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ABSTRACT

Algebraic, Analytic, and Combinatorial Properties of Power Product
Expansions in Two Independent Variables.

Mohamed Elewoday

Let F(x,y)= I+
∞

∑
p=1

m+n=p

Am,nxmyn be a formal power series, where the coefficients Am,n

are either all matrices or all scalars. We expand F(x,y) into the formal products
∞

∏
p=1

m+n=p

(I + Gm,nxmyn),
∞

∏
p=1

m+n=p

(I −Hm,nxmyn)−1, namely the power product expan-

sion in two independent variables and inverse power product expansion in two
independent variables respectively. By developing new machinery involving the
majorizing infinite product, we provide estimates on the domain of absolute con-
vergence of the infinite product via the Taylor series coefficients of F(x,y). This
machinery introduces a myriad of ”mixed expansions”, uncovers various algebraic
connections between the (Am,n) and the (Gm,n), and uncovers various algebraic
connections between the (Am,n) and the (Hm,n), and leads to the identification of
the domain of absolute convergence of the power product and the inverse power
product as a Cartesian product of polydiscs. This makes it possible to use the trun-

cated power product expansions
P
∏

p=1
m+n=p

(1+Gm,nxmyn),
P
∏

p=1
m+n=p

(1−Hm,nxmyn)−1 as

approximations to the analytic function F(x,y). The results are made possible
by certain algebraic properties characteristic of the expansions. Moreover, in the
case where the coefficients Am,n are scalars, we derive two asymptotic formulas
for the Gm,n,Hm,n, with m fixed, associated with the majorizing power series. We
also discuss various combinatorial interpretations provided by these power prod-
uct expansions.
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Chapter 1

Factorization of Bivariate Analytic
functions Via Power Product
Expansion

1.1 Introduction

The subject of this chapter is the expansion of f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn with

complex coefficients into an infinite product, where either the defining expression
for f (x,y) is treated as a formal power series expansion or f (x,y) is an analytic
function with f (0,0) = 1. The right side of

f (x,y) =
∞

∏
q=1

m+n=q

(1+gm,nxmyn) (1.1)

is defined to be power product expansion in two independent variables, (or PPE2),
and provides a factorization of f (x,y). Observe that finite truncations of the PPE2,

namely

 P
∏

q=1
m+n=q

(1+gm,nxmyn)


∞

P=1

, provide polynomial approximations for f (x,y).

A few special cases of PPE2s appear throughout the literature. The infinite
product with elementary factors (1+ xmyn) is used as a generating function to
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determine the sequence (pd(m,n))∞
m,n=0

∞

∑
p=1

m+n=p

pd(m,n)xmyn =
∞

∏
q=1

m+n=q

(1+ xmyn), (1.2)

where pd(m,n) is the number of partitions of (m,n) ∈ N0×N0 into distinct parts.
There is also Euler’s infinite product in two variables, namely

∞

∑
p=1

m+n=p

p(m,n)xmyn =
∞

∏
q=1

m+n=q

(1− xmyn)−1, (1.3)

where p(m,n) represents the number of partitions of (m,n) ∈ N0×N0 into unre-
stricted parts [1], [10]. As these two classical examples suggest, the expansion of

a general infinite product
∞

∏
q=1

m+n=q

(1+gm,nxmyn) into a power series 1+
∞

∑
p=1

m+n=p

am,nxmyn

generates an infinite sequence of coefficients am,n that count the number of ar-
rangements in a variety of combinatorial configurations. The convergence prop-

erties of
∞

∏
q=1

m+n=q

(1+gm,nxmyn) and its companion power series are very important

for similar reasons since they are crucial in determining the order of growth of the
coefficients am,n = pd(m,n), and am,n = p(m,n) as m+n goes to infinity.

Much research has been done on one variable power product expansions;
see [8],[9],[29],[31],[32]. However, only sporadic work has been done for power
product expansions in two independent variables. Cheema [10] has combinatorial
results involving PPE2s and vector partition identities, while Feld and Newman
[13] have estimated of the domain of convergence of the PPE2 by expressing the
convergence of infinite product in terms of the growth of the coefficients of the

Taylor series of log f (x,y) =
∞

∑
p=1

m+n=p

cm,nxmyn. There are advantages and insights

gained by the logarithm of the function f (x,y). However, they come with a penalty
since they provide an indirect expression for the coefficients gm,n in terms of the
coefficients c1,0,c0,1, . . . ,ci, j rather than a direct expression of gm,n in terms of the
a1,0,a0,1, . . . ,ai, j. Consequently, an estimate for the domain of convergence of the
PPE2 is not directly expressed in terms of the order of growth of the coefficients
a1,0,a0,1, . . . ,ai, j. This shortcoming was remedied in the case of one independent

2



variable by H. Gingold, A. Knopfmacher, and J. Quaintance who expressed gn
as a polynomial in the variables (ai)

n
i=1 [17], [19], [22]. In what is perhaps the

most important result of this chapter, we extend this polynomial based approach
of Gingold et al. to the case of two independent variables and thus provide an
estimate for the domain of convergence of a PPE2 directly in terms of the power
series coefficients (am,n)

∞
m,n=0

m+n=1
.

This chapter contains two major results. The first main result, Theorem 1.4.1,

provides a domain of convergence for f (x,y) =
∞

∏
q=1

m+n=q

(1+ gm,nxmyn), in terms of

the “majorizing infinite product”

1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∑
p=1

m+n=p

(1−Em,nxmyn),

where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n . The method of majorizing series is well established

in the analytic theory of complex variables; see J.B. Conway [5] and S. Ghorpade
and B. Limaye [28]. However, the same did not hold true for product expansions
until the publication of [22]. The proof of Theorem 1.4.2 makes use of the fact
that |gm,n| ≤ Em,n. See Theorem 1.4.1. The proof of this inequality involves gen-
eralizing the recursive algebraic procedure initiated in [23] and [22] to deduce that
if am,n ≤ 0, then gm,n ≤ 0. See Theorem 1.3.2 and Equation (1.28). In the case of
Theorem 1.4.2, the majorizing power

1−
∞

∑
p=1

m+n=p

sm+nxmyn =
1−2s(x+ y)+2s2xy

(1− sx)(1− sy)
. (1.4)

By setting y = 0, Equation (1.4) provides the majorizing function for one variable
case, namely 1−2sx

1−sx . In [19] Gingold and Knopfmacher showed that asymptotic
value of log 1−2sx

1−sx = ∑
∞
n=0 dnxn coincides with the asymptotic value of its power

product expansion ∏
∞
n=1(1+ gnxn), i.e. limn→∞

gn
dn

= 1. The second major out-
come of this chapter, Theorem 5.1, extends this aforementioned asymptotic result
to PPE2s, where for fixed M , we show that limn→∞

gM,n
dM,n

= 1 whenever

log 1−2s(x+y)+2s2xy
(1−sx)(1−sy) =

∞

∑
p=1

m+n=p

dm,nxmyn. This chapter is organized as follows. In

3



Section 2, we study the expansion of a power series into a PPE2 and provide two
algebraic representations for the coefficients gm,n as a multivariate polynomials
in (am,n)

∞
m,n=0
m+n=1

. In Section 3, we provide another way to express recursively the

coefficients gm,n as a multivariate polynomial of the variables am,n. The alge-
braic result of Section 3 reveals an intriguing property of these expansions. If
am,n ≤ 0, then the coefficients gm,n in the PPE2 are non-positive. In Section 4, we
exploit the non-positivity result of Section 3 to determine convergence conditions
of the PPE2 in terms of a majorizing power product. In Section 5, we provide

an asymptotic formula for the gm,n associated with 1−
∞

∑
p=1

m+n=p

sm+nxmyn, where

s :≡ sup
p=1

m+n=p

|am,n|
1

m+n , while in Section 6 we provide combinatorial interpretations

for PPE2 in term of partitions of (m,n). Section 6 also provides a convergence the-
orem for the PPE2s associated with combinatorial sequences which states that the
PPE2 and its Taylor series have the same domain of convergence; see Corollary
1.6.1.

1.2 Two Algebraic Formulas for the Coefficients of
a Power Product Expansion

In this section and the next section we study the expansion of a two variable
power series into a PPE2 and provide three algebraic representations for the co-
efficients gm,n as polynomials of the (am,n)

∞
m,n=0

m+n=1
. Unlike the convergence of the

serie ∑
∞
n=0 an, the convergence of the double series ∑

∞
m,n bm,n requires additional

considerations. In order to justify the particular order of summation that we uti-
lize throughout this article, we briefly recall some theoretical results. Following J.
Morrow [38], we define ∑m,n bm,n as a double mn indexed infinite series of com-
plex numbers. (In our particular case, bm,n = am,nxmyn .) We define the associated
sequence of partial sums (sm,n) via the finite sum

sm,n =
m

∑
j=1

n

∑
k=1

b j,k.

We say ∑m,n bm,n converges if and only if limm,n→∞ sm,n converges. We say ∑m,n bm,n
converges absolutely if and only if ∑m,n |bm,n|. The crucial result, [[38], Theorem

4



2], states that if ∑m,n bm,n absolutely converges, then ∑m,n bm,n converges and that
the sum of ∑m,n bm,n can be computed by any rearrangement of terms. Since we
will be working with either doubly indexed formal power series or doubly indexed
absolutely convergent series, without loss of generality we define

∑
m,n

bm,n := b0,0 +
∞

∑
p=1

m+n=p

bm,n

= b0,0 +b1,0 +b0,1 +b2,0 +b1,1 +b0,2 + . . . . (1.5)

See Definitions 1.2.1 and 1.2.2. But before we even define what we mean by a
PPE2, we need some preliminary notation and definitions.

Remark 1.2.1. Throughout this work, N0 := N∪{0}.

Definition 1.2.1. We define a well ordering≺ on N0×N0 via the following binary
relation: for (n1,n2),(n3,n4) ∈ N0×N0, we have (n1,n2)≺ (n3,n4) if either

1. n1 +n2 < n3 +n4 or

2. n1 +n2 = n3 +n4 and n1 > n3, or equivalently n2 < n4.

Here < is the usual order relation on N0. See Figure 1.
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(0,0) (0,1) (0,2) (0,3) . . . (0,q−1) (0,q) . . .

(1,0) (1,1) (1,2) . . . (1,q−1) . . .

(2,0) (2,1) . . . (2,q−2) . . .

(3,0) . . . (3,q−3) . . .

...
...

...

(q−1,0) (q−1,1) . . .

(q,0) . . .

...

Figure 1.1: Ordering of (m,n) ∈ N0×N0 according to Definition 1.2.1.

For example, (1,0)≺ (2,0)≺ (1,1)≺ (0,2).

Definition 1.2.2. Given a formal power series f (x,y) = 1 +
∞

∑
p=1

m+n=p

am,nxmyn or

analytic function f (x,y) with f (0,0) = 1 whose Taylor series representation is
defined by the well-ordering of Definition 1.2.1, namely

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn = 1+a1,0x+a0,1y+a2,0x2 + . . . , (1.6)

6



we define the power product expansion of f (x,y) in two independent variables,
denoted by PPE2, as

f (x,y) =
∞

∏
q=1

m+n=q

(1+gm,nxmyn) = (1+g1,0x1y0)(1+g0,1x0y1)(1+g2,0x2y0) ·

(1+g1,1x1y1)(1+g0,2x0y2)(1+g3,0x3y0)(1+g2,1x2y1)... , (1.7)

where the right equality of (1.7) follows from the conventions of Definition 1.2.1.

Definition 1.2.2 provides a first means of obtaining an algebraic representation
of gm,n in terms of (am,n). But we will need one more definition to describe this
algebraic result.

Definition 1.2.3. Let (m,n) ∈ N0×N0 . A partition of (m,n) is a collection

{(p1, p′1), ...,(pk, p′k)} ⊆N0×N0 such that
k
∑

i=1
(pi, p′i) = (m,n). The summands or

parts (pi, p′i) need not be distinct, and the order of the summands is immaterial.
Let p

(
(m,n)

)
denote the number of partitions of (m,n), and pd

(
(m,n)

)
denote the

number of partitions of (m,n) with distinct parts, where p
(
(0,0)

)
= pd

(
(0,0)

)
=

1.

For example, the partitions of (2,2) are

{(2,2),(2,0)+(0,2),(2,1)+(0,1),(1,2)+(1,0),(1,1)+(0,1)+(1,0)}∪
{(2,0)+(0,1)+(0,1),(1,1)+(1,1),(1,0)+(0,1)+(1,0)+(0,1),(1,0)+(1,0)+(0,2)},

so p
(
(2,2)

)
= 9, and pd

(
(2,2)

)
= 5.

Let

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn). (1.8)

By expanding the PPE2 of (1.8) into a formal power series, coefficient comparison
shows that

am,n = ∑
i1+i2+...+ir=m
j1+ j2+...+ jr=n

(1,0)�(i1, j1)≺···≺(ir, jr)�(m,n)

gi1, j1gi2, j2...gir, jr , (1.9)

where the summation runs over all partitions of (m,n) into distinct parts.

7



Equation (1.9) can be rewritten as

gm,n = am,n−
(

∑
i1+i2+...+ir=m
j1+ j2+...+ jr=n,

(1,0)�(i1, j1)≺···≺(ir, jr)≺(m,n),
r≥2

gi1, j1gi2, j2 ...gir, jr

)
, (1.10)

To obtain the second algebraic formula which writes gm,n in terms of (am,n), start
with Equation (1.8) and take the logarithm of both sides to obtain

log( f (x,y)) = log(1+
∞

∑
p=1

m+n=p

am,nxmyn) =
∞

∑
p=1

m+n=p

dm,nxmyn,

and to obtain

log( f (x,y)) = log
∞

∏
q=1

m+n=q

(1+gm,nxmyn) :=
∞

∑
q=1

m+n=q

log(1+gm,nxmyn)

:=
∞

∑
q=1

m+n=q

∞

∑
l=1

(−1)l−1(gm,nxmyn)l

l
. (1.11)

Compare the coefficient of xMyN on both sides of Equation (1.11) to obtain the
formulas

dM,N =
1
M ∑

m|M
n=Nm

M

(−1)
M
m−1m(gm,n)

M
m , M 6= 0, (1.12)

dM,N =
1
N ∑

n|N
m=Mn

N

(−1)
N
n−1n(gm,n)

N
n , N 6= 0. (1.13)

Take Equation (1.12) and set m = M to obtain

gM,N = dM,N +
1
M ∑

m|M
m 6=M
n=Nm

M

m(−gm,Nm
M
)

M
m . (1.14)

8



Similarly, take Equation (1.13) and set n = N to obtain

gM,N = dM,N +
1
N ∑

n|N
n6=N

m=Mn
N

n(−g Mn
N ,n)

N
n . (1.15)

If gcd(M,N) = 1, then we readily deduce from Equations (1.14) and (1.15) that

gM,N = dM,N . (1.16)

1.3 Structure Property of the Coefficients of a Power
Product Expansion

There is still another way to recursively express the coefficients gm,n as a multi-
variate polynomial in the variables am,n. Start by rewriting Equation (1.8) as

f (x,y) = 1+
∞

∑
p=1

m+n=p

A(1,0),(m,n)x
myn =

∞

∏
q=1

m+n=q

(1+gm,nxmyn),

where A(1,0),(m,n) = am,n for all (m,n) ∈ N0×N0. By using the well ordering

of Definition 1.2.1 to factor
∞

∏
q=1

m+n=q

(1+gm,nxmyn), we get the following recursive

system of equations: first,

f (x,y) = 1+
∞

∑
p=1

m+n=p

A(1,0),(m,n)x
myn = (1+g1,0x)

∞

∏
q=1

m+n=q
(m,n)�(0,1)

(1+gm,nxmyn)

= (1+g1,0x)
[

1+
∞

∑
p=1

m+n=p
(m,n)�(0,1)

A(0,1),(m,n)x
myn
]

;

9



secondly,

1+
∞

∑
p=1

m+n=p
(m,n)�(0,1)

A(0,1),(m,n)x
myn = (1+g0,1y)

∞

∏
q=2

m+n=q

(1+gm,nxmyn)

= (1+g0,1y)
[

1+
∞

∑
p=2

m+n=p

A(2,0),(m,n)x
myn
]

;

and thirdly,

1+
∞

∑
p=2

m+n=p
(m,n)�(2,0)

A(2,0),(m,n)x
myn = (1+g2,0x2)

∞

∏
q=2

m+n=q
(m,n)�(1,1)

(1+gm,nxmyn)

= (1+g2,0x2)

[
1+

∞

∑
p=2

m+n=p
(m,n)�(1,1)

A(1,1),(m,n)x
myn
]
.

Continue this process inductively to define

1+
∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn = (1+gik, jkxiky jk)

∞

∏
q=`

m+n=q
(m,n)�(ik+1, jk+1)

(1+gm,nxmyn)

= (1+gik, jkxiky jk)

[
1+

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

A(ik+1, jk+1),(m,n)x
myn
]
. (1.17)

We expand the right hand side of Equation (1.17) and compare the coefficient of
xMyN to obtain

A(ik, jk),(M,N) =A(ik+1, jk+1),(M,N)+gik, jkA(ik+1, jk+1),(M−ik,N− jk). (1.18)

If (M,N) = (ik, jk), Equation (1.18) reduces to

A(ik, jk),(ik, jk) = gik, jk . (1.19)

Thus Equation (1.18) becomes

A(ik+1, jk+1),(M,N) = A(ik, jk),(M,N)−A(ik, jk),(ik, jk)A(ik+1, jk+1),(M−ik,N− jk). (1.20)
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Next, use Equation (1.19) and the binomial theorem to rewrite Equation (1.17) as

1+
∞

∑
p=`

m+n=p,
(m,n)�(ik+1, jk+1)

A(ik+1, jk+1),(m,n)x
myn = (1+gik, jkxiky jk)−1

[
1+

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]

=

[
1+

∞

∑
α=1

(−1)α(gik, jkxiky jk)α

][
1+

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]

=

[
1+

∞

∑
α=1

(−1)αAα

(ik, jk),(ik, jk)
(xiky jk)α

][
1+

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]
. (1.21)

By equating the coefficient of xsyt on both sides of Equation (1.21), we get

A(ik+1, jk+1),(s,t) = ∑
αik+m=s
α jk+n=t

(−1)αAα

(ik, jk),(ik, jk)
A(ik, jk),(m,n). (1.22)

Equation (1.22) will be the main tool for proving the following result.

Theorem 1.3.1. Let (ik, jk) ∈ N0 ×N0 \ {(0,0)}. Define A(ik, jk),(0,0) = 1 and
A(ik, jk),(m,n) = 0 for (1,0) � (m,n) � (ik−1, jk−1). Assume that A(ik, jk),(m,n) ≤ 0
for all (ik, jk)� (m,n). Then A(ik+1, jk+1),(s,t) ≤ 0 whenever (ik+1, jk+1)� (s, t).

Proof. Equation (1.22) is equivalent to

A(ik+1, jk+1),(s,t) = ∑
αik+m=s
α jk+n=t

(m,n)6=(0,0),(ik, jk)

(−1)αAα

(ik, jk),(ik, jk)
A(ik, jk),(m,n)

+(−A)
s
ik
(ik, jk),(ik, jk)

+(−1)
s
ik
−1
(A)

s
ik
(ik, jk),(ik, jk)

. (1.23)

Rewrite Equation (1.23) as A(ik+1, jk+1),(s,t) = β + γ , where

β := ∑
αik+m=s
α jk+n=t

(m,n)6=(0,0),(ik, jk)

(−1)αAα

(ik, jk),(ik, jk)
A(ik, jk),(m,n),
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and

γ := (−A)
s
ik
(ik, jk),(ik, jk)

+(−1)
s
ik
−1
(A)

s
ik
(ik, jk),(ik, jk)

.

By the hypothesis, Aα

(ik, jk),(ik, jk)
A(ik, jk),(m,n) is the product of α + 1 non-positive

numbers and is either zero or has a sign of (−1)α+1. Thus
(−1)αAα

(ik, jk),(ik, jk)
A(ik, jk),(m,n) is either zero or negative, and each summand in β

is non-positive.

It remains to show that γ is also non-positive . Note that γ only exists if α = s
ik

is a positive integer, say s
ik
= α̂ > 1. Then γ becomes

γ = (−A)α̂

(ik, jk),(ik, jk)
+(−1)α̂−1(A)α̂

(ik, jk),(ik, jk)
= 0. (1.24)

Therefore, the representation of γ provided by Equation (1.24) shows that γ is
non-positive. 2

It will be convenient to insert a definition before stating the main result in this
section.

Definition 1.3.1. The symbol φ = ((i1, j1),(i2, j2), ...,(in, jn)) stands for a vector
with n components, where n ∈ N and i1, i2, ..., in, j1, j2, ..., jn ∈ N0. Let τ = τ(φ)
be the length of φ , i.e. τ = n. Let |φ | denote the sum of the components, i.e.

|φ |=
(

n
∑

d=1
id,

n
∑

d=1
jd

)
. We denote the symbol A(ik, jk),φ as

A(ik, jk),(i1, j1)A(ik, jk),(i2, j2)...A(ik, jk),(in, jn).

The following example illustrates the meaning of Definition 1.3.1.

Example 1.3.1. Let φ =
(
(2,2),(1,3),(4,0),(2,2),(0,4)

)
, then τ = τ(φ) = 5,

|α|= (9,11), and

A(
ik, jk
)
,
(
(2,2),(1,3),(4,0),(2,2),(0,4)

) = A2
(ik, jk),(2,2)

A(ik, jk),(1,3)A(ik, jk),(4,0)A(ik, jk),(0,4).
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Theorem 1.3.2. (Structure Property) Let (ik, jk) ∈ N0×N0 \{(0,0)}. Then

A(ik+1, jk+1),(s,t) =∑
η

(−1)τ(φ(η))−1A(ik, jk),φ(η)

=∑
η

(−1)τ(φ(η))+1A(ik, jk),φ(η), (1.25)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that

|φ(η)| = (s, t) and at most one component (lθ , l′θ ) 6= (ik, jk), where 1 ≤ θ ≤ τ .
Moreover, define A(ik, jk),φ(η) = A(ik, jk),(i1, j1)...A(ik, jk),(iτ , jτ ). If A(ik, jk),(s,t) ≤ 0 and
all (ik, jk)� (s, t), then Equation (1.25) is equivalent to

A(ik+1, jk+1),(s,t) =−∑
η

|A(ik, jk),(i1, j1)|...|A(ik, jk),(iτ , jτ )|, (1.26)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that

|φ(η)|= (s, t) and at most one (lθ , l′θ ) 6= (ik, jk), where 1≤ θ ≤ τ .

Proof. We obtain the desired result by representing Aα

(ik, jk),(ik, jk)
A(ik, jk),(m,n) in

Equation (1.22 ) as A(ik, jk),φ(η). Note that (−1)α = (−1)τ(φ(η))−1. 2

Let us see what happens when we repeat Equation (1.26). In order to efficiently
record the results, let φ =

(
(i1, j1),(i2, j2), ...,(in, jn)

)
denote a vector with n com-

ponents, where n ∈ N, and i1, i2, ..., in, j1, j2, ..., jn ∈ N0. Then aφ(η) denotes the
expression ai1, j1ai2, j2...ain, jn . After L iterations, and assuming A(ik, jk),(s,t) ≤ 0,
whenever (ik, jk)� (s, t), we obtain

A(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1aφ(η) =−∑
η

|ai1, j1||ai2, j2|, , , |aiτ , jτ |. (1.27)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that |φ(η)|=

(s, t).

If (s, t) = (ik+1, jk+1), then Equation (1.27) becomes

A(ik+1, jk+1),(ik+1, jk+1) = gik+1, jk+1 = ∑
η

(−1)τ(φ(η))−1aφ(η),

=−∑
η

|ai1, j1 ||ai2, j2|...|aiτ , jτ |. (1.28)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that

|φ(η)|= (ik+1, jk+1).
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The following example illustrates applications of the structure property to calcu-
late g2,1:

g2,1 =A(2,1),(2,1) By using Equation (1.19)

=A(3,0),(2,1) By using Equation (1.22)

=A(0,2),(2,1)

=A(1,1),(2,1)

=A(2,0),(2,1)

=(−1)1A(0,1),(0,1)A(0,1),(2,0)+A(0,1),(2,1)

=(−1)1A(1,0),(0,1)A(1,0),(2,0)+(−1)1A(1,0),(1,0)A(1,0),(1,1)+

(−1)2A2
(1,0),(1,0)A(1,0),(0,1)+A(1,0),(2,1)

=−a0,1a2,0−a1,0a1,1 +a2
1,0a0,1 +a2,1.

Below we explicitly list gm,n for 1≤ m+n≤ 4.

g1,0 =(−1)0a1,0

g0,1 =(−1)0a0,1

g2,0 =(−1)0a2,0

g0,2 =(−1)0a0,2

g1,1 =(−1)0a1,1 +(−1)1a1,0a0,1

g3,0 =(−1)0a3,0 +(−1)1a2,0a1,0

g2,1 =(−1)0a2,1 +(−1)1a0,1a2,0 +(−1)1a1,0a1,1 +(−1)2a2
1,0a0,1

g1,2 =(−1)0a1,2 +(−1)1a1,0a0,2 +(−1)1a0,1a1,1 +(−1)2a2
0,1a1,0

g0,3 =(−1)0a0,3 +(−1)1a0,2a0,1

g4,0 =(−1)0a4,0 +(−1)1a1,0a3,0 +(−1)2a2,0a2
1,0

g3,1 =(−1)0a3,1 +(−1)3a3
1,0a0,1 +(−1)2a2

1,0a1,1 +(−1)1a0,1a3,0 +(−1)1a1,1a2,0

+(−1)1a1,0a2,1 +(−1)22a0,1a1,0a2,0

g2,2 =(−1)0a2,2 +(−1)1a2,0a0,2 +(−1)32a2
1,0a2

0,1 +(−1)1a0,1a2,1 +(−1)2a2
0,1a2,0

+(−1)2a2
1,0a0,2 +(−1)22a1,0a0,1a1,1 +(−1)1a1,0a1,2 +(−1)2a1,0a1,0a0,2

g1,3 =(−1)0a1,3 +(−1)3a3
0,1a1,0 +(−1)2a2

0,1a1,1 +(−1)1a1,0a0,3 +(−1)1a1,1a0,2

+(−1)1a0,1a1,2 +(−1)22a0,1a1,0a0,2
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g0,4 =(−1)0a0,4 +(−1)1a0,1a0,3 +(−1)2a0,2a2
0,1.

1.4 Convergence Criteria for Power Product Expan-
sion

Our primary purpose in this section is to apply the results of Section 1.3 in order
to determine a lower bound for the domain of convergence of the right hand side
of Equation (1.7). Since we are dealing with doubly indexed infinite products, we

must carefully define what is meant by the convergence
∞

∏
q=1

m+n=q

(1+gm,nxmyn).

Definition 1.4.1. A PPE2
∞

∏
q=1

m+n=q

(1+gm,nxmyn) converges if and only if

limP→∞

P
∏

q=1
m+n=q

(1+gm,nxmyn) converges to a nonzero complex number. Note that the

order of the elementary factors within
P
∏

q=1
m+n=q

(1+gm,nxmyn) follows the conventions

of Definition 1.2.1.

We are primarily interested in the absolute convergence of
∞

∏
q=1

m+n=q

(1+gm,nxmyn).

Therefore, following the lead of J. Thunder [43], we make the following defini-
tion:

Definition 1.4.2. The PPE2
∞

∏
q=1

m+n=q

(1+ gm,nxmyn) is absolutely convergent if and

only if
∞

∏
q=1

m+n=q

(1+|gm,n| |xmyn|) converges, that is if and only if limm,n→∞ ∏
n
i=1 ∏

m
j=1(1+

|gi, j||xiy j|) converges to a nonzero real number.
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Since ex ≥ x+1 whenever x≥ 0, we observe that

m

∑
i=1

n

∑
j=1
|gi, j||xiy j|<

m

∏
i=1

n

∏
j=1

(1+ ||gi, j|| |xiy j|)

≤
m

∏
i=1

n

∏
j=1

e|gi, j||xiy j| = e∑
m
i=1 ∑

n
j=1 |gi, j||xiy j|.

Thus Lemma 2 of [43] is applicable and we have the following proposition:

Proposition 1.4.1. A PPE2
∞

∏
q=1

m+n=q

(1+gm,nxmyn) is absolutely convergent if and only

if
∞

∑
q=1

m+n=q

|gm,n||xmyn| is an absolutely convergent series of real numbers.

As it the case of a double series, if a PPE2
∞

∏
q=1

m+n=q

(1+ gm,nxmyn) is absolutely

convergent, then order of multiplication is immaterial and thus we choose to apply
the ordering of Definition 1.2.1. We implicitly made use of this fact in Proposition
1.4.1.

if (gm,n) is a sequence of complex numbers, we define

log

 ∞

∏
q=1

m+n=q

(1+gm,nxmyn)

 :=
∞

∑
q=1

m+n=q

log(1+gm,nxmyn), (1.29)

where

log(1+gm,nxmyn) :=
∞

∑
`=1

(−1)`
g`m,n

`
xm`yn`. (1.30)

Equation (1.29) implies that

exp
( ∞

∑
q=1

m+n=q

log(1+gm,nxmyn)
)

:=exp

[
log
( ∞

∏
q=1

m+n=q

(1+gm,nxmyn)
)]

=
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (1.31)

16



and implies that for a sequence of complex coefficients (gm,n), the PPE2
∞

∏
q=1

m+n=q

(1+gm,nxmyn) will be absolutely convergent if and only if the double series

∞

∑
q=1

m+n=q

log(1+gm,nxmyn) :=
∞

∑
q=1

m+n=q

∞

∑
`=1

(−1)`
g`m,n

`
xm`yn`,

is absolutely convergent, i.e. if and only if

∞

∑
q=1

m+n=q

∞

∑
`=1

|g`m,n|
`
|x|m`|y|n` < ∞.

By adapting the Taylor series argument found on Page 165 of [5], we have

1/2|∆| ≤ | log(1+∆)| ≤ 3/2|∆|, |∆|< 1/2. (1.32)

(In our case ∆ = gm,nxmyn.) Equation (1.32) implies that
∞

∑
q=1

m+n=q

log(1+gm,nxmyn)

is absolutely convergent if and only if
∞

∑
q=1

m+n=q

gm,nxmyn is absolutely convergent, a

fact we record in the following Theorem:

Theorem 1.4.1. Let f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn. Then f (x,y) is represented by

the PPE2

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn). (1.33)

Consider the following auxiliary functions:

C(x,y) = 1−
∞

∑
p=1

m+n=p

|am,n|xmyn =
∞

∏
q=1

m+n=q

(1− Ĝm,nxmyn) (1.34)

D(x,y) = 1−
∞

∑
p=1

m+n=p

Am,nxmyn =
∞

∏
q=1

m+n=q

(1−Em,nxmyn). (1.35)

Assume 0≤ |am,n| ≤ Am,n for all (n,m) ∈ N0×N0 \{(0,0)}. Then
|gm,n| ≤ Ĝm,n ≤ Em,n for all (n,m) ∈ N0×N0 \{(0,0)}.
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Proof. By Equation (1.28) we have

gm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1aφ(η) = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1ai1, j1ai2, j2 ...aiτ , jτ .

(1.36)
Observe that Equation (1.36) implies that

|gm,n|=
∣∣∣∣ ∑

η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1ai1, j1ai2, j2...aiτ , jτ

∣∣∣∣
≤ ∑

η

|φ(η)|=(m,n)

|ai1, j1||ai2, j2|...|aiτ , jτ |. (1.37)

Similarly, when we apply Equation (1.28) to Equation (1.34), we obtain

0≤ Ĝm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))(−|ai1, j1|
)(
−|ai2, j2|

)
...
(
−|aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(−1)τ(2φ(η))
(
|ai1, j1|

)(
|ai2, j2|

)
...
(
|aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

|ai1, j1||ai2, j2 |...|aiτ , jτ |. (1.38)

By combining Equations (1.37) and (1.38), we deduce that |gm,n| ≤ Ĝm,n. Also,
due to the inequality |am,n| ≤ Am,n, we have

0≤ Ĝm,n = ∑
η

|φ(η)|=(m,n)

|ai1, j1||ai2, j2 |...|aiτ , jτ |

≤ ∑
η

|φ(η)|=(m,n)

Ai1, j1Ai2, j2...Aiτ , jτ = Em,n.

where the last equality follows from Equation (1.28). 2

Remark 1.4.1. Theorem 3.1, Part i, of [17] and Theorem 3.1 of [22] are special
cases of Theorem 1.4.1.

