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ABSTRACT 

 

Biocompatible and Multifunctional Trityl Spin Probes for Electron Paramagnetic Resonance Spectroscopy 
 

Teresa D. Gluth 
 

The primary objective of my thesis was to develop and utilize a biocompatible multifunctional trityl spin 
probe for concurrent measurement of pO2, pHe, and [Pi] in vivo by electron paramagnetic resonance (EPR) 
spectroscopy (Chapter 2). My first goal was to synthesize the proposed probe we are terming HOPE71. 
Secondly, HOPE71 was characterized by X-band and L-band EPR spectroscopy. Next, the biocompatibility of 
HOPE71 was assessed through an albumin binding test, cytotoxicity assays, and in vivo intravenous tolerance. 
Then, the use of HOPE71 to measure the target parameters was demonstrated in a breast cancer mouse model. 
In tandem, I developed an application for user friendly fitting of the EPR spectrum of HOPE71 and the related 
monophosphated probe, pTAM (Chapter 3). Lastly, to demonstrate further skill in synthesis of trityl spin probes, 
I worked in collaboration with the Saxena lab at the University of Pittsburgh to develop a hydrophilic spin probe 
with a maleimide linker for structural biology studies using site directed spin labeling and dipolar EPR 
spectroscopy (Chapter 4). 
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CHAPTER 1 – Multi-Parameter Assessment of the Tumor Microenvironment (Review) 

 
1. Introduction/Abstract 
 The tumor microenvironment (TME) contains important elements for understanding tumorigenesis and 
therapy resistance. Three markers characteristic of the tumor microenvironment are hypoxia (low pO2), acidosis 
(low pHe), and elevated inorganic phosphate concentration [Pi]. These attributes are vital to study cancer as they 
relate to the mechanisms of tumor growth, the aggressiveness of the cancer, and the response to therapy. There 
are various methods for measuring each of these parameters individually, each with benefits and drawbacks. 
One notable method is electronic paramagnetic resonance (EPR) spectroscopy utilizing pTAM, a 
monophosphonated trityl radical, which allows for concurrent, non-invasive measurement of pO2, pH, and [Pi] for 
in vivo applications.  
 
2. Tumor Microenvironment 
 With its complexity, prevalence, and burden on society, cancer is and will continue to be a significant and 
essential topic in research, and studying the tumor microenvironment (TME) is vital for understanding 
tumorigenesis and therapeutic response1, 2. The TME is a complex network of various immune and fibroblast 
cells, vasculature, and extracellular matrix2. Its characteristics are both affected by and affecters of the tumor 
story. Two physiological parameters of the TME, hypoxia and acidosis, are well-defined hallmarks of solid tumor 
development and play considerable roles in tumorigenesis and treatment resistance. More recently, high 
inorganic phosphate concentration was also identified as a tumor marker that may also indicate metastatic 
character3.  
 
2.1 Hypoxia 

Oxygen is vital for normal metabolic function in the cell, and therefore, adequate oxygen supply to the 
tissue is essential for maintaining homeostasis. Tissue oxygenation (pO2) is a measurement of the net supply 
and demand of oxygen. An inadequate amount of oxygen to the body or specific tissue leads to hypoxia. Normal 
tissue oxygenation can range from approximately 10 to 70 mmHg, while hypoxia is defined as oxygen levels 
below 10 mmHg4-6. Hypoxia is a well-established hallmark of solid tumors, with the initial observation made over 
60 years ago7, and the association has been verified across many types of cancer. The overall average 
oxygenation and the fraction of normoxic regions are considerably lower in tumors when compared to their 
corresponding tissue5. 
 Tumor hypoxia is caused by an imbalance between oxygen delivery and consumption. The high rates of 
metabolism and proliferation in cancer cells create higher demands for oxygen, while tumor vasculature fails to 
deliver sufficient and consistent oxygen8. There are two primary types of oxygen deprivation: chronic or diffusion-
limited hypoxia, which is due to an increasing distance between blood vessels and cells, and acute or perfusion-
limited hypoxia, which is caused by a temporary drop in blood flow9.  
 Tumor hypoxia has several consequences on tumorigenesis and therapeutic response. Evidence shows 
that a hypoxic environment may be present early in pre-malignant lesions due to the basal membrane limiting 
oxygen supply10.This creates a selected pressure towards cells resistant to hypoxia-induced apoptosis10. 
Hypoxia has also been associated with a more metastatic character due to two main effects: (1) continued 
selective pressure that can lead to greater survival of more aggressive cells, (2) hypoxia-induced expression of 
genes that leads to metastases8, 10, 11. Also, hypoxia can lead to recruitment of inflammatory cells and 
reprogramming of the inflammatory pathways that promote the tumor’s ability to escape immune patrolling, 
proliferate, remodel the extracellular matrix, and migrate12, 13.  
 An additional major consequence of hypoxia is resistance to standard therapy, such as radiation and 
some chemotherapies. The radiosensitivity of a tumor is related to the oxygenation through the oxygen 
enhancement effect or oxygen enhancement ratio (OER)14. Radiation in the presence of oxygen creates oxygen-
centered free radicals while damaged mitochondria leak more reactive oxygen species (ROS), both of which 
increase the DNA damage15. Consequently, hypoxic tissue requires up to three times more radiation dose than 
normoxic tissue for the same therapeutic effect14, 16. Hypoxic tumor cells can also be less sensitive to 
chemotherapy, which generally targets rapidly dividing cells, because of slowed proliferation from lack of 
nutrition8. The gene expression selected and induced by hypoxia can also protect cells from chemotherapy 
through loss of apoptosis8.  
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2.2 Acidosis 
Another important chemical parameter in physiologic homeostasis is pH. Intracellular pH (pHi) is around 

7.2 and tightly regulated to preserve normal intracellular metabolism and function17, 18. The pH of the blood and 
the interstitial space (pHe) of healthy tissue is generally around 7.419. Systemically, the pH is maintained by the 
lungs and kidneys. Acidosis occurs when the tissue pHe is more acidic, in the range of 6.5 to 6.9, and has been 
repeatedly associated with solid tumors for several decades20. In malignant tissue, there is an imbalance in 
increased proton secretion and poor proton removal. Cancer cells demonstrate a high rate of glycolysis to meet 
the high energy demands of a growing tumor21. An increased dependency on glycolysis can be a result of 
hypoxia, but glycolysis has been shown to persist even in well-oxygenated conditions, which suggests a high 
growth adaptation selected by intermittent hypoxia in the early stages of tumor development10. High rates of 
glycolysis create great amounts of lactate, which is exported from the cell along with protons22. As discussed 
earlier, the vasculature and perfusion of a tumor is often irregular and ineffective, and therefore, may not 
efficiently remove the buildup of protons.  
 Acidosis creates further selective pressure toward cells that are more resistant to acidic environments. It 
has also been associated with more aggressive and metastatic capabilities, possibly due to enhanced 
angiogenesis and degradation of the cellular matrix10. The acidic pHe can have consequences on therapeutic 
response, especially when using chemotherapeutics with pKa values around 6-8 because the increased 
protonation can alter the absorption, metabolism, and mechanism of action.  
 
2.3 Inorganic Phosphate 
 Inorganic phosphate (Pi) is a major building block in nucleotides of DNA and RNA and phospholipids in 
cellular membranes. Phosphates are also an essential component of metabolism, with ADP and ATP acting as 
the main energy exchange source for cellular processes. Additionally, phosphorylation and dephosphorylation, 
or esterification and hydrolysis of phosphate groups on organic macromolecules, play vital roles in many 
enzymatic reactions and signaling mechanisms. More recently, an increased concentration of inorganic 
phosphate in the extracellular space was reported as a tumor marker in mice, differing from healthy tissue even 
more dramatically than pO2 and pHe

3. Also, serum from patients with cancer had more than twice the amount of 
phosphorus from Pi than healthy patients23, 24. A major theory for this observation is related to the growth rate 
hypothesis (GRH), indicating that the tumor requires greater amounts of phosphorus to make components for 
excess proliferation25. Pi also may play a role in metastatic mechanisms as the concentration of interstitial 
phosphate has demonstrated a direct correlation with the metastatic potential of the cancer3. One aspect of the 
metastatic potential may be explained by the increased uptake of Pi which may enhance the ability of malignant 
cells to migrate and adhere26. The effects of phosphate on therapeutic response are still unclear, with studies 
showing differing results. 

 
Figure 1. Summarized diagram of pO2, pH, and [Pi] in the tumor microenvironment. 

 

2.4 Importance for measurement and correlation 
 Hypoxia, acidosis, and elevated [Pi] are all strong indicators of malignancy, and they appear to have both 
cause-and-effect roles in tumor growth and aggression. Measurement of these parameters can be an 
instrumental tool in cancer research and therapy—studying the many mechanisms in tumorigenesis and 
metastasis, predicting outcomes, and optimizing therapeutic interventions. The ability to measure all three, pO2, 
pHe, and [Pi], unlocks even more potential investigations regarding the correlation between the variables. 
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Because these parameters can have significant temporal and special variance, more accurate correlation 
analysis would require the measurements to be made simultaneously and from the same location.  
 
3 Measurement Techniques 
 There are currently methods for measuring each of these parameters in tissue independently. All these 
methods have their strengths and weaknesses. To the best of our knowledge, the only technique that allows for 
the simultaneous measurement of all three parameters of interest in vivo is Electron Paramagnetic Resonance 
(EPR) paired with a multifunctional radical probe. The following paragraphs aim at providing a short overview of 
the main techniques to measure pO2, pH, and [Pi] in vivo.  
 
3.1 Oxygen Measurement 
 There are quite a few methods for measuring tissue oxygenation in vivo. One of the most common 
methods for measuring pO2 is the Eppendorf polarographic electrode. This method can be used for in vivo tissue 
measurement using a microelectrode. However, this technique is invasive and consumes oxygen, which does 
not allow for repeated measurements in the same location8. Currently, there is no oxygen electrode available 
and suitable for clinical measurement of tumors5.  

Another common oxygen sensing technique involves the use of a fiber-optic probe that measures 
oxygen-dependent fluorescence quenching. This method has the advantage of high sensitivity at low oxygen 
partial pressures and does not require regular calibration but is also invasive as it requires the insertion of the 
probe into the area of interest.8 A related optical method utilizes oxygen-dependent phosphorescence quenching 
of a phosphorescent agent that can be injected in vivo. This method allows for tissue oxygenation measurement 
to only a few millimeters depth because of the light penetration ability, but some methods and agents have been 
developed to utilize deeper penetrating X-rays5. 
 Some drugs or markers selectively respond to hypoxic tissue. Bioreductive markers, such as those 
containing a 2-nitroimidazole moiety, are reduced selectively by hypoxic cells8. The reduced form covalently 
binds to thiols or amines of cellular components and therefore accumulates in hypoxic tissues. Pimonidazole 
(Hypoxyprobe) is a popular biomedical tool to image hypoxic tissue ex-vivo. However, this method requires hours 
of consistent hypoxia to viable cells5. PET tracers containing a nitroimidazole (e.g., [18F]FAZA) are used clinically 
to track hypoxic regions non-invasively27.  

One way to indirectly measure tissue oxygenation is to measure oxygen in the blood. There is a strong 
relationship between the pO2 in the blood and the oxygen saturation of hemoglobin (Hb), so techniques that can 
detect differences between oxyhemoglobin (HbO2) and deoxyhemoglobin (dHb) can provide vascular pO2

