

depends on the geometry and the boundary conditions. 

Although the purpose of this work was to present a model for the Rijke tube, this 

technique can also be applied to any problem where the wave equation is considered, 

such as in MRI's, mufflers, and vibrations just to mention some examples. Also this 

technique can be applied in problems where 1-D variable speed of sound can be assumed. 

This feature allows accounting for the different fuel composition effects since the 

temperature profile is related to the fuel composition. 

6.2. FUTURE WORKS 

Experimental data obtained from different blends of fuel and air is needed to 

measure the scope of the technique proposed here. It is also proposed as a future work to 

break the results in two waves, one traveling upstream and the other downstream and 

introduce a reflection factor in order to gain accuracy in the theoretical results. Or by 

changing the reflection coefficient in the equations to make the results match the 

experimental values an accurate reflection coefficient could be determined. 

This technique can be also used to solve problems in other fields of the 

engineering such as transient heat conduction. 
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APPENDICES 

APPENDIX A 

DIRAC-DELTA FUNCTION: Proof of second property 

fl 

Consider J f(x)8(x - l;)dx where a< I;< pas shown in figure A. I: 
11 

y . 
: 8(x-l;) 

f(x) 

,+-- t 

I; a 
X 

Where: e➔O 

Fig. A. I. Integration of Dirac-delta 

According to figure A. I the integral can be broken up as follows: 

fl s-r. s+r. P 
J f(x)8(x - l;)dx = J f(x)8(x - l;)dx + J f(x)8(x - l;)dx + J f(x)8(x -l;)dx 
" u ~-r. s-,-r. 

Since 8(x-l;) = 0 if x * I;, then the first and third terms on the right hand side 

vanishes, therefore: 

p I;~ 

J f(x)8(x -l;)dx = 0 + f(I;) J 8(x - l;)clx = f(I;) 
r,_ l;-t: 

fl 

Then: J f (x)8(x - l;)dx = f (I;) 
11 
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APPENDIXB 

DERIVATION OF TI-IE GF FOR DIFFERENT COMBINATION OF BOUNDARY 

CONDITIONS 

ONE-DIMENSIONAL GF 

CASE I: 

By applying orthogonality principles the values of the coefficients were found to 

be: 

2 L 
a 2 = -. f g(x)sin(kx)dx 

(J)Lo 

2 ,. 
h2 = - f h(x)sin(kx)dx 

Lo 

And the final solution is: 

L 2 cn L2"J 
p(x, t) = f-2)in(kx)sin((J)t)sin(kx')g(x')dx'+ f- ~)in(kx)cos((J)t)sin(kx')h(x')dx' 

o (J)L n=I o L n=I 

(BI) 

When h(x) and g(x) are specified then the integration can be performed and the 

final solution can be found. 

Recall the GFSE (11) to solve the same problem: 

p(x,t)=f p-
1 

- G~ ch+- 2 f p- - 0_£_ dx'+ffGFd1clx' 
1 

{( ao) 1. ( a ) 1.} 1 1. (( ao) ( a ) J 1. 
1 

0 8X O 8X O C O 81 t=O 81 t=O O 0 
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The usual practice is, conveniently, to choose the boundary conditions for the 

auxiliary problem to be homogeneous and of the same kind of the boundary value 

problem to be solved. In this case G(x,tlO;r) = G(x,tlL,-r) = 0 

Since the boundary values are zero and there is no source, the GFSE is reduced to: 

p(x, t) = ~ J((P ao) -(a ap) Jdx' 
C O a, r=O a, r=O 

But the initial conditions were given to be: 

p(x,O)=h(x) P1(x,O)=g(x) 

Then: 

'-l (8G) L I p(x,t) = f-2 h(x) - dx'-f- 2 g(x)Glr=odx' 
0 C 8r r=O O C 

(B2) 

Equations (BI) and (B2) are the solution to the same problem using two different 

techniques; by comparing both results it can be easily noticed that: 

2c "J I 
Glr=o = -. I-sin(kx)sin(cvt)sin(kx') 

L 11=1 111r 

Therefore: 

(J;) 2c 
G = I-sin(kx')sin(kx)sin(cv[t-r]) 

11=1 /11[ 

k= n1r and w=kc 
L 

(83) 

(83.a) 

This last equation is the GF for the one-dimensional wave equation with Dirichlet 

boundary conditions. 
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Notice that the GF was found from the solution of the homogeneous case with 

homogeneous boundary conditions. These kinds of problems are relatively simple to 

solve. Then the GF can be applied to the GFSE to solve more complex problems. 

Using a similarly procedure the problem with homogeneous boundary conditions 

can be solved and provide the GF. Next two more one-dimensional cases are presented. 