We now consider the special case for D(x,y), particularly

D(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxnyn =
∞

∏
q=1

m+n=q

(1−Em,nxmyn), (1.39)
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where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n .

Our objective is to find a domain of definition such that the PPE2 of Equation
(1.39) is absolutely convergent. Define

log(1−Em,nxmyn) :=−
∞

∑
`=1

(Em,nxmyn)`

`
.

Next define

∞

∑
p=1

m+n=p

log(1−Em,nxmyn) :=−
∞

∑
p=1

m+n=p

∞

∑
`=1

(Em,nxmyn)`

`
. (1.40)

The equality in (1.40) tells us that absolute convergence of the double series on the

right hand side implies that both
∞

∑
p=1

m+n=p

log(1−Em,nxmyn) and log(1−Em,nxmyn)

are absolutely convergent. Moreover, since

exp
( ∞

∑
q=1

m+n=q

log(1−Em,nxmyn)
)
=

∞

∏
q=1

m+n=q

(1−Em,nxmyn),

the absolute convergence of the double series implies the absolute convergence of
∞

∏
q=1

m+n=q

(1−Em,nxmyn) as well. Therefore, in order to determine where

∞

∏
q=1

m+n=q

(1−Em,nxmyn) will be absolutely convergent, it suffices to consider the ab-

solutely convergence of
∞

∑
q=1

m+n=q

log(1−Em,nxmyn). Taking the logarithm of the both

sides of Equation (1.39) gives

log(1−
∞

∑
p=1

m+n=p

sm+nxmyn) = log
∞

∏
q=1

m+n=q

(1−Em,nxmyn)

=
∞

∑
q=1

m+n=q

log(1−Em,nxmyn). (1.41)
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Observe that

1−
∞

∑
p=1

m+n=p

sm+nxmyn = 1−
( ∞

∑
m=0

(sx)m
∞

∑
n=0

(sy)n−1
)

= 1−
(

1
1− sx

· 1
1− sy

−1
)
=

1−2s(x+ y)+2s2xy
(1− sx)(1− sy)

.

This implies that

log
(

1−2s(x+ y)+2s2xy
(1− sx)(1− sy)

)
= log

(
1− [2s(x+ y)−2s2xy]

)
− log(1− sx)− log(1− sy)

=
∞

∑
`=1

(sx)`

`
+

∞

∑
`=1

(sy)`

`
−

∞

∑
`=1

[2s(x+ y)−2s2xy]`

`
. (1.42)

The three series in (1.42) are absolutely convergent for |x|< 1
s , |y|< 1

s , and for∣∣2s(x+ y)−2s2xy
∣∣< 1, respectively. By triangular inequality, we have∣∣2s(x+ y)−2s2xy

∣∣≤ 2s(|x|+ |y|)+2s2|x||y|. (1.43)

If we require 2s(|x|+ |y|)+2s2|x||y|< 1, since 2s|x|< 2s(|x|+ |y|)+2s2|x||y|< 1,
we find that |x|< 1

2s . Similarly, |y|< 1
2s .

Therefore, the estimate of a convergence domain of (1.42) is given by

D=

{
(x,y) ∈ C2 : 2s

(
|x|+ |y|

)
+2s2|x||y|< 1

}
.

See Figure 1.2.
Relation (1.43) makes it possible to also obtain a domain of absolute conver-

gence in terms of polydiscs. Let |x| < ρ and |y| < ρ . Inequality (1.43) implies
that the PPE2 will be absolutely convergent if

2s(2ρ)+2s2
ρ

2 = 2
[
(sρ +1)2−1

]
< 1,

or equivalently if ρ < s−1
[√

3
2 −1

]
. The inequalities for ρ obtained from the

defining quadratic equation of D, namely

|x|< s−1

[√
3
2
−1

]
, |y|< s−1

[√
3
2
−1

]
,
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are sharp in the sense that if

x =−s−1

[√
3
2
−1

]
, y =−s−1

[√
3
2
−1

]
,

then
∣∣2s(x+y)−2s2xy

∣∣= 1 and the sum of the absolute values of the terms in the
logarithmic power series of (1.42) diverge.

In summary, we have shown that
∞

∑
q=1

m+n=q

log(1−Em,nxmyn) will be absolutely

convergent whenever (x,y) ∈ D or whenever (x,y) ∈ Dxρ ×Dyρ with

ρ < s−1
[√

3
2 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

Hence,
∞

∏
q=1

m+n=q

(1−Em,nxmyn) will also be absolutely convergent for the same re-

gions. We claim this information provides a lower bound on the range of abso-
lute convergence for the PPE2 of Equation (1.33). To determine the domain of
convergence of the PPE2 of Equation (1.33), we must determine the domain of
convergence of

log
∞

∏
q=1

m+n=q

(1+gm,nxmyn) :=
∞

∑
q=1

m+n=q

log(1+gm,nxmyn), where the right hand side is de-

fined via the convergence of the double series
∞

∑
q=1

m+n=q

∞

∑
`=1

(−1)`−1(gm,nxmyn)`

` . However,

∣∣∣∣ log
∞

∏
q=1

m+n=q

(1+gm,nxmyn)

∣∣∣∣= ∣∣∣∣ ∞

∑
q=1

m+n=q

log(1+gm,nxmyn)

∣∣∣∣
≤

∞

∑
q=1

m+n=q

∣∣ log(1+gm,nxmyn)
∣∣

=
∞

∑
q=1

m+n=q

∣∣∣∣ ∞

∑
`=1

(−1)`−1(gm,nxmyn)`

`

∣∣∣∣
≤

∞

∑
q=1

m+n=q

∞

∑
`=1

(|gm,n||x|m|y|n)`

`
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≤
∞

∑
q=1

m+n=q

∞

∑
`=1

(Em,n|x|m|y|n)`

`
, (1.44)

where the last inequality follows from Theorem (1.4.1). Inequality (1.44) shows

that if
∞

∑
p=1

m+n=p

∞

∑
`=1

(Em,nxmyn)`

` , and hence
∞

∑
q=1

m+n=q

log(1−Em,nxmyn) are absolutely con-

vergent, then
∞

∑
p=1

m+n=p

log(1+gm,nxmyn) and log
∞

∏
q=1

m+n=q

(1+gm,nxmyn) will be absolutely

convergent as well.

We can therefore summarize what we have shown so far in the following the-
orem.

Theorem 1.4.2. (i) Let f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn. Define

s :≡ sup
p=1

m+n=p

|am,n|
1

m+n . Then both f (x,y) and its PPE2,

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (1.45)

and the auxiliary function, along with its PPE2

D(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1−Em,nxmyn), (1.46)

will be absolutely convergent whenever (x,y) ∈ D, where

D=

{
(x,y) ∈ C2 : 2s

(
|x|+ |y|

)
+2s2|x||y|< 1

}
.

See Figure 1.2.

(ii) With the same conventions as in Part (i.), both f (x,y) and its PPE2, along
with D(x,y) and its PPE2, will be absolutely convergent whenever (x,y) ∈

Dxρ ×Dyρ with ρ < s−1
[√

3
2 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.
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c 

ca 

1
2𝑠 

|𝑥|	

|𝑦| 

2𝑠(|𝑥|+|𝑦|)+2𝑠!|𝑥||𝑦|=1	1
2𝑠 

Figure 1.2: A domain of absolute convergence of Equations (2.4.2) and (2.4.2).

1.5 Asymptotic Approximation for a Special Power
Product Expansion

We will now derive an asymptotic representation for the majorizing product ex-

pansion associated with 1−
∞

∑
p=1

m+n=p

sm+nxnyn , where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n .

The following lemma will be used in the derivation of asymptotic formula.

Lemma 1.5.1. Let M be fixed element of N, N,q ∈ N, and N ≤ q ≤ M +N. As
N→ ∞, we have

1. q∼ N

2.
( q

M

)
∼ NM

M! .
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Proof. The inequality N ≤ q ≤M +N implies that 1 ≤ q
N ≤ 1+ M

N . Hence, for
fixed M, q∼ N as N→ ∞.

To prove the second statement, observe that

(
q
M

)
=

M times︷ ︸︸ ︷
q(q−1)(q−2)...(q−M+1)

M!
=

1
M!
[
qM +O(qM−1)]

=
qM

M!

[
1+∆2(q)

]
,

where ∆2(q) =
O(qM−1)

qM → 0 as q→ ∞. From Part 1, since q ∼ N as N → ∞, the
result follows. 2

Let (M,N)∈N×N. Arrange (gM,N) in an infinite array as shown in Table 1.1.
Then for fixed M ∈ N, the limit lim

N→∞
gM,N is along the M-th row of Table 1.1.

g1,1 g1,2 g1,3 · · ·
g2,1 g2,2 g2,3 · · ·
g3,1 g3,2 g3,3 · · ·
g4,1 g4,2 g4,3 · · ·
...

...
...

. . .

Table 1.1: The row asymptotics are calculated in Theorem 1.5.1.

Theorem 1.5.1. Let f (x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn = 1−2s(x+y)+2s2xy
(1−sx)(1−sy) where s > 0.

For this special function f (x,y) and its associated PPE2
∞

∏
p=1

M+N=p

(1+ gM,NxMyN),

we have

−gM,N ∼ sM+N
N+M

∑
q=N

2q(q−1)!(−1)M+N−q

(q−M)!(q−N)!(M+N−q)!
, as N→ ∞, (1.47)

where M is a fixed element of N and (M,N) ∈ N×N.
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Proof. Let

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn).

Define

log( f (x,y)) = log(1+
∞

∑
p=1

m+n=p

am,nxmyn) =
∞

∑
p=1

M+N=p

dM,NxMyN . (1.48)

Since f (x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn = 1−2s(x+y)+2s2xy
(1−sx)(1−sy) , we find that

log
(

f (x,y)
)
=

∞

∑
p=1

M+N=p

dM,NxMyN = log(1−
∞

∑
p=1

m+n=p

sm+nxmyn)

= log
(

1−2s(x+ y)+2s2xy
(1− sx)(1− sy)

)
= log

(
1− [2s(x+ y)−2s2xy]

)
− log(1− sx)− log(1− sy)

=−
∞

∑
q=1

2q[sx+ sy− s2xy]q

q
+

∞

∑
q=1

(sx)q

q
+

∞

∑
q=1

(sy)q

q

=−
∞

∑
q=1

2q

q ∑
α1+α2+α3=q

q!(sx)α1(sy)α2(−s2xy)α3

α1!α2!α3!
+

∞

∑
q=1

(sx)q

q
+

∞

∑
q=1

(sy)q

q

=−
∞

∑
q=1

q

∑
α1,α2=0

q−α1−α2≥0

2qq!(−1)q−α1−α2(sx)q−α2(sy)q−α1

α1!α2!(q−α1−α2)!q
+

∞

∑
q=1

(sx)q

q
+

∞

∑
q=1

(sy)q

q
.

(1.49)

If, in the first sum at (1.49), we let q−α2 = M and q−α1 = N, Equation (1.49)
becomes

log( f (x,y)) =
∞

∑
p=1

M+N=p

dM,NxMyN

=−
∞

∑
q=1

sM+NxMyN
N+M

∑
q=max{M,N}

2q(q−1)!(−1)M+N−q

(q−M)!(q−N)!(M+N−q)!
+

∞

∑
q=1

(sx)q

q
+

∞

∑
q=1

(sy)q

q
.

(1.50)

25



Our aim is to use the right side of Equation (1.50) to determine an asymptotic
formula for dM,N whenever M ∈ N is fixed. Since M and N are both non-zero,
the coefficient of dM,N depends only on the first sum on the right side of (1.50),
namely

dM,N =−sM+N
N+M

∑
q=max{M,N}

2q(q−1)!(−1)M+N−q

(q−M)!(q−N)!(M+N−q)!
. (1.51)

Then for a fixed positive integer M, as N→ ∞, Lemma 1.5.1 implies that

dM,N =−sM+N
N+M

∑
q=N

2q(q−1)!(−1)M+N−q

(q−M)!(q−N)!(M+N−q)!

=−sMsN
N+M

∑
q=N

2N2q−N

N
· N

q
· q!
(q−M)!M!

· M!(−1)M(−1)N−q

(q−N)!(M+N−q)!

=
−(−s)M(2s)N

N

N+M

∑
q=N

(−2)q−N N
q

(
q
M

)(
M

q−N

)

=
−(−s)M(2s)N

N

N+M

∑
q=N

(−2)q−N(1+∆1(q)
)NM

M!
(
1+∆2(q)

)( M
q−N

)

=−(−s)M(2s)NNM−1

M!

N+M

∑
q=N

(−2)q−N
(

M
q−N

)(
1+∆(q)

)
, (1.52)

where
(
1+∆(q)

)
=
(
1+∆1(q)

)(
1+∆2(q)

)
, ∆1(q)→ 0, and ∆2(q)→ 0 as N→∞.

Hence, ∆(q)→ 0 as N→ ∞.

Denote the right hand side of Equation (1.52) as T1 +T2, where

T1 :=−(−s)M(2s)NNM−1

M!

N+M

∑
q=N

(−2)q−N
(

M
q−N

)
,

T2 :=−(−s)M(2s)NNM−1

M!

N+M

∑
q=N

(−2)q−N
(

M
q−N

)
∆(q).
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A change of variable and an application of the binomial theorem shows that

T1 =−
(−s)M(2s)NNM−1

M!

M

∑
ν=0

(
M
ν

)
(−2)ν ·1M−ν

=−(−s)M(2s)NNM−1

M!
(−1)M =−2NsM+NNM−1

M!
.

Then since ∆(q)→ 0 as N→ ∞, the closed form of T1 implies that

T2

T1
=

1
(−1)M

q=N+M

∑
q=N

(−2)q−N
(

M
q−N

)
∆M(q)→ 0 as N→ ∞,

which means that

dM,N =−2NsM+NNM−1

M!
[
1+o(1)

]
as N→ ∞. (1.53)

Equation (1.53) is the desired asymptotic formula for dM,N . We now use this
formula to obtain an asymptotic formula for gM,N whenever M ∈N is fixed. From
Equation (1.12) or (1.14) we have

≥0︷ ︸︸ ︷
−gM,N =

≥0︷ ︸︸ ︷
−dM,N−

1
M ∑

m|M

1≤m≤
⌊

M
m

⌋m(

≥0︷ ︸︸ ︷
−gm,Nm

M
)

M
m

︸ ︷︷ ︸
:=∆

≤−dM,N . (1.54)

Then as N→ ∞, we have

−∆ =
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m(−gm,Nm
M
)

M
m ≤ 1

M ∑
m|M

1≤m≤
⌊

M
2

⌋m(−dm,Nm
M
)

M
m

=
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m

[
sm(2s)

Nm
M (Nm

M )m−1

m!

]M
m
[

1+∆

(
m,

Nm
M

)]M
m

=
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋
msM(2s)N(Nm

M )M

[m!(Nm
M )]

M
m

[
1+∆

(
m,

Nm
M

)]M
m

, (1.55)
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where in the penultimate line we used Equation (1.53), which implies that

∆

(
m, Nm

M

)
→ 0 as N→ ∞.

Since

dM,N =−2NsM+NNM−1

M!
[1+∆(M,N)], (1.56)

where ∆(M,N)→ 0 as N→ ∞, we deduce that for fixed M, there exist a positive
real number Q(M) such that for all 1≤ m≤M

|∆(m,N)| ≤ Q(M). (1.57)

Since the right side inequality (1.57) is independent of N, we also have∣∣∣∣∆
(

m,
Nm
M

)∣∣∣∣≤ Q(M), (1.58)

whenever 1≤ m≤M. We now return to (1.55) and use (1.58) to discover that for
N→ ∞, Hence, as N→ ∞,

∣∣∣∣ −∆

−dM,N

∣∣∣∣= 1
M

sM(2s)N
∑
m|M

1≤m≤bM
2 c

m(Nm
M )M

[m!(Nm
M )]

M
m
· M!

2NsM+NNM−1

∣∣∣∣∣ [1+∆
(
m, Nm

M

)
]

M
m

1+∆(M,N)

∣∣∣∣∣
≤ N(M−1)! ∑

m|M
1≤m≤bM

2 c

m(m
M )M

[m!(Nm
M )]

M
m

[1+ |∆
(
m, Nm

M

)
|]M

m

1−∆(M,N)
. (1.59)

Since ∆(M,N)→ 0 as N → ∞, we may assume without loss of generality that
|∆(M,N)| ≤ 1/2 for N large enough. Thus

1−|∆(M,N)| ≥ 1− 1
2
, or that

1
1−|∆(M,N)|

≤ 1
1
2

.

Returning to (1.59), for N→ ∞, we find that∣∣∣∣ −∆

−dM,N

∣∣∣∣≤ N(M−1)! ∑
m|M

1≤m≤bM
2 c

m(m
M )M

[m!(Nm
M )]

M
m

[1+ |∆
(
m, Nm

M

)
|]M

m

1
2
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≤ 2N(M−1)! ∑
m|M

1≤m≤bM
2 c

m(m
M )M

[m!(Nm
M )]

M
m
[1+Q(M)]

M
m

≤ 2N(M−1)![1+Q(M)]M ∑
m|M

1≤m≤bM
2 c

m(m
M )M

[m!(Nm
M )]

M
m

≤ NM(M−1)![1+Q(M)]M ∑
m|M

1≤m≤bM
2 c

(m
M )M

[m!(Nm
M )]

M
m

since m≤ M
2

≤ NM!(
1
2
)M[1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

1

(m!)
M
m (Nm

M )
M
m

≤ NM!(
1
2
)M[1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

1

(Nm
M )

M
m

since 1
(m!)

M
m
≤ 1

≤ NM!(
1
2
)M[1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

1

( N
M )

M
m

≤ NM!(
1
2
)M[1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

1

( N
M )

M
M
2

≤ NM!(
1
2
)M[1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

1
( N

M )2

≤ NM!(
1
2
)M[1+Q(M)]M ·M

2
· 1

N2

M2

=
M!M3

2
(
1
2
)M[1+Q(M)]M · 1

N
→ 0.

We now return to Equation (1.54) to discover that

−gM,N =−dM,N−∆

=−dM,N

[
1+

∆

dM,N

]
→−dM,N as N→ ∞. (1.60)

2
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1.6 A combinatorial interpretation for PPE2
The purpose of this section is to discus a combinatorial interpretation for Equation
(1.7) involving integer partitions. We begin with a refinement of Definition 1.2.3.

Definition 1.6.1. Let A×A ⊂ N0×N0. A partition of (m,n) ∈ N0×N0 in A×A

is a collection {(p1, p′1), ...,(pk, p′k)} ⊆ A×A such that
k
∑

i=1
(pi, p′i) = (m,n). The

summands or parts (pi, p′i) need not be distinct, and the order of the summands
is immaterial. Let pA×A((m,n)

)
denote the number of all partition of (m,n) in

A×A, and pA×A
d

(
(m,n)

)
denote the number of partitions of (m,n) in A×A with

distinct parts.

Example 1.6.1. Let A×A = {(0,0),(1,2),(1,1),(2,3)}. Evidently,

pA×A
d

(
(0,0)

)
= 1, pA×A

d

(
(1,2)

)
= 1, pA×A

d

(
(1,1)

)
= 1,

pA×A
d

(
(2,3)

)
= 2, pA×A

d

(
(3,5)

)
= 1, pA×A

d

(
(3,4)

)
= 1,

pA×A
d

(
(4,6)

)
= 1,

and otherwise pA×A
d

(
(m,n)

)
= 0. Then we have

10

∑
m+n=0

pA×A
d

(
(m,n)

)
xmyn = 1+ x1y1 + x1y2 +2x2y3 + x3y5 + x3y4 + x4y6

= (1+ x1y1)(1+ x1y2)(1+ x2y3).

From this example we deduce that the generating function for the partition of all
(m,n) ∈ N0×N0 into distinct parts is given below.

Theorem 1.6.1. ( Chapter 12 [1] ) The generating function for the sequence
pd((m,n)), as defined in Definition 1.2.3, is

∞

∑
p=0

m+n=p

pd((m,n))xmyn =
∞

∏
q=1

m+n=q

(1+ xmyn). (1.61)

Proof. If we rewrite the right hand side
∞

∏
q=1

m+n=q

(1+xmyn)= (1+x1y0)(1+x0y1)(1+x2y0)(1+x1y1)(1+x0y2)(1+x3y0) . . . ,
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as a power series of the form ∑
p=0

i+ j=p

ai, jxiy j, then our aim is to show that pd
(
(i, j)

)
=

ai, j. If multiply the term x1y0 from the first parentheses with the term x0y1 from
the second parentheses and continue this process until we reach the term xαyβ

from the L−1 parenthesis, we discover that

xiy j = x1y0x0y1 · · ·xαyβ ,

which implies that

i = 1+0+ · · ·+α,

j = 0+1+ · · ·+β .

But the last two lines are exactly the definition partition of (i, j) with distinct parts.
2

The reader might wonder if a similar result holds for arbitrary partitions. In-
deed, this is the case as seen by the next theorem.

Theorem 1.6.2. ( Chapter 12 [1] ) The generating function for the sequence
p(m,n), as defined in Definition 1.2.3, is

∞

∑
p=0

m+n=p

p((m,n))xmyn =
∞

∏
q=1

m+n=q

(1− xmyn)−1. (1.62)

Proof. We expand each factor in the right hand side of Equation (1.62) as a power
series to find that

∞

∏
q=1

m+n=q

(1− xmyn)−1=
(
1+ x+ x2 + · · ·

)(
1+ y+ y2 + · · ·

)(
1+ x2 + x4 + · · ·

)
· · ·

(1.63)

The coefficient of the term xmyn is exactly the number of ways to obtain xmyn as
a product one term from each infinite sum; i.e. the number of solutions of the
equation

xmyn = (x1y0)α(1,0)(x0y1)α(0,1)(x2y0)α(2,0) . . .(xiy j)α(i, j), where α(i, j) ∈ N0,
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which implies that

(m,n) =α(1,0)(1,0)+α(0,1)(0,1)+ · · ·+α(i, j)(i, j)

=(

α(1,0)−times︷ ︸︸ ︷
(1,0)+(1,0)+ · · ·+(1,0))+(

α(0,1)−times︷ ︸︸ ︷
(0,1)+(0,1)+ · · ·+(0,1))+ · · ·

+(

α(i, j)−times︷ ︸︸ ︷
(i, j)+(i, j)+ · · ·+(i, j)).

Thus, the right hand side of the previous equation is a partition of (m,n) into
positive summands.2

Remark 1.6.1. 1. Observe that the coefficients on the right hand side of (1.63)
are non-negative. This is typical to numerous cases in combinatorial inter-
pretations, see e.g. George E. Andrews [1]. It is then important to find out
what is the domain of convergence of the right side of (1.63) and compare
to the domain of convergence of the left side of (1.63).

2. It is noteworthy that one encounters expansion of a Taylor series
1+∑

∞
n=1 anxn that is absolutely convergent in a disk |x|< R, but the domain

of convergence of corresponding PPE is R1, which could be smaller than
R. For example, the Taylor series of e−x is absolutely convergent for |x| =
R = ∞ while the corresponding PPE is absolutely convergent for |x|= R1 =
1 < ∞ = R, see e.g. O. Kolberg, [32]. However, it happens that if the
coefficients of the PPE gl in ∏

∞
`=1(1+g`x`) are non-negative then R1 = R,

see H. Gingold, A. Knopfmacher, [19] and H. Gingold and J. Quaintance,
[22].

We extend results in [19] and [22] to expansions in two independent variables.

The theory of infinite products is elaborated upon in J.B. Conway [[5], p. 164]
and R. Silverman [[42], p. 291]. For the theory of double series see S. Ghorpade,
B. Limaye [[28], p. 369]. We will assume that each individual function g`(x,y)

given in
∞

∏
`=1

(1+g`(x,y)) is a shorthand notation for

g`(x,y) =
∞

∑
m+n=`

g`m,nxmyn, ` ∈ N,
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and therefore
∞

∑
`=1

g`(x,y) is a shorthand notation for

∞

∑
`=1

∞

∑
m+n=`

g`m,nxmyn, (1.64)

where the inner sum of (1.64) is actually the double series

∞

∑
m+n=`

g`m,nxmyn :=
∞

∑
m+n=`

∑
η

g`m,nxmyn,

where η is the sum over all partitions of (m,n) with ordering among the partitions
provided by Definition 1.2.1.

If (1.64) is an absolutely convergent double series, we may choose for partial
sums any order of summands. Therefore, we choose

∞

∑
`=1

∞

∑
`=m+n

g`m,nxmyn = lim
L→∞

L

∑
m+n=1

m+n

∑
`=1

g`m,nxmyn

= (g11,0x+g10,1y)+(g12,0x2 +g11,1xy+g10,2y2 +g22,0x2 +g21,1xy+g20,2y2)+ . . . .

Furthermore, by adapting the argument of J.B. Conway, [[5], p. 166], we adopt

the following definition for the absolute convergence of
∞

∏
`=1

(1+g`(x,y)), namely

Definition 1.6.2. The infinite product
∞

∏
`=1

(
1+ g`(x,y)

)
is absolutely convergent

in a domain D if and only if (1.64) is absolutely convergent in D .

With all of these conventions in place, we are ready to prove the following theo-
rem:

Theorem 1.6.3. Let g`(x,y) =
∞

∑
m+n=`

g`m,nxmyn be an infinite sequence of formal

power series with g`m,n ≥ 0 for each ` ∈ N ,(m,n) ∈ N0×N0 \{(0,0)}. Suppose
that the formal product expansion

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
`=1

(1+g`(x,y)), (1.65)
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holds in the sense that

am,n = ∑g`1m1,n1
g`2m2,n2

. . .g`rmr ,nr
, (1.66)

where the summation is over all
(
(m1,n1),(m2,n2), . . . ,(mr,nr)

)
with

(m1,n1)+ (m2,n2)+ · · ·+(mr,nr) = (m,n), (1,0) � (m1,n1) � (m2,n2) � ·· · �
(mr,nr) and 1≤ `1 <`2 < · · ·<`r. Then f (x,y) = 1+

∞

∑
p=1

m+n=p

am,nxmyn is absolutely

convergent in a domain D if and only if
∞

∏
`=1

(1+g`(x,y)) is absolutely convergent

in D. In particular, if D = Dxρ ×Dyρ , where Dxρ :≡ {x : |x| < ρ} and Dyρ :≡
{y : |y| < ρ}, then f (x,y) is analytic in the polydiscs Dxρ ×Dyρ if and only if
∏

∞
`=1(1+g`(x,y)) is analytic in the same Dxρ ×Dyρ .

Proof. Assume that f (x,y) is an analytic function whose power series on the
left side of (1.65) is absolutely convergent. Note that am,n in (1.66) is a finite
combination of g`m,ns, since g`m,n = 0 for ` > m+n. Furthermore, (1.66) implies
that

am,n ≥
m+n

∑
`=1

g`m,n.

Therefore,

∞

∑
p=1

m+n=p

am,nxnyn ≥
∞

∑
m+n=1

m+n

∑
`=1

g`m,nxmyn.

The absolute convergence of the left hand side for (x,y) ∈D implies that the right
hand side is absolutely convergent. We can now simply interchange the order of
summation to get

∞ >
∞

∑
p=1

m+n=p

am,nxnyn ≥
∞

∑
`=1

∞

∑
`=m+n

g`m,nxmyn =
∞

∑
`=1

g`(x,y).

Hence,
∞

∏
`=1

(1+g`(x,y)) is absolutely convergent for (x,y) ∈ D.

Conversely, if the product expansion on the right hand side of (1.65) is abso-
lutely convergent, then it defines an analytic function in a domain D. The Taylor
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series expansion of this analytic function coincides with that of f (x,y) and the
result follows immediately. 2

Here are two examples which demonstrate the usefulness of Theorem 1.6.3. First,
consider the elementary factors (1+xiy j) for all (i, j) ∈N2

0. Then g`(x,y) = xmyn,

where m+ n = `. Evidently, ∑
∞
`=1 g`(x,y) =

∞

∑
`=1

m+n=`

xmyn is absolutely convergent

for |x|< 1 and |y|< 1, see Example A.3.1 (i). Definition 1.6.2 and Theorem 1.6.3

imply that the domain of convergence of 1+
∞

∑
k=1

i+ j=k

pd(i, j)xiy j is D= {(x,y) ∈C2 :

|x| < 1 and |y| < 1}. For second example, consider the elementary factors

(1− xiy j)−1 for all (i, j) ∈ N2
0. Then g`(x,y) =

∞

∑
s=1,`=1
m+n=`

xsmysn and ∑
∞
`=1 g`(x,y) =

∞

∑
`=1

m+n=`

∞

∑
s=1

xsmysn is absolutely convergent inside the domain D= {(x,y)∈C2 : |x|<

1 and |y| < 1}. Again, Theorem 1.6.3 implies that 1+
∞

∑
k=1

i+ j=k

p(i, j)xiy j con-

verges inside the domain D= {(x,y) ∈ C2 : |x|< 1 and |y|< 1}.

Corollary 1.6.1. If

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn),

where gm,n ≥ 0 for (m,n) ∈ N0×N0, then the series and the product have the
same domain of absolute convergence.

Proof. Although this result follows immediately from Theorem 1.6.3, we feel it is

instructive to provide a direct proof. Assume that
∞

∏
q=1

m+n=q

(1+gm,nxmyn) is absolutely

convergent in domain D1 and defines an analytic function f . The Taylor series

expansion 1+
∞

∑
p=1

m+n=p

am,nxmyn of this function is absolutely convergent in (x,y) ∈

D2 ⊆ D1. On the other hand, from Equation (1.10), we have
∞

∑
p=1

m+n=p

gm,n|x|m|y|n ≤

∞

∑
p=1

m+n=p

am,n|x|m|y|n which implies that D1 ⊆ D2. 2
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Remark 1.6.2. The preceding theorem provides convergence information for mul-
tidimensional partitions as the coefficients gm,n of the corresponding generating
function is usually non-negative.
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Chapter 2

Factorization of Bivariate Taylor
Series via Inverse Power Products

2.1 Introduction

Given f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn with complex coefficients, where either the

defining expression for f (x,y) is treated as a formal power series expansion or
f (x,y) is an analytic function with f (0,0) = 1, the right side of

f (x,y) =
∞

∏
p=1

m+n=p

(1−hm,nxmyn)−1, (2.1)

is defined to be inverse power product expansion in two independent variables,
(denoted IPPE2).

This chapter studies expansions of f (x,y) = 1+
∞

∑
q=1

m+n=q

am,nxmyn into its IPPE2

∞

∏
p=1

m+n=p

(1−hm,nxmyn)−1 and contains algebraic, number theoretic, analytic, asymp-

totic, and combinatorial results. The three main results are as follows:

1. An algebraic structure property for (hm,n) in terms of recursive “mixed ex-
pansions”; see Theorem 2.3.2.
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2. A domain of convergence criteria for the IPPE2 in terms of a “majorizing”
infinite product; see Theorem 2.4.2.

3. An asymptotic approximation for the “majorizing infinite product”; see
Theorem 2.5.1.

Theorem 2.3.2 involves expansions of the schematic finite product-series form

f (x,y) =
N

∏
p=1

m+n=p

(1−hm,nxmyn)−1 [1+∑Am,nxmyn] ,
where hm,n ≤ 0 and Am,n ≤ 0 whenever am,n ≤ 0. Ultimately, these finite product-
series expansions allow us to write hm,n as a polynomial in the am,n which preserve
the negative sign property; see Equation (2.26). These algebraic properties are
crucial for determining a lower bound domain of convergence for the IPPE2. In

particular, Theorem 2.4.2 provides a domain of convergence for f (x,y)=
∞

∏
q=1

m+n=q

(1−

hm,nxmyn)−1, in terms of the “majorizing infinite product”

1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∑
p=1

m+n=p

(1+Fm,nxmyn)−1 ,

where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n . The method of majorizing series is well established

in the analytic theory of complex variables; see J.B. Conway [5] and S. Ghorpade
and B. Limaye [28]. However, the same did not hold true for product expansions
until the publication of [22]. The proof of Theorem 2.4.2 uses the fact that |hm,n| ≤
Fm,n; see Theorem 2.4.1. The proof of this key inequality heavily relies on the
algebraic representation provided by Theorem 3.2 and Equation (2.26).