8. 
However, vascular pO2 does not translate well to tissue pO2 because of the variable nature of perfusion and 
diffusion, especially in tumors, and the presence of myoglobin in some tissue5. The most clinically available 
method currently is pulse oximetry, which uses near-infrared range spectroscopy (NIRS) to measure the 
concentration of HbO2 to total hemoglobin. It does have the major advantages of being inexpensive, real-time, 
and non-invasive.  
 Another technique that targets vascular oxygen is blood oxygen level-dependent (BOLD) MRI, where 
dHb acts as an endogenous contrast agent because of the paramagnetic electrons in Fe2+ 8. Because BOLD 
contrast is only a function on the amount of deoxyhemoglobin, quantitative measurement of blood pO2 is very 
challenging, but BOLD MRI may provide valuable insight into changes in blood oxygen or volume and is clinically 
available and non-invasive5.  
 A more direct method for measuring tissue oxygenation uses 19F-NMR probes. Molecular oxygen affects 
the NMR relaxation times of these probes. Therefore, biocompatible perfluorocarbons (PFOB, HFB, etc.) can be 
injected in vivo, and the relaxation times measured to derive the concentration of oxygen8. While MRI is readily 
available in most clinical settings, the use of 19F-NMR spectroscopy and imaging is not yet available for clinical 
practice5. NMR-based methods are also limited by low resolution and very low sensitivity which is a major hurdle 
for exogeneous perfluorocarbons probes 28, 29.  
 Finally, electron paramagnetic resonance (EPR) oximetry operates on a similar principle as 19F-NMR 
oximetry—molecular oxygen shortens the spin relaxation times of a paramagnetic probe. It results in a 
broadening of the EPR line of the probe. For soluble EPR probes, there is a linear relationship between the EPR 
linewidth of the probe and the oxygen concentration.8 EPR oximetry is non-invasive and highly sensitive but does 
require the introduction of paramagnetic material or probes. Fortunately, the high sensitivity (≈1000 times more 
sensitive than 1H-NMR) allows for smaller amounts of spin probe than would be required for NMR. EPR oximetry 
is available for clinical use with particulate paramagnetic material, but clinical EPR instruments are not widely 
accessible today, and no soluble probes have been approved yet for use in humans5. 
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3.2 pH Measurement 
 One of the most common and oldest methods for measuring pH is with electrodes, and the glass 
electrode is generally used as the gold standard to calibrate and evaluate new methods30, 31. Most pH electrodes 
work by measuring the difference in potential across a membrane which depends on the concentration of H+ 
compared to a reference electrode. In general, pH electrodes have high sensitivity, accuracy, and pH response 
range between 2 and 932. However, these electrodes are temperature-dependent and often suffer from stability 
issues and drift, requiring frequent calibrations32, 33. Microelectrodes have been made with various materials 
(glass, polymers, silicon, metal) in attempt to optimize biostability, biocompatibility, reliability, and accuracy for 
in vivo use32, 34. Still, these microelectrodes are limited to superficial readings and are invasive.  
 Optical-based methods are another common class of techniques for measuring pH in vivo. Generally, 
colorimetric or fluorescent pH indicator dyes are suspended in a solid matrix on an optical fiber-based sensor33. 
The optical fiber sensors can provide real-time blood or interstitial pH but can still experience drift from 
photobleaching33. These methods are also invasive, requiring implantation of the fiber into the area of interest. 
Therefore, the biocompatibility of the fiber, dye, and matrix is essential.  
 The first non-invasive method of measuring pH is with positron emission tomography (PET). Radiotracers 
will distribute between the extracellular and intracellular space depending on the pH and ion trapping of the cell 
membrane. Because the basis of the measurement is based on the affinity of the radio-labeled compound to 
cross the membrane, it can be imprecise and inaccurate.35  
 Magnetic Resonance Imaging (MRI) and spectroscopy (MRS) provide more valuable methods for 
measuring pH non-invasively. Specific gadolinium contrast agents have been developed with relaxivities 
modulated by the pH, providing pH-weighted MRI images36 . Also, contrast agents for the chemical exchange 
saturation transfer (CEST) MRI modality have also been utilized for pH mapping in vivo20, 35. The major limitations 
to CEST-based MRI are that it requires relatively high concentrations (>10 mM) of contrast agent and a very 
stable magnetic field35. A clinically available way of measuring pH is by 31P-NMR spectroscopy. The chemical 
shift between endogenous Pi and creatine phosphate on the MR spectrum can be used to calculate intracellular 
pH (pHi)37. However, this method depends on the concentration of Pi, which is variable, lacks resolution, and is 
affected by ionic strength38, 39. In order to measure extracellular pH (pHe), a cell impermeable 31P-NMR probe 
such as 3-aminopropylphosphonate (3-APP) needs to be injected40. 3-APP is highly biocompatible but has not 
been approved for use in humans40-42. More recently, 2-imidazole-1-yl-3-ethoxycarbonyl (IEPA) was developed 
as a pH-sensitive probe for 1H-NMR35. The poor sensitivity of NMR techniques can be enhanced through dynamic 
nuclear polarization (DNP), which has been used to enhance the NMR signal of 13C-labeled bicarbonate for pH 
measurement35. However, DNP suffers from the fast decay of hyperpolarization (in only a few minutes) and high 
instrumental, operation costs, and complexity of the technique. 
 EPR has an advantage over NMR by having a much larger analytical sensitivity and the absence of 
background signal. Similar to NMR, changes in pH caused shifts in peaks field positions and hyperfine 
splittings38. Early non-invasive EPR measurements of pH in vivo utilized pH-sensitive nitroxide radicals43, 44, but 
most nitroxides are quickly reduced in vivo to EPR-silent hydroxylamines45. Various trityl radicals, which have 
higher redox stability in vivo, have been shown to have an EPR spectrum sensitivity to both pH and oxygen38, 39, 

46-48. Neither nitroxides nor trityl radicals are available for clinical use to date. 
  
3.3 Phosphate measurement 
 Inorganic phosphate and phosphate-containing metabolites have been often measured in tumors using 
31P-NMR spectroscopy to differentiate from healthy tissue and to study growth mechanisms41, 49-51. The 31P-NMR 
peaks are assigned to the different phosphates on NTP and NDP, phosphocreatine, phosphodiester, 
phosphomonoester, and inorganic phosphate, and the integrals of the peaks inform on the relative amount of 
each phosphorus-containing compound50, 51. However, this method using endogenous phosphorus does not 
allow for discrimination between extracellular and intracellular 31P signals, and results in tumor tissue have been 
highly variable and unclear3.  
 In clinical practice, Pi is often measured in serum, plasma, blood, and urine samples using a colorimetric 
assay based on a complex between Pi and molybdate with a recording of the absorbance at 340 nm24. While 
phosphate is also generally elevated in the blood of patients with cancer23, it is not an accurate representation 
of the local [Pi] in the tumor. Microdialysis and colorimetric quantification of the extracellular [Pi] can be performed 
in pre-clinical settings, but this technique is invasive and difficult to implement52.  
 Within the past decade, a monophosphonated trityl radical EPR probe, pTAM, was developed for 
concurrent measurement of pO2 and pHe, and it was also found to have spectral sensitivity to [Pi]48, 53, 54. With 
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increasing [Pi], the proton exchange rate between the ionic species of pTAM increases and causes the EPR 
lines to coalesce48. The exchange rate can be calibrated against [Pi]3, 53, 54. Therefore, with pTAM and EPR 
spectroscopy, oxygen, pH, and [Pi] can be measured in vivo concurrently and non-invasively with high 
sensitivity3. Because all three parameters are derived from the same probe and not from multiple probes with 
different potential localization, pTAM allows for correlation analysis of these three parameters. 
 
Table 1 summarizes the methods to measure pO2, pH and [Pi] with their advantages and limitations. 
 

Method Advantages Limitations pO2 pH [Pi] Concurrent 
Microelectrode - high accuracy 

- high sensitivity 
- invasive 
- oxygen-consuming 
- frequent calibration 

X X   

Fiber-optic 
fluorescence 

- high sensitivity  
 

- invasive 
- photobleaching 

X X   

Fluorescence/ 
phosphorescent 

imaging 

- High resolution 
- non-invasive 

- low penetration depth X    

18F-FAZA PET 
(nitroimidazole) 

- clinically available 
- non-invasive 

- requires use of radioactive 
material 

X    

NRIS - inexpensive 
- real-time 
- non-invasive 
- clinically available 

- blood fraction only X    

BOLD-MRI - non-invasive 
- clinically available 

- not direct pO2 measurement 
- blood fraction only 

X    

19F-MRI -- non-invasive - low sensitivity X    

pH-sensitive 
radiotracer PET 

- clinically available 
-non-invasive 

- imprecise 
- low accuracy 

 X   

CEST-MRI - clinically available 
- non-invasive 

- low sensitivity  X   

31P-MRI - no exogenous 
compound required 
(except for pHe 
discrimination) 

- low sensitivity 
- hard to discriminate 
between intracellular and 
extracellular Pi 

 X X X 

Hyperpolarized 13C-
MRI 

- non-invasive - limited measurement time 
- high operational cost and 
complexity 

 X   

Colorimetric Assay 
with Molybdate 

- clinically available - blood or urine fraction   X  

EPR - high sensitivity 
- non-invasive 
- extracellular specific 

- low resolution X X X X 

Table 1. Comparison of methods for in vivo measurement of the pO2, pH, and [Pi]. 

 
4 EPR  

Electron Paramagnetic Resonance (EPR) or Electron Spin Resonance (ESR) is based on the same 
principle as the most common nuclear magnetic resonance (NMR) technique, with a focus on the electron spins 
instead of the nuclear spins. Therefore, EPR applies to species with free electrons. A major difference between 
EPR and NMR is that the magnetic moment of the electron is 659 times greater than that of the proton, providing 
a much higher sensitivity8. 

The most common EPR spectrometers operate at X-band (around 9.5 GHz) frequency. At this frequency, 
the non-resonant absorption of aqueous samples limits the penetration depth of the electromagnetic radiation to 
about 1 mm, insufficient for in vivo applications. Low-frequency EPR spectrometers (<1 GHz) allows for higher 
penetration depth but comes at a decrease in sensitivity.8  
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Another significant difference between NMR and EPR is the need for paramagnetic materials. With the 
exception of melanin, there are no endogenous species present in sufficient quantities to be detected directly by 
EPR in vivo. Therefore, in vivo applications of EPR require the injection of exogenous paramagnetic compounds 
or probes. In contrast, MRI detects the protons of endogenous water molecules which are present in large 
concentrations (>50M), allowing this method to thrive for in vivo applications despite its much lower sensitivity. 
The most popular application of in vivo EPR is EPR oximetry. While oxygen is paramagnetic with two unpaired 
electrons, its fast relaxation makes it undetectable in solution by EPR (the lines are too broad)8. However, the 
collisions between oxygen and a paramagnetic compound, introduced as probe, result in a shortening of the 
probe's relaxation times and a broadening of the EPR line (Figure 2) of the probe55. After calibration in vitro, the 
EPR linewidth of a probe measured in vivo reports the oxygen concentration in the vicinity of the probe.  

 
Figure 2. Effect of molecular oxygen on the EPR linewidth of a paramagnetic spin probe. Reproduced from Ahmad et. al.55.  

 
4.1 Paramagnetic Materials 

There are two main categories of paramagnetic materials used for oxygen measurement, namely 
particulate and soluble probes.  

Particulate paramagnetic substances, such as coals, chars, India ink, and lithium phthalocyanine, octa-
n-butoxynaphthalocyanine (Figure 3A), have a high electron spin density and very high sensitivity to oxygen8, 55. 
They are also very stable and, once implanted in vivo, allow for repeated measurements at the same site over 
months. India ink and lithium octa-n-butoxynaphthalocyanine embedded in an FDA-approved biocompatible 
polymer (PDMS) are currently being used in clinics (Figure 3B)5. However, because of the variable nature of 
these materials, the EPR properties can vary between batches, and calibration of the oxygen sensitivity is 
required for each batch. Also, the high sensitivity of the probes to oxygen results in a significant loss in signal-
to-noise ratio in normoxic conditions (as the intensity of the signal is inversely proportional to the square of the 
linewidth).8 

 
A 

 

B 

 
Figure 3. A. Structure of LiNc-BuO and B. LiNc-BuO emended into a gas permeable polymer. Reproduced from Ahmad et. al.55.  
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Soluble probes include nitroxides and trityl radicals (Figure 4). Nitroxides radicals have been first 
developed for EPR applications. The well-developed chemistry of nitroxides allowed for the synthesis of a large 
variety of structures with functional sensitivity to important parameters such as oxygen, pH, enzyme activity, 
redox status, or reactive oxygen species or with higher resistance to reduction. The main limitation of nitroxides 
is their fast bioreduction in vivo (a few seconds to a few minutes)45.  
 

A 

 

B 

 
Figure 4. Structures of A. nitroxides and B. trityl radicals used for biomedical EPR. 

 
On the other hand, triarylmethyl (TAM) or trityl radicals (Figure 4B) have extraordinary stability in vivo, 

with half-lives in blood in the range of hours to days and demonstrated resistance to most biological 
oxidoreducants56. Trityl radicals also have the advantages of longer relaxation time and narrower line widths, 
which allows for a higher signal-to-noise ratio, which is critical for in vivo application, and higher functional 
sensitivity8. The most popular structures are the Finland Trityl (FT), OX063, and their deuterated analogues dFT 
and OX071 (Figure 4B) developed in the late 90s by Nycomed Innovation (now subsidiary of GE Healthcare)57. 
Both structures exhibit extraordinary stability in biological media, high water solubility, and single-line EPR 
spectrum. Because of those features, trityl radicals are considered superior probes for biomedical EPR 
applications.  
 However, FTs and their derivatives have some major limitations for biological applications. Firstly, the 
lipophilic triarylmethyl core of the trityl is responsible for lipophilic interaction with biomacromolecules such as 
albumin58. This binding results in a broadening of the EPR line, which significantly reduces the signal intensity. 
FT and dFT both showed an 80% loss in signal intensity with equal molarity of trityl radical and bovine serum 
albumin58, 59. OX063 and OX071, on the other hand, are very hydrophilic with the addition of twelve hydroxyl 
groups, eliminating albumin binding and showing no loss in signal59. FTs and their derivatives are also toxic upon 
intravenous injection, with the doses required for spectroscopy being lethal, which prevent their systemic 
delivery60. However, in vivo measurements have been successfully made with small dose intratissue injections3. 
Again, OX063 and OX071 resolve this limitation with extremely low toxicity (LD50=8mmol/kg in mice) that is well 
above the required systemic dose for in vivo studies61-63. While the synthesis of FT was reported 20 years ago64, 
the synthesis of OX063/71 remained a trade secret for more than 25 years. For this reason, most of the synthetic 
efforts for the development of trityl radicals for biological EPR applications relied on the modification of the 
Finland trityl. Conjugating FT to dextran or polyethylene glycol (PEG) eliminated albumin binding but still lacked 
in biocompatibility and water solubtility65. Replacing the carboxylates with sulfonates did significantly improve 
water solubility and reduced the affinity for albumin59. However, OX063/OX071 are still unmatched for their high 
aqueous solubility, low toxicity, and absence of interaction with blood biomacromolecules59, 61. Fortunately, our 
lab reported an efficient synthesis for OX063 and the deuterated OX071 in 201966, making biocompatible trityl 
EPR probes more accessible for in vivo research and enabling the development of derivatives with enhanced 
functionality.  
 
4.2 Trityl Derivatives 

Over the last 20 years, several derivatives of trityl radicals have been developed with extended sensitivity 
to important parameters such as pH38, 46-48, redox status67, thiol concentration68, viscosity69, and inorganic 
phosphate concentration53. The concept of dual-function trityl pO2/pH probes was introduced by the group of Dr. 
Khramtsov in 200738. Since then, creative synthetic efforts and optimizations lead to a mono-phosphonated 
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triarylmethyl radical (pTAM or HOPE) as a multifunctional EPR probe to measure pO2, pH, and [Pi] concurrently 
(Figure 5).  
  pTAM is a simplified doublet with good water solubility and a pH-sensitive shift in hyperfine splitting that 
is independent of the frequency48. This phosphonated trityl also showed a sensitivity to [Pi] because the rate of 
proton exchange is affected by the amount of phosphate, and when the exchange rate increases, the peaks of 
the two ionic states coalesce47, 48, 53. Importantly, pTAM has been used successfully to measure pO2, pH, and 
[Pi] simultaneously in mouse models of breast cancer after intratissue injection3. This led to the identification of 
inorganic phosphate as a possibly powerful marker of tumors and metastatic character3. Also, the concurrent 
measurement allowed for true correlation analysis because it eliminates the temporal and location variances that 
would arise from using multiple methods or multiple probes. However, because pTAM is derived from FT, it has 
the biological limitations of binding to albumin and intravenous toxicity, which limits delivery to intratissue 
injection. Therefore, a major and clear improvement that can be made to the monophosphated trityl radical is 
better biocompatibility.  