CASE II 

Boundary conditions of the second kind. 

opl = apl =O 
OX .r=O OX .r=I, 

And the respective GF is: 

"' 2c 
G = L-cos(kx')cos(kx)sin(cv[t - -r]) 

11=1 111[ 
(B4) 

W. I 1 n1r d I 1t·1 ,c = - an co=<c 
L 

(B4.a) 

CASEifl 

Dirichlet (or first kind) - Neumann (or second kind) boundary conditions. 

opl - = p(L,t) = 0 
OX .r=O 

And the GF is: 

w 2c 
G = L---cos(kx')cos(kx)sin(cv[t- -r]) 

11=1 (211+l)1r 

(211 + I) 
Where k = ---Tr 

2L 
and co=kc 
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TWO-DIMENSIONAL GF 

CARTESIAN COORDINATES 

Although a variety of boundary conditions can be used and their respective GF be 

found; only three cases of interest for this study are presented next. Using equation ( 14) 

and the 2-D homogeneous version of the wave equation the GFs were found by using the 

same procedure as for the 1-D cases. 

CASE I 

Dirichlet boundary conditions at all the boundaries. 

p(O,y,0= p(L,y,0 =p(x,0,0 =p(x,H,0 =O 

H is the characteristic length in the y direction. 

(86.a) 

(B6.b) 

CASE If 

Dirichlet boundary conditions on x and Neumann boundary conditions on y. 

p(O,yJ) = p(L,yJ) =O 

ap = ap =O 
ay y=o ay y=II 
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I - /17[ 
1(1--

L 

CASE HI 

and I /11 Jr ,c =-
2 H 

Boundary conditions as follows: 

p(L,y,t) = 0 

And the GF is as follows: 

/c
1 

= (2n + l)Jr 
2L 

and k
2 
= l11Jr 

H 

(87) 

(87.a) 

(B7.b) 

(B8.b) 
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CYLINDRICAL COORDINATES 

Two cases were considered for cylindrical coordinates. 

CASE I 

Boundary conditions as follows: 

p(O,r,t) = p(L,r,t) = 0 

p(x,r 0,t) = 0 

4c ~ ~ sin(/c x')J (le r') . . 
G= 2 L.d . .J 

1 0 111 s111(/c1x)J 0 (/c111r)s111(m[t-r]) 
L( 'c, ) 11=0 111=1 ] 2 ( n Tr) 2 

2 [11 (k,,,1c,) ., T + k/11 

and k111 are the zeroes of the eigenfunction J0(k111r0)=0 

CASE II 

For the boundary conditions: 

p(O,r,t) = p(L,r,t) = 0 

opl =0 
or l'=lh 

G 4c ~sin(k 1x) . (, ) . (n.Tr [ ]) = 
2 

L.i---Sl11 1( 1X .Sill -C [ - r 
L .. Tr.r0 11=1 n L 

+ 

4c
2 

~ ~ sin(k 1x')J 0 (k 1111

2

·') 
L.iL.i------.=======sin(k 1x)J 0 (k,,,1·)sin(m[t - r]) 

L.r0 11=1 111=1 [ ]2 ( n Tr) 2 
J 0 (k,,,1,,) ., L +k 111 
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Notice that the first term comes from the fact that m=O is also an eigenvalue making 

1i1 

k111=0 and the norm (i.e. the value of the integral in the denominator J r../ 0 (k,,,r)dr) 
() 

Ii, r 2 

becomes J rdr = -0
-

o 2 

I,• - /11( 
\,1--

L 
and k111 are the zeroes of the eigenfunction J 1 (1<111ro)=O 

The eigenfunction for m=O is J0(0)= I 

CASE III 

For the boundary conditions: 

p(L,r,t) = 0 

(BIO.a) 

(B 10.b) 

G - 4c ~~ cos(lc1x')J 0 (k,,,r') (/, ·)/ ( 1 ·). ( [ ]) - 2 L,.L,.---------;:==========COS C1X, 0 1(
111

1 S111 OJ t -T 

L(,;>) 11=0111=1[ ] 2 ((2n+l)rrJ
2 

2 
Jo (k",1;>) ., 2L + le"' 

(Bl l.a) 

l<I -
- (2n + l)1e 

and k111 are the zeroes of the eigenfunction J 1 (l<mro)=O (BI I . b) 
2L 
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CASEIV 

With a similar approach followed in case II, it can also be obtained the 3-0 OF after 

including the azimuthal variable (0). The result is: 

'" "' "' 2c sin(v0').sin(/c z').J ,(,1, r') . . . G = LLL 1 
' 2 

111 s111(110).sm(k1z)..J,, (A
111r).s111(k.c.[t - r]) 

Jr [1'0 ] . 11=1 111=1 l'=o le. [ ,~J,, (,1,
111

r)clr 

With 

OJ= c.k 

11 Jr 
kl= 

L 
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and 11,111 are the zeroes of the eigenfunction Jv(11,111ro)=O 
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