The logarithm of the majorizing inverse power product plays a very important
role throughout this work. Not only does it provide information regarding the
domain of convergence for the IPPE2, the coefficients of the logarithmic series
becomes the asymptotically dominating term. To explain the meaning of this last
phrase, observe that the majorizing power product of Theorem 2.4.2 has the closed
form

1−
∞

∑
p=1

m+n=p

sm+nxmyn =
1−2s(x+ y)+2s2xy

(1− sx)(1− sy)
. (2.2)
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By setting y = 0, Equation (2.2) provides the majorizing function for the one
variable case, namely 1−2sx

1−sx . In [19], Gingold and Knopfmacher showed that the
asymptotic value of log 1−2sx

1−sx = ∑
∞
n=0 dnxn coincides with the asymptotic value of

its power product expansion ∏
∞
n=1(1+ gnxn), i.e. limn→∞

gn
dn

= 1. In [7], the au-
thors extended this result and showed that for fixed M, limn→∞

gM,n
dM,n

= 1 whenever

log 1−2s(x+y)+2s2xy
(1−sx)(1−sy) =

∞

∑
p=1

m+n=p

dm,nxmyn. The third main result of this chapter, Theo-

rem 2.5.1, shows that for fixed M,
limn→∞

hM,n
dM,n

= 1. The proof of Theorem 2.5.1 is subtle since it requires showing

that
∣∣∣hM,N

dM,N

∣∣∣ is bounded by a constant independent of N; see Lemma 2.5.1. Such
a bound was not needed to prove the corresponding asymptotic result associated
with the PPE2s.

This chapter is organized as follows. In Section 2, we study the expansion
of a power series into an IPPE2 and provide two algebraic representations for
the coefficients hm,n as a multivariate polynomials in (am,n)

∞
m,n=0

m+n=1
. The number-

theoretic representation reveals an intimate connection between the (gm,n)
∞
m,n=0
m+n=1

of the PPE2 and the (hm,n)
∞
m,n=0

m+n=1
of the IPPE2; see Theorem 2.2.1. In the case

of one independent variable, this property reveals that hm = gm for m odd. In
the case of two independent variables, this property reveals hm,n = gm,n unless
both m and n are even. Note that this equality is inherently implied by asymp-
totic results of the previous paragraph. Since hm,n = gm,n for m odd regardless
of the parity n, we deduce that as the number of independent variables increases,
so does the percentage of equality between the h′s and the g′s. In Section 3, we
provide another way to express recursively the coefficients hm,n as a multivariate
polynomial of the variables am,n. The algebraic result of Section 3 reveals an in-
triguing property of these expansions. If am,n ≤ 0, then the coefficients hm,n in the
IPPE2 are non-positive. In Section 4, we exploit the non-positivity result of Sec-
tion 3 to determine convergence conditions of the IPPE2 in terms of a majorizing
power product. In Section 5, we provide an asymptotic formula for the hm,n as-

sociated with 1−
∞

∑
p=1

m+n=p

sm+nxmyn, where s := sup
p=1

m+n=p

|am,n|
1

m+n , while in Section 6

we provide combinatorial interpretations for IPPE2 in term of partitions of (m,n).
Section 6 also provides a factorization for the bivariate generating function asso-
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ciated with compositions of (m,n), which obey a “zero exclusivity” condition; see
Proposition 2.6.1.

2.2 Two Algebraic Formulas for the Coefficients of
Inverse Power Product Expansion

In this section and the next we study the expansion of a two variable power series
into an IPPE2 and provide three algebraic representations for the coefficients hm,n
as polynomials of the (am,n)

∞
m,n=0

m+n=1
.

Definition 2.2.1. Given a formal power series 1+
∞

∑
p=1

m+n=p

am,nxmyn or analytic func-

tion f with f (0,0) = 1 and a Taylor power series representation

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn, (2.3)

we define the power product expansion of f (x,y) in two independent variables,
denoted by PPE2, as

f (x,y) =
∞

∏
q=1

m+n=q

(1+gm,nxmyn) (2.4)

=(1+g1,0x1y0)(1+g0,1x0y1)(1+g2,0x2y0)(1+g1,1x1y1) . . . ,

and the inverse power product expansion in two independent variables, or IPPE2,
of f (x,y) as

f (x,y) =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1 (2.5)

= (1−h1,0x1y0)−1(1−h0,1x0y1)−1(1−h2,0x2y0)−1(1−h1,1x1y1)−1 . . . ,

where the right side of Equations (2.4) and (2.5) follow the conventions of Defini-
tion 1.2.1.
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Definition 2.3 provides a first means of obtaining an algebraic representation
of hm,n in terms of (am,n). Using Definition 1.2.3 help us describe this algebraic
result.

Let

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1. (2.6)

By expanding the IPPE2 of (2.6) into a formal power series, coefficient compari-
son shows that

am,n = ∑
i1+i2+···+ir=m
j1+ j2+···+ jr=n

(1,0)�(i1, j1)�···�(ir, jr)�(m,n)

hi1, j1hi2, j2 . . .hir, jr , (2.7)

and that

hm,n = am,n−
(

∑
i1+i2+···+ir=m
j1+ j2+···+ jr=n,

(1,0)�(i1, j1)�···�(ir, jr)≺(m,n)
r≥2

hi1, j1hi2, j2 . . .hir, jr

)
. (2.8)

To obtain the second algebraic formula which writes hm,n in terms of (am,n),
start with Equation (2.6) and take the logarithm of both sides to obtain

log( f (x,y)) = log(1+
∞

∑
p=1

m+n=p

am,nxmyn) =
∞

∑
p=1

m+n=p

dm,nxmyn,

and obtain

log( f (x,y)) = log
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1 :=−
∞

∑
q=1

m+n=q

log(1−hm,nxmyn)

:=
∞

∑
q=1

m+n=q

∞

∑
l=1

(hm,nxmyn)l

l
. (2.9)

Compare the coefficient of xMyN on both sides of Equation (2.9) to obtain the
formulas

dM,N =
1
M ∑

m|M
n=Nm

M

m(hm,n)
M
m , M 6= 0, (2.10)
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dM,N =
1
N ∑

n|N
m=Mn

N

n(hm,n)
N
n , N 6= 0. (2.11)

Take Equation (2.10) and set m = M to obtain

hM,N = dM,N−
1
M ∑

m|M
m 6=M

m(hm,Nm
m
)

M
m . (2.12)

Similarly, take Equation (2.11) and set n = N to obtain

hM,N = dM,N−
1
N ∑

n|N
n 6=N

n(h Mn
N ,n)

N
n . (2.13)

If gcd(M,N) = 1, then we readily deduce that

hM,N = dM,N . (2.14)

A similar derivation to the one above shows that

gM,N = dM,N +
1
M ∑

m|M
m 6=M

m(−gm,Nm
M
)

M
m . (2.15)

and that
gM,N = dM,N , where gcd(M,N) = 1. (2.16)

Equations (2.12) and (2.15) enable us to prove a theorem which indicates the
relationship between the coefficients of PPE2 and its associated IPPE2.

Theorem 2.2.1. Let f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn. Suppose f (x,y) has a PPE2 of

the form f (x,y) =
∞

∏
q=1

m+n=q

(1+gm,nxmyn) and an IPPE2 of the form

f (x,y) =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1. Then gm,n = hm,n if m = 2`+1 or n = 2`+1 for

` ∈ N.
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Proof. We prove the statement that if m is odd, then gm,n = hm,n by induction on
`. The other statement involving n is similar. If `= 0 and n ∈N0, Equation (2.14)
implies that h1,n = d1,n, while Equation (2.16) implies that g1,n = d1,n. Hence,
g1,n = h1,n. Now assume g2`+1,n = h2`+1,n for all 0≤ `≤ L and 0≤ n≤ N. Take
Equation (2.15) and with `= L+1 and note that

g2L+3,N = d2L+3,N +
1

2L+3 ∑
m|2L+3
m6=2L+3
n= Nm

2L+3

m(−gm,n)
2L+3

m

= d2L+3,N−
1

2L+3 ∑
m|2L+3
m6=2L+3
n= Nm

2L+3

m(gm,n)
2L+3

m

= d2L+3,N−
1

2L+3 ∑
m|2L+3
m6=2L+3
n= Nm

2L+3

m(hm,n)
2L+3

m

= h2L+3,N ,

where the second to last equality used the induction hypothesis and the last equal-
ity used Equation (2.12). 2

2.3 Structure Property of the Coefficients of an In-
verse Power Product Expansion

There is still another way to express recursively the coefficients hm,n as a multi-
variate polynomial of the variables am,n. Start by rewriting Equation (2.6) as

f (x,y) = 1+
∞

∑
p=1

m+n=p

B(1,0),(m,n)x
myn =

∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1,

where B(1,0),(m,n) = am,n for all (m,n) ∈ N0×N0 \{(0,0)}. Using the well order-

ing 1.2.1 to factor
∞

∏
q=1

m+n=q

(1− hm,nxmyn)−1, we get the following recursive system
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of equations. First,

f (x,y) =1+
∞

∑
p=1

m+n=p

B(1,0),(m,n)x
myn

=(1−h1,0x)−1
∞

∏
q=1

m+n=q
(m,n)�(0,1)

(1−hm,nxmyn)−1

=(1−h1,0x)−1
[

1+
∞

∑
p=1

m+n=p
(m,n)�(0,1)

B(0,1),(m,n)x
myn
]
,

secondly,

1+
∞

∑
p=1

m+n=p
(m,n)�(0,1)

B(0,1),(m,n)x
myn = (1−h0,1y)−1

∞

∏
q=2

m+n=q
(m,n)�(2,0)

(1−hm,nxmyn)−1

= (1−h0,1y)−1
[

1+
∞

∑
q=2

m+n=q
(m,n)�(2,0)

B(2,0),(m,n)x
myn
]
,

and thirdly,

1+
∞

∑
q=2

m+n=q
(m,n)�(2,0)

B(2,0),(m,n)x
myn = (1−h2,0x2)−1

∞

∏
q=2

m+n=q,
(m,n)�(1,1)

(1−hm,nxmyn)−1

= (1−h2,0x2)−1
[

1+
∞

∑
p=2

m+n=p,
(m,n)�(1,1)

B(1,1),(m,n)x
myn
]
.

Continue this process to inductively define

1+
∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn = (1−hik, jk x

ik y jk)−1
∞

∏
q=`

m+n=q
(m,n)�(ik+1, jk+1)

(1−hm,nxmyn)−1

= (1−hik, jk x
ik y jk)−1

[
1+

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn
]
. (2.17)
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Expanding the final equality of Equation (2.17) implies that

1+
∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn = (1−hik, jkxikyik)−1

[
1+

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn
]

=

[
1+

∞

∑
α=1

hα
ik, jk(x

ikyik)α

][
1+

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn
]
. (2.18)

By comparing the coefficient of xMyN in both sides of Equation (2.18), we dis-
cover that

B(ik+1, jk+1),(M,N) =B(ik, jk),(M,N)−

⌊
M+N
ik+ jk

⌋
∑

α=1
hα

ik, jkB(ik+1, jk+1),(M−αik+1,N−α jk+1).

When (M,N) = (ik, jk), since B(ik+1, jk+1),(ik, jk) = 0, the above implies that

hik, jk = B(ik, jk),(ik, jk). (2.19)

Equation (2.19) shows the relationship between hik, jk and B(ik, jk),(ik, jk). We use
this relationship to rewrite Equation (2.17) as

1+
∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn = (1−hik, jkxikyik)

[
1+

∞

∑
p=`

m+n=p,
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn
]

=

[
1−B(ik, jk),(ik, jk)x

ikyik

][
1+

∞

∑
p=`

m+n=p,
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn
]
. (2.20)

Equating the coefficient of xsyt on both sides of Equation (2.20), we get

B(ik+1, jk+1),(s,t) = ∑
α∈{0,1}
αik+m=s
α jk+n=t

(−1)αBα

(ik, jk),(ik, jk)
B(ik, jk),(s−αik,t−α jk). (2.21)

Equation (2.21) will be the main tool for proving the following result.
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Theorem 2.3.1. Let (ik, jk) ∈ N0 ×N0 \ {(0,0)}. Define B(ik, jk),(0,0) = 1 and
B(ik, jk),(m,n) = 0 for (1,0) � (m,n) � (ik−1, jk−1). Assume that B(ik, jk),(m,n) ≤ 0
for all (ik, jk)� (m,n). Then B(ik+1, jk+1),(s,t) ≤ 0 whenever (ik+1, jk+1)� (s, t).

Proof. Equation (2.21) is equivalent to

B(ik+1, jk+1),(s,t) = B(ik, jk),(s,t)−B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk). (2.22)

Rewrite Equation (2.22) as B(ik+1, jk+1),(s,t) = β + γ , where

β := B(ik, jk),(s,t),

γ :=−B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk).

By the hypothesis, since B(ik, jk),(s,t) is either zero or negative, then β is non-
positive.

It remains to show that γ is also non-positive. By the hypothesis, it is a product
of two non-positive numbers. Thus−B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk) is either zero or
negative. 2

Before stating the main theorem of this section, we introduce some further nota-
tion.

Definition 2.3.1. The symbol φ = ((i1, j1),(i2, j2), ...,(in, jn)) stands for a vector
with n components, where n∈N and i1, i2, ..., in, j1, j2, ..., jn ∈N0. Let τ = τ(φ) be

the length of φ , i.e. τ = n . Let |φ | denote the ordered pair |φ | :=
(

n
∑

d=1
id,

n
∑

d=1
jd

)
.

We define B(ik, jk),φ := B(ik, jk),(i1, j1)B(ik, jk),(i2, j2)...B(ik, jk),(in, jn).

Theorem 2.3.2. (Structure Property) Let (ik, jk) ∈ N0×N0 \{(0,0)}. Then

B(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1B(ik, jk),φ(η)

= ∑
η

(−1)τ(φ(η))+1B(ik, jk),φ(η), (2.23)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that |φ(η)|=

(s, t) and at most one component (lθ , l′θ ) 6= (ik, jk), with 1≤ θ ≤ τ , and
B(ik, jk),φ(η) := B(ik, jk),(i1, j1)B(ik, jk),(i2, j2)...B(ik, jk),(iτ , jτ ). Note that η represents the
enumeration of the vectors that obey the two properties described in the preced-
ing sentence. If B(ik, jk),(s,t) ≤ 0 for all (ik, jk) � (s, t), then Equation (2.23) is
equivalent to

B(ik+1, jk+1),(s,t) =−∑
η

|B(ik, jk),(i1, j1)|...|B(ik, jk),(iτ , jτ )|. (2.24)
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Proof. We obtain the desired result by representing Bα

(ik, jk),(ik, jk)
B(ik, jk),(m,n) in

Equation (2.21 ) as B(ik, jk),φ(η). Note that (−1)α = (−1)τ(φ(η))−1. 2

Let us see what will happen when we recursively apply Equation (2.24). In
order to efficiently record the results, let φ =

(
(i1, j1),(i2, j2), ...,(in, jn)

)
denote

a vector with n components, each of them an ordered pair, where n ∈ N, and
i1, i2, ..., in, j1, j2, ..., jn ∈N0. Then aφ(η) denotes the expression ai1, j1ai2, j2...ain, jn .
After L iterations, and assuming B(ik, jk),(s,t) ≤ 0, whenever (ik, jk) � (s, t), we
obtain

B(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1aφ(η) =−∑
η

|ai1, j1||ai2, j2| · · · |aiτ , jτ |, (2.25)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that |φ(η)|=

(s, t).

If (s, t) = (ik+1, jk+1), Equation (2.25) becomes

B(ik+1, jk+1),(ik+1, jk+1) = hik+1, jk+1 = ∑
η

(−1)τ(φ(η))−1aφ(η),

=−∑
η

|ai1, j1||ai2, j2 |...|aiτ , jτ |, (2.26)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), · · · ,(iτ , jτ)

)
such that |φ(η)|=

(ik+1, jk+1).

The following example illustrates applications of the structure property:

h2,1 =B(2,1),(2,1) By using Equation(2.19)

=B(3,0),(2,1) By using Equation 2.21)

=B(0,2),(2,1)

=B(1,1),(2,1)

=B(2,0),(2,1)

=B(0,1),(2,1)−B(0,1),(0,1)B(0,1),(2,0)

=B(1,0),(2,1)−B(1,0),(1,0)B(1,0),(1,1)−B(1,0),(0,1)
[
B(1,0),(2,0)−

B(1,0),(1,0)B(1,0),(1,0)
]

=a2,1−a1,0a1,1−a0,1a2,0 +a2
1,0a0,1.

Below we explicitly list hm,n for 1≤ m+n≤ 4.
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h1,0 =(−1)0a1,0

h0,1 =(−1)0a0,1

h2,0 =(−1)0a2,0 +(−1)1a2
1,0

h1,1 =(−1)0a1,1 +(−1)1a1,0a0,1

h0,2 =(−1)0a0,2 +(−1)1a2
0,1

h3,0 =(−1)0a3,0 +(−1)1a2,0a1,0

h2,1 =(−1)0a2,1 +(−1)1a0,1a2,0 +(−1)1a1,0a1,1 +(−1)2a2
1,0a0,1

h1,2 =(−1)0a1,2 +(−1)1a1,0a0,2 +(−1)1a0,1a1,1 +(−1)2a2
0,1a1,0

h0,3 =(−1)0a0,3 +(−1)1a0,2a0,1

h4,0 =(−1)0a4,0 +(−1)1a1,0a3,0 +(−1)1a2
2,0 +(−1)22a2,0a2

1,0 +(−1)3a4
1,0

h3,1 =(−1)0a3,1 +(−1)3a3
1,0a0,1 +(−1)2a2

1,0a1,1 +(−1)1a0,1a3,0+

(−1)1a1,1a2,0 +(−1)1a1,0a2,1 +(−1)22a0,1a1,0a2,0

h2,2 =(−1)0a2,2 +(−1)1a2,0a0,2 +(−1)32a2
1,0a2

0,1 +(−1)1a0,1a2,1+

(−1)2a2
0,1a2,0 +(−1)2a2

1,0a0,2 +(−1)22a1,0a0,1a1,1 +(−1)1a1,0a1,2+

(−1)2a1,0a1,0a0,2

h1,3 =(−1)0a1,3 +(−1)3a3
0,1a1,0 +(−1)2a2

0,1a1,1 +(−1)1a1,0a0,3 +(−1)1a1,1a0,2

+(−1)1a0,1a1,2 +(−1)22a0,1a1,0a0,2

h0,4 =(−1)0a0,4 +(−1)1a0,1a0,3 +(−1)1a2
0,2 +(−1)22a0,2a2

0,1 +(−1)3a4
0,1.

2.4 Convergence Criteria For Inverse Power Prod-
uct

The major results of this section concerning the convergence domain of the IPPE2
in Equation (2.1).

Theorem 2.4.1. Let f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn. Then f (x,y) is represented by

the IPPE2

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1. (2.27)
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Consider the following auxiliary functions

C(x,y) = 1−
∞

∑
p=1

m+n=p

|am,n|xmyn =
∞

∏
q=1

m+n=q

(1+ Ĥm,nxmyn)−1, (2.28)

D(x,y) = 1−
∞

∑
p=1

m+n=p

Am,nxmyn =
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1. (2.29)

Assume |am,n| ≤Am,n for all (m,n)∈N0×N0\{(0,0)}. Then |hm,n| ≤ Ĥm,n≤Fm,n
for all (m,n) ∈ N0×N0 \{(0,0)}.

Proof. By Equation (2.26) we have

hm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1aφ(η) = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1ai1, j1ai2, j2 ...aiτ , jτ .

(2.30)

Equation (2.30) implies that

|hm,n|=
∣∣∣∣ ∑

η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1ai1, j1ai2, j2...aiτ , jτ

∣∣∣∣≤ ∑
η

|φ(η ,η)|=(m,n)

|ai1, j1||ai2, j2|...|aiτ , jτ |.

(2.31)

Similarly, when we apply Equation (2.26) to Equation (2.28), we obtain

0≤ Ĥm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))
(
−|ai1, j′1

|
)(
−|ai2, j2|

)
...
(
−|aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(−1)τ(2φ(η))|ai1, j1||ai2, j2|...|aiτ , jτ |

= ∑
η

|φ(η)|=(m,n)

|ai1, j1||ai2, j2 |...|aiτ , jτ |. (2.32)

Equations (2.31) and (2.32) imply that |hm,n| ≤ Ĥm,n. Also, due to the inequality
|am,n| ≤ Am,n, we have

0≤ Ĥm,n = ∑
η

|φ(η)|=(m,n)

|ai1, j1 ||ai2, j2|...|aiτ , jτ | ≤ ∑
η

|φ(η)|=(m,n)

Ai1, j1Ai2, j2...Aiτ , jτ = Fm,n. 2
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We now consider the special case for D(x,y), namely

D(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1, (2.33)

where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n . Our objective is to find a domain of definition such

that the IPPE2 of Equation (2.33) is absolutely convergent. Define

log(1+Fm,nxmyn)−1 :=− log(1+Fm,nxmyn) :=
∞

∑
`=1

(−1)`(Fm,nxmyn)`

`
.

Next, define (via Definition 1.2.1)

−
∞

∑
p=1

m+n=p

log(1+Fm,nxmyn) :=
∞

∑
p=1

m+n=p

∞

∑
`=1

(−1)`(Fm,nxmyn)`

`
. (2.34)

Definition (2.34) tells us that absolute convergence of the double series implies

that both
∞

∑
p=1

m+n=p

log(1+Fm,nxmyn) and log(1+Fm,nxmyn) are absolutely convergent.

Moreover, since

exp
(
−

∞

∑
p=1

m+n=p

log(1+Fm,nxmyn)
)
= exp

( ∞

∑
p=1

m+n=p

log(1+Fm,nxmyn)−1
)

=
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1,

the absolute convergence of the double series of Equation (2.34) implies the abso-

lute convergence of
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1 as well. Therefore, in order to determine

where
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1 will be absolutely convergent, it suffices to consider

the absolutely convergence of
∞

∑
p=1

m+n=p

log(1+Fm,nxmyn)−1. Observe that this argu-

ment is a two variable extension of Proposition 5.2 and Definition 5.5 of [5].
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Taking the logarithm of both sides of Equation (2.33) gives

log(1−
∞

∑
p=1

m+n=p

sm+nxmyn) = log
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1

=−
∞

∑
q=1

m+n=q

log(1+Fm,nxmyn). (2.35)

Observe that

1−
∞

∑
p=1

m+n=p

sm+nxmyn = 1−
∞

∑
p=1

m+n=p

(sx)m(sy)n = 2−
∞

∑
m=0

(sx)m
∞

∑
n=0

(sy)n

= 2−
(

1
1− sx

)(
1

1− sy

)
=

1−2s(x+ y)+2s2xy
(1− sx)(1− sy)

.

Hence,

log
(

1−2s(x+ y)+2s2xy
(1− sx)(1− sy)

)
= log

(
1− [2s(x+ y)−2s2xy]

)
− log(1− sx)− log(1− sy)

=
∞

∑
`=1

(sx)`

`
+

∞

∑
`=1

(sy)`

`
−

∞

∑
`=1

[2s(x+ y)−2s2xy]`

`
. (2.36)

The three series in (2.36) are absolutely convergent for |x|< 1
s , |y|< 1

s , and for∣∣2s(x+ y)−2s2xy
∣∣< 1, respectively. By the triangle inequality, we have∣∣2s(x+ y)−2s2xy

∣∣≤ 2s(|x|+ |y|)+2s2|x||y|. (2.37)

If we require 2s(|x|+ |y|)+2s2|x||y|< 1, since 2s|x|< 2s(|x|+ |y|)+2s2|x||y|< 1,
we find that |x|< 1

2s . Similarly, |y|< 1
2s .

Therefore, the estimate of a convergence domain of (2.36) is given by

D=

{
(x,y) ∈ C2 : 2s

(
|x|+ |y|

)
+2s2|x||y|< 1

}
.

See Figure 2.1.
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2𝑠 

Figure 2.1: A domain of absolute convergence of Equations (2.34) and (2.36).

Relation (2.37) makes it possible to also obtain a domain of absolute conver-
gence in terms of polydiscs. Let |x| < ρ and |y| < ρ . Inequality (2.37) implies
that the IPPE2 will be absolutely convergent if

2s(2ρ)+2s2
ρ

2 = 2
[
(sρ +1)2−1

]
< 1,

or equivalently if ρ < s−1
[√

3
2 −1

]
. The inequalities for ρ obtained from the

defining quadratic equation of D, namely

|x|< s−1

[√
3
2
−1

]
, |y|< s−1

[√
3
2
−1

]
,

are sharp in the sense that if

x =−s−1

[√
3
2
−1

]
, y =−s−1

[√
3
2
−1

]
,
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then
∣∣2s(x+y)−2s2xy

∣∣= 1 and the sum of the absolute values of the terms in the
logarithmic power series of (2.36) diverge.

In summary, we have shown that −
∞

∑
q=1

m+n=q

log(1+Fm,nxmyn) will be absolutely

convergent whenever (x,y)∈D or whenever (x,y)∈Dxρ×Dyρ with ρ < s−1
[√

3
2 −1

]
,

where
Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

Hence,
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1 will also be absolutely convergent for the same re-

gions.

We claim this information provides a lower bound on the range of absolute
convergence for IPPE2 of Equation (2.27). To determine the domain of conver-
gence of the IPPE2 of Equation (2.27), we must determine the domain of con-

vergence of log
∞

∏
q=1

m+n=q

(1− hm,nxmyn)−1 := −
∞

∑
q=1

m+n=q

log(1− hm,nxmyn), where the right

hand side is defined via the convergence of the double series −
∞

∑
q=1

m+n=q

∞

∑
`=1

(hm,nxmyn)`

` .

However, ∣∣∣∣ log
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1
∣∣∣∣= ∣∣∣∣− ∞

∑
q=1

m+n=q

log(1−hm,nxmyn)

∣∣∣∣
≤

∞

∑
q=1

m+n=q

∣∣ log(1−hm,nxmyn)
∣∣

=
∞

∑
q=1

m+n=q

∣∣∣∣− ∞

∑
`=1

(hm,nxmyn)`

`

∣∣∣∣
≤

∞

∑
q=1

m+n=q

∞

∑
`=1

(|hm,n||x|m|y|n)`

`

≤
∞

∑
q=1

m+n=q

∞

∑
`=1

(Fm,n|x|m|y|n)`

`
, (2.38)
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where the last inequality follows from Theorem 2.4.1. These calculations imply

that if
∞

∑
q=1

m+n=q

log(1+Fm,nxmyn) is absolutely convergent, then so are
∞

∑
q=1

m+n=q

log(1−

hm,nxmyn) and
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1.

We can therefore summarize what we have shown so far in the following the-
orem.

Theorem 2.4.2. (i.) Let f (x,y)= 1+
∞

∑
p=1

m+n=p

am,nxmyn. Define s :≡ sup
p=1

m+n=p

|am,n|
1

m+n .

Then both f (x,y) and its IPPE2,

f (x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1,

and the auxiliary function, along with its IPPE2

D(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1+Fm,nxmyn)−1,

will be absolutely convergent whenever (x,y) ∈ D, where

D=

{
(x,y) ∈ C2 : 2s

(
|x|+ |y|

)
+2s2|x||y|< 1

}
.

See Figure 2.1.

(ii.) With the same conventions as in Part (i.), both f (x,y) and its IPPE2, along
with D(x,y) and its IPPE2, will be absolutely convergent whenever (x,y) ∈

Dxρ ×Dyρ with ρ < s−1
[√

3
2 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

2.5 Asymptotic Approximation for the Majorizing
Inverse Power Product Expansion

We now derive an asymptotic representation for the majorizing inverse product ex-

pansion associated with 1−
∞

∑
p=1

m+n=p

sm+nxnyn , where s :≡ sup
p=1

m+n=p

|am,n|
1

m+n . Since
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our asymptotic approximation will depend on Equation (2.10), we first need to de-

rive an asymptotic formula for the Taylor series coefficients of log

1−
∞

∑
p=1

m+n=p

sm+nxnyn

.

This calculation will utilize the asymptotic formula (1.53).

dM,N =−2NsM+NNM−1

M!
[
1+∆(M,N)

]
, (2.39)

which was driven in Section 1.5, where M ∈N is fixed and ∆(M,N)→ 0 as N→∞.

Let (M,N)∈N×N. Arrange (hM,N) in an infinite array as shown in Table 2.1.
Then for fixed M ∈ N, the limit lim

N→∞
hM,N is along the M-th row of Table 2.1.

h1,1 h1,2 h1,3 · · ·
h2,1 h2,2 h2,3 · · ·
h3,1 h3,2 h3,3 · · ·
h4,1 h4,2 h4,3 · · ·
...

...
...

. . .

Table 2.1: The row asymptotics are calculated in Theorem 2.5.1

For fixed M ∈ N, Equation (2.39) implies that given ε > 0, there exists a positive
integer N0 such that for N ≥ N0, |∆(M,N)|< ε . For fixed M and arbitrary ε > 0,
define

qε(M) := max{ε, |∆(M,1)|, |∆(M,2)|, . . . , |∆(M,N0−1)|}.
Equation (1.51) shows that for each ε , qε(M) is a finite positive number.

Next define
Qε(M) := max{qε(i)}, 1≤ i≤M. (2.40)

Since ε is arbitrary, Equation (2.40) proves the following corollary:

Corollary 2.5.1. Let f (x,y) and log( f (x,y)) be as defined in Theorem 1.5.1. Then

dM,N =−2NsM+NNM−1

M!
[
1+∆(M,N)

]
, (2.41)

where ∆(M,N)→ 0 as N → ∞. Furthermore, for fixed M ∈ N, there exists a
positive real number Q(M) such that for all 1≤ m≤M

|∆(m,N)| ≤ Q(M). (2.42)
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Corollary (2.5.1) is crucial to proving that the modulus of the coefficients of
the majorizing IPPE2 are less than or equal to a constant times the modulus of the
corresponding coefficient in the logarithmic expansion.

Lemma 2.5.1. Let s > 0,

f (x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
p=1

M+N=p

(1−hM,NxMyN)−1,

and

log( f (x,y)) =
∞

∑
p=1

M+N=p

dM,NxMyN .

For fixed M ∈N, there exists a positive integer N0(M) such that for all N ≥N0(M),
there exists a positive real number C(M)≥ 1, independent of N, such that

|hM,N | ≤C(M) |dM,N | . (2.43)

Proof. Fix M. Equation (2.10) implies that

dM,N = hM,N + ∑
1≤m≤bM

2 c

m
M

(
dm,Nm

M

)M
m

(
hm,Nm

M

)M
m

(
dm,Nm

M

)M
m
,

or equivalently that

hM,N

dM,N
= 1− ∑

1≤m≤bM
2 c

m
M

(
dm,Nm

M

)M
m

dM,N
· r

M
m
m,Nm

M
, rm,Nm

M
:=

hm,Nm
M

dm,Nm
M

. (2.44)

Claim 1: For all m|M (
dm,Nm

M

)M
m

dM,N
→ 0, as N→ ∞. (2.45)

Proof of Claim 1: By Equation (2.41) we have

dm,Nm
M

=−
2

Nm
M
(Nm

M

)m−1 sm+Nm
M

m!