 

 
 Figure 5. A. Structure of pTAM. B. Equilibrium of two ionic states of pTAM. C. Full EPR spectrum of pTAM and a zoom in on 
the high-field component with summary of effects of pO2, pH, and [Pi] on spectral shape. D. Relationship between pO2 and EPR linewidth. 
E. Fraction of the acidic state (pTAM3-) against pH. F. The H+ exchange rate depends on the concentration of Pi. B-F Reproduced from 
Bobko et. al.3  

 
5 Summary 

Oxygenation (pO2), pH, and inorganic phosphate [Pi] are all important parameters of the tumor 
microenvironment that can inform on tumorigenesis, metastatic character, and therapeutic response. The ability 
to measure all three variables can help to better understand the tumor story, and simultaneous measurement 
with the same probe allows for deeper investigation with correlation analysis. EPR spectroscopy and imaging 
with the multifunctional probe, pTAM, provides a non-invasive way to concurrently measure pO2, pH, and [Pi]. 
However, pTAM has major drawbacks in biological applications, and biocompatibility is a significant area for 
improvement.  
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CHAPTER 2 – Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement 

of pO2, pH, and [Pi] in Mouse Tumors by Electron Paramagnetic Resonance Spectroscopy 
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ABSTRACT  
 
Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristic of the tumor 
microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in 
vivo, but the only method to date for non-invasive measurement of all three variable simultaneously in vivo is 
electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM. While pTAM has 
been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to 
systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a 
monophosphonated trityl radical derived from the very biocompatible trityl probe, OX071. Here we present a 
straightforward synthesis of HOPE71 starting with OX071, and report its EPR sensitivities to pO2, pH, and [Pi] 
with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low 
cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile tumors in vivo with a 
longitudinal tumor growth study. 
 
  



 

13 
 

Introduction 
In recent years, the tumor microenvironment (TME) has gained focus in cancer research because it can hold 
key information about into tumorigenesis, immune escape, and therapeutic response. Several key physiological 
parameters of the TME that are of interest include tissue oxygenation (pO2), extracellular pH (pHe), and interstitial 
inorganic phosphate concentration [Pi]. Hypoxia (pO2<10mmHg) and acidosis (pHe<7) have been recognized as 
hallmarks of solid tumors for quite some time, and elevated [Pi] was more recently identified as a biomarker of 
the TME1. Hypoxia occurs in tumors because of increased oxygen consumption along with decreased oxygen 
delivery. Cancer cells demand higher amounts of oxygen to support their fast metabolism and proliferation rates2. 
Furthermore, irregular tumor vasculature fails to delivery sufficient oxygen because of increased distance 
between cells and blood vessels (diffusion-limited) and temporary drops blood flow (perfusion-limited)3. Hypoxia 
can lead to aggressive disease with more metastatic character4-6 and pathways for immune escape7, 8. Tumor 
hypoxia is also associated with therapeutic resistance, especially in radiation therapy. The presence of oxygen 
improves radiosensitivity, as described by the oxygen enhancement effect, and, as a result, hypoxic cells require 
up to three times the therapeutic radiation dose as normoxic cells9, 10. Cancer cells also demonstrate a high rate 
of glycolysis, even in well-oxygenated conditions, which leads to high amounts of lactate and protons being 
excreted from the cells, which may not be efficiently removed by tumor vasculature5, 11, 12. Acidosis has also been 
linked to more aggressive disease and metastatic potential5, and acidic extracellular pH may also affect the 
absorption and effectiveness of chemotherapy drugs. Finally, inorganic phosphate may be elevated in the TME 
due to high growth rate demands for nucleotides, phospholipids, and cell-signaling13. Also, phosphate 
concentration demonstrated the ability to discriminate between metastatic and non-metastatic disease1. 
 Therefore, measurement of pO2, pHe, and [Pi] is crucial for better understanding tumorigenesis, 
aggressive disease mechanisms, and therapy resistance. They also have the potential to play a role in optimizing 
therapy strategies clinically. There are various methods for measuring each parameter individually, and they all 
have their benefits and limitations, with the most notable drawbacks being invasiveness and low sensitivity. To 
to our knowledge, Electron Paramagnetic Resonance (EPR) Spectroscopy with a monophosphonated trityl 
probe, pTAM (Fig. 1), is the only method for non-invasive measurement of all three parameters concurrently. 
The EPR spectrum of pTAM is a doublet with a linewidth sensitive to oxygen and hyperfine splitting is sensitive 
to pH. The signal is also sensitive to [Pi] because the concentration of phosphate buffer affects the proton 
exchange rate on pTAM, which causes the different ionic species peaks to coalesce4, 14, 15. However, pTAM is a 
derivative of deuterated Finland trityl (dFT, Fig. 1), which has major limitations for biological applications. FTs 
bind to albumin which drastically reduces the signal intensity and may increase the line width16, 17. FTs are also 
toxic upon intravenous injection18, which limits in vivo work to intratissue delivery.  
 Alternatively, OX063 and the deuterated OX071 (Fig. 1), trityl probes with twelve hydroxylethyl groups, 
are very hydrophilic and does not bind to albumin17. They also have a remarkably low toxicity (LD50=8mmol/kg) 
in mice and has been used broadly for in vivo OMRI and EPR oximetry studies19-22. Therefore, we propose 
HOPE71 (Fig.1), a monophosphonated derivative of OX071 as a more biocompatible multifunctional trityl probe 
for concurrent EPR measurement of pO2, pHe, and [Pi]. First, we report a straightforward synthesis of HOPE71 
with a 2-step process starting from OX071. Then, we characterize the EPR sensitivies to pO2, pHe, and [Pi] with 
X-band and L-band spectroscopy. Next, we present biocompatibility improvements by showing the difference in 
albumin binding, performing cell viability assays, and testing intravenous tolerance in mice. Finally, we 
demonstrate the ability of HOPE71 to profile mammary gland tumors in mice models and report a longitudinal 
study indicating that TME pH increasing deviates from healthy tissue with tumor growth.  

 

 
Figure 1. Structure of Finland trityl (FT), deuterated FT (dFT), pTAM, OX063, OX071 and HOPE71. 



 

14 
 

Materials and Methods 
General 

All reactions were carried out under argon in flame-dried glassware using anhydrous grade solvents, except for 

the phosphorylation of OX071 (1st step), which was performed in an aerated aqueous solution. All commercially 

available reagents were purchased from Sigma-Aldrich or Fisher Scientific and used as received without further 

purification. OX071 was synthesized according to a published protocol23. X-Band and L-Band EPR spectra were 

recorded using a Bruker Elexsys E580 (9.5 GHz) and a Magnettech (1.2 GHz) spectrometers, respectively. For 

X-band spectra, 50 µL of the solution was filled into a gas-permeable Teflon tube (1.14 mm diameter and 60 μm 

wall thickness) from Zeus, Inc. and the temperature and the nitrogen/oxygen gas mixture were controlled inside 

the resonator using a Noxygen temperature and gas controller. Gas was flushed for at least 10 min before the 

measurement or until the spectrum becomes time independent. For L-Band spectra, 800 µL of the solution was 

filled into a 1.5 mL conical tube. The temperature was controlled using a circulation thermostat. Nitrogen/oxygen 

gas mixture form the gas controller was bubbled into the solution for 25-30 min before the measurement. HRMS 

spectra were recorded on a Thermofisher Scientific Q Exactive Mass Spectrometer with an Electron Spray 

Ionization (ESI) source. HPLC-MS analyses were carried out using a Water Alliance e2695 separation module, 

a Water 2998 PDA detector, and a Water SQD2 mass detector. Purifications on C18 column were carried out 

using a CombiFlash Rf+ purification system using water (containing 0.1% TFA) and acetonitrile (containing 0.1% 

TFA). Freeze drying was carried out using a MartinChrist Alpha 2-4 LSCbasic. A Thermo Scientific Orion Star 

A111 Benchtop pH meter with a Fisherbrand accumet Micro Glass Combination Electrode was used and was 

calibrated with 4.00 and 9.00 buffer solutions from Fisher Chemical before the experiments.  

 

Synthesis 

Step 1: Monophosphorylation of OX071. The starting material, OX071 tri-sodium salt (959 mg, 0.661 mmol, 

1 eq.), was dissolved to a concentration of 1 mM in Na-phosphate buffer (10 mM, pH=7.4, 660 mL). Then, a 

solution of potassium hexachloroiridate(IV), K2IrCl6, (940 mg, 1.946 mmol, 3 eq.) in deionized water (70 mL) was 

added to generate the triarylmethyl cation; the green solution turned deep green-blue. The reaction was stirred 

10 seconds, and triethyl phosphite, P(OEt)3, (2.195 g, 13.210 mmol, 2.27 mL, 20 eq.) was added. The reaction 

mixture was stirred for 10 minutes, and the conversion checked by HPLC-MS. The mixture was acidified to pH 

≤ 2 using trifluoroacetic acid and loaded into a C18 loading cartridge (25 g). The crude product was purified by 

reverse-phase chromatography using a C18 column (86 g) with a gradient of acidic water/acetonitrile (95/5 to 

85/15) and freeze-dried. 138 mg of 2 was recovered as a green solid (14% yield). 431 mg (47%) of OX071 was 

also recovered.  

Step 2: Deprotection of the phosphonic acid. Diethyl phosphonate HOPE71 2 (138 mg, 0.094 mmol, 1 eq.) 

was dissolved in anhydrous dimethylformamide (15 mL) under argon. The solution was cooled to 0°C, and 

bromotrimethylsilane, TMSBr, in excess (1mL) was slowly added. After stirring for 10 minutes at 0°C, the reaction 

was heated at 50°C for 5 hours, and the deprotection was monitored by HPLC-MS. The TMSBr was removed 

under reduced pressure. Methanol (10 mL) was added, stirred 1 min, and removed under reduced pressure. The 

DMF solution was diluted 20 times with deionized water and freeze-dried. The final product was purified using a 

C18 column (26 g) with a gradient from acidic water to acidic water/acetonitrile (80/20) and freeze-dried. The 

residue was dissolved in water and titrated to pH=7 with NaOH (0.1M) and freeze-dried again to afford 121 mg 

(88%) of HOPE71 as a green powder. 

 

Spectral sensitivity to oxygen, pH, and inorganic phosphate. 

X-band Acquisition parameters. For each condition, a focus on the low-field part of the spectrum was recorded 

six times. For certain conditions (identified below), a full spectrum was recorded three times. Settings were as 

follows: power; 0.04743 mW, mod. freq.; 30 kHz, mod. Ampl.; 50 mG, conv. time; 30.01 ms, number of points; 

2054 for the full spectrum and 1024 for the low-field spectrum, sweep width; 6.0 G for the full spectrum and 2.0 

G for the low-field spectrum. All spectra were measured at 37°C. 

 

L-band Acquisition parameters. For each condition, a focus on the low-field part of the spectrum was recorded 

four times. Parameter settings for the spectrometer were as follows: mod. freq.; 100 kHz, mod. Ampl.; 0.005 mT, 
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scan time; 30s, number of points; 4096, sweep width; 0.0960 mT and non-saturating power. All spectra were 

measured at 37°C. 

 

Spectral fitting. A MATLAB-based application developed in house with graphical user interface for a non-linear 

fitting function (lsqcurvefit) was used to fit each EPR spectrum24(Fig. S2). Fitting was performed on the low-field 

focused spectra. The following values were determined as constants for the spectral modelling: Gaussian 

linewidth, individual intrinsic Lorentzian linewidth of the acidic and basic peaks, and the distant between the 

acidic and basic peaks. The Gaussian linewidth and intrinsic Lorentzian linewidths were determined by 

sextuplicate EPR spectra measured with no oxygen, and with acidic (pH < 5) or basic (pH > 10) conditions so 

that only the acid or basic peak was present. The acidic to basic peak distance was determined by sextuplicate 

EPR spectra measured with no oxygen and no phosphate buffer at pH≈7. The variable parameters that also 

contributed to or were dependent on the curve-fitting include oxygen-induced Lorentzian linewidth broadening, 

proton exchange rate, and acidic fraction of the population.  

 

X-band Oxygen calibration. To determine the linewidth sensitivity to oxygen for both ionic forms. 200 µM 

solutions of HOPE71 in 1 mM phosphate buffer and 137 mM NaCl at pH=4.8 and 10 were prepared, and spectra 

were recorded for pO2 = 0 mmHg, 19 mmHg, 38 mmHg, 76 mmHg, 114 mmHg, and 159 mmHg. Full spectra 

were recorded for both pH=4.8 and pH=10 with pO2 = 0 mmHg. The spectral fitting described above was used 

to determine the oxygen-induced line broadening for each pO2. Linear fit using OriginLab allow for determination 

of the oxygen sensitivity for both ionic forms combined.  

 

X-band pH calibration. To determine the pKa of the probe, a 200 μM solution of HOPE71 1 mM phosphate 

buffer and 137 mM NaCl was titrated by addition of small amounts of HCl and NaOH. For each titrated pH, 

spectra were recorded with pO2 = 0 mmHg. Full spectra were recorded of pH=7.1. The spectral fitting described 

above was used to determine the acidic fraction at each measured pH. A plot of pH versus acidic fraction (Pa) 

was fitted to the equation 𝑃𝑎 =
1

1+10𝑝𝐻−𝑝𝐾𝑎 using OriginLab to determine the pKa. 

 

X-band Inorganic phosphate calibration. To determine the exchange rate dependence to phosphate 

concentration, 200 µM solutions of HOPE71 at pH=7.2 and pO2 = 0 mmHg. were recorded for phosphate 

concentration of 0 mM, 1 mM, 4 mM, 7 mM, and 10 mM. The spectral fitting described above was used to 

determine the exchange rate for each phosphate concentration. The proton exchange between phosphate and 

HOPE71 is express by the following equation: 

 
The rate of proton loss of HOPE3- to HPO4

2- is ka = kf [HPO4
2-]. The rate constant kf can be determine by linear 

approximation of the dependence of ka on [HPO4
2-] or the total phosphate concentration [Pi] using [HPO4

2-] = [Pi] 

(H+ + Ka
B

)/(2πKa
B). Where 𝐾𝑎

𝐵 is the dissociation constant of phosphate buffer (𝐾𝑎
𝐵=10-6.66)25. Linear fit of the 

equation 
𝑘𝑎(𝐻++𝐾𝑎

𝐵)

2𝜋𝐾𝑎
𝐵 = 𝑘𝑓[𝑃𝑖], using OriginLab allows determination of the phosphate sensitivity.  

 

Validation of the calibration with blind sample. (X-band). Three solutions with 200 μM of HOPE71 and 137 

mM NaCl were prepared with various concentrations of inorganic phosphate (1-10 mM), pH and pO2 that were 

that were blinded to the researcher acquiring the spectra. The spectral fitting described above was used to 

extract the oxygen-induced Lorentzian linewidth broadening, proton exchange rate, and acidic fraction. The 

calibrations above were used to determine the EPR measured pO2, pH, and [Pi].  

 

L-band calibrations and validation. The pO2, pH, and [Pi] calibrations and validation were repeated for L-band 

EPR with 500 μM solution of HOPE71. Oxygen calibration spectra were recorded for pO2 = 0 mmHg, 17 mmHg, 

34 mmHg, 68 mmHg, 103 mmHg, and 159 mmHg. Phosphate calibration spectra were recorded on solutions 

with 0 mM, 1 mM, 4 mM, 7 mM, and 10 mM of inorganic phosphate. 
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Biological Application Characterizations.  

Albumin binding. To study the interaction of HOPE71 with albumin, 200 µM solutions of HOPE71 at pH=7 were 

prepared, one with no bovine serum albumin (BSA) as control and one with 200 µM BSA (1 equiv.). For 

comparison, 200 µM solutions of pTAM at pH=7 were also prepared with 0 µM, 50 µM, 100 µM, and 200 µM 

BSA. Spectra were recorded for each solution with X-band EPR. Spectra of pTAM were acquired with mod. 

Ampl. = 25 mG. 

 

MTT assay for cell toxicity. MDA-MB-231 (triple-negative breast cancer) cells were plated on a 96-well flat-

bottom plate and allowed to grow over night to 60-70% confluency. The medium used was DMEM with 10% fetal 

bovine serum. The cells were then incubated with increasing concentrations of pTAM or HOPE71 in medium for 

24 hours. DMSO (2% and 5% in medium) was used as a cytotoxic control. Medium with corresponding 

concentrations of pTAM or HOPE71 were used as a background control. All conditions were performed in 

quadruplicate. The MTT assay was performed using ThermoFisher Vybrant MTT Cell Proliferation Assay Kit 

according to the manufacturer’s protocol. Absorbance was measured at 570 nm minus 630 nm to correct for cell 

debris. Statistically analysis was performed using one-way ANOVA. This process was repeated with HUVECs 

(Human umbilical vein endothelial cells) using vascular cell basal medium plus ATCC Endothelial Cell Growth 

Kit-VEGF. 

 

In vivo Applications. 

Mouse model. Female MMTV-PyMT (PyMT+/−) mice with spontaneous mammary tumors and their wildtype 

littermates (PyMT−/−), 10-15 weeks in age, were used for HOPE71 in vivo EPR studies. Mice were anesthetized 

by inhalation of isoflurane in air prior to injection and during acquisition of spectra. 

 

In vivo L-band Acquisition parameters. For each in vivo EPR measurement of HOPE71, the resonator coil 

was placed on mammary gland 4 (MG4) or 9 (MG9). Focus on the low-field part of the spectrum was recorded 

six times. Parameter settings for the spectrometer were as follows: mod. freq.; 100 kHz, mod. Ampl.; 0.005 mT, 

scan time; 30s or 60s, number of points; 4096, sweep width; 0.0960 mT and non-saturating power.  

 

Intravenous Tumor Profiling. Six female MMTV-PyMT mice, 10-15 weeks in age, with MG9 tumors 

approximately 1 cm in diameter (370-580 mm3), were administered a bolus dose of HOPE71 in saline (90 µL 

75mM, 10mg, 0.17-0.31 mmol/kg, pH=7) by retroorbital injection. EPR spectra focused on MG9 tumors were 

recorded immediately after injection. 

 

Systemic Toxicity. Six mice from the intravenous tumor profiling were observed for apparent signs of toxicity 

for 7-10 days after injection. The mass of five mice was tracked during this time.  

 

Longitudinal Tumor profiling. Eight female MMTV-PyMT mice were watched starting at 9 weeks old for tumor 

growth on mammary gland 9 (MG9). Once palpable, the tumors on MG9 were profiled by HOPE71 EPR once to 

twice per week (once for early stage; twice for late stage). Four female wildtype (PyMT−/−) littermates were also 

profiled on the same days. The mass of the mice and the tumor volume (V=L x W x D x 3.14/6 or V= L x W2 x 

3.14/6) was recorded along with each EPR measurement. HOPE71 in saline (15-50 µL 2mM, pH=7) was injected 

intratissually into the tumor or the fat pad mammary gland. EPR spectra were recorded immediately after 

injection. Correlation analysis was done using OriginLab software. T-tests were performed to detect differences 

in group means and slopes.  

 
Intratissue versus intravenous injection. To detect if there are significant differences in the tumor profiling 

based on delivery method, the pO2, pH, and [Pi] of tumors profiled with intravenous injection were compared to 

those of sized matched tumors profiled by intratissue injection. Two-tailed T-test for independent means was 

used test for statistically significant difference. 
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Results and Discussion. 
Synthesis of HOPE71. In order to make pTAM more biocompatible, we planned to substitute a carboxylic acid 
on OX071 with a phosphonate group. The strategy was to use the ipso aromatic nucleophilic substitution reaction 
for trityl radicals reported by DeCroos et. al.26. The one electron oxidation of OX071 using potassium 
hexachloroiridate(IV) in phosphate buffer leads to the trityl cation, which was delocalized across the aromatic 
groups. Then, the nucleophilic attack of triethyl phosphite at the para-position triggers an oxidative 
decarboxylation leading to the mono phosphonated trityl radical. The recovery of OX071 indicates that the 
oxidant of the intermediate 1 is the trityl cation. Therefore, for this mechanism, the theoretical yield of substituted 
product is capped at 50%. Also, the trityl cation was found to be very short lived in aqueous solution, and the 
best yield came from adding the phosphite within 10 seconds of adding the hexachloroiridate. Adding the triethyl 
phosphite first degraded the phosphite before forming the trityl cation. The first step afforded 14% of 2, the 
protected target compound (HOPE71). Bromotrimethylsilane efficiently deprotected the phosphonate to yield 
88% of HOPE71 after purification. (Sch. 1) 

 
EPR Characterization of HOPE71. EPR characterization was first performed at X-band EPR. Fig. 2A shows 
the full spectrum doublet of HOPE71 at pH=5, 7, and 10. The phosphorus (l=1/2) causes hyperfine splitting that 
is dependent on the protonation state. HOPE713- has a greater hyperfine splitting constant (ap = 3.54 G, pH=5) 
than HOPE714- (ap = 3.26 G, pH=10) (Fig. 2). 

 

Scheme 1. Synthesis of HOPE71 starting with OX071. Our strategy was based on the ipso aromatic nucleophilic substitution for TAM radicals 
reported by DeCroos, et al.26. 
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To determine the sensitivity to oxygen, low field spectra were recorded with increasing oxygen partial pressure 
on solutions of HOPE71 at pH=5 and 10. Fig. 3A demonstrates the effect of oxygen on the linewidth and signal 
intensity at pH=10. The extent of line-broadening was determined by fitting each spectrum, allowing the oxygen-
induced Lorentzian linewidth to vary. The line-broadening has a strong linear correlation with oxygen partial 
pressure (0.51 mG/mmHg) (Fig. 3B). 

 
In order to determine the pKa of HOPE71, a solution of HOPE71 was titrated with small amounts of acid 

or base, and X-band EPR spectra were recorded for six pH points between 6 and 8 in nitrogen atmosphere. The 
ratio of the peaks is directly correlated to the fraction of acidic and basic states (Fig. 4A). Spectral line fitting was 
used to determine the acidic fraction (HOPE713-) for each pH point. By plotting the acidic and basic fractions 
versus pH, the titration curves show the pKa to be 7.1±0.1 (Fig. 4B). 
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Figure 3. X-band EPR Sensitivity to Oxygen. A. The low field component spectra measured at 37°C and pH 10 with 

0, 19, 38, 76, or 114 mmHg partial pressure of oxygen (pO2). B. The linear relationship between oxygen partial 

pressure (mmHg) and oxygen-induced line-broadening (mG) for pH=5 and pH=10 is 0.51±0.05 mG/mmHg 

(R2=0.998). 

aP (HOPE713-) = 3.54 (±0.01) G

1 G

pH 5

pH 7

pH 10

aP (HOPE714-) = 3.26 (±0.01) G

 
Figure 2. EPR Spectrum and pKa of HOPE71. A. Full X-band EPR spectra for HOPE71 measured under nitrogen atmosphere and 37°C at pH 5, 7, 
and 10. The protonated species HOPE713- has a greater phosphorus hyperfine splitting than the deprotonated species HOPE714-, forming resolvable 
peaks for the different ionized species. B. The primary ionized species HOPE713- and HOPE714- are in equilibrium around physiological pH. 
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For the calibration of phosphate, solutions of HOPE71 with increasing concentrations of Pi were placed 

under nitrogen atmosphere in the X-band EPR to record spectra of the low field peaks. The presence of 
phosphate buffer [HPO4

2-] increases the proton exchange rate on the phosphate group of HOPE71, which causes 
the acidic and basic peaks to coalesce (Fig. 5A). The proton exchange rate (ka) can be derived from spectral 
fitting. The exchange rate adjusted for pH has a linear relationship against [Pi] and is equal to 2.36±0.05x104s-

1mM-1 (Fig. 5B)25. 

 
To validate the X-band sensitivities, EPR spectra were recorded for HOPE71 solutions with random pO2, 

pH, and [Pi] within range of the calibrations that were blinded at time of measurement. The spectra were fitted 
allowing oxygen linewidth, acidic fraction, and exchange rate to vary. The values for random pO2, pH, and [Pi] 
were extracted using the calibrations in Figs. 3-5. When comparing the prepared values to the EPR-derived 
values, the accuracy was within 2 mmHg of oxygen, 0.1 units of pH, and 0.3 mM of [Pi] (Tbl. 1). 
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Figure 5. X-band EPR Sensitivity to [Pi]. A. The low field component spectra measured under nitrogen atmosphere 

at 37°C and pH 7 with 0, 1, 4, 7, or 10 mM of inorganic phosphate [Pi]. The distance between the peaks relates to 

the proton exchange rate and decreases as the [Pi] increases. B. The proton exchange rate ka, adjusted for pH, 

has a linear relationship versus inorganic phosphate concentration (kf=2.36±0.05x104s-1mM-1) (R2=0.999). 
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Figure 4. X-band EPR Sensitivity to pH. A. The low field component spectra measured under nitrogen atmosphere 

and 37°C at various pH values between 6 and 8. The ratio of the peaks corresponds to the ratio of acidic and basic 

species. B. Titration curves for the fraction of HOPE713- and HOPE714- verses pH show a pKa=7.1±0.1 (R2=0.999). 
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With the EPR sensitivities characterized at X-band, the calibrations were repeated for L-band for in vivo 

measurements. The oxygen and Pi calibrations needed to be repeated to adjust for small differences in line 
shape and width due to instrument variances. The pH calibration was repeated for rigor. The L-band slope for 
oxygen sensitivity was determined to be 0.41±0.05 mG/mmHg (Fig. 6A). The pKa measured by L-band EPR 
agrees with the X-band measurement of 7.1±0.1 (Fig. 6B, Fig. 4B). For the calibration of inorganic phosphate, 
the L-band slope, or kf, was found to be 1.86±0.05x104s-1mM-1 (Fig. 6C). Blind sample testing was repeated for 
the L-band calibrations and the accuracy is estimated to be within 4 mmHg of oxygen, 0.1 units of pH, and 0.3 
mM of [Pi] (Fig. 6D).  

 
Biocompatability of HOPE71. The biocompatibility improvements of HOPE71 over pTAM were evaluated in 
several ways. Firstly, X-band EPR spectroscopy was used to show the difference in albumin interaction. For 
HOPE71, there was no significant loss in in the spectrum signal intensity when BSA was included in equal 
concentration to the probe (Fig. 7A). In contrast, when equal concentration was included with pTAM, there was 
over 80% loss in signal intensity (Fig. 7B). This is likely due to the addition of twelve hydroxyethyl groups in 
HOPE71, increasing hydrophilicity and lessening protein interaction. Because albumin concentration is so high 
in blood, this lack of binding is imperative for intravenous dose efficiency. Next, the cytotoxicity of HOPE71 and 
pTAM were tested using MTT cell viability assays on rapidly dividing breast cancer cells (MDA-MB-231) and 
endothelial cells (HUVEC). On the breast cancer cells, both showed a minor loss in cell viability at higher 
concentrations (1-5mM), but cells treated with 25 µM and 100 μM HOPE71 had statistically more viability than 
those with the same concentrations of pTAM (Fig. 7C). Similarly, HUVECs had a significant loss in cell viability 
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Gas Controller Set 
(mmHg) 

EPR measured pO2 
(mmHg) 

pH 
meter 

EPR 
measured pH 

[Pi] 
Prepared 

(mM) 

EPR measured 
[Pi] 

(mM) 

Sample 1 36.7 34.7 (±4.2) 7.09 7.12 (±0.1) 3.75 3.82 (±0.10) 

Sample 2 25.3 23.0 (±2.8) 6.94 6.96 (±0.1) 7.00 6.71 (±0.10) 

Sample 3 15.8 16.3 (±4.1) 7.16 7.19 (±0.1) 1.66 1.77 (±0.25) 

Figure 6. L-band EPR Calibrations for pH, pO2, and [Pi]. A.The peak line broadening has a linear relationship versus the partial pressure of oxygen 

at pH 5 and 10 with slope=0.41±0.05 mG/mmHg (R2=0.997). B. Titration curves for the fraction of HOPE713- and HOPE714- verses pH give a 

pKa=7.1±0.1 (R2=0.999). C. The proton exchange rate ka, adjusted for pH, has a linear relationship versus inorganic phosphate concentration with 

kf=1.86±0.05x104s-1mM-1 (R2=0.997). D. Validation of the L-band EPR Calibrations.  