[
1+∆

(
m,

Nm
M

)]
,

dM,N =−2NNM−1sM+N

M!
[1+∆(M,N)],
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where ∆(M,N)→ 0 as N→ ∞. Furthermore, there exists Q(M)> 0 such that

|∆(M,N)| ≤ Q(M),

∣∣∣∣∆(m,
Nm
M

)∣∣∣∣≤ Q(M); (2.46)

see Corollary (2.5.1) and Equation (2.42). Then∣∣∣∣∣∣∣∣
(

dm,Nm
M

)M
m

dM,N

∣∣∣∣∣∣∣∣=
N

(m−1)M
m

NM−1 ·

∣∣∣∣∣∣
[
1+∆

(
m, Nm

M

)]M
m

[1+∆(M,N)]

∣∣∣∣∣∣ ·M!
(m

M

)M(m−1)
m

(m!)
M
m

. (2.47)

We must analyze the behavior of the three factors on the right side (2.47). We
begin with the right factor. Since 1≤ m≤ bM

2 c, we have 1≤ m! and

2≤ M
m
≤M, 0 <

1
M
≤ m

M
≤ 1

2
< 1,

M(m−1)
m

< M.

and we deduce that

0 <
M!
(m

M

)M(m−1)
m

(m!)
M
m

≤M! . (2.48)

We next look at the middle factor of (2.47). Note that∣∣∣∣∣∣
[
1+∆

(
m, Nm

M

)]M
m

[1+∆(M,N)]

∣∣∣∣∣∣≤
(
1+
∣∣∆(m, Nm

M

)∣∣)M
m

1−|∆(M,N)|

≤
(
1+
∣∣∆(m, Nm

M

)∣∣)M

1−|∆(M,N)|

≤ (1+Q(M))M

1−|∆(M,N)|
, by (2.46).

Since |∆(M,N)|→ 0, there exists a positive integer Ñ0 such that for all N ≥ Ñ0, we
have |∆(M,N)| ≤ 1

2 , which in turn implies 1
2 ≤ 1−|∆(M,N)|. Thus, for N ≥ Ñ0∣∣∣∣∣∣

[
1+∆

(
m, Nm

M

)]M
m

[1+∆(M,N)]

∣∣∣∣∣∣≤ (1+Q(M))M

1−|∆(M,N)|
≤ 2(1+Q(M))M . (2.49)
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Finally, we look at the left factor of (2.47). Since 2≤ M
m ≤M, we have

N
(m−1)M

m

NM−1 =
1

NM−1−(1− 1
m)M

=
1

N
M
m−1
≤ 1

N
. (2.50)

By placing (2.48) through (2.50) into (2.47), we see that for large N ≥ N0,∣∣∣∣∣∣∣∣
(

dm,Nm
M

)M
m

dM,N

∣∣∣∣∣∣∣∣≤
2M!

N
M
m−1

(1+Q(M))M ,

and since 2M!
N

M
m −1

(1+Q(M))M→ 0 as N→ ∞, we have proven Claim 1.

Claim 2: For fixed M and N ≥ N0(M), there exist a positive C(M)≥ 1, a constant
independent of N such that

|rM,N |=
∣∣∣∣hM,N

dM,N

∣∣∣∣≤C(M). (2.51)

The proof of Claim 2 will also prove Equation (2.43).

Proof of Claim 2: To prove Claim 2, we use Claim 1, Equation (2.10), and induc-
tion on M. For M = 1, Equation (2.10) shows that C(1) = 1 since h1,N = d1,N . For
M = 2, Equation (2.10) shows that

h2,N

d2,N
= 1− 1

2

(
h1,N

2

)2

d2,N

= 1− 1
2

(
h1,N

2

)2

(
d1,N

2

)2

(
d1,N

2

)2

d2,N
= 1− 1

2

(
d1,N

2

)2

d2,N
. (2.52)

By Claim 1, we know that(
d1,N

2

)2

d2,N
→ 0, as N→ ∞.
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This implies that there exists a positive integer N0(2) such that for all N ≥ N0(2),
there exists C̃(2)> 0 such that ∣∣∣∣∣∣∣

(
d1,N

2

)2

d2,N

∣∣∣∣∣∣∣≤ C̃(2).

Then we define C(2) = 1+ 1
2C̃(2) since

∣∣∣∣h2,N

d2,N

∣∣∣∣≤ 1+
1
2

∣∣∣∣∣∣∣
(

d1,N
2

)2

d2,N

∣∣∣∣∣∣∣≤ 1+
1
2

C̃(2).

Now we assume that (2.51) is true for all m < M. Equation (2.44) implies that

∣∣∣∣hM,N

dM,N

∣∣∣∣≤ 1+ ∑
1≤m≤bM

2 c

m
M

∣∣∣∣∣∣∣∣
(

dm,Nm
M

)M
m

dM,N

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣hm,Nm

M

dm,Nm
M

∣∣∣∣∣
M
m

≤ 1+ ∑
1≤m≤bM

2 c

∣∣∣∣∣∣∣∣
(

dm,Nm
M

)M
m

dM,N

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣hm,Nm

M

dm,Nm
M

∣∣∣∣∣
M
m

.

By Claim 1, there exists a positive integer N0(M) such that for all N ≥ N0(M),∣∣∣∣∣∣∣
(

d
m,Nm

M

)M
m

dM,N

∣∣∣∣∣∣∣≤ C̃(M). Hence, the preceding line becomes

∣∣∣∣hM,N

dM,N

∣∣∣∣≤ 1+ ∑
1≤m≤bM

2 c
C̃(M)

∣∣∣∣∣hm,Nm
M

dm,Nm
M

∣∣∣∣∣
M
m

. (2.53)

By the induction hypothesis, there exists N0(M) = max{N0(1), . . . ,N0(m)} such

that for each 1 ≤ m ≤ bM
2 c and N ≥ N0(M),

∣∣∣∣h
m,Nm

M
d

m,Nm
M

∣∣∣∣ ≤C(m). For 1 ≤ m ≤ bM
2 c,

define C̃ (M) := max{C(m)}. Then (2.53) becomes∣∣∣∣hM,N

dM,N

∣∣∣∣≤ 1+ ∑
1≤m≤bM

2 c
C̃(M)

(
C̃ (M)

)M
m ≤ 1+MC̃(M)

(
C̃ (M)

)M
. (2.54)
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If we set C(M) = 1+MC̃(M)
(
C̃ (M)

)M, we have verified Claim 2, and hence
Equation (2.43), which completes the proof. 2

By using Equation (2.39) and Lemma (2.5.1) we are in a position to state and
prove the main theorem of this section.

Theorem 2.5.1. Let f (x,y)= 1−
∞

∑
p=1

m+n=p

sm+nxmyn = 1−2s(x+y)+2s2xy
(1−sx)(1−sy) where s> 0. For

this special function f (x,y) and its associated IPPE2
∞

∏
p=1

M+N=p

(1−hM,NxMyN)−1, we

have

−hM,N ∼−dM,N ∼ sM+N
N+M

∑
q=N

2q(q−1)!(−1)M+N−q

(q−M)!(q−N)!(M+N−q)!
, (2.55)

as N→ ∞, where M is a fixed element of N and (M,N) ∈ N×N.

Proof. Equation (2.10) implies that

−hM,N =−dM,N +
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m(hm,Nm
M
)

︸ ︷︷ ︸
:=∆

. (2.56)

We ultimately want to show

∆

−dM,N
→ 0, as N→ ∞. (2.57)

By Equation (2.39) and Lemma (2.5.1), we observe that

|∆|=

∣∣∣∣∣∣∣∣∣
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m(hm,Nm
M
)

M
m

∣∣∣∣∣∣∣∣∣≤
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m
∣∣∣hm,Nm

M

∣∣∣M
m

≤ 1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m
∣∣∣C(M)dm,Nm

M

∣∣∣M
m
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=
1
M ∑

m|M

1≤m≤
⌊

M
2

⌋m(C(M))
M
m

[
sm(2s)

Nm
M (Nm

M )m−1

m!

]M
m ∣∣∣∣1+∆

(
m,

Nm
M

)∣∣∣∣M
m

=
sM+N2N

M ∑
m|M

1≤m≤
⌊

M
2

⌋
m(C(M))

M
m
(m

M

)(m−1)M
m

(m!)
M
m

N(m−1)M
m

∣∣∣∣1+∆

(
m,

Nm
M

)∣∣∣∣M
m

.

Hence, as N→ ∞, since

∣∣∣∣ |∆|−dM,N

∣∣∣∣= ∑
m|M

1≤m≤bM
2 c

m(C(M))
M
m
(m

M

)(m−1)M
m M!

(m!)
M
m M

· N
(m−1)M

m

NM−1

∣∣∣∣∣∣
[
1+∆

(
m, Nm

M

)]M
m

[1+∆(M,N)]

∣∣∣∣∣∣
≤ 2 [1+Q(M)]M ∑

m|M
1≤m≤bM

2 c

m(C(M))
M
m
(m

M

)(m−1)M
m M!

(m!)
M
m M

· N
(m−1)M

m

NM−1 , by (2.49)

≤ 2 [1+Q(M)]M ∑
m|M

1≤m≤bM
2 c

(C(M))M(M−1)!

N
M
m−1

, since C(M)≥ 1

≤ 2 [1+Q(M)]M ∑
m|M

1≤m≤bM
2 c

(C(M))M(M−1)! ·max
(

1

N
M
m−1

)

≤ 2 [1+Q(M)]M

N ∑
m|M

1≤m≤bM
2 c

(C(M))M(M−1)!

≤ M! [1+Q(M)]M (C(M))M

N
, since m≤ M

2 ,

and M![1+Q(M)]M(C(M))M

N → 0 as N→ ∞. Thus, Equation (2.57) is true.

We return to Equation (2.56), apply (2.57), and discover that

−hM,N =−dM,N +∆

=−dM,N

[
1− ∆

−dM,N

]
→−dM,N as N→ ∞. 2
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2.6 Combinatorial Interpretations for IPPE2
In this section we develop combinatorial interpretations for Equations (2.4) and
(2.5). Our first two interpretations involve generating functions for sequences of
vector partitions. Let pd((m,n)) be the number of partitions of (m,n) with distinct
parts; see Definition 1.2.3. The generating function is given by

∞

∏
q=1

m+n=q

(1+ xmyn) =
∞

∑
p=0

m+n=p

pd((m,n))xmyn. (2.58)

If hm,n = 1, Equation (2.5) becomes

∞

∏
q=1

m+n=q

(1− xmyn)−1 =
∞

∑
p=0

m+n=p

p((m,n))xmyn (2.59)

where p((m,n)) is the number of vector partitions of (m,n).

Equations (2.58) and (2.59) interpret the product side of Equations (2.4) and (2.5)
respectively. Next we give a combinatorial interpretation when we start with the
sum. Define

f (x,y) = 1−
∞

∑
p=1

m+n=p

xmyn =
∞

∏
p=1

m+n=p

(1−gm,nxmyn), (2.60)

where gm,n ∈ N. Take Equation (2.60) and form the reciprocal.

1

1−
∞

∑
p=1

m+n=p

xmyn
=

1
∞

∏
p=1

m+n=p

(1−gm,nxmyn)
=

∞

∏
p=1

m+n=p

(1−hm,nxmyn)−1, (2.61)

where hm,n = gm,n.

Expand the left side of Equation (2.61) as

62



1

1−
∞

∑
p=1

m+n=p

xmyn
=

1

1−
[

1−(1−x)(1−y)
(1−x)(1−y)

]

= 1+
∞

∑
p=1

m+n=p

xmyn +

 ∞

∑
p=1

m+n=p

xmyn


2

+ · · ·+

 ∞

∑
p=1

m+n=p

xmyn


k

+ . . .

= 1+
∞

∑
p=1

m+n=p

Ĉ(m,n,1)xmyn +
∞

∑
p=2

m+n=p

Ĉ(m,n,2)xmyn +
∞

∑
p=3

m+n=p

Ĉ(m,n,3)xmyn + . . .

= 1+
∞

∑
p=1

m+n=p

C(m,n)xmyn, C(m,n) := ∑
l

Ĉ(m,n, l). (2.62)

Because Ĉ(m,n,k) = 0 whenever m+ n < k, we observe that C(m,n) is a finite
sum.

We want to determine a closed form Ĉ(m,n,k)xmyn whenever k ≥ 1. Clearly
Ĉ(m,n,1) = 1 whenever m,n 6= 0. If k = 2, we find that ∞

∑
p=1

m+n=1

xmyn

2

=
∞

∑
`=2

m+n=`

Ĉ(m,n,2)xmyn =
∞

∑
`=2

s+t=`

[(
m+1

1

)(
n+1

1

)
−2
]

xmyn,

since a monomial of the form xmyn is obtained as a product of two terms of
xm1yn1xm2yn2 , where m2 = m−m1 and n2 = n− n1. Clearly, 0 ≤ m1 ≤ m and
0 ≤ n1 ≤ n. This would suggest that the answer is (m+ 1)(n+ 1). But there are
two possibilities that we can not have, namely x0y0 and xmyn. Thus, there are
(m+1)(n+1)−2 ways to write xmyn as a product of two terms from the original
series.

Define an ordered pair composition of (m,n) with at most two non-negative
parts to be an ordered pair (ci,c′i) such that ci = ci1 +ci2 = m and c′i = c′i1 +c′i2 = n

(with ci1,ci2,c
′
i1,c
′
i2 ∈ N0). To obtain the monomial xmyn, we chose xci1 yc′i1 from

one factor of ∑
∞

p=1
m+n=1

xmyn and xci2 yc′i2 from the other factor. Then
(m+1

1

)(n+1
1

)
−2

counts the number of ordered pair compositions of (m,n) with exactly two parts,
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which satisfy the extra condition that cip and c′ip
are never simultaneously zero for

p = 1,2. For example, Ĉ(3,2,2) = 10 since

(c1,c′1) = (3+0,0+2) = x3 · y2, (c2,c′2) = (3+0,1+1) = x3y · y,
(c3,c′3) = (2+1,0+2) = x2 · xy2, (c4,c′4) = (2+1,1+1) = x2y · xy

(c5,c′5) = (2+1,2+0) = x2y2 · y, (c6,c′6) = (1+2,0+2) = x · x2y2,

(c7,c′7) = (1+2,1+1) = xy · x2y, (c8,c′8) = (1+2,2+0) = xy2 · x2

(c9,c′9) = (0+3,2+0) = y2 · x3, (c10,c′10) = (0+3,1+1) = y · x3y.

Note that we can not obtain (3+0,2+0) (corresponding to x3y2 ·1) or (0+3,0+
2) (corresponding to 1 · x3y2).

We use this result to determine Ĉ(m,n,3) as follows: ∞

∑
p=1

m+n=p

xmyn

3

=

 ∞

∑
p=1

m+n=p

xmyn

2 ∞

∑
p=1

m+n=p

xmyn

1

=

[
∞

∑
`=2

m1+n1=`

(
(m1 +1)(n1 +1)−2

)
xm1yn1

][
∞

∑
p=1

m2+n2=p

xm2yn2

]
.

Since both of these series are indexed by pairs of integers, this is the same as the
previous situation except that not all the coefficients are 1. For (m,n) 6= (0,0), our
preceding coefficient was obtained by:

∑
1≤m1+n1<m+n

0≤m1≤m
0≤n1≤n

1 = (m+1)(n+1)−2.

This time we have:

Ĉ(m,n,3) = ∑
2≤m1+n1<m+n

0≤m1≤m
0≤n1≤n

[(m1 +1)(n1 +1)−2]

=
m

∑
m1=0

(m1 +1)
n

∑
n1=0

(n1 +1)−
m

∑
m1=0

n

∑
n1=0

2− [(m+1)(n+1)−2]− [−1],
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where [(m+1)(n+1)−2] reflects the fact that xm1yn1 6= xmyn and −1 reflects the
fact that xm1yn1 6= x0y0. By applying Identity (1.49) of [25], namely

n

∑
k=0

(
x+ k

k

)
=

n

∑
k=0

(
x+ k

x

)
=

(
x+1+n

n

)
=

(
x+1+n

x+1

)
,

we see that the preceding sum becomes

Ĉ(m,n,3) =
(

m+2
2

)(
n+2

2

)
−3
(

m+1
1

)(
n+1

1

)
+3,

where Ĉ(m,n,3) counts the number of ordered pair compositions of (m,n) with
at most three non-negative parts such that corresponding parts are never simul-
taneously zero. In other words, Ĉ(m,n,3) counts ordered pairs (ci,c′i), where
ci = ci1 +ci2 +ci3 = m, c′i = c′i1 +c′i2 +c′i3 = n, and for p ∈ {1,2,3}, cip and c′ip

are
never both zero.

The preceding analysis suggests the following proposition:

Proposition 2.6.1. Let k be a positive integer. For fixed (m,n) ∈ N0×N0, let
Ĉ(m,n,k) count the number of ordered pair compositions of (m,n) with at most
k non-negative parts such that the corresponding parts are never simultaneously
zero. In other words, Ĉ(m,n,k) counts the number of ordered pairs (ci,c′i), such
that ci = ∑

k
j=1 ci j = m, c′i = ∑

k
j=1 c′i j

= n, and for 1≤ p≤ k, cip and c′ip
are never

both zero. Then,  ∞

∑
p=1

m+n=p

xmyn


k

=
∞

∑
p=k

m+n=p

Ĉ(m,n,k)xmyn. (2.63)

Furthermore,

Ĉ(m,n,k) =
k−1

∑
i=0

(−1)i
(

k
i

)(
m+ k−1− i

k−1− i

)(
n+ k−1− i

k−1− i

)
. (2.64)

Proof. The validity of Equation (2.63) follows by analyzing how to create a mono-

mial xmyn from the expansion of the product

 ∞

∑
p=1

m+n=p

xmyn


k

. Since such a product
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has k factors of the form
∞

∑
p=1

m+n=p

xmyn, we select a monomial of the form xcip yc′ip

from each factor where

xmyn = xci1 yc′i1 · xci2 yc′i2 · · ·xcik yc′ik = x∑
k
j=1 ci j y∑

k
j=1 c′i j .

If, for 1≤ p≤ k, cip = 0 = c′ip
, then we would have selected xcip yc′ip = 1 from the

pth factor. But since
∞

∑
p=1

m+n=p

xmyn = x+ y+ x2 + xy+ y2 + . . . , this is impossible.

It remains to verify Equation (2.64) through induction on k. We have already
shown the validity of (2.64) for k = 1,2,3. Now assume that we have proven
(2.64) for all positive integers less than or equal to some fixed positive integer k.
By construction

∞

∑
q=k+1
m+n=q

Ĉ(m,n,k+1)xmyn =

 ∞

∑
p=1

m+n=1

xmyn

k+1

=

 ∞

∑
p=1

m+n=1

xmyn

k ∞

∑
p=1

m+n=1

xmyn



=

 ∞

∑
q=k

m+n=q

Ĉ(m,n,k)xmyn


 ∞

∑
q=1

m+n=q

xmyn

 .
Coefficient comparison on the preceding line implies that

Ĉ(m,n,k+1) = ∑
k≤m1+n1<m+n

0≤m1≤m
0≤n1≤n

Ĉ(m,n,k)

=
m

∑
m1=0

n

∑
n1=0

k−1

∑
i=0

(−1)i
(

k
i

)(
m1 + k−1− i

k−1− i

)(
n1 + k−1− i

k−1− i

)

−
k−1

∑
i=0

(−1)i
(

k
i

)(
m+ k−1− i

k−1− i

)(
n+ k−1− i

k−1− i

)
−

k−1

∑
i=0

(−1)i
(

k
i

)(
k−1− i
k−1− i

)(
k−1− i
k−1− i

)
, (2.65)

where the last equality follows by the induction hypothesis and the subtracted
terms respectively reflect the fact that the first factor can not contribute xmyn or
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x0y0. To simplify the first sum of (2.65) observe that

m

∑
m1=0

n

∑
n1=0

k−1

∑
i=0

(−1)i
(

k
i

)(
m1 + k−1− i

k−1− i

)(
n1 + k−1− i

k−1− i

)

=
k−1

∑
i=0

(−1)i
(

k
i

) m

∑
m1=0

(
m1 + k−1− i

k−1− i

) n

∑
n1=0

(
n1 + k−1− i

k−1− i

)

=
k−1

∑
i=0

(−1)i
(

k
i

)(
m+ k− i

k− i

)(
n+ k− i

k− i

)
, (2.66)

where the last equality follows from Identity (1.49) of [25]. To simplify the second
sum of (2.65) observe that

k−1

∑
i=0

(−1)i
(

k
i

)(
m+ k−1− i

k−1− i

)(
n+ k−1− i

k−1− i

)
=

k

∑
i=1

(−1)i−1
(

k
i−1

)(
m+ k− i

k− i

)(
n+ k− i

k− i

)
. (2.67)

To simplify the third sum of (2.65), we apply Identity (1.5) of [25], namely

n

∑
k=0

(−1)k
(

x
k

)
= (−1)n−1

(
x−1

n

)
,

to show that

k−1

∑
i=0

(−1)i
(

k
i

)
= (−1)k−1

(
k−1
k−1

)
= (−1)k−1. (2.68)
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By subtracting (2.67) and (2.68) from (2.66), we find that

Ĉ(m,n,k+1) =
(

m+ k
k

)(
n+ k

k

)
+

k−1

∑
i=1

(−1)i
[(

k
i

)
+

(
k

i−1

)](
m+ k− i

k− i

)(
n+ k− i

k− i

)
+

(−1)k
(

k
k−1

)
+(−1)k

=

(
m+ k

k

)(
n+ k

k

)
+

k−1

∑
i=1

(−1)i
(

k+1
i

)(
m+ k− i

k− i

)(
n+ k− i

k− i

)
+

(−1)k(k+1)

=
k

∑
i=0

(−1)i
(

k+1
i

)(
m+ k− i

k− i

)(
n+ k− i

k− i

)
,

which completes the induction step. 2

Returning to Equation (2.62), we deduce that C(m,n) counts the number of
ordered pair compositions of (m,n) such that identically indexed parts of the indi-
vidual compositions associated with m and n are never simultaneously zero. Fur-
thermore, Equation (2.62) provides a way of factoring the bivariate Taylor series
associated with (C(m,n))∞

m,n.
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Chapter 3

Factorization of Bivariate Matrix
Power Series Via Power Product
Expansion

3.1 Introduction
Matrix functions occur number theory, combinatorics, linear algebra, and anal-
ysis. Typically these matrix functions are represented as power series. But for
certain problems, valuable insight is gained by analyzing the power product ex-
pansion of the given matrix function. As a case in point, let A,B ∈Md(C), and let
‖ · ‖ be some matrix norm such that ‖A‖ ≤ ρ < 1 and ‖B‖ ≤ ρ < 1. Furthermore,
assume that AB = BA. Suppose we want an approximation to (I−A)−1(I−B)−1.
Consider the identities

(I−A)−1(I−B)−1 = I +
∞

∑
p=1

m+n=p

AmBn =
∞

∏
k=1

(I +A2k
)

∞

∏
k=1

(I +B2k
)

=
∞

∏
q=0

(
I +A2q

+(AB)2q
+B2q)

, (3.1)

The right side of Equation (3.1) is an example of an matrix power product

expansion in two independent variables. Given F(x,y) = I+
∞

∑
p=1

m+n=p

Am,nxmyn with

matrix coefficients, where either the defining expression for F(x,y) is treated as a
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formal power series expansion or F(x,y) is an analytic function with F(0,0) = I,
the right side of

F(x,y) =
∞

∏
q=1

m+n=q

(I +Gm,nxmyn), (3.2)

is defined to be matrix power product expansion in two independent variables,
(denoted MPPE2).

.

The purpose of this chapter is to obtain both algebraic and analytic theorems

for the MPPE2 expansion of F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn. The three main results

are as follows:

1. An algebraic structure property for (Gm,n) in terms of recursive “mixed ex-
pansions”; see Theorem 3.17.

2. A domain of convergence criteria for the MPPE2 in terms of a “majorizing”
infinite product; see Theorem 3.5.1.

3. A domain of convergence criteria for the MPPE2’s by norm criteria; see
Theorem 3.5.3.

The outline of this chapter is as follows. In Section 2 we introduce and il-
lustrate the main concepts that are needed throughout this work. In Section 3 we
study the expansion of a power series into a MPPE2 and provide an algebraic rep-
resentation for the coefficients Gm,n as a multivariate polynomials in (Am,n)

∞
m,n=0
m+n=1

.

In Section 4 we provide another way to recursively express the coefficients Gm,n
as a multivariate polynomial of the variables Am,n. The algebraic result of Section
4 reveals an intriguing property of these expansions. If Am,n ≤ 0, then the coeffi-
cients Gm,n in the MPPE2 are non-positive. Section 5 exploits the non-positivity
result of Section 4 to determine convergence conditions of the MPPE2 in terms of
a majorizing power product by focusing on spectral criteria. Moreover, at the end
of Section 5, we employ norm criteria to analyze the convergence of MPPE2. Sec-
tion 6 is devoted to the study of the matrix MPPE2 induced by scalar functions.
Finally, in Section 7 six examples are presented to illustrate the applicability of
the section 6 theorems.
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3.2 Matrix Power Product Expansions
The goal of this section is twofold: first to define matrix power product expan-
sions and secondly to introduce notational conventions that will be useful for
stating the algebraic and analytic results which appear in the following sections.
We begin by addressing our first goal of defining a matrix power product ex-
pansion. Since such expressions are product expansions of the matrix function

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn, where either the defining expression for F(x,y) is

treated as a formal power series expansion or an analytic function with F(0,0)= I,
it behoves us to first discuss our conventions regarding double summation. Un-
like the convergence of the series ∑

∞
n=0 An, the convergence of the double series

∑
∞
m,n=0 Bm,n requires additional considerations. In order to justify the particular or-

der of summation that we utilize throughout this work, we briefly recall some theo-
retical results. Following J. Morrow [38], we define ∑m,n Bm,n as a double indexed
infinite series of complex matrices. (In our particular case, Bm,n = Am,nxmyn.) We
define the associated sequence of partial sums (Sm,n) via the finite sum

Sm,n =
m

∑
j=1

n

∑
k=1

B j,k.

We say ∑m,n Bm,n converges if and only if limm,n→∞ Sm,n converges. We say
∑m,n Bm,n converges absolutely if and only if ∑m,n ||Bm,n||. The crucial result,
[[38], Theorem 2], states that if ∑m,n Bm,n is absolutely convergent, then ∑m,n Bm,n
converges and that the sum of ∑m,n Bm,n can be computed by any rearrangement
of terms. Since we will be working with either doubly indexed formal power se-
ries or doubly indexed absolutely convergent series, without loss of generality, we
define

∑
m,n

Bm,n := B0,0 +
∞

∑
p=1

m+n=p

Bm,n = B0,0 +B1,0 +B0,1 +B2,0 +B1,1 +B0,2 + . . .

(3.3)

where the partial ordering uses Definition 1.2.1.

Now that we have a clearly defined protocol regarding the double summation

of F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn, we next discuss some notational conventions

regarding the matrix coefficients (Am,n)m,n.
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Definition 3.2.1. Let Md(F) denote the set of d × d matrices over the field F
where F = C or F = R. Given A ∈Md(F), we denote A = (au,v), where au,v ∈ F
for u,v = 1,2, ...,d. Let Id = (δu,v) denote the identity matrix. We may omit the
subscript d and denote by I the d×d identity matrix. Let O denote the matrix with
all of its entries 0. Given A ∈ Md(F), the matrix |A| ∈ Md(R) is |A| = (|au,v|),
where u,v = 1,2, ...,d. Given A,B∈Md(R), we say A≤ B if and only if au,v ≤ bu,v
for u,v = 1,2, ...,d.

Definition 3.2.2. Let A ∈ Md(R). We say that A is a positive matrix if and only
if au,v > 0 for u,v = 1,2, ...,d and write A > O. We say that A is a non-negative
matrix if and only if au,v ≥ 0 for u,v = 1,2, ...,d and write A≥O. We say that A is
a non-positive matrix if and only if au,v ≤ 0 for u,v = 1,2, ...,d and write A ≤ O.
We say that A is a negative matrix if and only if au,v < 0 for u,v = 1,2, ...,d and
write A < O. If A is either a non-positive or negative matrix, it is equivalent to
write A =−|A|.

We are now in a position to define what we mean by the matrix power product

expansion of F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn.

Definition 3.2.3. Given F(x,y) = I+
∞

∑
p=1

m+n=p

Am,nxmyn, a formal power series with

matrix coefficients or an analytic function of two independent complex variables
with F(0,0) = I, we say F(x,y) has a left to right (canonically ordered) matrix
power product expansion in two independent variables if

F(x,y) = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) (3.4)

= (I +G1,0x1y0)(I +G0,1x0y1)(I +G2,0x2y0)(I +G1,1x1y1)(I +G0,2x0y2) . . . ,

where the ordering of the right side follows the conventions of Definition 1.2.1. We
say F(x,y) has a right to left (reversed canonically ordered) matrix power product
expansion in two independent variables if

F(x,y) = RT L
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) (3.5)

= . . .(I +Gk1,k2xk1yk2) . . .(I +G2,0x2y0)(I +G0,1x0y1)(I +G1,0x1y0),
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where the ordering of the right side follows the conventions of Definition 1.2.1
when read from right to left. We refer to the right side of either Equation (3.4)
or (3.5) as an MPPE2. The expression (I +Gm,nxmyn), where (m,n) ∈ N0×N0,
is an elementary factor of degree m+ n. If Gm,n 6= O, the elementary factor is
nontrivial. We make the convention of setting G0,0 = I.

We now define the notational conventions necessary for stating the formulas
which algebraically represent the coefficients of the matrix power product expan-
sion in terms of the power series coefficients. First off is a collection of vector
indexed notations necessary for the statement of the structure property

Notation 3.2.1. The symbol φ = ((i1, j1),(i2, j2), ...,(in, jn)) stands for a vector
with n components, where n ∈ N and i1, i2, ..., in, j1, j2, ..., jn ∈ N0. Let τ = τ(φ)
be the length of φ , i.e. τ = n. Let |φ | denote the sum of the components, i.e. |φ |=(

n
∑

d=1
id,

n
∑

d=1
jd

)
. We denote A(ik, jk),φ as A(ik, jk),(i1, j1)A(ik, jk),(i2, j2)...A(ik, jk),(in, jn).

Example 3.2.1. Let φ =
(
(2,2),(1,3),(3,1),(2,2),(0,4),(4,0)

)
, then τ = τ(φ)=

6 , |φ |= (12,12), and

A(ik, jk),φ = A(ik, jk),(2,2)A(ik, jk),(1,3)A(ik, jk),(3,1)A(ik, jk),(2,2)A(ik, jk),(0,4)A(ik, jk),(4,0).

Next, we define the notion of a suitable norm, a concept necessary for discussing

the convergence of matrix power product expansions.

Definition 3.2.4. A norm || · || defined on the linear space of d×d matrices over
C will be called absolute if

||A||= ||(|A|)||.

It will be called monotonicity preserving if

|A| ≤ |B| implies that ||A|| ≤ ||B||.

The norm will be called algebraic if

||AB|| ≤ ||A|| ||B||.

Finally, a norm || · || will be called suitable if it is absolute, monotonicity preserv-
ing, and algebraic.
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3.3 Algebraic Formula for the Coefficients of a Ma-
trix Power Product Expansion

In this section and the next we study the expansion of a two variable power se-
ries into a MPPE2 and derive two algebraic representations for the coefficients
Gm,n as polynomials of the (Am,n)m,n. The first formula is almost an immediate
consequence of Equation (3.4). Let

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn). (3.6)

By expanding the MPPE2 of Equation (3.6) into a formal power series, coefficient
comparison shows that

Am,n = ∑
i1+i2+...+ir=m
j1+ j2+...+ jr=n

(1,0)�(i1, j1)≺(i2, j2)≺···≺(ir, jr)�(m,n)

Gi1, j1Gi2, j2 . . .Gir, jr , (3.7)

or equivalently that

Gm,n = Am,n−
(

∑
i1+i2+...+ir=m
j1+ j2+...+ jr=n,

(1,0)�(i1, j1)≺(i2, j2)≺···≺(ir, jr)≺(m,n),
r≥2

Gi1, j1Gi2, j2 . . .Gir, jr

)
, (3.8)

where the summation runs over all partitions of (m,n) into distinct parts.