 

Gas Controller Set 
(mmHg) 

EPR measured pO2 
(mmHg) 

pH 
meter 

EPR 
measured 

pH 

[Pi] Prepared 
(mM) 

EPR measured 
[Pi] 

(mM) 

Sample 1 47.9 47.0 (±4.7) 7.28 7.26 (±0.1) 1.88 2.14 (±0.10) 

Sample 2 34.9 32.2 (±3.2) 7.09 7.08 (±0.1) 6.88 7.00 (±0.10) 

Sample 3 19.0 17.3 (±1.7) 6.94 6.97 (±0.1) 8.25 8.22 (±0.10) 

Table 1. Validation of the X-band EPR Calibrations. Low field component spectra were recorded for 3 samples with blinded values of pH, pO2, and 

[Pi]. The spectra were fitted, and the corresponding values were derived using the calibrations in Figs. 2-4 and compared to the prepared values.  

A B C 
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for both at the highest concentration (5 mM), but with 100 μM and 1mM, cells treated HOPE71 did better than 
those treated with pTAM (Fig. 7D). Because the target local concentration for L-band EPR spectroscopy is 
several hundred micromolar, we conclude that HOPE71 has a small decrease in cell toxicity at the required 
concentrations. However, in vivo systemic toxicity is much more complex than cytotoxicity. pTAM has been used 
in vivo by intratissue injection without obvious negative effects1, but whenever Finland based trityls are delivered 
intravenously, the mice quickly die18. Therefore, we observed the health of mice injected intravenously with a 
bolus dose of HOPE71 required for EPR spectroscopy. No mice died in the short time after injection or showed 
apparent signs of distress or weight loss for a week following the injection (Fig. 7E). While HOPE71 appears to 
have low toxicity in vivo, further evaluation by pharmacokinetics, histology, and acute toxicity (LD50) testing 
would help us better understand the systemic safety of HOPE71.  

 
Profiling tumors with HOPE71. Because the major advantage of HOPE71 over pTAM is the potential for 
systemic delivery, we demonstrated its ability to profile tumors in the mammary glands of mice with spontaneous 
breast cancer. We found that 10 mg (0.17-0.31 mmol/kg) of HOPE71 in saline, was a sufficient bolus dose by 
intravenous injection to have a reliable signal-to-noise ratio for L-band EPR spectroscopy for at least 30 minutes 
after injection. These tumors were all on mammary gland 4 or 9 and approximately 1 cm in diameter (average 
volume = 437±91 mm3) and their pO2, pH, and [Pi] were measured on average to be 23.6±18.3 mmHg, 7.09±0.14, 
and 4.68±0.45 mM, respectively (Fig. 8A).  
 To investigate how these variables deviate from healthy tissue with tumor growth, mammary glands of 
the breast cancer mouse models and their wildtype littermates were longitudinally profiled by EPR spectroscopy. 
For these measurements, HOPE71 was injected directly into the tumor or mammary gland. The intention for 
intratissue (IT) as opposed to intravenous (IV) injection was to consume less probe per measurement and target 
the core of the tumor, which may be poorly vascularized. To determine if there was a significant difference in the 
EPR-measured values of pO2, pH, and [Pi] with IV and IT injection, volume-matched data points from the IT 
longitudinal study were compared to the measured values in IT (n=6). Our hypothesis was that pO2 and pH 
measured with IV injection would be higher than those measure with IT injection because the probe would be 
delivered to the better vascularized regions of the tumor. The pO2 values had large variance in both groups so 
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Figure 7. Biocompatibility of HOPE71 A. X-band EPR spectra of 200 µM HOPE71 with 0 or 200 µM BSA, measured at 37°C, pH = 7, and with 1mM 

phosphate buffer and 137 mM NaCl. No significant loss in signal is detected. B. X-band EPR spectra of 200 µM pTAM with 0, 50, 100, or 200 µM 

BSA, measured at 37°C, pH = 7, and with 1mM phosphate buffer and 137 mM NaCl. The loss in signal intensity with increasing concentration of BSA 

demonstrates HOPE binding to BSA. C-D. MTT cell viability assays using MDA-MB-231 breast cancer (C) and HUVEC (D) cells incubated increasing 

concentrations HOPE71 or pTAM for 24 hours. DMSO was used as a cytotoxic control. Only mean comparisons between HOPE71 and pTAM 

corresponding concentrations are included (n=4, *p<0.05, **p<0.01). Full means comparison test in Supplementary information (Fig. S2 & S3). E. 

Mass over time (days) of female MMTV-PyMT after intravenous injection of HOPE71 in saline (10mg).  
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no statistical conclusion can be made for oxygen, but the pH for IV delivery was significantly higher than pH for 
IT delivery (Fig. 8A). This may indicate that there is a pH gradient from the core of the tumor and that the probe 
is not as well delivered to the core upon intravenous injection. There also was no significant difference between 
IV and IT in the EPR-measured values of [Pi], but elevated levels of Pi have been observed both locally in the 
tumor1 and systemically in patients with cancer27.  
 Oxygenation, pH, and [Pi] of growing mammary gland tumors were compared to those of healthy 
mammary gland tissue of the wildtype littermate, based on the days since the tumors were recorded to be 
palpable. The wildtype mice were assigned a palpable date that matched their tumor littermates for comparison 
purposed. Throughout the entire tumor growth period, oxygen measurements appeared to be generally lower in 
tumors, but did not show significant difference from the wild type (Fig. 8B & 8F). On the other hand, pH was not 
significantly different in early tumors, but a difference did begin around 20-29 days (Fig. 8C). Acidosis continued 
to deviate significantly in tumors from healthy tissue as time went on (Fig. 8C & 8G). Inorganic phosphate was 
found to be elevated throughout most of the tumorigenesis (Fig. 8D), but linear deviation from healthy tissue was 
not clear (Fig. 8H). No significant correlation was found between pO2, pH, and [Pi] (Fig. S5).  
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Figure 8. Profiling mouse breast tumors with HOPE71 A. The volumes, pO2, pH, and [Pi] of tumors profiled by EPR after either intravenous (IV) or 

intratissue (IT) injection of HOPE71 (n=6, *p<0.01). B-D. Average pO2, pH, and [Pi] for PyMT(-/-) (n=4) and PyMT(+/-) (n=8) for days palpable grouped 

by 10 days (*p<0.05, **p<0.01, ***p<0.001). B. No significant difference for pO2. C. The difference in pH grew and was significant at 20-29 and 30-40 

days. D. The difference in [Pi] was significant at 10-19, 20-29 and 30-40 days. E-H. Data points by days since palpable (PyMT(+/-) mice=8, n=52; 

PyMT(-/-) mice=4, n=26) E. Tumor volume of PyMT(+/-) show exponential growth versus days palpable. F. No significant correlation was found 

between pO2 and days palpable for PyMT(+/-) (r=0.15, p=0.30) or PyMT(-/-) (r=0.25, p=0.21), and no significant difference was detected between 

PyMT(+/-) and PyMT(-/-) slopes (p=0.60). G. The slope between pH and days palpable for PyMT(+/-) was significantly different from zero, using the 

F-test (r=-0.80, p=1.5x10-12), but the slope for PyMT(-/-) was not (r=-0.19, p=0.35). Significant difference was detected between PyMT(+/-) and PyMT(-

/-) slopes (p=1x10-8). H. No significant correlation was found between [Pi] and days palpable for PyMT(+/-) (r=0.23, p=0.09) or PyMT(-/-) (r=-0.15, 

p=0.48), and no significant difference was detected between PyMT(+/-) and PyMT(-/-) slopes (p=0.08). 
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Conclusion 
 In conclusion, we propose HOPE71, a monophosphated hydroxyethyl trityl radical probe, as a 

biocompatible multifunctional EPR probe for in vivo measurement of pO2, pH, and [Pi]. HOPE71 can be 

synthesized starting with OX071 by a 2-step process. The EPR-sensitivities of HOPE71 with X-band and L-band 

spectroscopy were verified and comparable to pTAM. Furthermore, HOPE71 has clear biocompatibility 

improvements over pTAM, including lack of albumin binding and systemic tolerance. The ability of HOPE71 to 

profile tumors in mouse models of breast cancer by EPR spectroscopy was demonstrated with both intravenous 

and intratissue injection. Finally, HOPE71 was used to longitudinally profile mammary gland tumors in mice, 

which found that pH strongly deviates with tumor growth and inorganic phosphate appears to be consistently 

elevated throughout most of the tumorigenesis.  
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CHAPTER 3 – Large-Scale Synthesis of a Monophosphonated Tetrathiatriarylmethyl Spin Probe for 

concurrent in vivo measurement of pO2, pH and inorganic phosphate by EPR 
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ABSTRACT 
 
Low-field electron paramagnetic resonance spectroscopy paired with pTAM, a mono-phosphonated triarylmethyl 
radical, is an unmatched technique for concurrent and non-invasive measurement of oxygen concentration, pH, 
and inorganic phosphate concentration for in vivo investigations. However, the prior reported synthesis is limited 
by its low yield and poor scalability, making wide-spread application of pTAM unfeasible. Here, we report a new 
strategy for the synthesis of pTAM with significantly greater yields demonstrated on a large scale. We also 
present a standalone application with user-friendly interface for automatic spectrum fitting and extraction of pO2, 
pH, and [Pi] values. Finally, we confirm that pTAM remains in the extracellular space and has low cytotoxicity 
appropriate for local injection. 
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Low-field Electron Paramagnetic Resonance (EPR) with the use of a molecular spin probe is a powerful 
technique to non-invasively measure important physiological parameters in a living animal1, 2. EPR 
combines high sensitivity and good penetration depth. Stable tetrathiatriarylmethyl radicals (TAMs or 
trityls) are ideal spin probes for in vivo EPR applications. They exhibit unprecedented stability in vivo 
and ultra-narrow linewidths, which result in a high signal-to-noise ratio.3 TAM structures with spectral 
sensitivity to oxygen4, pH5, 6, thiol concentration7, 8, microviscosity9, ROS10-12, or redox13, 14 have been 
developed. We recently reported on a mono-phosphonated tetrathiatriarylmethyl radical pTAM (Figure 
1) whose EPR spectrum is sensitive to multiple parameters, namely oxygen concentration, pH, and 
inorganic phosphate concentration, [Pi].15-18 This multifunctional probe was utilized to profile the tumor 
microenvironment (TME) in various mouse models of cancer.17 The unmatched capability to measure 
[Pi] has resulted in the identification of this biomarker as a new TME marker for tumor progression.17 
Moreover, the ability to measure pO2, pH, and [Pi] concurrently using the same probe allows for the 
direct correlation of these important parameters independent of the probe distribution, providing insight 
into the biological processes occurring in the TME. 

Fig. 1. A. Structure of pTAM spin probe and ionic forms at physiological pH. B. L-Band full spectrum (top) of pTAM at pH=7.13 showing both 

ionic forms present in the spectrum and zoom on the high field component (bottom). The molar fraction of the acidic form Pa versus basic form 

Pb is a function of the pH of the solution while the linewidths are functions of the oxygen concentration. Inorganic phosphate modulates the 

exchange rate between the two ionic forms and the A/B distance. Spectral simulation allows the three parameters to be extracted from the 

spectrum. 

 
While this spin probe has proven to be of great importance for the study of tissue microenvironment in 
vivo, its current synthesis suffers from a very low yield. Indeed, the published synthesis15 (Scheme 1) 
uses a lithiation of tetrathiatriarylmethanol 1 and subsequent reaction with a (2:1) mixture of diethyl 
carbonate and diethyl chlorophosphate. This reaction leads to a statistical mixture of mono-, di- and tri-
phosphonated tetrathiatriarylmethanol 2n that requires tedious purification and drastically decreases the 
yield of the desired 2b. After hydrolysis of the ethyl esters using sodium hydroxide and deprotection of 
the phosphonic acid by TMSBr, the final pTAM probe was isolated with a yield of less than 5% from 1. 
The published procedure allowed for isolating milligram quantity of the probe for limited in vivo studies.17 
However, more extensive utilization of this probe would require a synthetic method that enables gram-
scale synthesis of pTAM. 

Scheme 1. The first reported synthesis of pTAM from 1.15 
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Hereby we report an efficient protocol for the large-scale production of the pTAM probe as well as a 
MATLAB application for the automatic fitting of the EPR spectra and determination of the physiological 
parameters, namely pH, pO2, and [Pi]. Our new strategy takes advantage of a reaction of ipso 
nucleophilic substitution of an aromatic hydrogen or a carboxyl group on tetrathiatriarylmethyl radicals 
reported previously.19, 20 Our synthesis starts with the deuterated Finland trityl (dFT) which can be 
synthesized at large scale without chromatography (Figure 2A).21, 22 The one-electron oxidation of dFT 
with one equivalent of potassium hexachloroiridate(IV), K2IrCl6, in water leads to the trityl carbocation 
dFT+, which is immediately treated with ten equivalents of trimethyl phosphite. The nucleophilic addition 
of the phosphite in the para-position of the aryl ring triggers an oxidative decarboxylation, leading to the 
mono-phosphonic ester pTAM-(OMe)2 in 35% conversion, as determined by HPLC/MS (Figure 2B and 
S6). Importantly, the HPLC/MS chromatogram shows that dFT radical was also generated back from 
the trityl carbocation dFT+ in 65% yield, consistent with preferential oxidation of intermediate 3 by dFT+ 
in line with previous reports. 19, 20 dFT can therefore be recycled for future reactions. In addition, <5% of 
quinone methide (QM) was also generated from the nucleophilic addition of water on the trityl cation 
(See ESI for mechanism). The use of additional equivalents of K2IrCl6 did not increase the yield of pTAM-
(OMe)2 but did lead to higher conversion to the QM, TAMs with multiple phosphonates, and unidentified 
products. The preferential oxidation of 3 by dFT+ explains 50% of the back conversion of the trityl radical 
from the cation. The slightly higher formation of dFT observed (65%) could be the result of the direct 
reduction of the trityl cation by the trimethyl phosphite. 

 

Fig. 2. A. Synthesis of pTAM-(OMe)2 from dFT and B. HPLC/MS chromatogram and m/z ratio of the products after addition of 

P(OMe)3.  

 
The mono-phosphonated derivatives pTAM-(OMe)2, and dFT can be separated using a C18 column in 
30% and 60% yield, respectively. Finally, the phosphonic acid was deprotected by treatment of pTAM-
(OMe)2 with TMSBr in 95% yield (Scheme 2). 

Scheme 2. Deprotection of the phosphonic acid leading to pTAM. 
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However, for a multigram scale, we found the separation of dFT and pTAM-(OMe)2 to be more 
challenging. The use of other phosphites with longer alkyl chains (triethyl-, triallyl- or tributyl phosphite), 
allowed for easier purification but led to smaller conversion (15-25%). On a large scale (tens of grams), 
the quantitative esterification of the carboxylic acids using methyl iodide and sodium carbonate in DMF 
directly on the dFT/pTAM-(OMe)2 mixture (Scheme 3) allowed for easy purification by flash 
chromatography on silica gel. The esterified pTAM-(OMe)4 was isolated in 35% yield from dFT starting 
material alongside with dFT-(OMe)3 (63%). Then, the phosphonic acid was deprotected by TMSBr in 
DCM, and the methyl esters hydrolyzed using lithium hydroxide in 1,4-dioxane/water leading to pTAM 
in 95% yield after purification on a C18 column. dFT-(OMe)3 was also hydrolyzed, leading to dFT in 99% 
yield with no purification needed. The relatively low conversion of dFT to the monophoshonated ester is 
compensated by the recovery of the starting material. The calculated yield based on the recovery of the 
starting material reaches 92%. Our large scale synthesis allowed for the selective mono-phosphorylation 
of dFT in 4 steps and two purifications. The key step is the nucleophilic quenching of the trityl cation by 
trimethyl phosphite leading to the mono-phosphonated derivative. 

Scheme 3. Esterification of the carboxyl groups to allow for large-scale separation of pTAM-(OMe)2 and dFT-(OMe)3. Then the 

carboxyl and phosphonic acids are deprotected, leading to pTAM and dFT. 

 
The extraction of pO2, pH, and [Pi] from the spectrum can be achieved using spectral fitting of the whole 
spectrum (see Fig. 1B, top) or only the high or low field EPR lines (Fig. 1B, bottom) using a homemade 
MATLAB algorithm as reported previously.16, 17 However, to provide a user-friendly interface for those 
unfamiliar with MATLAB, we developed a graphical user interface for fitting the spectra and deriving the 
values for pO2, pH, and [Pi]. Figure 3 demonstrates the use of the standalone application to fit a spectrum 
of pTAM administered into the mammary gland of a MMTV-PyMT mouse (See SI for calibration and use 
of the App). 

 
Fig. 3. Screenshot of the pTAM spectrum fitting App developed in-house with a spectrum measured of pTAM injected directly 

in the mammary gland of a MMTV-PyMT mouse. Values of pO2=84.21 mmHg, pH=7.07 and [Pi]=1.91 mM are automatically 

calculated from the experimental spectrum. 
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When applied in vivo, the charged nature of the probe and its large size (MW = 1073 g/mol) is expected 
to prevent its diffusion through the cell membrane. In order to verify that pTAM cannot enter the cytosol, 
pTAM (200 μM) was incubated with 8.5x106 MDA-MB-231 cells (human triple negative breast cancer 
cells) with and without 10 mM Gd-DTPA, a paramagnetic extracellular broadening agent.5 Figure 4 
shows a large broadening of the EPR lines of pTAM upon addition of Gd-DTPA and no residual narrow 
component confirming the absence of pTAM spin probe in the intracellular compartment. In vivo, the 
physiological parameters reported by pTAM are therefore the extracellular ones. 

Fig. 4. X-Band EPR spectra of pTAM (200 μM, 100 μL) incubated with 8.5x106 MDA-MB-231 cells without (black) and with 10 

mM of Gd-DTPA (red) as extracellular broadening agent. 

 
Next we assessed pTAM cell toxicity using the MTT assay for cell viability and proliferation. MDA-MB-
231 cells at 60-70% confluency were incubated with various concentration of pTAM for 24h. The result 
(Figure 5) shows that up to 1 mM, the probe is well tolerated with ~ 80% cell viability after 24h. It is worth 
noting that only a few hundred micromolar range is required for in vivo L-Band spectroscopy and the 
MTT results show no significant difference between 100 µM of probe and the control. Moreover, the 
pTAM was incubated 24h with cells while in vivo the probe is cleared from the tissue in less than 1h.23 
Therefore, the probe can be considered as non-toxic upon local injection, which is the mode of delivery 
for pTAM.17 

 
Fig. 5. MTT assays for pTAM at various concentration incubated with MDA-MB-231 cells for 24h. (n=3, *p<0.05, **p<0.01). 

 
Conclusions 
In conclusion, we have reported a procedure to synthesize gram quantities of pTAM and a MATLAB 
application for automatic extraction of pO2, pH, and [Pi] from an experimental spectrum. Furthermore, 
we showed that pTAM does not cross the cell membrane and has a low cell toxicity for local delivery. 
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contribution was in the synthesis of mOX063-d24, a hydrophilic trityl probe for cleavage-resistant spin labeling 
of proteins. This paper has been published in the Journal of Physical Chemistry part B. 
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ABSTRACT  

 
Sensitive in-cell distance measurements of proteins using pulsed-Electron Spin Resonance (ESR) requires spin-
labels that are both reduction-resistant and cleavage-resistant. Among the reduction-resistant radical moieties, 
the hydrophilic trityl core known as OX063 is particularly promising due to its long phase-memory relaxation time 
(𝑇𝑚). This property of OX063 allows for the detection of sufficiently intense ESR signal to reliably measure longer 

distances. Furthermore, the OX063’s 𝑇𝑚 remains sufficiently long at higher temperatures, which opens up the 
possibility for distance measurements to be done at temperatures above 50 K. In this work, we synthesized a 
deuterated OX063 with a maleimide linker (mOX063-d24). The combination of deuterated OX063’s hydrophilicity 
and the maleimide linker allows for highly efficient labeling of protein while also being uncleavable in cells. We 
show that the long 𝑇𝑚 of mOX063-d24 allow distance measurements at temperatures up to 150 K. Additionally, 
the distance measurement at 150 K is more sensitive than the measurement at 80 K. The sensitivity gain is due 
to the significantly short longitudinal relaxation time (𝑇1) at higher temperatures which allows for more data to be 
averaged given the same amount of time. In addition to in vitro experiments, we show that mOX063-d24 allows 
distance measurements in Xenopus laevis oocytes. Interestingly, the 𝑇𝑚 of mOX063-d24 is still sufficiently long 
even in the crowded environment of the cell, which allows for distance measurements in-cells. Overall, mOX063-
d24 provides highly sensitive distance measurements both in vitro and in-cells. 
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Introduction 
Understanding how proteins adapt in their cellular environments is of immense interest in structural biology. 

The crowded environment inside cells can affect protein folding and stability1–7. For example, phosphoglycerate 
kinase (PGK) is more stable in zebrafish tissues8 and human osteosarcoma cells5 than in vitro. The increase in 
stability due to molecular crowding has also been observed with other proteins such as frataxin9, ubiquitin10, hen 
egg white lysozyme11, and calcineurin12. In contrast, the dimerization of baculoviral IAP repeat (BIR1) domain of 
X chromosome-linked inhibitor of apoptosis (XIAP) is destabilized in vivo13. The destabilization effect are also 
seen in other protein dimers that are not spherical in shape14,15. These experiments are indicators that the in-cell 
environment modulates protein structure and function, which vary case-by-case. Overall, in-cell experiments are 
required to understand the behavior of proteins in the context of cellular function. 

Electron Spin Resonance (ESR) emerged as a widely applicable technique to measure dynamics and distance 
constraints in vitro and in-cell. For such ESR measurements, the normally diamagnetic proteins can be 
functionalized with a spin-label using site-directed spin labeling methodologies16–19. The combination of ESR and 
spin labeling enables the measurement of the dynamics at the labeled site20,21 or measuring distances between 
the labeled sites of a protein22–28. Distance measurements have been particularly useful for shedding light on the 
changes in protein conformations29–37, the assembly of large complexes38–41, and the binding of substrates and 
metal ions42–45. Additionally, these distance measurements have been performed in-cell for proteins46–48 and 
DNA49,50. The primary challenge for distance measurements in-cell is the reduction of spin-labels within the highly 
reducing cytosolic environment51. An intriguing new strategy for in-cell measurements is the use of genetically 
encoded non-canonical amino acids technology as an in situ labeling strategy52–55. In particular, a photo-caged 
radical amino acid can be incorporated into a protein during translation56. Only after the induction of light will the 
photo-cage is released to expose the nitroxide radical for ESR measurements. In addition to non-canonical 
amino acids, reduction resistant spin-labels such as sterically shielded nitroxides57,58, Gd(III)-based spin-labels59–

61, and triarylmethyls (TAMs, trityls)62–64 have been developed. 
Trityls have a lot of potential as a class of spin-labels for several reasons. First, trityls are highly resistant to 

reduction in-cell due to the steric-shielding of its radical65–67. Second, trityls have appreciable relaxation times 
even at physiological temperatures68. Third, trityls have narrow spectral shape that leads to efficient excitation 
of the electrons and intense ESR signal69. Overall, trityl spin-labels have proved suitable for distance 
measurements at physiological temperatures or in-cell. The most explored trityl spin-labels are based on the 
Finland trityl radical (FT) shown in Figure 1A, which have successfully provided distance measurements at room 
temperature70,71 and in-cell72,73. However, FT-based spin-labels usage is still challenging due to the complications 
in the labeling process. 

The spin-labeling process typically entails a reaction between the spin-label and a cysteine residue to label 
the protein at a specific site. However, FT can bind non-specifically to membranes74 or proteins75. Additionally, 
FT tends to self-aggregate76,77. As a result, efficient labeling of FT requires extensive washing of proteins that 
are immobilized on a solid support63 or maintaining FT concentration to be less than 30 𝜇M throughout the 
process to minimize aggregation78. 

Even after the labeling process, the phase-memory relaxation time (𝑇𝑚) of FT is significantly reduced upon 

protein binding63,78, which leads to a weaker signal. Additionally, the longitudinal relaxation time (𝑇1) is 
significantly long at temperatures that are typical for ESR distance measurements (≤ 50𝐾)78, which leads to 

longer experimental time. Overall, the short 𝑇𝑚 and long 𝑇1 of FT-based spin labels diminish the sensitivity gain 
from the efficient excitation of FT. As a result, FT’s sensitivity for distance measurements is comparable to 
distance measurements using commercially available nitroxide spin-label78. 

As an alternative, a hydrophilic trityl spin-label,based on the OX063 radical shown in Figure 1A, has been 
recently developed that allows for straightforward labeling procedure without non-specific binding or 
aggregation79. Interestingly, deuterated OX063 (OX063-d24) was reported to have the longest transversal 
relaxation time at 50K to date (𝑇𝑚 = 6.3 𝜇𝑠)79. Additionally, OX063-d24 has been shown to also have a sufficiently 

long phase-memory relaxation time even at 200 K (𝑇𝑚 = 3 𝜇𝑠)46. Because 𝑇1 is generally shorter at higher 
temperatures, OX063-d24 has the potential for highly sensitive distance measurements at temperatures higher 
than 50K. Despite OX063-d24's improvement over FT, OX063-d24 only utilized a methanethiosulfonate linker so 
far, which is a limiting factor for in-cell experiments. This linker labels a protein by forming disulfide bonds with 
cysteines, which can be cleaved inside cells48. On the other hand, a maleimide linker reacts with a cysteine to 
form a thioether bond, which is uncleavable under normal physiological condition47. In response to the need of 
a hydrophilic trityl with an uncleavable linker, a hybrid of OX063 and short-linker maleimide (SLIM)73 known as 
Ox-SLIM was recently developed (Figure 1A)80. Unlike OX063, the trityl core of Ox-SLIM has one of its 
bisthioketalaryl moieties remain unhydroxylated to bear the short maleimide linker. The hydrophilicity of Ox-SLIM 
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permitted the labeling efficiency of ~85%. These results motivate the development of hydrophilic trityl labels with 
high labeling efficiency for in-cell distance measurements. 

To increase the viability of OX063-d24-based spin-labels, we have developed a new OX063-d24 spin label with 
a maleimide linker (mOX063-d24) shown in Figure 1A. The maleimide linker allows for mOX063-d24 to maintain 
its linkage with the protein in-cell81. We explored two aspects of mOX063-d24 for distance measurements in 
proteins. First, we show how mOX063-d24 provides highly sensitive distance measurements at temperatures 
higher than the typical ≤ 50𝐾 in vitro. Second, we showcase the usage of mOX063-d24 for experiments in-cell, 
specifically in Xenopus laevis oocytes. When exploring these two aspects, spin-labeling and distance 
measurements were done on the immunoglobulin binding domain of protein G (GB1)82, a 56-residue globular 
protein (Figure 1B). 