3.4 Structure Property of the Coefficients of a Ma-
trix Power Product Expansion

There is another way to recursively express the coefficients Gm,n as a multivariate
polynomial of the variables Am,n. The ultimate result of this methodology is the
structure property, Theorem 3.4.2, a crucial result for determining convergence
domains of power product expansions via a majorizing MPPE2. We begin with
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setting Am,n = A(1,0),(m,n) and rewrite Equation (3.6) as

F(x,y) = I +
∞

∑
p=1

m+n=p

A(1,0),(m,n)x
myn = (I +G1,0x)

[
LT R

∞

∏
q=1

m+n=q
(m,n)�(0,1)

(I +Gm,nxmyn)
]

= (I +G1,0x)
[

I +
∞

∑
p=1

m+n=p
(m,n)�(0,1)

A(0,1),(m,n)x
myn
]
,

where the summation conventions follow Definition 1.2.1.

Next we apply the same procedure to I +
∞

∑
p=1

m+n=p
(m,n)�(0,1)

A(0,1),(m,n)xmyn and find that

I +
∞

∑
p=1

m+n=p
(m,n)�(0,1)

A(0,1),(m,n)x
myn = I +A(0,1),(0,1)y+A(0,1),(2,0)x

2 +A(1,0),(1,1)xy+ . . .

= (I +G0,1y)
[
LT R

∞

∏
q=2

m+n=q
(m,n)�(2,0)

(I +Gm,nxmyn)
]

= (I +G0,1y)
[

I +
∞

∑
p=2

m+n=p
(m,n)�(2,0)

A(2,0),(m,n)x
myn
]
.

By continuing this procedure inductively we define

[
I +

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]
=(I +Gik, jk x

ik y jk)

[
I +

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

A(ik+1, jk+1),(m,n)x
myn
]
, (3.9)

where A(ik, jk),(0,0) = I for all (i, j) ∈ N0×N0, and A(ik, jk),(m,n) = O, if (ik, jk) � (m,n) 6=
(0,0). By comparing the coefficients of xmyn in Equation (3.9), we find that

A(ik+1, jk+1),(1,0) = · · ·= A(ik+1, jk+1),(ik, jk) = O, (3.10)
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A(ik+1, jk+1),(m,n) = A(ik, jk),(m,n)−Gik, jk A(ik+1, jk+1),(m−ik,n− jk). (3.11)

If (m,n) = (ik, jk), the final recurrence implies that

Gik, jk = A(ik, jk),(ik, jk). (3.12)

Next use Equation (3.12) and the geometric series to rewrite Equation (3.9) as

I +
∞

∑
p=`

m+n=p,
(m,n)�(ik+1, jk+1)

A(ik+1, jk+1),(m,n)x
myn = (I +Gik, jk x

ik y jk)−1
[

I +
∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]

=

[
I +

∞

∑
α=1

(−1)α(Gik, jk x
ik y jk)α

][
I +

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]

=

[
I +

∞

∑
α=1

(−1)αAα

(ik, jk),(ik, jk)(x
ik y jk)α

][
I +

∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

A(ik, jk),(m,n)x
myn
]
. (3.13)

By equating the coefficient of xsyt on both sides of Equation (3.13), we get

A(ik+1, jk+1),(s,t) = ∑
αik+m=s
α jk+n=t

(−1)αAα

(ik, jk),(ik, jk)A(ik, jk),(m,n). (3.14)

Equation (3.14) is the key to proving the following theorem which is the precursor of
the structure property.

Theorem 3.4.1. Let (ik, jk)∈N0×N0 \{(0,0)}. Define A(ik, jk),(0,0) = I and A(ik, jk),(m,n) =
O for (1,0)� (m,n)� (ik−1, jk−1). Assume that A(ik, jk),(m,n) ≤ O for all (ik, jk)� (m,n).
Then A(ik+1, jk+1),(s,t) ≤ O whenever (ik+1, jk+1)� (s, t).

Proof. Equation (3.14) is equivalent to

A(ik+1, jk+1),(s,t) = ∑
αik+m=s
α jk+n=t

(m,n)6=(0,0),(ik, jk)

(−1)αAα

(ik, jk),(ik, jk)A(ik, jk),(m,n)

+(−A)
s
ik
(ik, jk),(ik, jk)

+(−1)
s
ik
−1
(A)

s
ik
(ik, jk),(ik, jk)

, (3.15)
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where the second term on the right side corresponds to (m,n) = (0,0), while the third
term corresponds to (m,n) = (ik, jk). Rewrite Equation (3.15) as A(ik+1, jk+1),(s,t) = β + γ ,
where

β := ∑
αik+m=s
α jk+n=t

(m,n)6=(0,0),(ik, jk)

(−1)αAα

(ik, jk),(ik, jk)A(ik, jk),(m,n),

and

γ := (−A)
s
ik
(ik, jk),(ik, jk)

+(−1)
s
ik
−1
(A)

s
ik
(ik, jk),(ik, jk)

.

By the hypothesis, Aα

(ik, jk),(ik, jk)
A(ik, jk),(m,n) is the product of α + 1 non-positive matrices

and is either a zero matrix or has a sign of (−1)α+1. Thus, (−1)αAα

(ik, jk),(ik, jk)
A(ik, jk),(m,n)

is either a zero or a negative matrix, and each summand in β is a non-positive matrix.

It remains to show that γ is also a non-positive matrix. Note that γ only exists if α = s
ik

is a positive integer, say s
ik
= α̂ > 1, in which case γ becomes

γ = (−A)α̂

(ik, jk),(ik, jk)+(−1)α̂−1(A)α̂

(ik, jk),(ik, jk) = O. (3.16)

Therefore, the representation of γ provided by Equation (3.16) shows that γ is a non-
positive matrix. 2

Theorem 3.4.2. (Structure Property) Let (ik, jk) ∈ N0×N0 \{(0,0)}. Then

A(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1A(ik, jk),φ(η) = ∑
η

(−1)τ(φ(η))+1A(ik, jk),φ(η), (3.17)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), . . . ,(iτ , jτ)

)
such that |φ(η)| = (s, t)

and (ip, jp) = (ik, jk) whenever 1 ≤ p ≤ τ − 1. (Recall that we defined A(ik, jk),φ(η) =
A(ik, jk),(i1, j1) . . .A(ik, jk),(iτ , jτ ).) If A(ik, jk),(s,t)≤O and all (ik, jk)� (s, t), then Equation (3.17)
is equivalent to

A(ik+1, jk+1),(s,t) =−∑
η

|A(ik, jk),(i1, j1)| . . . |A(ik, jk),(iτ , jτ )|, (3.18)

where the range of summation is identical to the range of summation used in Equation
(3.17).

Proof. We obtain the desired result by representing Aα

(ik, jk),(ik, jk)
A(ik, jk),(m,n) in Equation

(3.14) as A(ik, jk),φ(η) and then applying Theorem 3.4.1. 2

In order to obtain a formulation of the structure property that is useful for determin-
ing the domain of convergence for an MPPE2, we need to iterate Equation (3.18). Let
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φ =
(
(i1, j1),(i2, j2), ...,(in, jn)

)
denote a vector with n components, where n ∈ N, and

i1, i2, ..., in, j1, j2, ..., jn ∈ N0, and let Aφ(η) denote the expression Ai1, j1Ai2, j2 ...Ain, jn . After
L iterations, and assuming A(ik, jk),(s,t) ≤ O, whenever (ik, jk)� (s, t), we obtain

A(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1Aφ(η) =−∑
η

|Ai1, j1 ||Ai2, j2 | . . . |Aiτ , jτ |, (3.19)

where the sum is over φ(η) =
(
(i1, j1),(i2, j2), . . . ,(iτ , jτ)

)
such that |φ(η)|= (s, t).

If (s, t) = (ik+1, jk+1), then Equation (3.19) becomes

A(ik+1, jk+1),(ik+1, jk+1) = Gik+1, jk+1 = ∑
η

(−1)τ(φ(η))−1Aφ(η)

=−∑
η

|Ai1, j1 ||Ai2, j2 | . . . |Aiτ , jτ |, (3.20)

where the sum is over φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that |φ(η)|= (ik+1, jk+1).

To illustrate application the structure property, we furnish the following example:

G2,1 =A(2,1),(2,1) By using Equation (3.12)

=A(3,0),(2,1) By using Equation (3.14)

=A(0,2),(2,1)

=A(1,1),(2,1)

=A(2,0),(2,1)

=(−1)1A(0,1),(0,1)A(0,1),(2,0)+A(0,1),(2,1)

=(−1)1A(1,0),(0,1)A(1,0),(2,0)+(−1)1A(1,0),(1,0)A(1,0),(1,1)+

(−1)2A2
(1,0),(1,0)A(1,0),(0,1)+A(1,0),(2,1)

The explicit coefficients Gm,n with 1 ≤ m+ n ≤ 4, as polynomials of A1,0, ...,Am,n, are
given below.

G1,0 =(−1)0A1,0

G0,1 =(−1)0A0,1

G2,0 =(−1)0A2,0

G1,1 =(−1)0A1,1 +(−1)1A1,0A0,1

G0,2 =(−1)0A0,2

G3,0 =(−1)0A3,0 +(−1)1A1,0A2,0
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G2,1 =(−1)0A2,1 +(−1)1A0,1A2,0 +(−1)1A1,0A1,1 +(−1)2A2
1,0A0,1

G1,2 =(−1)0A1,2 +(−1)1A1,0A0,2 +(−1)1A0,1A1,1 +(−1)2A0,1A1,0A0,1

G0,3 =(−1)0A0,3 +(−1)1A0,1A0,2

G4,0 =(−1)0A4,0 +(−1)1A1,0A3,0 +(−1)2A2
1,0A2,0

G3,1 =(−1)0A3,1 +(−1)1A0,1A3,0 +(−1)2A0,1A1,0A2,0 +(−1)1A1,0A2,1+

(−1)2A2
1,0A1,1 +(−1)3A3

1,0A0,1 +(−1)1A2,0A1,1 +(−1)2A2,0A1,0A0,1

G2,2 =(−1)0A2,2 +(−1)1A2,0A0,2 +(−1)1A1,0A1,2 +(−1)2A1,0A0,1A1,1+

A2
1,0A0,2 +(−1)1A0,1A2,1 +(−1)2A2

0,1A2,0 +(−1)3A0,1A2
1,0A0,1

G1,3 =(−1)0A1,3 +(−1)1A1,0A0,3 +(−1)1A0,1A2,1 +(−1)2A2
0,1A1,1+

(−1)2A0,1A1,0A0,2 +(−1)3A2
0,1A1,0A0,1 +(−1)1A1,1A0,2+

(−1)2A1,0A0,1A0,2

G0,4 =(−1)0A0,4 +(−1)1A0,1A0,3 +(−1)2A2
0,1A0,2.

An examination of G3,1 brings to the fore the pronounced difference between the scalar
(commutative) case treated in chapter one and the current non-commutative case since two
terms A0,1A1,0A2,0 and A2,0A1,0A0,1 can’t combine together. This lack of commutativity
implies that in the non-commutative case Gm,n possess a finer decomposition of structured
terms than what was found in the scalar case.

3.5 Convergence Criteria for MPPE2’s
The purpose of this section is to present results concerning the domain of convergence of
the MPPE2 in Equation (3.4). Since we are dealing with doubly indexed infinite products,

we must carefully define what is meant by the convergence of LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn).

Definition 3.5.1. An MPPE2 LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) converges if and only if

limP→∞ LT R
P
∏

q=1
m+n=q

(I +Gm,nxmyn) converges to a nonzero complex number. Note that the

order of the elementary factors within LT R
P
∏

q=1
m+n=q

(I +Gm,nxmyn) follows the conventions of

Definition 1.2.1.
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We are primarily interested in the absolute convergence of LT R
∞

∏
q=1

m+n=q

(I + Gm,nxmyn).

Therefore, following the lead of J. Thunder [43], we make the following definition.

Definition 3.5.2. For a suitable norm the MPPE2LT R
∞

∏
q=1

m+n=q

(I+Gm,nxmyn) is absolutely con-

vergent if and only if
∞

∏
q=1

m+n=q

(1+ ||Gm,n|| |xmyn|) converges, that is if and only if

limm,n→∞ ∏
n
i=1 ∏

m
j=1(1+ ||Gi, j|||xiy j|) converges to a nonzero real number.

Since ex ≥ x+1 whenever x≥ 0, we observe that
m

∑
i=1

n

∑
j=1
||Gi, j|||xiy j|<

m

∏
i=1

n

∏
j=1

(1+ ||Gi, j|| |xiy j|)

≤
m

∏
i=1

n

∏
j=1

e||Gi, j|||xiy j| = e∑
m
i=1 ∑

n
j=1 ||Gi, j|||xiy j|.

Thus Lemma 2 of [43] is applicable and we have the following proposition:

Proposition 3.5.1. Given a suitable matrix norm, an MPPE2 LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) is

absolutely convergent if and only if
∞

∑
q=1

m+n=q

||Gm,n|||xmyn| is an absolutely convergent series

of real numbers.

As it the case of a double series, if an MPPE2 LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) is absolutely

convergent, then order of multiplication is immaterial and thus we choose to apply the
ordering of Definition 1.2.1. We implicitly made use of this fact in Proposition 3.5.1.

If the coefficients (Gm,n) of the MPPE2 are commutative more can be said in terms
of the power series expansion of log(I +Gm,nxmyn). For any two commutative matrices
A,B ∈ Md(C), it can be shown that eA+B = eAeB [[14], Proposition 2.5, P. 35]. Thus, if
(Gm,n) is a sequence of commutative matrices matrices, we define

log

LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn)

 :=
∞

∑
q=1

m+n=q

log(I +Gm,nxmyn), (3.21)

where

log(I +Gm,nxmyn) :=
∞

∑
`=1

(−1)`+1 G`
m,n

`
xm`yn`. (3.22)
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Equation (3.21) implies that

exp
( ∞

∑
q=1

m+n=q

log(I +Gm,nxmyn)
)
= LT R

∞

∏
q=1

m+n=q

(I +Gm,nxmyn), (3.23)

and implies that for a sequence of commutative coefficients (Gm,n), the MPPE2
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) converges to a nonzero value if and only if the double series

∞

∑
q=1

m+n=q

log(I +Gm,nxmyn) =
∞

∑
q=1

m+n=q

∞

∑
`=1

(−1)`+1 G`
m,n

`
xm`yn`

is convergent.

By adapting the Taylor series argument found on Page 165 of [5] we have

1/2||∆|| ≤ || log(I +∆)|| ≤ 3/2||∆||, ||∆||< 1/2. (3.24)

(In our case ∆ = Gm,nxmyn.) Equation (3.24) implies that
∞

∑
q=1

m+n=q

log(I +Gm,nxmyn) is ab-

solutely convergent if and only if
∞

∑
q=1

m+n=q

Gm,nxmyn is absolutely convergent. We summarize

the previous discussion in the follow proposition:

Proposition 3.5.2. Let (Gm,n) be a sequence of commutative matrices associated with the

matrix function F(x,y) = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn). Define

logF(x,y) :=
∞

∑
q=1

m+n=q

log(I +Gm,nxmyn) =
∞

∑
q=1

m+n=q

∞

∑
`=1

(−1)`+1 G`
m,n

`
xm`yn`.

The MPEE2 of F(x,y), LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn), converges to a nonzero value if and only

logF(x,y) =
∞

∑
q=1

m+n=q

log(I + Gm,nxmyn) converges. The MPEE2 of F(x,y), LT R
∞

∏
q=1

m+n=q

(I +

Gm,nxmyn), is absolutely convergent if and only if
∞

∑
q=1

m+n=q

log(I +Gm,nxmyn) is absolutely

convergent if and only if
∞

∑
q=1

m+n=q

∣∣∣∣∣∣∑∞
`=1

(−1)`+1G`
m,n

` xm`yn`
∣∣∣∣∣∣< ∞.
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The first main result of this section provides a lower bound for the domain of conver-
gence an MPPE2 of in terms a majorizing log series.

Theorem 3.5.1. (1.) Given a matrix function F(x,y)

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn), (3.25)

where Am,n,Gm,n ∈ Md(C), define the following auxiliary matrices functions with
coefficients over Md(R):

C(x,y) = I−
∞

∑
p=1

m+n=p

|Am,n|xmyn = LT R
∞

∏
q=1

m+n=q

(I−Cm,nxmyn) (3.26)

M(x,y) = I−
∞

∑
p=1

m+n=p

Mm,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn). (3.27)

If |Am,n| ≤Mm,n for all (m,n) ∈ N0×N0 \{(0,0)}, then

O≤ |Gm,n| ≤Cm,n ≤ Em,n for all (m,n) ∈ N0×N0 \{(0,0)}.

(2.) Define W ∈Md(C) as

W = (wu,v), where wu,v = 1, v,u = 1, . . . ,d.

Furthermore, given Am,n ∈Md(C) where Am,n =
(
aψ,ω(m,n)

)
for ψ,ω = 1, . . . ,d,

define

a(m,n) := max
ψ,ω
|aψ,ω(m,n)|, and s := sup

m+n≥1

[
a(m,n)

] 1
m+n .

Consider a special case for M(x,y), namely

M(x,y) = I−
∞

∑
p=1

m+n=p

sm+nWxmyn = LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn), (3.28)

where Mm,n = sm+nW. Since (sm+nW ) is a sequence of commutative matrices,
(Em,n) is also a sequence of commutative matrices. By using the Taylor series
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of expansion log(I−Em,nxmyn), we define

logM(x,y) = log

LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn)


=

∞

∑
q=1

m+n=q

log(I−Em,nxmyn) =−
∞

∑
q=1

m+n=q

∞

∑
`=1

E`
m,n(x

myn)`

`

=
∞

∑
p=1

m+n=p

Pm,nxmyn, Pm,n :=− ∑
`|d

d=gcd(m,n)

(E m
` ,

n
`
)`

`
. (3.29)

Let || · || be a suitable norm and let ρ(|| · ||) be the radius of convergence of
∞

∑
p=1

m+n=p

Pm,nxmyn as defined via Equation (3.29). Then

O≤ |Gm,n| ≤Cm,n ≤ Em,n ≤−Pm,n, (m,n) ∈ N0×N0. (3.30)

The inequalities of (3.30), when combined with Proposition 3.5.1, imply that

LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) converges absolutely for ρ(|| · ||).

Proof. (1) Equation (3.20) implies that

Gm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))+1Aφ(η) = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))+1A(i1, j1) . . .A(iτ , jτ ),

which in turn implies that

|Gm,n|=
∣∣∣∣ ∑

η

|φ(η)|=(m,n)

(−1)τ(φ(η))+1Ai1, j1 . . .Aiτ , jτ

∣∣∣∣≤ ∑
η

|φ(η)|=(m,n)

|Ai1, j1 | . . . |Aiτ , jτ |. (3.31)

Similarly, when we apply Equation (3.20) to Equation (3.26), we obtain

O≤Cm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))
(
−|Ai1, j1 |

)
. . .
(
−|Aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(−1)τ(2φ(η))
(
|Ai1, j1 |

)
. . .
(
|Aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(
|Ai1, j1 |

)
. . .
(
|Aiτ , jτ |

)
. (3.32)
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Combining Equation (3.31) and (3.32), we deduce that |Gm,n| ≤ Cm,n. Also due to the
inequality |Am,n| ≤Mm,n, we have

O≤Cm,n = ∑
η

|φ(η)|=(m,n)

|Ai1, j1 | . . . |Aiτ , jτ | ≤ ∑
η

|φ(η)|=(m,n)

Mi1, j1 . . .Miτ , jτ = Em,n,

and hence 0≤ |Gm,n| ≤Cm,n ≤ Em,n.

(2) By the definition of Pm,n provided via Equation (3.29), we see that

−Pm,n = ∑
`|d

d=gcd(m,n)

(E m
` ,

n
`
)`

`
= Em,n + ∑

`|d, 6̀=1
d=gcd(m,n)

(E m
` ,

n
`
)`

`
,

and since Part (1) implies that for an arbitrary pair of subscripts (α,β ) Eα,β ≥ O, the
preceding equation implies that

O≤ Em,n ≤−Pm,n.

which completes the proof of (3.30). 2

Let us take a moment to reestimate the power series expansion of logM(x,y)=
∞

∑
p=1

m+n=p

Pm,nxmyn.

Since W n = dn−1W , we find that

− logM(x,y) =− log

I−W
∞

∑
p=1

m+n=p

sm+nxmyn


=− log

[
I−W

[
∞

∑
m=0

(sx)m
∞

∑
n=0

(sy)n−1

]]

=− log
[

I−W
[

1
1− sx

· 1
1− sy

−1
]]

=− log
[

I−W
[

s(x+ y)− s2xy
(1− sx)(1− sy)

]]
=

∞

∑
p=1

W p

p

[
s(x+ y)− s2xy
(1− sx)(1− sy)

]p

≤
∞

∑
p=1

W p
[

s(x+ y)− s2xy
(1− sx)(1− sy)

]p

=
W
d

∞

∑
p=1

[
ds(x+ y)−ds2xy
(1− sx)(1− sy)

]p
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≤ W
d

∞

∑
p=0

[
ds(x+ y)−ds2xy
(1− sx)(1− sy)

]p

=
W
d

1

1− ds(x+y)−ds2xy
(1−sx)(1−sy)

, where
∣∣∣ds(x+y)−ds2xy
(1−sx)(1−sy)

∣∣∣< 1

=
W
d

(1− sx)(1− sy)
1− (d +1)s(x+ y)+(d +1)s2xy

.

The preceding calculation implies that an estimate for the domain of convergence is re-
lated to the domain of convergence of scalar function φ−1(x,y) = (1−sx)(1−sy)

1−(d+1)s(x+y)+(d+1)s2xy .
By applying an appropriate similarity transformation, φ(x,y) appears in the expansion of

M(x,y) = I−W
∞

∑
p=1

m+n=p

sm+nxmyn. Since W T =W and |λ I−W |= λ d−1(λ −d), the eigen-

values of W are λ1 = d, λ2 = λ3 = · · ·= λd = 0, and there exists an orthogonal matrix Q
such that QT = Q−1 [[15], Theorem 16.19, P. 571] with

W = Q


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

QT .

The left hand side of Equation (3.28) becomes

M(x,y) =I−
∞

∑
p=1

m+n=p

sm+nWxmyn

=I−
∞

∑
p=1

m+n=p

Q


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

QT sm+nxmyn

=Q

I−
∞

∑
p=1

m+n=p


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

sm+nxmyn

QT
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=Q


I−



d
∞

∑
p=1

m+n=p

sm+nxmyn 0 · · · 0

0 0 0
...

... 0
. . . 0

0 0 · · · 0




QT

=Q


φ(x,y) 0 · · · 0

0 1 0
...

... 0
. . . 0

0 0 · · · 1

QT , (3.33)

where

φ(x,y) = 1−d
∞

∑
p=1

m+n=p

sm+nxmyn = 1−d

(
∞

∑
m=0

(sx)m
∞

∑
n=0

(sy)n−1

)

= 1−d
(

1
1− sx

· 1
1− sy

−1
)
=

1− s(d +1)(x+ y)+ s2(d +1)xy
(1− sx)(1− sy)

.

Since we are ultimately computing log(φ(x,y)), we set the domain of definition for φ(x,y)
to be C∞(C2 \S), where

S =

{
x =

1
s
,y =

1
s
, and s(d +1)(x+ y)+ s2(d +1)xy = 1

}
.

Next we check for which values (x,y) the series log(M(x,y)) =
∞

∑
p=1

m+n=p

Pm,nxmyn as defined

in Equation (3.29) will be absolutely convergent. By taking the logarithm of Equation
(3.33), we have

log(M(x,y)) = log

I−
∞

∑
p=1

m+n=p

sm+nWxmyn



= log

Q


φ(x,y) 0 · · · 0

0 1 0
...

... 0
. . . 0

0 · · · 0 1

QT


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= Q


log[φ(x,y)] 0 · · · 0

0 log1 0
...

... 0
. . . 0

0 0 · · · log1

QT , (3.34)

where the last equality made use of the fact that eUAU−1
= UeAU−1 whenever A,U ∈

Md(C) [[14], Prop. 2.2, Page 33]. Therefore, it suffices to consider where the function
log[φ(x,y)] will be absolutely convergent. Observe that

log[φ(x,y)] = log[1−d
∞

∑
p=1

m+n=p

sm+nxmyn]

= log
[

1− s(d +1)(x+ y)+ s2(d +1)xy
(1− sx)(1− sy)

]
= log

(
1− [s(d +1)(x+ y)− s2(d +1)xy]

)
− log(1− sx)− log(1− sy)

=
∞

∑
`=1

(sx)`

`
+

∞

∑
`=1

(sy)`

`
−

∞

∑
`=1

[s(d +1)(x+ y)− s2(d +1)xy]`

`
. (3.35)

The three series in (3.35) are absolutely convergent for |x|< 1
s , |y|< 1

s , and for∣∣s(d +1)(x+ y)− s2(d +1)xy
∣∣< 1, respectively. By the triangle inequality, we have∣∣s(d +1)(x+ y)− s2(d +1)xy

∣∣≤ s(d +1)(|x|+ |y|)+ s2(d +1)|x||y|. (3.36)

If we require s(d +1)(|x|+ |y|)+ s2(d +1)|x||y|< 1, since

s(d +1)|x|< s(d +1)(|x|+ |y|)+ s2(d +1)|x||y|< 1,

we find that |x|< 1
s(d+1) . Similarly, |y|< 1

s(d+1) . Therefore, an estimate of a convergence
domain of (3.35) is given by

D=

{
(x,y) ∈ C2 : s(d +1)

(∣∣x∣∣+ ∣∣y∣∣)+ s2(d +1)
∣∣x∣∣y∣∣< 1

}
.

See Figure 3.1.

Inequality (3.30) shows that the series
∞

∑
p=1

m+n=p

Em,nxmyn will be absolutely convergent when-

ever (x,y)∈D, which implies that the infinite product LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn) is at least

absolutely convergent in the region D.
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Relation (3.36) makes it possible to obtain a domain of absolute convergence in terms
of polydiscs. Let |x| < ρ and |y| < ρ . Inequality (3.36) implies that the MPPE2 will be
absolutely convergent if

s(d +1)(2ρ)+ s2(d +1)ρ2 = (d +1)
[
(sρ +1)2−1

]
< 1,

or equivalently, if ρ < s−1
[√

d+2
d+1 −1

]
. The inequalities for ρ obtained from the defining

quadratic equation of D, namely

|x|< s−1

[√
d +2
d +1

−1

]
, |y|< s−1

[√
d +2
d +1

−1

]
,

are sharp in the sense that if

x =−s−1

[√
d +2
d +1

−1

]
, y =−s−1

[√
d +2
d +1

−1

]
,

then
∣∣s(d + 1)(x+ y)− s2(d + 1)xy

∣∣ = 1 and the sum of the absolute values of the terms
in the logarithmic power series of (3.35) diverge.

In summary, we have shown that

∞

∑
q=1

m+n=q

log(I−Em,nxmyn) = log

I−
∞

∑
p=1

m+n=p

sm+nWxmyn

 ,

will be absolutely convergent whenever (x,y) ∈ D or whenever (x,y) ∈ Dxρ ×Dyρ with

ρ < s−1
[√

d+2
d+1 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

Hence, LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn) will also be absolutely convergent for the same regions.

We can summarize what we have shown so far regarding the absolute convergence
of MPPE2 in both Equations (3.25), (3.28) in term of spectral conditions and obtain the
second major result of this section.

Theorem 3.5.2. (1.) Let F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn. Let W and s be as defined in

Part (2.) of Theorem 3.5.1. Both F(x,y) and its MPPE2,

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn), (3.37)
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and the auxiliary function, along with its MPPE2,

M(x,y) = I−
∞

∑
p=1

m+n=p

sm+nWxmyn = LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn) (3.38)

will be absolutely convergent whenever (x,y) ∈ D, where

D=

{
(x,y) ∈ C2 : (d +1)s

(∣∣x∣∣+ ∣∣y∣∣)+(d +1)s2∣∣x∣∣∣∣y∣∣< 1
}
.

(2.) With the same conventions as in Part (1), both F(x,y) and its MPPE2, along with
M(x,y) and its MPPE2, will be absolutely convergent whenever (x,y) ∈Dxρ×Dyρ

with ρ < s−1
[√

d+2
d+1 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

See Figure 3.1.

	

c 

ca 

1
(𝑑 + 1)𝑠	

|𝑥|	

|𝑦|	

𝑠	(𝑑	+1)(|𝑥|+|𝑦|)+(𝑑 + 1)|𝑥||𝑦|=1	1
(𝑑 + 1)𝑠	

Figure 3.1: A domain of absolute convergence of Equations (3.25) and (3.28).
.

We should mention that for F(x,y)= I+
∞

∑
p=1

m+n=p

Am,nxmyn, the results of Theorem 3.5.1(2)

and Theorem 3.5.2 and can be stated and analogously proven with s replaced by

S := sup
p=1

m+n=p

‖Am,n‖
1

m+n , (3.39)
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Furthermore, the definition of S in Equation (3.39) provides a connection between the
domain of convergence for the majorizing MPPE2 of Theorem 3.5.1(2) and a scalar coun-
terpart for the MPPE2 of F(x,y) as seen in the following theorem:

Theorem 3.5.3. Given the matrix function F(x,y)

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn),

with Am,n,Gm,n ∈ Md(C), define the following auxiliary matrices functions with coeffi-
cients over Md(R):

C(x,y) = I−
∞

∑
p=1

m+n=p

|Am,n|xmyn = LT R
∞

∏
q=1

m+n=q

(I−Cm,nxmyn)

M(x,y) = I−
∞

∑
p=1

m+n=p

Mm,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn).

Let || · || be a suitable matrix norm and assume that |Am,n| ≤ Mm,n for all (m,n) ∈ N0×
N0 \ {(0,0)}. If

∞

∑
p=1

m+n=p

||Em,n|| |xmyn| converges absolutely in a domain D, then the scalar

function
∞

∏
q=1

m+n=q

(1+ ||Gm,n||xmyn) also converges absolutely within D.

Proof. Since |Am,n| ≤Mm,n for all (m,n) ∈ N0×N0 \{(0,0)}, Theorem 3.5.1(1) implies
that

O≤ |Gm,n| ≤ Em,n. (3.40)

Since the norm is suitable, the monotonicity of the matrix inequalities of (3.40) is pre-
served and implies following string of scalar inequalities

0≤ ||Gm,n|| ≤ ||Em,n||,

from which the result follows. 2

3.6 Matrix MPPE2’s Induced by Scalar Functions
In the next theorem we study the expansion of the matrix function F(Ax,Ay), where
F(x,y) is a scalar analytic function.
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Theorem 3.6.1. Let (am,n) ∈ C, where (m,n) ∈ N0×N0 \{(0,0)}. Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (3.41)

where gm,n ∈ C,(m,n) ∈ N0×N0 \{(0,0)} are scalar coefficients.

Let A ∈Md(C). Consider the power series F(Ax,Ay) together with its MPPE2 expansion

F(Ax,Ay) =I +
∞

∑
p=1

m+n=p

am,nAm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I +gm,nAm+nxmyn). (3.42)

Let (λi)
p
i=1 be the distinct eigenvalues of A. For 1 ≤ i ≤ p, let ni be the algebraic multi-

plicity of λi, let ng
i be the geometric multiplicity of λi, and let mi be multiplicity of λi as a

linear factor within the minimal polynomial m(λ ). In other words,

det(λ I−A) =
p

∏
i=1

(λ −λi)
ni m(λ ) =

p

∏
i=1

(λ −λi)
mi .

Define
ρ(A) := max

i
|λi| i = 1,2, . . . , p, s := sup

m+n≥1
|am,n|

1
m+n . (3.43)

The MPPE2 of Equation (3.42) converges absolutely in the region

D= {(x,y) ∈ C2 : 2sρ(A)‖K‖(|x|+ |y|)+2
[
sρ(A)‖K‖

]2|x||y|< 1}, (3.44)

with K ∈Md(C),
K = K1

⊕
K2
⊕
· · ·
⊕

Kp, (3.45)

where for 1≤ i≤ p,
Ki = Ki1

⊕
Ki2

⊕
· · ·
⊕

King
i
, (3.46)

with Ki j an mi j ×mi j matrix as described below, mi j ≤ mi1 = mi, and ∑
ng

i
j=1 mi j = ni. Note

if mi j = 1, Ki j = [1], otherwise Ki j = Imi j
+Nmi j

where Imi j
is the mi j ×mi j identity matrix,

while Nmi j
is the mi j×mi j the lower triangular nilpotent matrix associated with the Jordan

block decomposition, i.e.