 
Methods 
Synthesis of mOX063-d24. OX063-d24 trisodium salt (112 mg, 0.077 mmol, 1eq.), synthesized using our 

previously reported protocols83, was dissolved in anhydrous dimethylformamide (DMF) (100 mL) under argon at 
room temperature. Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (28 mg, 
0.054 mmol, 0.7 eq.) in DMF (1 mL) was added; the green solution turned into a red-brown colored solution.Then, 
N-(2-aminoethyl)maleimide trifluoroacetate salt (23 mg, 0.09 mmol, 1.2 eq.) in DMF (1 mL) and N,N-
diisopropylethylamine (DIEA) (26.8 μL, 1.4 mmol, 2eq.) were added. The solution turned back to green. The 
reaction mixture was diluted 20x with deionized water and acidified to approximately pH~2 with trifluoroacetic 
acid. The crude product was loaded into a C18 cartridge and purified by reverse-phase chromatography using a 
C18 column with a gradient of water/acetonitrile (both containing 0.1 % TFA) 95/5 to 85/15. The purified product 
was freeze-dried, then dissolved in water, titrated to pH=7 with NaOH, and freeze-dried again to provide 48 mg 
(40%) of mOX063-d24 as a disodium salt. The purity assessed by HPLC reached >95% as shown in Figure S1. 
HRMS characterization is shown in Figure S2. 

GB1 labeling protocol. E15C/K28C GB1 and E15C GB1 expression and purification were performed as 
previously described84. The GB1 mutant was reacted with tris(2-carboxyethyl)phosphine (TCEP) overnight at 
4 °C to reduce any disulfide formation. To label the protein, GB1 was run through four 5 mL GE Healthcare Hitrap 
desalting columns, to remove any TCEP, directly into a solution of mOX063-d24. The final solution of 10:1 of 
mOX063-d24:GB1 was allowed to react overnight at 4 °C. The spin-labeled protein was concentrated using 
Sartorius VivaSpin Turbo 4 centrifugal filter units with a molecular weight cutoff of 5 kDa to remove the unreacted 
label. The final solution was prepared in PBS pH 7.4. Concentration and labeling efficiencies were calculated 
from UV-Vis measurement using Nanodrop2000 Spectrophotometer from Thermo Scientific. The extinction 
coefficient of GB1 was obtained from the ProtParam tool (https://web.expasy.org/protparam/). 

Cellular extracts and oocyte microinjection. Oocytes were obtained from Carolina Biological Supplies. The 
cytosol was extracted following previously published protocol85. Cytosol sample was prepared at 50 𝜇𝐿 containing 

 
Figure 1. A) Representation of TAM-based spin labels, FT-MTSL, OX063-d24-MTSL, mOX063-d24, and Ox-SLIM. B) 
Three-dimensional model of E15C/K28C GB1 based on the wild-type GB1 crystal structure (PDB:2QMT). The side 
chains of the mutated cysteines are represented as lines. Reproduced from Hasanbasri, JPC 2021. 

https://www.sciencedirect.com/topics/chemistry/purification
https://www.sciencedirect.com/topics/medicine-and-dentistry/tris-2-carboxyethyl-phosphine
https://www.sciencedirect.com/topics/medicine-and-dentistry/disulfide
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tcep
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doubly labeled mOX063-d24-GB1 (200 𝜇𝑀 spin concentration) and drawn into Pyrex capillary tubes (I.D. = 0.8 
mm) for room-temperature CW experiments. For in-cell pulsed-ESR experiments, 50 𝑛𝐿 of doubly labeled 

mOX063-d24-GB1 (2 𝑚𝑀 spin concentration) was microinjected into 12 oocytes following previously published 
protocol85. The microinjected oocytes were inserted into a Quartz Q-band sample tube (2 mm I.D. and 3 mm 
O.D.) and incubated at room temperature for 30 minutes before being flash-frozen in liquified methylacetylene-
propadiene propane (MAPP) gas. The Q-band in-cell sample was estimated to be 60 𝜇𝐿 of ~20 𝜇𝑀 bulk spin-
concentration. 

ESR measurements. Room-temperature continuous-wave (CW)-ESR experiments were performed on a 
Bruker ElexSys E680 CW/FT X-band spectrometer using a Bruker ER4122 SHQE-W1 high-resolution resonator. 
CW samples were prepared in Pyrex capillary sample tubes. CW experiments were run at a center field of 3520 
G with a sweep width of 20 G, a microwave frequency of ∼9.87 GHz, modulation amplitude of 0.07 G or 0.005 
G, and modulation frequency of 100 kHz or 300 kHz83 for a total of 1024 or 2048 data points using a conversion 
time of 30.01 ms. 

All pulsed experiments were performed on a Bruker ElexSys E680 CW/FT X-band spectrometer equipped with 
a Bruker ER5106-QT2 resonator for Q-band and a 300 W amplifier. The temperature was controlled using an 
Oxford ITC503 temperature controller and an Oxford CF935 dynamic continuous-flow cryostat connected to an 
Oxford LLT 650 low-loss transfer tube. Echo decay experiments used a two-pulse sequence, 𝜋/2-𝑡-𝜋, where 𝑡 
was increased by a step size of 8 ns for 1024 points. 𝑇𝑚 values were obtained by fitting the Echo decay results 

with a stretched exponential decay. The time point where the signal is 1/𝑒 of the original intensity is the reported 
𝑇𝑚 value. Inversion recovery experiments followed a three-pulse sequence, 𝜋-𝑡1-𝜋/2-𝑡2-𝜋, where 𝑡2 was 400 𝑛𝑠 

and 𝑡1 was increased by a step size of 1 𝜇𝑠 or 10 𝜇𝑠 for 1024 points. Fitting of inversion recovery data is detailed 
in the Supporting Information. Double Quantum Coherence (DQC)22,86 was performed at the field with the 
maximum signal intensity of mOX063-d24. The DQC experiments followed a six-pulse sequence, 𝜋/2-𝑡𝑝-𝜋-𝑡𝑝-

𝜋/2-𝑡1-𝜋-𝑡1-𝜋/2-𝑡2-𝜋, where 𝑡𝑝 and 𝑡2 were increased and decreased respectively by 10 ns for 136 points. The 

initial parameters were set as 𝑡𝑝 = 1.3 𝜇𝑠, 𝑡1 = 50 𝑛𝑠, and 𝑡2 = 1.5 𝜇𝑠. To remove unwanted echo signal, the 64-

step phase cycle was implemented22,23. The DQC time traces were then analyzed using DeerAnalysis87 by 
Tikhonov Regularization.  

𝑆𝑁𝑅 was calculated from the raw DQC time traces using previously published method88. In summary, the raw 
DQC time trace was fitted to a 5th-order polynomial. The fit was subtracted from the time trace to isolate the noise 
of the time trace. The noise was used by the software SnrCalculator to calculate the final 𝑆𝑁𝑅. 

 
Results and Discussion 

 
Scheme 1. Synthesis of mOx063-d24 from Ox063-d24. Reproduced from Hasanbasri, JPC 2021. 

 
Our recent report of the synthesis of OX063 triarylmethyl radical and its deuterated analogues OX063-

d24
83enables the synthesis of OX063 derivatives such as spin labels. A short maleimide linker was conjugated to 

OX063-d24 using PyBOP peptide coupling reagent as depicted in Scheme 1. The mOX063-d24 was isolated in 
40% yield after purification on C18 alongside with 10% of the di-maleimide derivative.  

We overexpressed and labeled E15C GB1 with mOX063-d24 through a reaction between cysteine residues 
and the maleimide linker. The labeling reaction occurred by incubating E15C GB1 and mOX063-d24 in PBS pH 
7.4 overnight. The solution was filtered through a centrifugal filter with a molecular weight cut-off of 5kDa to 
remove free mOX063-d24. We first performed ESI-MS to confirm the covalent attachment of mOX063-d24 to 
E15C GB1. The data is shown in Figure S3. The MS showed peaks corresponding to singly labeled and non-

https://www-sciencedirect-com.pitt.idm.oclc.org/topics/medicine-and-dentistry/spectrometer
https://www-sciencedirect-com.pitt.idm.oclc.org/topics/biochemistry-genetics-and-molecular-biology/amplitude-modulation
https://www-sciencedirect-com.pitt.idm.oclc.org/topics/biochemistry-genetics-and-molecular-biology/frequency-modulation
https://www-sciencedirect-com.pitt.idm.oclc.org/topics/physics-and-astronomy/cryostats
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labeled E15C GB1. This result is expected because of the detachment of the spin label during sample 
preparation in trifluroacetic acid for ESI-MS and has been reported before using a maleimide-linked FT78. 

The final product was characterized using UV-Vis to assess spin-labeling efficiency. This data is shown in 
Figure 2. The spectrum features two distinctive peaks at 280 nm and 469. Only mOX063-d24 contributes toward 
the 469-nm peak89, while both mOX063-d24 and GB1 contribute toward the 280-nm peak. The UV-Vis spectrum 
was analyzed using the deconvolution method, as depicted in Figure 278, which fits the mOX063-d24-GB1 
spectrum using GB1’s UV-Vis spectrum (dash-dotted line) and mOX063-d24’s UV-Vis spectrum (dotted line). The 
deconvolution allowed us to obtain the absorbance of GB1 at 280 nm (𝜀280= 9970 M-1 cm-1) and mOX063-d24 at 
469 nm (𝜀469= 16000 M-1 cm-1)89, which were used to calculate their concentrations. The final concentrations of 
GB1 and mOX063-d24 in the sample are 165.0 µM and 161.9 µM, respectively. Therefore, the ratio of GB1: 
mOX063-d24 purified is about 1:0.98. Overall, our UV-Vis results indicate efficient mOX063-d24 labeling of 
cysteines on GB1. 

Figure 2. UV-Vis spectrum of mOX063-d24-GB1 sample (gray line). The mOX063-d24-GB1 spectrum was deconvoluted 
into its GB1 (dash-dotted line) and mOX063-d24 (dotted line) components. The sum of the two components (dashed 
line) fits well with the mOX063-d24-GB1 spectrum. Reproduced from Hasanbasri, JPC 2021. 
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To further validate the labeling efficiency, the mOX063-d24-GB1 sample was characterized using CW-ESR at 
room temperature.Figure 3A and 3B show the CW-ESR spectrum of mOX063-d24 bound to GB1 and free 

mOX063-d24. The free mOX063-d24 contained a superhyperfine interaction with the amide nitrogen (𝑎𝑁~220 𝑚𝐺) 
on the linker, depicted as a partially resolved triplet splitting of the ESR lineshape. This nitrogen hyperfine is 
consistent with previously published trityls with 14N-containing linkers79,90,91. After mOX063-d24 reacted with GB1, 
the superhyperfine nitrogen were broadened and unresolved due to the slower tumbling rate upon protein 
binding, seen in Figure 3B79. However, the tumbling rate after protein binding is still rapid enough to resolve the 
satellite 13C peaks in the CW of GB1-bound mOX063-d24, seen in Figure 3A. This behavior has been described 
in a previous report of OX063-d24 spin-label79. Spin-counting of the mOX063-d24-GB1 CW spectrum yields a spin 
concentration of 190 µM. Given the protein concentration of 194 µM, these results indicate a labeling efficiency 
of 97%, which agrees with the UV-Vis data. 

More importantly, the mOX063-d24-GB1 CW spectrum can be fitted with a narrow single-component simulation 
without a broad component, commonly seen when using FT74,75,78,92. FT’s broad component has been attributed 
to aggregated species of FT76,77 and non-specific binding in proteins75,76,79,93 and membranes74. As a result, when 
using the simple spin-labeling workflow, FT had labeling efficiencies of 24% to 80% depending on the linker and 
protein67,78,79,92. On the other hand, mOX063-d24 is highly soluble and does not bind non-specifically79. Therefore, 
the hydrophilicity of mOX063-d24 allows ~100% labeling efficiency using simple protein labeling protocols. 
Additionally, the labeling efficiency of mOX063-d24 is slightly improved from the previously developed hydrophilic 
trityl spin-label, Ox-SLIM, which reported to have 85% labeling efficiency80. Such differences in labeling efficiency 
could be due to the difference in maleimide linker length between mOX063-d24 and Ox-SLIM, and potentially to 
the differences in solvent accessibilities between the two sites in the two proteins. 

Next, pulsed-ESR was used to measure the relaxation times of GB1-bound mOX063-d24 since these are critical 
parameters that dictate the efficacy of the label in pulsed dipolar spectroscopy. These data were acquired at a 
spin concentration of 5 𝜇𝑀 and the sample was prepared in 20 mM PBS buffer at pH 7.4, and contained 20% 
glycerol. The phase-memory relaxation time (𝑇𝑚) was measured by echo decay experiments.The measured 

values of 𝑇𝑚 are listed in Table 1 and the data is shown in Figure S4A. The 𝑇𝑚 of GB1-bound mOX063-d24 is 5.1 
𝜇𝑠, 4.3 𝜇𝑠, or 3.6 𝜇𝑠 at 80 K, 150 K, or 180 K, respectively. These relaxation measurements provided additional 
data points to the existing measurements from previous studies of OX063-based spin-labels (cf. Table S1). For 
comparison, the 𝑇𝑚 value of 5.1 𝜇𝑠 for GB1-bound mOX063-d24 at 80 K is longer then the 𝑇𝑚 value of 1.6 𝜇𝑠 of 

protein-bound FT at 80 K78. The longest reported 𝑇𝑚 of protein-bound FT is 2.9 𝜇𝑠 at 50K79. Increasing the 𝑇𝑚 
can both increase the echo intensity for distance measurements and increase the range of feasible temperature 
of the experiment.  

Figure 3. A) CW-ESR spectra of mOX063-d24-GB1 (top) and mOX063-d24 (bottom). The spectrum of mOX063-d24-
GB1 can be fitted with a narrow single-component simulation. The 13C satellite peaks are marked with *. B) The CW-
ESR spectra of mOX063-d24-GB1 and mOX063-d24 with the observation window ~2 G at the central lineshape. The 
nitrogen superhyperfine is partially resolved in the mOX063-d24 spectrum but not in the mOX063-d24-GB1 spectrum. 
Reproduced from Hasanbasri, JPC 2021. 
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At higher temperatures, mOX063-d24 also benefit from the shortening of 𝑇1. GB1-bound mOX063-d24 has 𝑇1 
values of 1.98 ms, 0.175 𝑚s, and 0.112 𝑚𝑠 at 80 K, 150 K, and 180 K respectively (Table 1, Figure S4B and 

S4C). The mechanism for 𝑇1 relaxation of trityl radicals as a function of temperature has been previously 
studied94. As 𝑇1 gets shorter with increasing temperature, the amount of time required for GB1-bound mOX063-
d24 to completely relax becomes shorter leading to a faster rate of repeating the measurement. For comparison, 
the 𝑇1 value of 1.98 𝑚𝑠 for GB1-bound mOX063-d24 at 80 K listed in Table 1 is slightly longer than the 𝑇1 value 

of 1.7 𝑚𝑠 of protein-bound FT at 80 K78. However, distance measurements using FT are typically done at 50 K 
or lower which has 𝑇1 values of 6.3 𝑚𝑠 or longer78. Therefore, distance measurement using mOX063-d24 at 
higher temperature leads to more scans per unit of time than the distance measurement using FT at the typical 
temperature of 50 K. Consequently, we expect that distance measurements using mOX063-d24 at higher 
temperatures benefit from a shorter 𝑇1. 

 
Table 1. 𝑇𝑚 and 𝑇1 measurements of mOX063-d24-GB1 at 80 K, 150 K, and 180 K.  

Temperature 𝑇𝑚 𝑇1 

80 K 5.1 𝜇𝑠 1.98 𝑚𝑠 

150 K 4.3 𝜇𝑠 0.175 𝑚𝑠 

180 K 3.6 𝜇𝑠 0.112 𝑚𝑠 
Reproduced from Hasanbasri, JPC 2021. 

 
To showcase the sensitivity of mOX063-d24, DQC experiments at 80 K or 150 K were performed on E15C/K28C 

GB1 doubly-labeled by mOX063-d24 (dmOX063-d24-GB1), as shown in Figure 4A. The method to measure 𝑆𝑁𝑅 
is described in the methods section. The DQC time trace achieved 

sufficiently high 𝑆𝑁𝑅 at 150 K within approximately 1.5 hours of runtime (𝑆𝑁𝑅 = 20 𝑚𝑖𝑛−1/2). On the other hand, 

at 80 K, even after 2 hours of runtime, the DQC time trace (𝑆𝑁𝑅 = 7 𝑚𝑖𝑛−1/2) is noisier than the 150 K DQC time 
trace. The higher 𝑆𝑁𝑅 of 150 K DQC than the 𝑆𝑁𝑅 of 80 K DQC can be rationalized by the following analysis of 

𝑆𝑁𝑅 for pulsed-ESR experiments95: 

𝑆𝑁𝑅(𝑇) ∝
1

𝑇
exp [−𝑡𝑡𝑜𝑡/𝑇𝑚(𝑇)]√

1

𝑇1(𝑇)
(Eq.1) 

where 𝑇 is the temperature and 𝑡𝑡𝑜𝑡 is the amount of time the electron coherence evolves until the detection of 

the echo signal. The 1/𝑇 term in Eq.1 is due to the Boltzmann factor96. Based on Eq.1, the shorter 𝑇1 = 0.175 𝑚𝑠 
at 150 K than the 𝑇1 = 1.98 𝑚𝑠 at 80 K (Table 1, Figure S4B and S5C) contributes to 3.36 times improvement in 

𝑆𝑁𝑅. On the other hand, the increase in temperature from 80 K to 150 K only led to a slight reduction of 𝑇𝑚 from 
5.1 𝜇𝑠 to 4.3 𝜇𝑠. Furthermore, the increase in temperature causes a loss in echo intensity due to the reduction in 
spin-polarization. Based on Eq.1, the decrease in 𝑇𝑚 and spin-polarization reduces the 𝑆𝑁𝑅 by 0.43 times. As a 

result, the final 𝑆𝑁𝑅 at 150 K is 3.36 × 0.43 = 1.44 times higher than the 𝑆𝑁𝑅 at 80 K. We can see the 𝑆𝑁𝑅 
improvement from the DQC echo comparison between 80 K and 150 K shown in Figure S5. Overall, the gain in 
sensitivity due to 𝑇1 was able to over-compensate the loss of echo intensity from the shortening of 𝑇𝑚 and the 
reduction of spin-polarization. However, increasing the temperature further to 180 K causes the reduction in 
sensitivity due to reduced spin-polarization and 𝑇𝑚. For example, the sensitivity at 180 K is ~79% of the sensitivity 
at 150 K based on Eq.1. These comparisons signify the importance of experimentally evaluating the relaxation 
times at various temperatures, since the values can be different for different systems. While 80 K is not the most 

optimal temperature for mOX063-d24 DQC, its 𝑆𝑁𝑅 = 7 𝑚𝑖𝑛−1/2 is comparable to the reported FT’s 𝑆𝑁𝑅78 ranging 

from 7 𝑚𝑖𝑛−1/2 to 8.9 𝑚𝑖𝑛−1/2 at 50 K. These comparison of 𝑆𝑁𝑅 exemplifies the sensitivity gained from 
performing mOX063-d24 DQC experiments at the optimal temperature. 

We analyzed the time traces using the DeerAnalysis201887 package and the Tikhonov Regularization method 
to extract the distance distributions shown in Figure 4B. Expectedly, at both temperatures, the distance 
distributions were close to identical, with the most probable distance of 3.6 nm. In order to predict the distance 
distribution, we built an in silico model using MTSSLWizard97. Since the mOX063-d24 spin-label does not exist in 
the MTSSLWizard package, we first implemented the mOX063-d24 model into the MTSSLWizard software. 
Details are provided in Figure S6. The model predicted that the most probable distance is 3.8 nm, as shown in 
Figure 4B, which is in reasonable agreement with the DQC results. Furthermore, the experimental results have 



 

38 
 

a standard deviation of ~0.6 nm, which is on par with the standard deviation of ~0.8 nm obtained using nitroxide 
on the same GB1 mutant85.  

 
After the in vitro experiments, the viability of mOX063-d24 for in-cell experiments was explored. Specifically, 

the dmOX063-d24-GB1 (200 𝜇𝑀 of spins) was subjected to either ten times excess of ascorbic acid or the cytosol 
extract of Xenopus laevis (African Bullfrog) oocytes. Cytosol was extracted from oocytes using previously 
published protocol85. The signal intensity of mOX063-d24 was monitored over time using CW ESR, and the 
maximum intensity of each CW was plotted against time in Figure 5A. The signal intensity decays to about 97 
and 95% of its original intensity in ascorbate and cytosol after 5 hours, respectively. The stability of mOX063-d24 

Figure 4. A) DQC time traces of doubly-labeled dmOX063-d24-GB1 at 150 K after 1.5 hours of runtime and at 80 K 
after 2 hours and 16 hours of runtime. B) Distance distributions obtained from the 150 K and 80 K DQC time traces 
using DeerAnalysis. The gray regions represent the error obtained from the validation function in DeerAnalysis. 
Additionally, a distance distribution was also obtained from in silico modeling using MTSSLWizard. C) In silico model 
from MTSSLWizard using GB1 (PDB:2QMT) and mOX063-d24. The two clusters represent the space occupied by the 
radical carbon. Reproduced from Hasanbasri, JPC 2021. 
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is on par with the stability of other trityls73,80. The signal persistence of mOX063-d24 showcases the reduction-
resistance of mOX063-d24 against the cytosolic antioxidants that play a role in reducing radicals in-cell98. 

After measuring mOX063-d24 stability, dmOX063-d24-GB1 was injected into oocytes and incubated for 30 
minutes after injection before flash-freezing the sample. The 30 minutes incubation allows for dmOX063-d24-
GB1 to completely diffuse in oocytes48. Echo decay experiment measured the 𝑇𝑚 of mOX063-d24 at 80 K in 
oocytes to be 4.3 𝜇𝑠 as shown in Figure S7, which is shorter than the 𝑇𝑚 of mOX063-d24 in vitro shown in Table 

1 and Figure S4A. The lower GB1-bound mOX063-d24 𝑇𝑚 in-cell compared to in vitro was expected because of 
the crowded environment in-cell. The crowded environment can lead to an increase in the local concentration of 
protons near the radical which enhances the contribution of electron-nuclei interactions to relaxation. In addition, 
the presence of paramagnetic metal ions, primarily Mn(II)99, in the cell can enhance relaxation. However, the 𝑇𝑚 
of mOX063-d24 in oocytes is surprising since previous reports of other organic spin-labels used in-cell 
(nitroxides50,57,100 and FT67,72,73) have 𝑇𝑚 values in the range of 0.6-2 𝜇𝑠. Therefore, mOX063-d24 also improves 
the sensitivity of distance measurements in-cell due to the 𝑇𝑚 that is at least 2 times longer than previously 

published 𝑇𝑚 of nitroxide or FT in-cell. 
Distance measurements of dmOX063-d24-GB1 in oocytes were done using DQC at 80 K shown in Figure 5B. 

We observed an artifact that overlaps the desired DQC signal at zero time. Such an artifact has been seen 
previously and attributed to trityl dimers and to partial labeling of non-cysteines residues such as lysine101. We 
repeated the labeling procedure on WT GB1 that has no cysteine residues. After concentrating the sample, UV-
Vis indicates no presence of mOX063-d24 as shown in Figure S8. We expected this result since our previous 
work using GB1 and maleimide-linked nitroxide (5-MSL) did not show over-labeling of the protein85. In addition, 
we did not see an ESR signal from the WT GB1 sample which also excludes the presence of dimers.  

We attribute this artifact as due the formation of a small echo generated by the first and the fourth pulses in 
the DQC 6-pulse sequence.This interference can be readily seen in the 2D contour plot of the DQC signal shown 
in Figure S9A. As a result, the DQC time trace contained an artifact shown as a sharp feature at the 𝑡 = 0 shown 
in Figure S9B, which led to improper fitting of the time trace. Additionally, the artifact contributed to a short 
distance around 2 nm shown in Figure S10A. The artifact seemed to be a result of inefficient phase-cycling in 
our DQC experiment and is evident in the in-cell data due to the lower SNR.  

 To support this hypothesis, we performed the DQC experiment using the same parameters on 300𝜇𝑀 
TEMPOL as shown in Figure S11. The same artifact was seen crossing the desired DQC echo at a slanted angle 
shown in the 2D contour plot in figure S11A. As a result, a sharp feature at 𝑡=0 manifested as shown in Figure 
S11B. The artifact was more prominent in the in-cell experiment than in the in vitro experiment for two reasons. 
First, the measured echo in the in-cell DQC was half as intense as the measured echo in the in vitro DQC. The 
lower in-cell echo intensity is due to the shorter 𝑇𝑚 in-cell than the 𝑇𝑚 in vitro. Additionally, reduction of mOX063-
d24 can still occur due to the contribution of oocytes’ membrane-associated factors85 such as thioredoxin102 and 
glutathione reductase103, which are not accounted for in our cytosol stability measurement. These two 
contributions led to a less intense measured echo causing the artifact to be prominent in the in-cell DQC. 

 To remove the artifact in the DQC time trace in oocytes, DQC was performed on a sample of free mOX063-
d24, which contained only the artifact shown in Figure S9B. The free mOX063-d24 DQC time trace was used to 
subtract the artifact from the time trace of dmOX063-d24-GB1 in oocytes shown in Figure 5B. The artifact-
subtracted time trace was used to extract the distance distribution shown Figure 5C, which agrees quite well with 
the in vitro distance measurements in Figure 4B. Furthermore, we were able to repeat the in-cell DQC experiment 
at 150 K, shown in Figure S12, and obtain a similar distribution as the 80 K in-cell distribution. Additionally, we 
repeated our in-cell experiments at 80 K using a different batch of oocytes and newly overexpressed and labeled-
GB1 to ensure that the in-cell results are reproducible. This data is shown in Figure S13. Overall, we obtained a 
highly sensitive distance measurement in oocytes using mOX063-d24. 
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Conclusions 
In conclusion, this work showed that mOX063-d24 has a high protein-labeling efficiency of ~97%. Furthermore, 

we showed that in vitro distance measurements of mOX063-d24 is more sensitive at higher temperatures. Finally, 
we obtained distance measurements using mOX063-d24 in-cell which agree with in silico modeling. This work 
adds to the library of spin labels that can be used for in-cell work.In particular, mOX063-d24 is similar to Ox-
SLIM80 since both are hydrophilic spin-labels with a maleimide linker, as shown in Figure 1A. However, these 
two spin-labels differ in their trityl cores and linker lengths. These differences provide variation in the labeling 
efficiency, 𝑇𝑚, and breadth of distance distribution. In one case, Ox-SLIM’s short linker length can provide narrow 
distance distributions that can readily resolve different protein conformations73,80. On the other hand, mOX063-
d24 provides longer 𝑇𝑚 and higher labeling efficiency leading to the sensitivity improvement in the distance 
measurements. Overall, Ox-SLIM and mOX063-d24 are complementary to each other due to their differences. 
 

Figure 5. A) A plot of the maximum intensity of dmOX063-d24-GB1 vs. time in 10 times excess of ascorbate 
or cytosol extracted from Xenopus laevis oocytes. The height of the vertical bars represents the RMSD in 
the CW spectrum. B) DQC time trace of dmOX063-d24-GB1 at 80 K Q-band before and after artifact 
subtraction. C) Distance distribution (most probable distance of 3.6 nm) extracted from the artifact-
subtracted time-domain signal using DeerAnalysis. The gray region represents the error obtained from the 
validation function. Reproduced from Hasanbasri, JPC 2021. 
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Supporting Information 
HRMS-ESI data of mOX063-d24 and mOX063-d24-GB1, UV-Vis of mOX063-d24 + WT GB1, pulsed-ESR 
relaxation measurements, details of MtsslWizard modeling, comparison of in vitro DQC echo of dmOX063-d24-
GB1 at 80 K and 150 K, raw 1D and 2D DQC time domains, in-cell DQC data at 150 K and 80 K (second trial). 
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