Kmi j
= Imi j

+Nmi j
=



1 0 · · · . . . 0 0
1 1 0 . . . 0 0

0 1 1
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 1 1


. (3.47)
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Proof. It is known that given a matrix A ∈Md(C) and an arbitrary small fixed ε ≤ ρ(A),
there exists an invertible matrix T , such that

J = T−1AT, (3.48)

where
J = J1

⊕
J2
⊕
· · ·
⊕

Jp,

such that for 1≤ i≤ p,
Ji = Ji1

⊕
Ji2

⊕
· · ·
⊕

Jing
i
, (3.49)

with Ji j the mi j ×mi j matrix as described below, mi j ≤ mi1 = mi, and ∑
ng

i
j=1 mi j = ni. If

mi j = 1, Ji j = [λi], otherwise Ji j = λiImi j
+εNmi j

where Imi j
is the mi j×mi j identity matrix,

while Nmi j
is the mi j×mi j the lower triangular nilpotent matrix associated with the Jordan

block decomposition, i.e

Ji =



λi 0 · · · . . . 0 0
ε λi 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 ε λi


= λiImi j

+ εNmi j
.

By using the similarity transformation of Equation (3.48), we have

F(Jx,Jy) = I +
∞

∑
p=1

m+n=p

am,nJm+nxmyn = I +
∞

∑
p=1

m+n=p

am,n(T−1AT )m+nxmyn

= T−1
[
I +

∞

∑
p=1

m+n=p

am,nAm+nxmyn
]
T = LT R

∞

∏
q=1

m+n=q

(I +gm,nJm+nxmyn)

= LT R
∞

∏
q=1

m+n=q

(I +gm,n(T−1AT )m+nxmyn) = LT R
∞

∏
q=1

m+n=q

T−1(I +gm,nAm+nxmyn)T

= T−1
[
LT R

∞

∏
q=1

m+n=q

(I +gm,nAm+nxmyn)
]
T = T−1

[
F(Ax,Ay)

]
T.

Consequently, the power series and the MPPE2 in Equation (3.42) converge absolutely if
and only if the power series and its associated MPPE2 in

F(Jx,Jy) = I +
∞

∑
p=1

m+n=p

am,nJm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I +gm,nJm+nxmyn), (3.50)
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converge respectively. Consider two cases: in the first case assume that ρ(A) = 0. As a
result, A is a nilpotent matrix and for some integer P the equation A(P+1) = O holds. For

F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn, A nilpotent implies that

F(Ax,Ay) =I +
P

∑
p=1

m+n=p

am,nAm+nxmyn = LT R
P

∏
q=1

m+n=q

(I +gm,nAm+nxmyn),

is a finite polynomial in C2.

Now consider the case that ρ(A)> 0. Assuming ε < ρ(A),

|J| ≤ ρ(A)K, (3.51)

where K is defined in Equations (3.45) and (3.46). For s = sup
m+n≥1

|am,n|
1

m+n and consider

the scalar power series M(x,y) together with its PPE2 expansion

M(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1− em,nxmyn),

where (em,n) is a sequence of non-negative real numbers determined by certain polynomi-
als in s; see Theorem 1.4.1. By using (3.51), and assuming that ||sρ(A)Kx||< 1 and that
||sρ(A)Ky||< 1 , we find that

M
(

ρ(A)Kx,ρ(A)Ky
)
= I−

∞

∑
p=1

m+n=p

[sρ(A)K]m+nxmyn

= I−
[

∞

∑
m=0

[
sρ(A)Kx

]m ∞

∑
n=0

[
sρ(A)Ky

]n− I
]

= I−
[
(I− sρ(A)Kx)−1(I− sρ(A)Ky)−1− I

]
= I− (I− sρ(A)Kx)−1(I− sρ(A)Ky)−1

[
I− (I− sρ(A)Kx)(I− sρ(A)Ky)

]
= I− (I− sρ(A)Kx)−1(I− sρ(A)Ky)−1

[
sρ(A)K(x+ y)− [sρ(A)K]2xy

]
= (I− sρ(A)Kx)−1(I− sρ(A)Ky)−1

[
I−
(

2sρ(A)K(x+ y)−2[sρ(A)K]2xy
)]

= LT R
∞

∏
q=1

m+n=q

(I− em,n[ρ(A)K]m+nxmyn). (3.52)
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Since M
(
ρ(A)Kx,ρ(A)Ky

)
is a matrix function with commutative coefficients, the factors

in the second to last line of (3.52) commute, and we may use the fact that log(AB) =
logA+ logB and logAr = r logA to write

log
(
M
(
ρ(A)Kx,ρ(A)Ky

))
= log

[
I−

∞

∑
p=1

m+n=p

[sρ(A)K]m+nxmyn
]

= log

[
(I− sρ(A)Kx)−1(I− sρ(A)Ky)−1

(
I−
(
2sρ(A)K(x+ y)−2[sρ(A)K]2xy

))]

=− log
(

I− sρ(A)Kx
)
− log

(
I− sρ(A)Ky

)
+ log

(
I−
(
2sρ(A)K(x+ y)−2[sρ(A)K]2xy

))
=

∞

∑
`=1

[sρ(A)Kx]`

`
+

∞

∑
`=1

[sρ(A)Ky]`

`
−

∞

∑
`=1

[
2sρ(A)K(x+ y)−2[sρ(A)K]2xy

]`
`

. (3.53)

The three series in (3.53) are absolutely convergent for |x| |y|< 1
sρ(A)‖K|| , and for ‖2sρ(A)K(x+

y)− 2[sρ(A)K]2xy‖ < 1, respectively. By triangle inequality and the fact ‖K2‖ ≤ ‖K‖2,
we have

‖2sρ(A)K(x+ y)−2[sρ(A)K]2xy‖ ≤
2sρ(A)‖K‖(|x|+ |y|)+2s2

ρ
2(A)‖K‖2|x||y|.

If we require

2sρ(A)‖K‖(|x|+ |y|)+2[sρ(A)‖K‖]2|x||y|< 1.

Since

2sρ(A)‖K‖|x|< 2sρ(A)‖K‖(|x|+ |y|)+2[sρ(A)‖K‖]2|x||y|< 1,

we have |x|< 1
2sρ(A)‖K‖ <

1
sρ(A)‖K‖ , which is a condition for the validity of the calculations

in (3.52). Similarly, |y| < 1
2sρ(A)‖K‖ <

1
sρ(A)‖K‖ . Therefore, an estimate of a convergence

domain of (3.53) is given by

D= {(x,y) ∈ C2 : sρ(A)‖K‖
(
|x|+ |y|

)
+2[sρ(A)‖K‖]2|x||y|< 1}.

To determine the domain of convergence for the MPPE2’s of Equation (3.50) we
apply Theorem 3.5.1. In particular, take Equation (3.25) and set Am,n = am,nJm+n and
Gm,n = gm,nJm+n; then take Equation (3.27) and set Mm,n = [sρ(A)K]m+n and Em,n =
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em,n[ρ(A)K]m+n. Next recall that s = sup
m+n≥1

|am,n|
1

m+n . This definition, when combined

with Inequality (3.51), shows that

O≤ |Am,n|= |am,n| |J|m+n ≤ sm+n |ρ(A)K|m+n = Mm,n.

Thus the conditions for Theorem 3.5.1 are satisfied and we deduce that

O≤
∣∣gm,nJm+n

∣∣≤ em,n [ρ(A)K]m+n ≤−Pm,n, (3.54)

where Pm,n is the coefficient of xmyn in the power series of log(M(ρ(A)Kx,ρ(A)Ky)); see
(3.53). Since our norm is suitable, we use (3.54) to deduce that

0≤ |gm,n|
∣∣∣∣Jm+n

∣∣∣∣≤ em,nρ(A)m+n
∣∣∣∣Km+n

∣∣∣∣≤ ||Pm,n|| . (3.55)

The inequalities of (3.55), when combined with Proposition 3.5.1, imply that a domain of
absolute convergence of log(M(ρ(A)Kx,ρ(A)Ky)), namely the region D, is also a domain

of absolute convergence for LT R
∞

∏
q=1

m+n=q

(I +gm,nJm+nxmyn). 2

In the next theorem we study the expansion of the matrix function F
(
Bx,Cy

)
, where

F(x,y) is a scalar analytic function and B,C ∈Md(C) are both diagonalizable and BC =
CB 6= O.

Theorem 3.6.2. Let am,n be a sequence of complex numbers, where (m,n) ∈ N0×N0 \
{(0,0)}. Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (3.56)

where gm,n ∈ C,(m,n) ∈ N0×N0 \{(0,0)} are scalar coefficients.

Let B and C be two commuting d by d diagonalizable matrices. Consider the power series
F
(
Bx,Cy

)
together with its MPPE2 expansion

F
(
Bx,Cy

)
=I +

∞

∑
p=1

m+n=p

am,nBmCnxmyn = LT R
∞

∏
q=1

m+n=q

(I +gm,nBmCnxmyn). (3.57)

Let (λi)
p
i=1,(λ

′
i )

p
i=1 be the distinct eigenvalues of B,C respectively. Define

ρ(B) := max
i
|λi| i = 1,2, . . . , p (3.58)

ρ(C) := max
i
|λ ′i | i = 1,2, . . . , p (3.59)

s := sup
m+n≥1

|am,n|
1

m+n . (3.60)
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The MPPE2 in (3.57) converges absolutely in the region

D={(x,y)∈C2 : 2s
[
ρ(B)|x|+ρ(C)|y|

]
‖I‖+2s2

ρ(B)ρ(C)‖I‖|x||y|< 1}, (3.61)

where I is a d by d the identity matrix.

Proof. Let B,C be two commute diagonalizable matrices. By using [[40], Proposition
6.2.6, Page 253] there is a single invertible matrix S ∈Md(C) such that

D1 = S−1BS (3.62)

D2 = S−1CS, (3.63)

are both diagonal, where

D1 =



λ1 0 · · · . . . 0 0
0 λ2 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 0 λp


,D2 =



λ ′1 0 · · · . . . 0 0
0 λ ′2 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 0 λ ′p


.

By using the similarity transformations (3.62) and (3.63), we have

F(D1x,D2y) = I +
∞

∑
p=1

m+n=p

am,nDm
1 Dn

2xmyn = I +
∞

∑
p=1

m+n=p

am,n(S−1BS)m(S−1CS)nxmyn

= S−1
[
I +

∞

∑
p=1

m+n=p

am,nBmCnxmyn
]
S = LT R

∞

∏
q=1

m+n=q

(I +gm,nDm
1 Dn

2xmyn)

= LT R
∞

∏
q=1

m+n=q

(I +gm,n(S−1BS)m(S−1CS)nxmyn) = LT R
∞

∏
q=1

m+n=q

S−1(I +gm,nBmCnxmyn)S

= S−1
[
LT R

∞

∏
q=1

m+n=q

(I +gm,nBmCnxmyn)
]
S = S−1

[
F(Bx,Cy)

]
S.

Consequently, the power series and the MPPE2 in (3.57) converge absolutely if and only
if the power series and its associated MPPE2 in

F(D1x,D2y) =I +
∞

∑
p=1

m+n=p

am,nDm
1 Dn

2xmyn = LT R
∞

∏
q=1

m+n=q

(I +gm,nDm
1 Dn

2xmyn) (3.64)
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converge absolutely respectively. Consider two cases: in the first case, assume that ρ(B)=
0 or ρ(C) = 0. As a result, B or C is a nilpotent matrix and for some integer P the equation

B(P+1) = O or C(P+1) = O holds. For F(x,y) = 1+
∞

∑
p=1

m+n=p

Am,nxmyn, B or C nilpotent

implies that

F
(
Bx,Cy

)
=I +

P

∑
p=1

m+n=p

am,nBmCnxmyn = LT R
P

∏
q=1

m+n=q

(I +gm,nBmCnxmyn),

is a finite polynomial in C.

Now consider the case that ρ(B)ρ(C)> 0. Then we have

|D1| ≤ ρ(B)I (3.65)

|D2| ≤ ρ(C)I, (3.66)

where I is a d by d the identity matrix. For s := sup
m+n≥1

|am,n|
1

m+n and consider the scalar

power series M(x,y) together with its PPE2 expansion

M(x,y) = 1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1− em,nxmyn).

where (em,n) is a sequence of non-negative real numbers determined by certain polynomi-
als in s; see Theorem 1.4.1. By using (3.65) and (3.66), and assuming that ‖sρ(B)Ix‖< 1
and ‖sρ(C)Iy‖< 1, we find that

M
(
ρ(B)Ix,ρ(C)Iy

)
= I−

∞

∑
p=1

m+n=p

sm+n
ρ

m(B)ρn(C)ImInxmyn

= I−
[

∞

∑
m=0

[sρ(B)xI]m
∞

∑
n=0

[sρ(C)yI]n− I
]

= I−
[
(I− sρ(B)xI)−1(I− sρ(C)yI)−1− I

]
= I− (I− sρ(B)xI)−1(I− sρ(C)yI)−1

[
I− (I− sρ(B)xI)(I− sρ(C)yI)

]
= I− (I− sρ(B)xI)−1(I− sρ(C)yI)−1

[
s
(

ρ(B)x+ρ(C)y
)

I− s2
ρ(B)ρ(C)xyI

]
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= (I− sρ(B)xI)−1(I− sρ(C)yI)−1

[
I−
(
2s[ρ(B)x+ρ(C)y]I−2s2

ρ(B)ρ(C)xyI
)]

= LT R
∞

∏
q=1

m+n=q

(I− em,n[ρ(B)I]m[ρ(C)I]nxmyn). (3.67)

Since M
(
ρ(B)Ix,ρ(C)Iy

)
is a matrix with commutative coefficients, the factors in second

to last line of (3.67) commute, and we may use the fact that log(AB) = logA+ logB and
logAr = r logA to write

log
[
M(ρ(B)Ix,ρ(C)Iy)

]
= log

[
I−

∞

∑
p=1

m+n=p

sm+n
ρ

m(B)ρn(C)ImInxmyn]

= log

[
(I− sρ(B)Ix)−1(I− sρ(C)Iy)−1

(
I−
{

2s[ρ(B)x+ρ(C)y]I−

2s2
ρ(B)ρ(C)Ixy

})]

=
∞

∑
`=1

[sρ(B)Ix]`

`
+

∞

∑
`=1

[sρ(C)Iy]`

`
−

∞

∑
`=1

[2s(ρ(B)x+ρ(C)y)I−2s2ρ(B)ρ(C)Ixy]`

`
.

(3.68)

The three series in (3.68) are absolutely convergent for |x| < 1
sρ(B)‖I|| , |y| <

1
sρ(C)‖I|| , and

for ‖2s[ρ(B)x+ρ(C)y]I−2s2ρ(B)ρ(C)xyI‖< 1, respectively. By triangle inequality, we
have

‖2s[ρ(B)x+ρ(C)y]I−2s2
ρ(B)ρ(C)xyI‖ ≤

2s[ρ(B)|x|+ρ(C)|y|]‖I‖+2s2
ρ(B)ρ(C)‖I‖|x||y|. (3.69)

If we require

2s[ρ(B)|x|+ρ(C)|y|]‖I‖+2s2
ρ(B)ρ(C)‖I‖|x||y|< 1.

Since

2sρ(B)|x|‖I‖< 2s
[
ρ(B)|x|+ρ(C)|y|

]
‖I‖+2s2

ρ(B)ρ(C)‖I‖|x||y|< 1,

we have |x|< 1
2sρ(B)‖I‖ <

1
sρ(B)‖I‖ , which is a condition for the validity of the calculations

in (3.67). Similarly, |y| < 1
2sρ(C)‖I‖ <

1
sρ(C)‖I‖ . Therefore, an estimate of a convergence

domain of (3.68) is given by

D= {(x,y) ∈ C2 : 2s
[
ρ(B)|x|+ρ(C)|y|

]
‖I‖+2s2

ρ(B)ρ(C)‖I‖|x||y|< 1}. (3.70)
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To determine the domain of convergence for the MPPE2’s of Equation (3.64) we ap-
ply Theorem 3.5.1. In particular, take Equation (3.25) and set Am,n = am,nDm

1 Dn
2 and

Gm,n = gm,nDm
1 Dn

2; then take Equation (3.27) and set Mm,n = [sρ(B)I]m[sρ(C)I]n and
Em,n = em,n[ρ(B)I]m[ρ(C)I]n. Next recall that s = sup

m+n≥1
|am,n|

1
m+n . This definition, when

combined with Inequalities (3.65) , (3.66), shows that

O≤ |Am,n|= |am,n| |D1|m |D2|n ≤ sm+n |ρ(B)I|m |ρ(C)I|n = Mm,n.

Thus the conditions for Theorem 3.5.1 are satisfied and we deduce that

O≤ |gm,nDm
1 Dn

2| ≤ em,n [ρ(B)I]
m [ρ(C)I]n ≤−Pm,n, (3.71)

where Pm,n is the coefficient of xmyn in the power series of log(M(ρ(B)Ix,ρ(C)Iy)); see
(3.68). Since our norm is suitable, we use (3.71) to deduce that

0≤ |gm,n| ||Dm
1 Dn

2|| ≤ em,nρ(B)m
ρ(C)n ||I|| ≤ ||Pm,n|| . (3.72)

The inequalities of (3.72), when combined with Proposition 3.5.1, imply that a domain of
absolute convergence of log(M(ρ(B)Ix,ρ(C)Iy)), namely the region D, which is defined

in (3.70), is also a domain of absolute convergence for LT R
∞

∏
q=1

m+n=q

(I+gm,nDm
1 Dn

2xmyn). 2

3.7 Illustrative Examples
In this section various examples are given to illustrate the main theorems of the previous
sections. Our first example is an extension of Theorem 3.5.1.

Example 3.7.1. Fix α,β ∈ N0. Consider the following matrix function F(x,y) with its
majorant matrix series:

F(x,y) =I +
∞

∑
p=1

u+v=p

Auα+β ,vα+β xuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I +Gm,nxmyn),

C(x,y) =I−
∞

∑
p=1

u+v=p

|Auα+β ,vα+β |xuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I−Cm,nxmyn)

M(x,y) =I−
∞

∑
p=1

u+v=p

sα(u+v)+2βWxuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I−Em,nxmyn), (3.73)

where Auα+β ,vα+β ,W ∈Md(C), Auα+β ,vα+β =
(
aψ,ω(uα +β ,vα +β )

)
ψ,ω=1,...,d ,

W = (wu,v), with wu,v = 1, v,u = 1, . . . ,d,
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and

s := sup
α,β∈N0
u+v≥1

[
a(uα +β ,vα +β )

] 1
α(u+v)+2β .

with

a(uα +β ,vα +β ) := max
ψ,ω
|aψ,ω(uα +β ,vα +β )|.

Since

W = Q


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

QT ,

The left hand side of Equation (3.73) becomes

M(x,y) =I−
∞

∑
p=1

u+v=p

sα(u+v)+2βWxuα+β yvα+β

=I−
∞

∑
p=1

u+v=p

Q


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

QT sα(u+v)+2β xuα+β yvα+β

=Q

I−
∞

∑
p=1

u+v=p


d 0 · · · 0

0 0 0
...

... 0
. . . 0

0 · · · 0 0

sα(u+v)+2β xuα+β yvα+β

QT

=Q


I−



d
∞

∑
p=1

u+v=p

sα(u+v)+2β xuα+β yvα+β 0 · · · 0

0 0 0
...

... 0
. . . 0

0 0 · · · 0




QT

=Q


φ(x,y) 0 · · · 0

0 1 0
...

... 0
. . . 0

0 0 · · · 1

QT , (3.74)
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where

φ(x,y) = 1−d
∞

∑
p=1

u+v=p

sα(u+v)+2β xuα+β yvα+β

= 1−d
[

∞

∑
u=0

(sx)uα+β
∞

∑
v=0

(sy)vα+β − (s2xy)β

]
= 1−d

[
(sx)β

1− (sx)α
· (sy)β

1− (sy)α
− (s2xy)β

]
= 1−

d(s2xy)β
[
(sx)α +(sy)α − (s2xy)α

]
[1− (sx)α ][1− (sy)α ]

=

1−
[

1+d(s2xy)β

][
sα(xα + yα)− (s2xy)α

]
[1− (sx)α ][1− (sy)α ]

. (3.75)

Next we check for which values (x,y) the series log[M(x,y)] =
∞

∑
p=1

m+n=p

Pm,nxmyn as defined

in Equation (3.29) will be absolutely convergent. By taking the logarithm of Equation
(3.74), we have

log[M(x,y)] = log

I−
∞

∑
p=1

u+v=p

sα(u+v)+2βWxuα+β yvα+β



= log

Q


φ(x,y) 0 · · · 0

0 1 0
...

... 0
. . . 0

0 · · · 0 1

QT



= Q


log[φ(x,y)] 0 · · · 0

0 log1 0
...

... 0
. . . 0

0 0 · · · log1

QT . (3.76)

Therefore, it suffices to consider where the function log[φ(x,y)] will be absolutely
convergent. Observe that
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log
[
φ(x,y)] = log[1−d

∞

∑
p=1

u+v=p

sα(u+v)+2β xuα+β yvα+β
]

= log
[

1−
[
1+d(s2xy)β

][
sα(xα + yα)− (s2xy)α

]
[1− (sx)α ][1− (sy)α ]

]
= log

[
1−
[
1+d(s2xy)β

][
sα(xα + yα)− (s2xy)α

]]
− log [1− (sx)α ]− log [1− (sy)α ]

=
∞

∑
`=1

[(sx)α ]`

`
+

∞

∑
`=1

[(sy)α ]`

`

−
∞

∑
`=1

[[
1+d(s2xy)β

][
sα(xα + yα)− (s2xy)α

]]`
`

. (3.77)

The three series in Equation (3.77) are absolutely convergent for |x|< 1
s , |y|< 1

s ,
and for

∣∣[1+ d(s2xy)β
][

sα(xα + yα)− (s2xy)α
]∣∣ < 1, respectively. By triangle

inequality we have∣∣[1+d(s2xy)β
][

sα(xα + yα)− (s2xy)α
]∣∣≤[

1+d(s2|x||y|)β
][

sα(|x|α + |y|α)+(s2|x||y|)α
]
. (3.78)

If we require [
1+d(s2|x||y|)β

][
sα(|x|α + |y|α)+(s2|x||y|)α

]
< 1,

|x|< ρ , and |y|< ρ , then we have[
1+d(sρ)2β

][
2(sρ)α +(sρ)2α

]
< 1, (3.79)

Setting w = sρ in Equation (3.79) implies that(
1+dw2β

)(
[wα +1]2−1

)
< 1, (3.80)

or equivalently,

w2α +2wα +dw2α+2β +2dwα+2β < 1. (3.81)
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Consider the moduli of all solutions ρ of Equation (3.81). The smallest ρ that
solves this inequality equals the domain of convergence of the power series of
log[M(x,y)]. The solution to (3.81) is obtained in the following cases:

Case 1: Let α = 1 and β = 0. Inequality (3.80) becomes

(d +1)[(w+1)2−1]< 1,

which ultimately implies that

−1−
√

d +2
d +1

< w <−1+

√
d +2
d +1

.

Consequently, the matrix function F(x,y) and its associated MPPE2 converge

absolutely whenever (x,y) ∈ Dxρ ×Dyρ with ρ < s−1
[√

d+2
d+1 −1

]
, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

Note that this special case is Theorem 3.5.1.

Case2: Let α = 2β , where α 6= 0 and consider the special situation of d =2.
Inequality (3.81) becomes

2w3α +5w2α +2wα < 1. (3.82)

By setting t = wα in Equation (3.82), we have

2t3 +5t2 +2t−1 < 0,

or equivalently,

(t +1)
(
2t2 +3t−1

)
< 0. (3.83)

Then we have

t <
−
√

17−3
4

or −1 < t <

√
17−3

4

which ultimately implies that

w <
[−√17−3

4

] 1
α

or
[
−1
] 1

α

< w <
[√17−3

4

] 1
α

.
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Consequently, the matrix function F(x,y) and its associated MPPE2 converge

absolutely whenever (x,y) ∈ Dxρ ×Dyρ with ρ < s−1
[√

17−3
4

] 1
α

, where

Dxρ :≡ {x : |x|< ρ}, Dyρ :≡ {y : |y|< ρ}.

We turn to concrete examples where F(x,y) is a scalar function.

Example 3.7.2. Let α ≥ 0 and θm,n be a sequence of real numbers, where (m,n) ∈ N0×
N0 \{(0,0)} . Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)αxmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (3.84)

where gm,n ∈ C. For any A ∈Md(C), consider the power series F(Ax,Ay) together with
its MPPE2 expansion

F(Ax,Ay) =I +
∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)αAm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I +gm,nAm+nxmyn). (3.85)

To determine a domain of convergence for the MPPE2 of Equation (3.85), we apply

Theorem 3.6.1. This means we must determine the supremum of the sequence am,n =

(m+n)
1

m+n , where (m,n)∈N0×N0 \{(0,0)}; this is equivalent to determining the supre-
mum of the sequence an = n

1
n , where n ∈ N. Since logx is increasing when x ∈ R+, and

since an > 0 for all n ∈ N, we have

logsup
n∈N

an = sup
n∈N

logan = sup
n∈N

logn
n

Consider the function g(x) = logx
x on the interval [1,∞). Observe that

g′(x) =
1− logx

x2

which is positive on [1,e) and negative on (e,∞) This means g(x) is increasing on [1,e)
and decreasing on (e,∞), in particular its maximum occurs at x = e. But e /∈ N so the
supremum will be attained at either n = 2 or n = 3. In fact

log2
2

<
log3

3
⇐⇒ 3log2 < 2log3 ⇐⇒ log8 < log9,
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Thus

sup
n∈N

logn
n

=
log3

3
.

and sup
n∈N

an = 3
1
3

Theorem 3.6.1 then implies that

D= {(x,y) ∈ C2 : 2(3
α

3 )ρ(A)‖K‖
(
|x|+ |y|

)
+2[(3

α

3 )ρ(A)‖K‖]2|x||y|< 1} (3.86)

is the estimate for the domain of convergence.

Now let B,C ∈Md(C) be two commuting diagonalizable matrices and consider the power
series F(Bx,Cy) together with its associated MPPE2 expansion

F
(
Bx,Cy

)
=I +

∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)α [Bx]m[Cy]n

=LT R
∞

∏
q=1

m+n=q

(
I +gm,n[Bx]m[Cy]n

)
. (3.87)

To determine the domain of convergence for the MPPE2 of Equation (3.87), we apply
Theorem 3.6.2 with s = 3

α

3 to obtain

D=
{
(x,y) ∈ C2 : 2(3

α

3 )‖I‖
[
ρ(B)|x|+ρ(C)|y|

]
+2(3

2α

3 )ρ(B)ρ(C)‖I‖|x||y|< 1
}
. (3.88)

Example 3.7.3. Let p∈N and consider the scalar bivariate exponential function together
with its PPE2 expansion

F(x,y) = exp(xy) = 1+
∞

∑
p=1

1
p!
(xy)p =

∞

∏
q=1

(1+gq(xy)q), (3.89)

where gq ∈ C. By the Jordan-Chevalley decomposition [ [30], page 17 ], every matrix
A ∈Md(C) can be uniquely decomposed into the sum of a diagonalizable and a nilpotent
matrix

A =V +Q

The matrices V,Q ∈Md(C) satisfy the following properties:
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1) V is diagonalizable and Q nilpotent, i.e.

T−1V T = D =


u1 0 · · · 0

0 u2 0
...

... 0
. . . 0

0 0 · · · ud

 ,Qd = O,

where u j, j = 1,2, . . . ,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. V Q =V Q,

3) V and Q are polynomials in A, i.e. ∃ p(x) s.t V = p(A) and Q = A− p(A).

We will use this Jordan-Chevalley decomposition to rewrite exp(A2) as

exp(A2) =
∞

∏
q=1

(I +gqA2q)

= exp[(V +Q)(V +Q)] = exp[V 2 +2QV +Q2] = exp(V 2)exp(2QV )exp(Q2)

=

[
∞

∏
q=1

(I +gqV 2q)

][
d

∏
q=1

(I +gq(2QV )q)

][
d

∏
q=1

(I +gqQ2q)

]
. (3.90)

To determine the domain of convergence for exp(A2) = ∏
∞
q=1(I + gqA2q), it suffices to

determine a domain of convergence for ∏
∞
q=1(I +gqV 2q). Since sup

(
1
p!

) 1
p
= 1, Theorem

3.6.1 implies an estimate for the domain of convergence of ∏
∞
q=1(I +gqV 2q) is

D=
{
(x,y) ∈ C2 : 4ρ(V )‖K‖+2[ρ(V )‖K‖]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of V . Since
2[ρ(V )‖K‖]2 < 1, we deduce that

ρ(V )<
1√

2||K||
.

A similar calculation shows that

ρ(A)<
1√

2||K||
.

Now let B,C ∈ Md(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its MPPE2 expansion

F(Bx,Cy) = exp(BCxy) = I +
∞

∑
p=1

(BC)p

p!
(xy)p = LT R

∞

∏
q=1

(I +gq(BCxy)q).
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To determine the domain of convergence for exp(BC) = ∏
∞
q=1(I +gq(BC)q), we use The-

orem 3.6.2, along with sup
(

1
p!

) 1
p
= 1, to obtain the following estimate.

D= {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
‖I‖+2‖I‖ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2‖I‖ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
1

2||I||
.

Example 3.7.4. Let A,B,C,∈Md(C), where B and C are diagonalizable with BC =CB 6=
O. The techniques of Example 3.7.3 may also be applied to other matrix function such as

I + log(I−A2), A−2 log(I−A2), cosA2, I + sinA2, A2 sinA2,

coshA2, I + sinhA2, A−2 tanA2, arccosA2, I + arcsinA2,

I + log(I−BC), BC log(I−BC), cosBC, I + sinBC, BC sinBC,

coshBC, I + sinhBC, BC tanBC, arccosBC, I + arcsinBC.

We will demonstrate these techniques for cosA2, cosBC, A−2 sinA2, and [BC]−1 sinBC,
leaving the rest to the reader. Let gq and ĝq be the scalar coefficients in the PPE2 expan-
sions of the even scalar functions

cosxy = 1+
∞

∑
p=1

(−1)px2py2p

(2p)!
=

∞

∏
q=1

(1+gqx2qy2q),

sinxy = xy
[

1+
∞

∑
p=1

(−1)px2py2p

(2p+1)!

]
= xy

∞

∏
q=1

(1+ ĝqx2qy2q).

First,

cosA2 = I +
∞

∑
p=1

(−1)pA4p

(2p)!
=

∞

∏
q=1

(I +gqA4q). (3.91)

Since s := supp≥1

∣∣∣ (−1)p

(2p)!

∣∣∣ 1
p
= 1

2 , Theorem 3.6.1 implies an estimate for domain of conver-

gence of
∞

∏
q=1

(I +gqA4q) is

D=

{
(x,y) ∈ C2 : 2ρ(A)‖K‖+ 1

2
[ρ(A)‖K‖]2 < 1

}
.
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We may use this information to obtain an upper bound on the spectrum of A. Since
1
2 [ρ(A)‖K‖]

2 < 1, we deduce that

ρ(A)<

√
2

||K||
.

For

cosBC = I +
∞

∑
p=1

(−1)pB2pC2p

(2p)!
=

∞

∏
q=1

(I +gqB2qC2q). (3.92)

Theorem 3.6.2 implies an estimate for the domain of convergence of
∞

∏
q=1

(1+gqx2qy2q) is

D= {(x,y) ∈ C2 :
[
ρ(B)+ρ(C)

]
‖I‖+ 1

2
‖I‖ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
1
2‖I‖ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
2
‖I‖

.

Next

sinA2 = A2
[

I +
∞

∑
p=1

(−1)pA4p

(2p+1)!

]
= A2

∞

∏
q=1

(I + ĝqA4q). (3.93)

Since s := supp≥1

∣∣∣ (−1)p

(2p+1)!

∣∣∣ 1
p
= 1

6 , Theorem 3.6.1 implies an estimate for domain of con-

vergence of
∞

∏
q=1

(I + ĝqA4q) is

D=

{
(x,y) ∈ C2 :

2
3

ρ(A)‖K‖+ 1
18

[ρ(A)‖K‖]2 < 1
}
.

We may use this information to obtain an upper bound on the spectrum of A. Since
1
18 [ρ(A)‖K‖]

2 < 1, we deduce that

ρ(A)<
3
√

2
||K||

.

Finally it can be shown that an estimate for the domain of convergence of

sinBC = BC
[

I +
∞

∑
p=1

(−1)pB2pC2p

(2p+1)!

]
= BC

∞

∏
q=1

(I + ĝqB2pC2p), (3.94)
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is

D= {(x,y) ∈ C2 :
1
3
[
ρ(B)+ρ(C)

]
‖I‖+ 1

18
‖I‖ρ(B)ρ(C)< 1},

and that

ρ(B) , ρ(C)<
18
‖I‖

.

Example 3.7.5. Consider the scalar bivariate exponential function together with its PPE2
expansion

F(x,y) = exp(x+ y) = 1+
∞

∑
p=1

m+n=p

1
m!n!

xmyn =
∞

∏
q=1

m+n=q

(1+gm,nxmyn), (3.95)

where gm,n ∈C. By the Jordan-Chevalley decomposition, every matrix A ∈Md(C) can be
uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A =V +Q

The matrices V,Q ∈Md(C) satisfy the following properties:

1) V is diagonalizable and Q nilpotent, i.e.

T−1V T = D =


u1 0 · · · 0

0 u2 0
...

... 0
. . . 0

0 0 · · · ud

 ,Qd = O,

where u j, j = 1,2, . . . ,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. V Q =V Q,

3) V and Q are polynomials in A, i.e. ∃ p(x) s.t V = p(A) and Q = A− p(A).

We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as

exp(2A) =
∞

∏
q=1

m+n=q

(I +gm,nAm+n)

=exp(2V +2Q) = exp(2V )exp(2Q)

=

[
∞

∏
q=1

m+n=q

(I +gm,nV m+n)

][
d

∏
q=1

m+n=q

(I +gm,nQm+n)

]
. (3.96)
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To determine the domain of convergence for exp(2A) =
∞

∏
q=1

m+n=q

(I+gm,nAm+n), it suffices to

determine a domain of convergence for
∞

∏
q=1

m+n=q

(I +gm,nV m+n). Since sup
m+n≥1

[ 1
m!n!

] 1
m+n = 1,

Theorem 3.6.1 implies an estimate for the domain of convergence of
∞

∏
q=1

m+n=q

(I+gm,nV m+n)

is
D=

{
(x,y) ∈ C2 : 4ρ(V )‖K‖+2[ρ(V )‖K‖]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of V . Since
2[ρ(V )‖K‖]2 < 1, we deduce that

ρ(V )<
1√

2||K||
.

A similar calculation shows that

ρ(A)<
1√

2||K||
.

Now let B,C ∈ Md(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its MPPE2 expansion

F(Bx,Cy) = exp(Bx+Cy) = I +
∞

∑
p=1

m+n=p

BmCn

m!n!
xmyn

= LT R
∞

∏
q=1

m+n=q

(I +gm,nBmCnxmyn).

To determine the domain of convergence for exp(B+C) =
∞

∏
q=1

m+n=q

(I +gm,nBmCn), we use

Theorem 3.6.2, along with sup
m+n≥1

[ 1
m!n!

] 1
m+n = 1, to obtain the following estimate:

D= {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
‖I‖+2‖I‖ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2‖I‖ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
1

2||I||
.
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Example 3.7.6. Let A,B,C,∈Md(C), where B and C are diagonalizable with BC =CB 6=
O. The techniques of Example 3.7.5 may also be applied to other matrix function such as

I + log(I−2A), (2A)−1 log(I−2A), cos2A, I + sin2A, 2Asin2A,

cosh2A, I + sinh2A, (2A)−1 tan2A, arccos2A, I + arcsin2A,

I + log(I− [B+C]), [B+C] log(I− [B+C]), cosB+C, I + sin(B+C),

[B+C]sin(B+C), cosh(B+C), I + sinh [B+C], [B+C] tan(B+C),

arccos(B+C), I + arcsin(B+C).

We will demonstrate these techniques for cos2A, cos(B+C), (2A)−1 sin2A, and [B +
C]−1 sin(B+C), leaving the rest to the reader. Let gm,n and ĝm,n be the scalar coefficients
in the PPE2 expansions of the even scalar functions

cos(x+ y) = 1+
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
xmyn =

∞

∏
q=1

m+n=2q

(1+gm,nxmyn),

sin(x+ y) = (x+ y)

[
1+(x+ y)−1

∞

∑
n=1

(−1)n

(2n+1)!
(x+ y)2n+1

]

= (x+ y)

[
1+

∞

∑
n=1

(−1)n

(2n+1)!

2n

∑
j=0

(
2n
j

)
x jy2n− j

]

= (x+ y)
[

1+
∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
xmyn

]

= (x+ y)
∞

∏
q=1

m+n=2q

(1+ ĝm,nxmyn).

First,

cos2A = I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
Am+n =

∞

∏
q=1

m+n=2q

(I +gm,nAm+n). (3.97)

To determine a domain of convergence for the MPPE2 of Equation (3.97), we apply The-
orem 3.6.1. This means we must determine the supremum of the sequence

am,n =

{
[1/m!n!]1/(m+n), where m+n is a positive even number

}
.

Since (
1

m!n!

)1/(m+n)

≤
(

1
1! 1!

)1/(m+n)

≤
(

1
1

)1/2

= 1,
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and this sequence attains the value of 1 when p = 1 and m = 1 = n, we conclude that

s := sup
p≥1

m+n=2p

∣∣∣ (−1)
m+n

2

m!n!

∣∣∣ 1
m+n

= 1. Therefore, Theorem 3.6.1 implies an estimate for domain of

convergence of
∞

∏
q=1

m+n=2q

(I +gm,nAm+n) is

D=
{
(x,y) ∈ C2 : 4ρ(A)‖K‖+2[ρ(A)‖K‖]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of A. Since
2[ρ(A)‖K‖]2 < 1, we deduce that

ρ(A)<
1√

2||K||
.

For

cos(B+C) = I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
BmCn =

∞

∏
q=1

m+n=2q

(I +gm,nBmCn). (3.98)

Theorem 3.6.2 implies an estimate for the domain of convergence of
∞

∏
q=1

m+n=2q

(I+gm,nBmCn)

is

D= {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
‖I‖+2‖I‖ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2ρ(B)ρ(C)‖I‖< 1, we deduce that

ρ(B) , ρ(C)<
1

2‖I‖
.

Next

sin2A = 2A
[

I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
Am+n

]
= 2A

∞

∏
q=1

m+n=2q

(I + ĝm,nAm+n). (3.99)

To determine a domain of convergence for the MPPE2 of Equation (3.99), we apply The-
orem 3.6.1. This means we must determine the supremum of the sequence

am,n =

{[(
m+n

m

)
/(m+n+1)!

] 1
(m+n)

, where m+n is a positive even number
}
.
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Since ( (m+n
m

)
(m+n+1)!

) 1
(m+n)

=

(
1

(m+n+1)m!n!

) 1
(m+n)

≤
(

1
m+n+1

) 1
(m+n)

≤
(

1
m+n+1

) 1
2

≤
(

1
3

) 1
2

,

and the sequence obtains the value of
(1

3

) 1
2 when p= 1 and m= n= 1, we deduce that s :=

sup
p=1

m+n=2p

∣∣∣ (−1)
m+n

2

(m+n+1)!

(m+n
m

)∣∣∣ 1
m+n

= 1√
3
. Hence Theorem 3.6.1 implies an estimate for domain of

convergence of
∞

∏
q=1

m+n=2q

(I + ĝm,nAm+n) is

D=

{
(x,y) ∈ C2 :

4√
3

ρ(A)‖K‖+ 2
3
[ρ(A)‖K‖]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of A. Since
2
3 [ρ(A)‖K‖]

2 < 1, we deduce that

ρ(A)<

√
3√

2||K||
.

Finally it can be shown that an estimate for the domain of convergence of

sin(B+C) =[B+C]

[
I +

∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
BmCn

]

=[B+C]
∞

∏
q=1

m+n=2q

(I + ĝm,nBmCn), (3.100)

is

D= {(x,y) ∈ C2 :
2√
3

[
ρ(B)+ρ(C)

]
‖I‖+ 2

3
‖I‖ρ(B)ρ(C)< 1},

and that

ρ(B) , ρ(C)<
3

2‖I‖
.

113



Chapter 4

Factorization of Bivariate Matrix
Power Series via Power Inverse
Product Expansion

4.1 Introduction
Given F(x,y) = I +

∞

∑
p=1

m+n=p

Am,nxmyn with matrix coefficients, where either the defining

expression for F(x,y) is treated as a formal power series expansion or F(x,y) is an analytic
function with F(0,0) = I, the right side of

F(x,y) =
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1, (4.1)

is defined to be inverse matrix power product expansion in two independent variables,
(denoted IMPPE2).

Next, we define what we mean by the inverse matrix power product expansion of F(x,y)=

I +
∞

∑
p=1

m+n=p

Am,nxmyn. First we must interpret the inverse of an elementary factor as

(I +Gm,nxmyn)−1 = I +
∞

∑
α=1

(−1)αGα
m,nxαmyαn,

where the right hand side is a formal geometric series.
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Definition 4.1.1. Given F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn, a formal power series with matrix

coefficients or an analytic function of two independent complex variables with F(0,0) = I,
we say F(x,y) has a left to right (canonically ordered) inverse matrix power product
expansion in two independent variables if

F(x,y) = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 (4.2)

= (I−H1,0x1y0)−1(I−H0,1x0y1)−1(I−H2,0x2y0)−1(I−H1,1x1y1)−1 . . . ,

where the ordering of the right side follows the conventions of Definition 1.2.1. We say
F(x,y) has a right to left (reversed canonically ordered) inverse matrix power product
expansion in two independent variables if

F(x,y) = RT L
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 (4.3)

=...(I−Hk1,k2xk1yk2)−1...(I−H2,0x2y0)−1(I−H0,1x0y1)−1(I−H1,0x1y0)−1,

where the ordering of the right side follows the conventions of Definition 1.2.1 when read
from right to left. We refer to the right hand side of either Equation (4.2) or (4.3) as an
IMPPE2.

The purpose of this chapter is to obtain both algebraic and analytic theorems for the

IMPPE2 expansion of F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn. The three main results are as follows:

1. An algebraic structure property for (Hm,n) in terms of recursive “mixed expan-
sions”; see Theorem 4.3.2.

2. A domain of convergence criteria for the IMPPE2 in terms of a “majorizing” infi-
nite product; see Theorem 4.4.1.

3. A domain of convergence criteria for the IMPPE2’s by norm criteria; see Theorem
4.4.3.

The outline of this chapter is as follows. In Section 2 we study the expansion of a
power series into a MPPE2 and provide an algebraic representation for the coefficients
Gm,n as a multivariate polynomials in (Am,n)

∞
m,n=0

m+n=1
. In Section 3 we provide another way

to recursively express the coefficients Hm,n as a multivariate polynomial of the variables
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Am,n. The algebraic result of Section 3 reveals an intriguing property of these expansions.
If Am,n ≤ 0, then the coefficients Gm,n in the IMPPE2 are non-positive. Section 4 exploits
the non-positivity result of Section 4 to determine convergence conditions of the IMPPE2
in terms of a majorizing power product by focusing on spectral criteria. Moreover, at
the end of Section 4, we employ norm criteria to analyze the convergence of IMPPE2.
Section 5 is devoted to the study of the matrix IMPPE2 induced by scalar functions.
Finally, in Section 7 six examples are presented to illustrate the applicability of the section
5 theorems.

4.2 Algebraic Formulas for the Coefficients of In-
verse Matrix Power Product Expansion

In this section and the next we study the expansion of a two variable power series into an
IMPPE2 and provide two algebraic representations for the coefficients Hm,n as polynomi-
als of the (Am,n)m,n. The first formula is almost an immediate consequence of Equation
(4.2). Let

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1. (4.4)

By expanding the IMPPE2 of Equation (4.4) into a formal power series coefficient com-
parison shows that

Am,n = ∑
i1+i2+···+ir=m
j1+ j2+···+ jr=n

(1,0)�(i1, j1)�(i2, j2)�···�(ir, jr)�(m,n)

Hi1, j1Hi2, j2 . . .Hir, jr , (4.5)

or equivalently that

Hm,n = Am,n−
(

∑
i1+i2+···+ir=m
j1+ j2+···+ jr=n

(1,0)�(i1, j1)�(i2, j2)�···�(ir, jr)≺(m,n)

Hi1, j1Hi2, j2 . . .Hir, jr

)
, (4.6)

where the summation runs over all partitions of (m,n) into unrestricted parts.

4.3 Structure Property of the Coefficients of an In-
verse Power Product Expansion

Just as we did in Section 2, we can recursively express the coefficients Hm,n as a mul-
tivariate polynomial of the variables Am,n. The ultimate result of this methodology is
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the structure property, Theorem 4.3.2, a crucial result for using proving convergence
domains of power product expansions via majorizing IMPPE2. We begin with setting
Am,n = B(1,0),(m,n) and rewriting Equation (4.4) as

F(x,y) = I +
∞

∑
p=1

m+n=p

B(1,0),(m,n)x
myn

= (I−H1,0x)−1
[
LT R

∞

∏
q=1

m+n=q
(m,n)�(0,1)

(I−Hm,nxmyn)−1
]

= (I−H1,0x)−1
[
I +

∞

∑
p=1

m+n=p
(m,n)�(0,1)

B(0,1),(m,n)x
myn
]
,

where the summation conventions follow Definition 1.2.1.

By continuing this procedure inductively we find that

I +
∞

∑
p=`

m+n=p
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn = (I−Hik, jk x

ik y jk)−1
[

I +
∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn
]

=

[
I +

∞

∑
α=1

Hα
ik, jk(x

ik y jk)α

][
I +

∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn
]
. (4.7)

where B(ik, jk),(0,0) = I for all (i, j) ∈ N0×N0, and B(ik, jk),(m,n) = O, if (ik, jk) � (m,n) 6=
(0,0). By comparing the coefficient of xmyn in both sides of Equation (4.7), we discover
that

B(ik+1, jk+1),(1,0) = · · ·= B(ik+1, jk+1),(ik, jk) = O (4.8)

B(ik+1, jk+1),(m,n) =B(ik, jk),(m,n)−

⌊
m+n

ik+ jk

⌋
∑

α=1
Hα

ik, jk B(ik+1, jk+1),(m−αik,n−α jk). (4.9)

If (m,n) = (ik, jk), since B(ik+1, jk+1),(ik, jk) = O, the above implies that

Hik, jk = B(ik, jk),(ik, jk). (4.10)
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Equation (4.10) shows the relationship between Hik, jk and B(ik, jk),(ik, jk). We use this
relationship to rewrite Equation (4.7) as

I +
∞

∑
p=`

m+n=p
(m,n)�(ik+1, jk+1)

B(ik+1, jk+1),(m,n)x
myn = (I−Hik, jk x

ik yik)

[
I +

∞

∑
p=`

m+n=p,
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn
]

=

[
I−B(ik, jk),(ik, jk)x

ik yik

][
I +

∞

∑
p=`

m+n=p,
(m,n)�(ik, jk)

B(ik, jk),(m,n)x
myn
]
. (4.11)

By equating the coefficient of xsyt on both sides of Equation (4.11), we find

B(ik+1, jk+1),(s,t) = B(ik, jk),(s,t)−B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk), (4.12)

an equation we use to prove the MIPPE2 analog of Theorem 3.4.1.

Theorem 4.3.1. Let (ik, jk) ∈ N0×N0 \{(0,0)}. Define B(ik, jk),(0,0) = I and B(ik, jk),(m,n)
=O for (1,0)� (m,n)� (ik−1, jk−1). Assume that B(ik, jk),(m,n)≤O for all (ik, jk)� (m,n).
Then B(ik+1, jk+1),(s,t) ≤ O whenever (ik+1, jk+1)� (s, t).

Proof. Rewrite Equation (4.12) as B(ik+1, jk+1),(s,t) = β + γ , where β := B(ik, jk),(s,t) and
γ = −B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk). By the hypothesis, since B(ik, jk),(s,t) is either a zero or
a negative matrix, β is a non-positive matrix. It remains to show that γ is also a non-
positive matrix. By the hypothesis, it is a product of two non-positive matrices. Thus,
−B(ik, jk),(ik, jk)B(ik, jk),(s−ik,t− jk) is either a zero or a negative matrix. 2

Theorem 4.3.2. (Structure Property) Let (ik, jk) ∈ N0×N0 \{(0,0)}. Then

B(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1B(ik, jk),φ(η)

= ∑
η

(−1)τ(φ(η))+1B(ik, jk),φ(η), (4.13)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2)

)
such that |φ(η)|= (s, t) and (i1, j1) =

(ik, jk). (Recall that B(ik, jk),φ(η) = B(ik, jk),(i1, j1)B(ik, jk),(i2, j2)...B(ik, jk),(iτ , jτ ).) If
B(ik, jk),(s,t) ≤ O for all (ik, jk)� (s, t), then Equation (4.13) is equivalent to

B(ik+1, jk+1),(s,t) =−∑
η

|B(ik, jk),(i1, j1)| . . . |B(ik, jk),(iτ , jτ )|, (4.14)

where the range of summation is identical to the range of summation used in Equation
(4.13).
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Proof. Rewrite Equation (4.12) as

B(ik+1, jk+1),(s,t) = ∑
α∈{0,1}
αik+m=s
α jk+n=t

(−1)αBα

(ik, jk),(ik, jk)B(ik, jk),(s−αik,t−α jk). (4.15)

We obtain the desired result by representing Bα

(ik, jk),(ik, jk)
B(ik, jk),(m,n) in Equation (4.15) as

B(ik, jk),φ(η). 2

Let us see what will happen when we iterate Equation (4.14). In order to efficiently
record the results, recall that φ =

(
(i1, j1),(i2, j2), ...,(in, jn)

)
denotes a vector with n

components, (where n ∈ N, and i1, i2, ..., in, j1, j2, ..., jn ∈ N0), and Aφ(η) denotes the ex-
pression Ai1, j1Ai2, j2 ...Ain, jn . After L iterations, and assuming B(ik, jk),(s,t) ≤ O, whenever
(ik, jk)� (s, t), we obtain

B(ik+1, jk+1),(s,t) = ∑
η

(−1)τ(φ(η))−1Aφ(η) =−∑
η

|Ai1, j1 ||Ai2, j2 | · · · |Aiτ , jτ |, (4.16)

where the sum is over all φ(η) =
(
(i1, j1),(i2, j2), ...,(iτ , jτ)

)
such that |φ(η)|= (s, t).

If (s, t) = (ik+1, jk+1), Equation (4.16) becomes

B(ik+1, jk+1),(ik+1, jk+1) = Hik+1, jk+1 = ∑
η

(−1)τ(φ(η))−1Aφ(η)

=−∑
η

|Ai1, j1 ||Ai2, j2 | . . . |Aiτ , jτ |, (4.17)

where the sum is over all φ(η)=
(
(i1, j1),(i2, j2), . . . ,(iτ , jτ)

)
such that |φ(η)|=(ik+1, jk+1).

We now furnish an example to illustrate the structure property

Example 4.3.1.

H2,0 = B(2,0),(2,0) By using Equation (4.10)

= B(0,1),(2,0)−B(0,1),(0,1) B(0,1),(2,−1)︸ ︷︷ ︸
=0

By using Equation (4.15)

= B(1,0),(2,0)−B(1,0),(1,0)B(1,0),(1,0)

= (−1)0A2,0 +(−1)1A2
1,0.

The explicit coefficients Hm,n with 1 ≤ m+ n ≤ 4, as polynomials of A1,0, ...,Am,n, are

given below.

H1,0 =(−1)0A1,0
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H0,1 =(−1)0A0,1

H2,0 =(−1)0A2,0 +(−1)1A2
1,0

H1,1 =(−1)0A1,1 +(−1)1A1,0A0,1

H0,2 =(−1)0A0,2 +(−1)1A2
0,1

H3,0 =(−1)0A3,0 +(−1)1A1,0A2,0

H2,1 =(−1)0A2,1 +(−1)1A0,1A2,0 +(−1)1A1,0A1,1 +(−1)2A2
1,0A0,1

H1,2 =(−1)0A1,2 +(−1)1A1,0A0,2 +(−1)1A0,1A1,1 +(−1)2A0,1A1,0A0,1

H0,3 =(−1)0A0,3 +(−1)1A0,1A0,2

H4,0 =(−1)0A4,0 +(−1)3A4
1,0 +(−1)1A2

2,0 +(−1)2A2
1,0A2,0 +(−1)2A2,0A2

1,0+

(−1)1A1,0A3,0

H3,1 =(−1)0A3,1 +(−1)1A0,1A3,0 +(−1)2A0,1A1,0A2,0 +(−1)1A1,0A2,1+

(−1)2A2
1,0A1,1 +(−1)3A3

1,0A0,1 +(−1)1A2,0A1,1 +(−1)2A2,0A1,0A0,1

H2,2 =(−1)0A2,2 +(−1)2A2
1,0A0,2 +(−1)2A2,0A2

0,1 +(−1)2A1,1A1,0A0,1+

(−1)1A2
1,1 +(−1)2A1,0A0,1A1,1 +(−1)2A0,1A1,0A1,1+

(−1)1A1,0A1,2 +(−1)1A0,1A2,1 +(−1)3A0,1A2
1,0A0,1+

(−1)2A1,1A1,0A0,1 +(−1)3A1,0A0,1A1,0A0,1

H1,3 =(−1)0A1,3 +(−1)1A1,0A0,3 +(−1)1A0,1A2,1 +(−1)2A2
0,1A1,1

+(−1)3A2
0,1A1,0A0,1 +(−1)2A0,1A1,0A0,2 +(−1)1A1,1A0,2+

(−1)2A1,0A0,1A0,2

H0,4 =(−1)0A0,4 +(−1)3A4
0,1 +(−1)1A2

0,2 +(−1)2A0,2A2
0,1 +(−1)2A2

0,1A0,2+

(−1)1A0,1A0,3.

4.4 Convergence criteria for IMPPE2’s
The primary objective of this section is to present results concerning the convergence
domain of the IMPPE2 in Equation (4.2). The convergence of an IMPPE2 is a subtle con-
cept. In this chapter we define two notions of convergence. Both notions of convergence
require converting the IMPPE2 into an MPPE2. The difference between these notions
involves how this conversion takes place. For what we call “inverse” convergence, we use
the domain of convergence of the inverse function which is an MPPE2. For what we call
“primary” type of convergence, we first expand each elementary factor of the IMPPE2
via a geometric series expansion and then look at the ensuing MPPE2. In the case of
one variable, the second author showed that both types of convergence provide the same
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estimate regarding a domain of absolute convergence; see Theorem 5.1 of [17]. However,
for the case of two variables, as we shall soon discover, the estimate for the domain of
absolute convergence provided by the notion of “inverse” convergence is larger than the
estimate provided by the “primary” type of convergence; see Theorem 4.4.1. We begin
with the definition of inverse convergence of an IMPPE2.

Definition 4.4.1. Given an IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1, we say the IMPPE2 con-

vergence in the inverse sense if and only if F(x,y)−1 = RT L
∞

∏
q=1

m+n=q

(I−Hm,nxmyn) converges,

which means limP→∞ RT L
P
∏

q=1
m+n=q

(I−Hm,nxmyn) converges to a nonzero matrix. The order

of the elementary factors within RT L
P
∏

q=1
m+n=q

(I−Hm,nxmyn) follows the conventions of Defi-

nition 1.2.1.

Definition 4.4.2. Given a suitable norm, an IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 converges

absolutely in the inverse sense if and only if
∞

∏
q=1

m+n=q

(1+||Hm,n|| |xmyn|) converges to a nonzero

real number, that is if and only if limm,n→∞ ∏
n
i=1 ∏

m
j=1(1+ ||Hi, j|||xiy j|) converges to a

nonzero real number.

Since ex ≤ x+1, the proof of Proposition 4.4.1 is directly transferrable and proves the
following proposition:

Proposition 4.4.1. Given a suitable matrix norm, an IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 is

absolutely convergent in the inverse sense if and only if
∞

∑
q=1

m+n=q

||Hm,n|||xmyn| is an absolutely

convergent series of real numbers.

Next we will define the notion of primary convergence.

Definition 4.4.3. We say the IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 converges (in the primary

sense) if the following two conditions hold:
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(1.) Each matrix function (I−Hm,nxmyn)−1, where (m,n) ∈ N0×N0 \ {(0,0)}, is in-
vertible, and

(2.)

LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 := LT R
∞

∏
q=1

m+n=q

(
I +

∞

∑
α=1

Hα
m,nxαmyαn

)

converges in some suitable norm.

Condition (2.) of Definition 4.4.3 is equivalent to saying that

limP→∞ LT R
P
∏

q=1
m+n=q

(
I +

∞

∑
α=1

Hα
m,nxαmyαn

)
converges to a nonzero matrix.

Definition 4.4.4. Given a suitable matrix norm, we say the IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1

converges absolutely (in the primary sense) if the following two conditions hold:

(1.) Each matrix function (I−Hm,nxmyn)−1, where (m,n) ∈ N0×N0 \ {(0,0)}, is in-
vertible, and

(2.)
∞

∏
q=1

m+n=q

(
1+
∣∣∣∣∣∣∣∣ ∞

∑
α=1

Hα
m,nxαmyαn

∣∣∣∣∣∣∣∣) converges to a nonzero real number.

Proposition 4.4.1, along with the monotonicity of the norm, shows that Condition (2.)
of Definition 4.4.4 is equivalent to

(2’.)
∞

∑
q=1

m+n=q

∞

∑
α=1
||Hm,n||α |xαmyαn| being convergent.

If the coefficients (Hm,n) of the IMPPE2 are commutative, (primary) convergence can
be described in terms of the power series expansion of log(I−Hm,nxmyn). For any two
commutative matrices A,B ∈Md(C), it can be shown that eA+B = eAeB [[14], Proposition
2.5, P. 35]. Thus, if the coefficients (Hm,n) of the IMPPE2 are commutative, we define

log

LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1

 :=−
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn), (4.18)

where

log(I−Hm,nxmyn) :=−
∞

∑
`=1

H`
m,n

`
xm`yn`. (4.19)
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Equation (4.18) shows that

exp
(
−

∞

∑
q=1

m+n=q

log(I−Hm,nxmyn)
)

:= exp

[
log
(

LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1
)]

= LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1, (4.20)

and implies that for a sequence of commutative coefficients (Hm,n),

LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 converges to a nonzero matrix if and only if the double series

−
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn) =
∞

∑
q=1

m+n=q

∞

∑
`=1

H`
m,n

`
xm`yn`

is convergent.
By adapting the Taylor series argument found on Page 165 of [5] we have

1/2||∆|| ≤ || log(I +∆)|| ≤ 3/2||∆||, ||∆||< 1/2. (4.21)

(In our case ∆ =−Hm,nxmyn.)

Equation (4.21) implies that
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn) is absolutely convergent if and

only if
∞

∑
q=1

m+n=q

Hm,nxmyn is absolutely convergent. We summarize the previous discussion in

the follow proposition.

Proposition 4.4.2. Let (Hm,n) be a sequence of commutative matrices associated with the

matrix function F(x,y) = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1. Define

logF(x,y) :=−
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn) =
∞

∑
q=1

m+n=q

∞

∑
`=1

H`
m,n

`
xm`yn`.

The IMPEE2 of F(x,y), LT R
∞

∏
q=1

m+n=q

(I −Hm,nxmyn)−1, converges to a nonzero value if and

only logF(x,y) =
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn) converges. The IMPEE2 of F(x,y), LT R
∞

∏
q=1

m+n=q

(I−
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Hm,nxmyn)−1, is absolutely convergent if and only if
∞

∑
q=1

m+n=q

log(I−Hm,nxmyn) is absolutely

convergent, namely if and only if
∞

∑
q=1

m+n=q

∣∣∣∣∣∣∑∞
`=1

H`
m,n
` xm`yn`

∣∣∣∣∣∣< ∞.

The following remark emphasizes the connection inverse convergence, primary con-
vergence, and the domain of convergence determined by the logarithm of a two variable
matrix function.

Remark 4.4.1. Let

D1 = {(x,y) ∈ C2 : |x|< ρ1 and |y|< ρ1}
D2 = {(x,y) ∈ C2 : |x|< ρ2 and |y|< ρ2}

be the domains of convergence of the matrices functions M(x,y) and M(x,y)−1, respec-
tively. Then D the domain of convergence of logM(x,y), satisfies

D= {(x,y) ∈ C2 : |x|< ρ and |y|< ρ},

where ρ = min{ρ1,ρ2}.

The first major result of this section provides a lower bound for the domain of conver-
gence an IMPPE2 in terms a majorizing log series.

Theorem 4.4.1. (1.) Given a power series of a matrix function F(x,y)

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1. (4.22)

where Am,n,Hm,n ∈ Md(C), define the following auxiliary matrices functions with
coefficients over Md(R):

C(x,y) = I−
∞

∑
p=1

m+n=p

|Am,n|xmyn = LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1 (4.23)

M(x,y) = I−
∞

∑
p=1

m+n=p

Mm,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1. (4.24)

If |Am,n| ≤Mm,n for all (m,n) ∈ N0×N0 \{(0,0)}, then

O≤ |Hm,n| ≤ Sm,n ≤ Rm,n for all (m,n) ∈ N0×N0 \{(0,0)}. (4.25)

124



(2.) Define W ∈Md(C) as

W = (wu,v), where wu,v = 1, u,v = 1, . . . ,d.

Furthermore, given Am,n ∈Md(C) where Am,n =
(
aψ,ω(m,n)

)
for ψ,ω = 1, . . . ,d,

define

a(m,n) := max
ψ,ω
|aψ,ω(m,n)|, and s := sup

m+n≥1

[
a(m,n)

] 1
m+n .

Consider a special case for M(x,y), namely

M(x,y) =I−
∞

∑
p=1

m+n=p

sm+nWxmyn = I−W

[
∞

∑
m=0

(sx)m
∞

∑
n=0

(sy)n−1

]

=I−
[

1
(1− sx)(1− sy)

−1
]

W = I−
[

s(x+ y)− s2xy
(1− sx)(1− sy)

]
W

=
I− s(W + I)(x+ y)+ s2(W + I)xy

(1− sx)(1− sy)

=LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1, (4.26)

where Mm,n = sm+nW. Since (sm+nW ) is a sequence of commutative matrices,
(Rm,n) is also a sequence of commutative matrices, and Equation (4.18) is applica-
ble. Thus, by using the Taylor series of expansion log(I +Rm,nxmyn), we define

log
(
M(x,y)

)
= log

LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1


=−

∞

∑
q=1

m+n=q

log(I +Rm,nxmyn) =
∞

∑
q=1

m+n=q

∞

∑
`=1

(−1)`R`
m,n(x

myn)`

`

=
∞

∑
p=1

m+n=p

Pm,nxmyn, where Pm,n := ∑
`|d

d=gcd(m,n)

(−1)`(R m
` ,

n
`
)`

`
.

(4.27)

Let || · || be a suitable norm and ρ(|| · ||) be the radius of convergence of

125



∞

∑
p=1

m+n=p

Pm,nxmyn as defined via Equation (4.27). Then

Rm,n = Em,n ≤−Pm,n, i f m = 2`+1 or n = 2`+1 for ` ∈ N,
where Em,n is given in Theorem 3.5.1. (4.28)

The IMPPE2 LT R
∞

∏
q=1

m+n=q

(I −Hm,nxmyn)−1 converges absolutely for ρ(|| · ||) in the

sense of inverse convergence (see Definition 4.4.2) over the domain

D1 =

{
(x,y) ∈ C2 : (d +1)s

(∣∣x∣∣+ ∣∣y∣∣)+(d +1)s2∣∣x∣∣y∣∣< 1
}
. (4.29)

Furthermore, the matrices F(x,y),C(x,y),M(x,y) are invertible in D1, and their
inverses

F(x,y)−1 =RT L
∞

∏
q=1

m+n=q

(I−Hm,nxmyn), C(x,y)−1 = RT L
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)

M(x,y)−1 =RT L
∞

∏
q=1

m+n=q

(I +Rm,nxmyn), (4.30)

are absolutely convergent in D1.

(3.) Define M̂(x,y), a majorant of M(x,y), as follows:

M̂(x,y) =I−W
∞

∑
q=1

(sx+ sy)q =
∞

∏
q=1

m+n=q

(I + R̂m,nxmyn)−1. (4.31)

The IMPPE2’s LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1,LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1,

LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1 possess absolutely convergent infinite product represen-

tations (in the sense of Definition 4.4.4) in the polydiscs

D2 =
{
(x,y)2 ∈ C : |x|< 1

2s(d +1)
and |y|< 1

2s(d +1)

}
.

.
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Proof.(1.) Equation (4.17) implies that

Hm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))+1Aφ(η) = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))+1Ai1, j1 . . .Aiτ , jτ ,

which in turn implies that

|Hm,n|=
∣∣∣∣ ∑

η

|φ(η)|=(m,n)

(−1)τ(φ(η))−1Ai1, j1 . . .Aiτ , jτ

∣∣∣∣≤ ∑
η

|φ(η)|=(m,n)

|Ai1, j1 | . . . |Aiτ , jτ |. (4.32)

Similarly, when we apply Equation (4.17) to Equation (4.23), we obtain

O≤ Sm,n = ∑
η

|φ(η)|=(m,n)

(−1)τ(φ(η))
(
−|Ai1, j1 |

)
. . .
(
−|Aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(−1)τ(2φ(η))
(
|Ai1, j1 |

)
. . .
(
|Aiτ , jτ |

)
= ∑

η

|φ(η)|=(m,n)

(
|Ai1, j1 |

)
. . .
(
|Aiτ , jτ |

)
. (4.33)

Combining Equations (4.32) and (4.33), we deduce that |Hm,n| ≤ Sm,n. Also, due to the
inequality |Am,n| ≤Mm,n, then we have

O≤ Sm,n = ∑
η

|φ(η)|=(m,n)

|Ai1, j1 | . . . |Aiτ , jτ |

≤ ∑
η

|φ(η)|=(m,n)

Mi1, j1 . . .Miτ , jτ = Rm,n,

where the last equality follows from Equation (4.17). Hence, O ≤ |Hm,n| ≤ Sm,n ≤ Rm,n

and (4.25) is proven.

(2.) By the definition of Pm,n provided via (4.27), we see that

Pm,n = ∑
`|d

d=gcd(m,n)

(−1)`Rm,n

`
=−Rm,n + ∑

`|d, 6̀=1
d=gcd(m,n)

(−1)`(R m
` ,

n
`
)`

`
,

and since Part (1.) implies that Rm,n ≥ O, the preceding equation implies that

O≤ Rm,n ≤−Pm,n, if m or n is an odd integer.

Moreover, by Theorem 2.2.1, we know that the coefficients Em,n = Rm,n if m or n is an
odd integer, which completes the proof of (4.28).
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To obtain the domain of inverse convergence as provided by (4.29), we first calculate the
characteristic polynomial of the matrix W as

det(xI−W ) = (x−d)xd−1.

Then a straightforward computation in Equation (4.26) shows that eigenvalues of M(x,y)
are 1 and 1−s(d+1)(x+y)+s2(d+1)xy

(1−sx)(1−sy) . As a result, the eigenvalues of M(x,y)−1 are 1 and
(1−sx)(1−sy)

1−s(d+1)(x+y)+s2(d+1)xy . Note that (1−sx)(1−sy)
1−s(d+1)(x+y)+s2(d+1)xy = 0 or ∞ if and only if sx = 1

or sy = 1, or 1− s(d + 1)(x + y) + s2(d + 1)xy = 0. Thus the nearest singularities of
M(x,y)−1 to (x,y) = (0,0) are the the points (x,y) satisfy the equation 1− s(d + 1)(x+
y)+ s2(d +1)xy = 0, and the conclusion of (4.29) follows. What this argument shows is

that M(x,y)−1 = RT L
∞

∏
q=1

m+n=q

(I +Rm,nxmyn) is absolutely convergent (in the inverse sense) in

D1. Since O≤ |Hm,n| ≤ Sm,n≤Rm,n, Proposition 4.4.1 implies that F(x,y)−1 and C(x,y)−1

are also well defined and absolutely convergent over domain D1. See Figure 4.1.

(3.) In order to investigate the convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 in the sense of

Definition 4.4.4), we define a majorant of M(x,y), namely

M̂(x,y) =I−W
∞

∑
q=1

(sx+ sy)q

=I−W
∞

∑
q=1

q

∑
k=0

(
q
k

)
(sx)q−k(sy)k Set m = q− k and n = k,

=I−W
∞

∑
p=1

m+n=p

(
m+n

n

)
sm+nxmyn = I−

∞

∑
p=1

m+n=p

M̂m,nxmyn, (4.34)

where M̂m,n =W
(m+n

n

)
sm+n.

Since Mm,n ≤ M̂m,n, by the structure property we have

O≤ |Hm,n| ≤ Rm,n ≤ R̂m,n. (4.35)

Next we invert M̂(x,y) since this inversion will provide an upper bound for R̂m,n. In
particular, we have

[
M̂(x,y)

]−1
= I +

∞

∑
p=1

m+n=p

M̃m,nxmyn = RT L
∞

∏
p=1

m+n=p

(I + R̂m,nxmyn).
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Since (R̂m,n)
∞
m,n=0 is a sequence of positive matrices, both the MPPE2

RT L
∞

∏
p=1

m+n=p

(I + R̂m,nxmyn) and its associated power series I +
∞

∑
p=1

m+n=p

M̃m,nxmyn have the same

domain of convergence [see Corollary 6.1, [7] ]. Furthermore, coefficient comparison
shows that

O≤ R̂m,n ≤ M̃m,n. (4.36)

Combining Equations (4.25), (4.35), and (4.36) together implies that∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
|Hm,n|k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

(R̂m,n)
k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

(M̃m,n)
k|x|mk|y|nk. (4.37)

Equation (4.37) shows that we need to determine an upper bound for M̃m,n. To find the
desired upper bound, recall from (4.34) that

M̂(x,y) =I−W
∞

∑
q=1

(sx+ sy)q = I− W (sx+ sy)
1− (sx+ sy)

=I−
∞

∑
p=1

m+n=p

M̂m,nxmyn, where M̂m,n =W
(

m+n
n

)
sm+n. (4.38)

To make the calculations easier set z = x+ y and get

M̂(z) = I− sz
1− sz

W.

We will now assume that |sz|< 1 and d|sz|
1−|sz| ≤ ρ < 1. Then we find that

M̂−1(z) =
[

I− sz
1− sz

W
]−1

= I +
∞

∑
n=1

[
sz

1− sz

]n

W n

=I +
W
d

∞

∑
n=1

[
dsz

1− sz

]n

Since W n = dn−1W

=I +
szW

1− sz

[
1

1−
( dsz

1−sz

)]= I +
szW

1− (d +1)sz
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=I + szW
∞

∑
k=0

[(d +1)sz]k = I +W
∞

∑
k=1

(d +1)k−1skzk. (4.39)

In Equation (4.39), we set z = x+ y to obtain

[M̂(x,y)]−1 = I +W
∞

∑
k=1

(d +1)k−1sk(x+ y)k

= I +W
∞

∑
k=1

(d +1)k−1sk
k

∑
p=0

(
k
p

)
xpyk−p

= I +W
∞

∑
k=1

(d +1)k−1sk
[

yk +
k

∑
p=1

(
k
p

)
xpyk−p

]

= I +W
∞

∑
k=1

(d +1)k−1skyk +W
∞

∑
k=1

(d +1)k−1sk
k

∑
p=1

(
k
p

)
xpyk−p

= I +W
∞

∑
k=1

(d +1)k−1skyk +W
∞

∑
p=1

∞

∑
k=p

(d +1)k−1
(

k
p

)
skxpyk−p

= I +W
∞

∑
p=1

m+n=1

(d +1)m+n−1sm+n
(

m+n
n

)
xmyn, set p = m and k = m+n

= I +W
∞

∑
p=1

m+n=1

M̃m,nxmyn, (4.40)

where M̃m,n = (d +1)m+n−1sm+n
(m+n

n

)
W .

So, we have

M̃m,n = (d +1)m+n−1sm+n
(

m+n
n

)
W ≤ (d +1)m+n−1(2s)m+nW, (4.41)

where for the last inequality we made use of the fact that the sum of all the entries in the
m+n-th row of Pascal’s triangle is equal to 2m+n.

Plugging the desired upper bound of (4.41) into (4.37), we find that

∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
p=1

m+n=p

∞

∑
k=1

(M̃m,n)
k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

[2(d +1)s]k(m+n)

(d +1)k W k|x|mk|y|nk
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≤
∞

∑
p=1

m+n=p

∞

∑
k=1

[2(d +1)s]k(m+n)

(d +1)k

[
dk−1W

]
|x|mk|y|nk, since W k = dk−1W

≤W
∞

∑
p=1

m+n=p

∞

∑
k=1

[2(d +1)s]k(m+n)

(d +1)k (d +1)k−1|x|mk|y|nk

≤ W
(d +1)

∞

∑
p=1

m+n=p

∞

∑
k=1

[
(2s)m+n(d +1)m+n|x|m|y|n

]k

=
W

(d +1)

∞

∑
p=1

m+n=p

(2s)m+n(d +1)m+n|x|m|y|n

1− [2s(d +1)|x|]m[2s(d +1)|y|]n
, (4.42)

where in the penultimate line we assumed |(2s)m+n(d +1)m+nxmyn|< 1. This assumption
provides a further refinement on the polydiscs used in the computation of (4.39) where we
assumed that s(d +1)|x| < ρ < 1 and s(d +1)|y| < ρ < 1. Now we have to shrink these
polydiscs and require that 2s(d +1)|x|< ρ1 < ρ < 1 and that 2s(d +1)|y|< ρ2 < ρ < 1.
When working over these refined polydiscs, the previous inequity becomes∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ W

(d +1)

∞

∑
p=1

m+n=p

[
2s(d +1)|x|

]m[2s(d +1)|y|
]n

1−ρ2

≤ W
(d +1)(1−ρ)

∞

∑
p=1

m+n=p

[
2s(d +1)|x|

]m[2s(d +1)|y|
]n Since ρ2 < ρ < 1

≤ W
(d +1)(1−ρ)

∞

∑
p=1

m+n=p

ρ
m+n

=
W

(d +1)(1−ρ)

[
∞

∑
m=0

ρ
m

∞

∑
n=0

ρ
n−1

]
=

W
(d +1)(1−ρ)

[
1

(1−ρ)2 −1
]

=
[2ρ−ρ2]W

(d +1)(1−ρ)3 . (4.43)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally

131



showed ∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
p=1

m+n=p

∞

∑
k=1

(M̃m,n)
k|x|mk|y|nk

=
[2ρ−ρ2]W

(d +1)(1−ρ)3 , (4.44)

whenever 2s(d +1)|x|< ρ < 1 and 2s(d +1)|y|< ρ < 1.

Therefore, an estimate for domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I+R̂m,nxmyn)−1

is

D2 =
{
(x,y) ∈ C2 : |x|< 1

2s(d +1)
and |y|< 1

2s(d +1)

}
.

Since O≤ |Hm,n| ≤ Sm,n≤ Rm,n≤ R̂m,n, Definition 4.4.4 implies that D2 is also an estimate

for the domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 and of

LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1. 2.

The inequality defining D1 makes it possible to obtain a domain of absolute conver-
gence (in the inverse sense) in terms of polydiscs. Let |x| < ρ ′ and |y| < ρ ′. Then the
inequality defining D1 implies that the IMPPE2 will be absolutely convergent if

s(d +1)(2ρ
′
)+ s2(d +1)(ρ ′)2 = (d +1)

[
(sρ
′+1)2−1

]
< 1,

or equivalently, if ρ ′< s−1
[√

d+2
d+1 −1

]
. The inequalities for ρ ′ obtained from the defining

quadratic equation of D1, namely

|x|< s−1

[√
d +2
d +1

−1

]
, |y|< s−1

[√
d +2
d +1

−1

]
,

are sharp in the sense that if

x =−s−1

[√
d +2
d +1

−1

]
, y =−s−1

[√
d +2
d +1

−1

]
,

then
∣∣s(d + 1)(x+ y)− s2(d + 1)xy

∣∣ = 1 and the sum of the absolute values of the terms
in the power series of M(x,y)−1 as defined in (4.30) diverge.

We can summarize what we have shown so far regrading the absolute convergence
of IMPPE2 in both Equations (4.22), (4.26) in term of spectral conditions and obtain the
second major result of this section.

132



Theorem 4.4.2. (1.) Let F(x,y) = I+
∞

∑
p=1

m+n=p

Am,nxmyn. Let W and s be as defined in Part

(2.) of Theorem 4.4.1. Both F(x,y) and its IMPPE2,

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1, (4.45)

and the auxiliary function, along with its IMPPE2,

M(x,y) = I−
∞

∑
p=1

m+n=p

sm+nWxmyn = LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1 (4.46)

will be absolutely convergent in the sense of an inverse convergence whenever
(x,y) ∈ D1, where

D1 =

{
(x,y) ∈ C2 : (d +1)s

(∣∣x∣∣+ ∣∣y∣∣)+(d +1)s2∣∣x∣∣∣∣y∣∣< 1
}
,

See Figure 4.1, and in the sense of Definition 4.4.4 in the polydisc

D2 =
{
(x,y) ∈ C2 : |x|< 1

2s(d +1)
and |y|< 1

2s(d +1)

}
.

.

(2.) With the same conventions as in Part (1.), both F(x,y) and its IMPPE2, along with
M(x,y) and its IMPPE2, will be absolutely convergent whenever (x,y) ∈ Dxρ ′ ×
Dyρ ′ with ρ ′ < s−1

[√
d+2
d+1 −1

]
, where

Dxρ ′ :≡ {x : |x|< ρ
′}, Dyρ ′ :≡ {y : |y|< ρ

′}.
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c 

ca 

1
(𝑑 + 1)𝑠	

|𝑥|	

|𝑦|	

𝑠	(𝑑	+1)(|𝑥|+|𝑦|)+(𝑑 + 1)|𝑥||𝑦|=1	1
(𝑑 + 1)𝑠	

Figure 4.1: A domain of absolute convergence of Equations (4.22) and (4.24).
.

We should mention that for F(x,y)= I+
∞

∑
p=1

m+n=p

Am,nxmyn, the results of Theorem 4.4.1(2)

and Theorem 4.4.2 and can be stated and analogously proven with s replaced by

S := sup
p=1

m+n=p

‖Am,n‖
1

m+n . (4.47)

Furthermore, the definition of S in Equation (4.47) provides a connection between the do-
main of convergence for the majorizing IMPPE2 of Theorem 4.4.1(2) and a scalar coun-
terpart for the IMPPE2 of F(x,y) as seen in the following theorem:

Theorem 4.4.3. Given the matrix function F(x,y)

F(x,y) = I +
∞

∑
p=1

m+n=p

Am,nxmyn = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1,

with Am,n,Gm,n ∈ Md(C), define the following auxiliary matrices functions with coeffi-
cients over Md(R):

C(x,y) = I−
∞

∑
p=1

m+n=p

|Am,n|xmyn = LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1
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M(x,y) = I−
∞

∑
p=1

m+n=p

Mm,nxmyn = LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1.

Let || · || be a suitable matrix norm and assume that |Am,n| ≤ Mm,n for all (m,n) ∈ N0×
N0 \ {(0,0)}. If

∞

∑
p=1

m+n=p

||Rm,n|| |xmyn| converges absolutely in a domain D, then the scalar

function
∞

∏
q=1

m+n=q

(1−||Hm,n||xmyn)−1 also converges absolutely within D.

Proof. Since |Am,n| ≤Mm,n for all (m,n) ∈ N0×N0 \{(0,0)}, Theorem 4.4.1(1) implies
that

O≤ |Hm,n| ≤ Rm,n. (4.48)

Since the norm is suitable, the monotonicity of the matrix inequalities of (4.48) is pre-
served as the following string of scalar inequalities

0≤ ||Hm,n|| ≤ ||Rm,n||,

and the result follows. 2

4.5 Matrix IMPPE2’s induced by scalar functions
In the next theorem we study the expansion of the matrix function F(Ax,Ay), where
F(x,y) is a scalar analytic function.

Theorem 4.5.1. Let (am,n) ∈ C, where (m,n) ∈ N0×N0 \{(0,0)}. Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1, (4.49)

where hm,n ∈ C,(m,n) ∈ N0×N0 \{(0,0)} are scalar coefficients.

Let A∈Md(C). Consider the power series F(Ax,Ay) together with its IMPPE2 expansion

F(Ax,Ay) =I +
∞

∑
p=1

m+n=p

am,nAm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1. (4.50)

Let (λi)
p
i=1 be the distinct eigenvalues of A. For 1 ≤ i ≤ p, let ni be the algebraic multi-

plicity of λi, let ng
i be the geometric multiplicity of λi, and let mi be multiplicity of λi as a

linear factor within the minimal polynomial m(λ ). In other words,

det(λ I−A) =
p

∏
i=1

(λ −λi)
ni m(λ ) =

p

∏
i=1

(λ −λi)
mi .
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Define
ρ(A) := max

i
|λi| i = 1,2, . . . , p, s := sup

m+n≥1
|am,n|

1
m+n . (4.51)

(1.) Consider the scalar power series M(x,y) together with its IPPE2 expansion

M(x,y) =1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1+ rm,nxmyn)−1, (4.52)

where (rm,n) is a sequence of non-negative real numbers determined by certain
polynomials in s; see Theorem 2.4.1. Let ‖ · ‖ be a suitable norm and

M(ρ(A)Kx,ρ(A)Ky) =I−
∞

∑
p=1

m+n=p

[sρ(A)K]m+nxmyn

=
∞

∏
q=1

m+n=q

(I + rm,n[ρ(A)K]m+nxmyn)−1. (4.53)

The IMPPE2 of Equation (4.53) converges absolutely in the sense of inverse con-
vergence over the domain

D1 = {(x,y) ∈ C2 : 2sρ(A)(|x|+ |y|)+2
[
sρ(A)

]2|x||y|< 1}. (4.54)

Furthermore, the matrix F(Ax,Ay) is invertible in D1 and its inverse F(x,y)−1 =

RT L
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn) is absolutely convergent D1.

(2.) Define M̂(ρ(A)Kx,ρ(A)Ky), a majorant of M(ρ(A)Kx,ρ(A)Ky) as follows:

M̂
(
ρ(A)Kx,ρ(A)Ky

)
=I−

∞

∑
q=1

(
sρ(A)Kx+ sρ(A)Ky

)q

=LT R
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(A)K]m+nxmyn)−1.

The IMPPE2 LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1 possess an absolutely convergent infi-

nite product representation in the sense of Definition 4.4.4 in the polydiscs

D2 =
{
(x,y) ∈ C2 : |x|< 1

4sρ(A)‖K‖
and |y|< 1

4sρ(A)‖K‖

}
, (4.55)

136



with K ∈Md(C),
K = K1

⊕
K2
⊕
· · ·
⊕

Kp, (4.56)

where for 1≤ i≤ p,
Ki = Ki1

⊕
Ki2

⊕
· · ·
⊕

King
i
, (4.57)

with Ki j an mi j ×mi j matrix as described below, mi j ≤ mi1 = mi, and ∑
ng

i
j=1 mi j = ni. Note

if mi j = 1, Ki j = [1], otherwise Ki j = Imi j
+Nmi j

where Imi j
is the mi j ×mi j identity matrix,

while Nmi j
is the mi j×mi j the lower triangular nilpotent matrix associated with the Jordan

block decomposition, i.e.

Kmi j
= Imi j

+Nmi j
=



1 0 · · · . . . 0 0
1 1 0 . . . 0 0

0 1 1
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 1 1


. (4.58)

Proof. It is known that given a matrix A ∈Md(C) and an arbitrary small fixed ε ≤ ρ(A),
there exists an invertible matrix T such that

J = T−1AT, (4.59)

where
J = J1

⊕
J2
⊕
· · ·
⊕

Jp,

such that for 1≤ i≤ p,
Ji = Ji1

⊕
Ji2

⊕
· · ·
⊕

Jing
i
, (4.60)

with Ji j the mi j ×mi j matrix as described below, mi j ≤ mi1 = mi, and ∑
ng

i
j=1 mi j = ni. If

mi j = 1, Ji j = [λi], otherwise Ji j = λiImi j
+εNmi j

where Imi j
is the mi j×mi j identity matrix,

while Nmi j
is the mi j×mi j the lower triangular nilpotent matrix associated with the Jordan

block decomposition, i.e.

Ji j =



λi 0 · · · . . . 0 0
ε λi 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 ε λi


= λiImi j

+ εNmi j
.
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By using the similarity transformation of Equation (4.59), we have

F(Jx,Jy) = I +
∞

∑
p=1

m+n=p

am,nJm+nxmyn = I +
∞

∑
p=1

m+n=p

am,n(T−1AT )m+nxmyn

= T−1
[
I +

∞

∑
p=1

m+n=p

am,nAm+nxmyn
]
T = LT R

∞

∏
q=1

m+n=q

(I−hm,nJm+nxmyn)−1

= LT R
∞

∏
q=1

m+n=q

(I−hm,n(T−1AT )m+nxmyn)−1

= LT R
∞

∏
q=1

m+n=q

(I +
∞

∑
α=1

[hm,n(T−1AT )m+nxmyn]α)

= LT R
∞

∏
q=1

m+n=q

T−1(I +
∞

∑
α=1

[hm,nAm+nxmyn]α)T

= LT R
∞

∏
q=1

m+n=q

T−1(I−hm,nAm+nxmyn)−1T

= T−1
[
LT R

∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1
]
T = T−1

[
F(Ax,Ay)

]
T.

Consequently, the power series and the IMPPE2 in Equation (4.50) converge absolutely
if and only if the power series and its associated IMPPE2 in

F(Jx,Jy) = I +
∞

∑
p=1

m+n=p

am,nJm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nJm+nxmyn)−1 (4.61)

converge respectively.

To determine the domain of inverse convergence, we consider two cases. First assume
that ρ(A) = 0. As a result, A is a nilpotent matrix and for some integer P the equation

A(P+1) = O holds. For F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn, A nilpotent implies that

F(Ax,Ay) =I +
P

∑
p=1

m+n=p

am,nAm+nxmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1,

is a finite polynomial in C2.
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Now assume that ρ(A)> 0 andε < ρ(A). Thus

|J| ≤ ρ(A)K, (4.62)

where K is defined in Equations (4.56) and (4.58). By using (4.52) and (4.62) and requir-
ing that |x|< 1

2sρ(A)||K|| and that |y|< 1
2sρ(A)||K|| , we find that

M
(
ρ(A)Kx,ρ(A)Ky

)
= I−

∞

∑
p=1

m+n=p

[sρ(A)K]m+nxmyn

= I−
[ ∞

∑
m=0

(sρ(A)Kx)m
∞

∑
n=0

(sρ(A)Ky)n− I
]

= I−
[(

I− sρ(A)Kx
)−1(I− sρ(A)Ky

)−1− I
]

= I−
(
I− sρ(A)Kx

)−1(I− sρ(A)Ky
)−1
[
I−
(
I− sρ(A)Kx

)(
I− sρ(A)Ky

)]
=
(
I− sρ(A)Kx

)−1(I− sρ(A)Ky
)−1
[
2
(
I− sρ(A)Kx

)(
I− sρ(A)Ky

)
− I
]

=
(
I− sρ(A)Kx

)−1(I− sρ(A)Ky
)−1
[
I−2[sρ(A)K]

(
x+ y

)
+2[sρ(A)K]2xy

]
= LT R

∞

∏
q=1

m+n=q

(I + rm,n[ρ(A)K]m+nxmyn)−1, (4.63)

To obtain the domain of inverse convergence as provided by (4.54), since K is a lower
triangular matrix with ones in all the diagonal entries, all of the eigenvalues of K are 1.
Equation (4.63) shows that eigenvalues of M

(
ρ(A)Kx,ρ(A)Ky

)
are

1−2sρ(A)(x+y)+2[sρ(A)]2xy
(1−sρ(A)x)(1−sρ(A)y) . As a result, the eigenvalues of M

(
ρ(A)Kx,ρ(A)Ky

)−1 are
(1−sρ(A)x)(1−sρ(A)y)

1−2sρ(A)(x+y)+2[sρ(A)]2xy . Note that (1−sρ(A)x)(1−sρ(A)y)
1−2sρ(A)(x+y)+2[sρ(A)]2xy = 0 or ∞ if and only if sρ(A)x =

1, sρ(A)y = 1, or 1− 2sρ(A)(x+ y) + 2[sρ(A)]2xy = 0. Thus the nearest singularities
of M

(
ρ(A)Kx,ρ(A)Ky

)−1 to (x,y) = (0,0) are the the points (x,y) satisfy the equation
1− 2sρ(A)(x+ y)+ 2[sρ(A)]2xy = 0, and the conclusion of (4.54) follows. Since O ≤
|hm,nJm+n| ≤ rm,n[ρ(A)K]m+n, then F(Jx,Jy)−1 and F(Ax,Ay)−1 are also well defined
and absolutely convergent over domain D1.

In order to investigate the convergence of LT R
∞

∏
q=1

m+n=q

(I− hm,nJm+nxmyn)−1 in the sense

of Definition 4.4.4, we define a majorant of M
(
ρ(A)Kx,ρ(A)Ky

)
, namely

M̂
(
ρ(A)Kx,ρ(A)Ky

)
= I−

∞

∑
q=1

(
sρ(A)Kx+ sρ(A)Ky

)q
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= I−
∞

∑
q=1

q

∑
k=0

(
q
k

)
[sρ(A)Kx]q−k[sρ(A)Ky]k Set m = q− k and n = k

= I−
∞

∑
p=1

m+n=p

(
m+n

n

)
[sρ(A)K]m+nxmyn = I−

∞

∑
p=1

m+n=p

M̂m,nxmyn

= LT R
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(A)K]m+nxmyn)−1, (4.64)

where M̂m,n =
(m+n

n

)
[sρ(A)K]m+n.

Since [sρ(A)K]m+n ≤ M̂m,n, the structure property applied to (4.53) and (4.61) shows that

hm,nJm+n ≤ rm,n[ρ(A)K]m+n ≤ r̂m,n[ρ(A)K]m+n. (4.65)

Next we invert M̂
(
ρ(A)Kx,ρ(A)Ky

)
since this inversion will provide an upper bound for

r̂m,n[ρ(A)K]m+n. In particular, we have[
M̂
(
ρ(A)Kx,ρ(A)Ky

)]−1
=I +

∞

∑
p=1

m+n=p

M̃m,nxmyn

=RT L
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(A)K]m+nxmyn). (4.66)

Since r̂m,n[sρ(A)K]m+n >O for each (m,n)∈N0×N0\{(0,0)}, both the MPPE2 RT L
∞

∏
q=1

m+n=q

(I+

r̂m,n[sρ(A)K]m+nxmyn) and its power series I +
∞

∑
p=1

m+n=p

M̃m,nxmyn have the same domain of

convergence. Moreover, coefficients comparison shows that

O≤ r̂m,n[sρ(A)K]m+n ≤ M̃m,n. (4.67)

Combing Equations (4.65) and (4.67) together implies that∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nJm+nxmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖hm,nJm+n‖k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1
‖r̂m,n[ρ(A)K]m+n‖k|x|mk|y|nk
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≤
∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk. (4.68)

Equation (4.68) shows that we need to determine an upper bound for M̃m,n. To find the
desired upper bound, recall from (4.64) that

M̂
(
ρ(A)Kx,ρ(A)Ky

)
= I−

∞

∑
q=1

(
sρ(A)Kx+ sρ(A)Ky

)q

= I−
(
sρ(A)Kx+ sρ(A)Ky

)[
I−
(
sρ(A)Kx+ sρ(A)Ky

)]−1

. (4.69)

To make the calculations easier set B = sρ(A)K(x+ y) and assume that ‖B‖ < ρ < 1 to
obtain

M̂
(
ρ(A)Kx,ρ(A)Ky

)
= I−B

[
I−B]−1. (4.70)

Since ‖B‖< 1, we further require that ‖B‖ ‖I−B‖−1 ≤ ‖I−B‖−1 < 1.

Then we have[
M̂
(
ρ(A)Kx,ρ(A)Ky

)
]−1 =

[
I−B(I−B)−1]−1

= I +
∞

∑
n=1

[
B(I−B)−1]n

= I +B(I−B)−1[I−B(I−B
)−1]−1

= I +B(I−B)−1[(I−B)−1((I−B)−B)
]−1

= I +B(I−2B)−1

= I +B
∞

∑
α=0

(2B)α = I +
∞

∑
α=1

2α−1Bα , (4.71)

where for the second to last equality we assumed ||B|| < 1/2. In Equation (4.71) we set
B = sρ(A)K(x+ y) to obtain[

M̂
(
ρ(A)Kx,ρ(A)Ky

)]−1

= I +
∞

∑
α=1

2α−1[sρ(A)K
]α
(x+ y)α

= I +
∞

∑
α=1

2α−1[sρ(A)K
]α α

∑
p=0

(
α

p

)
xpyα−p

= I +
∞

∑
α=1

2α−1[sρ(A)K
]α[yα +

α

∑
p=1

(
α

p

)
xpyα−p

]
= I +

∞

∑
α=1

2α−1[sρ(A)K
]αyα +

∞

∑
α=1

2α−1[sρ(A)K
]α α

∑
p=1

(
α

p

)
xpyα−p
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= I +
∞

∑
α=1

2α−1[sρ(A)K
]αyα +

∞

∑
p=1

∞

∑
α=p

2α−1
(

α

p

)[
sρ(A)K

]αxpyα−p

= I +
∞

∑
p=1

m+n=1

2m+n−1[sρ(A)K
]m+n

(
m+n

n

)
xmyn, p = m, α− p = n

= I +
∞

∑
p=1

m+n=1

M̃m,nxmyn, (4.72)

where M̃m,n = 2m+n−1
[
sρ(A)K

]m+n(m+n
n

)
. So we have

M̃m,n = 2m+n−1[sρ(A)K
]m+n

(
m+n

n

)
≤ 22(m+n)−1[sρ(A)K

]m+n
, (4.73)

where for the last inequality we made use of the fact that the sum of all the entries in the
m+n-th row of Pascal’s triangle is equal to 2m+n.

Plugging the desired upper bound of (4.73) into (4.68), we find that∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nJm+nxmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

∥∥∥22(m+n)−1[sρ(A)K
]m+n

∥∥∥k
|x|mk|y|nk

≤ 1
2

∞

∑
p=1

m+n=p

∞

∑
k=1

∥∥∥[4sρ(A)K
]m+nxmyn

∥∥∥k

=
1
2

∞

∑
p=1

m+n=p

[∥∥4sρ(A)K
∥∥m+n|x|m|y|n

][
1−
[
‖4sρ(A)K‖|x|

]m[‖4sρ(A)K‖|y|
]n]−1

. (4.74)

where in the penultimate line we assumed
∥∥∥[4sρ(A)K

]m+nxmyn
∥∥∥ < 1. This assumption

provides a further refinement on the polydiscs used in the computation of (4.71) where
we assumed that sρ(A)‖K‖|x| < ρ1 < ρ < 1 and sρ(A)‖K‖|y| < ρ2 < ρ < 1. Now we
have to shrink these polydiscs and require that 4sρ(A)‖K‖ |x| < ρ1 < ρ < 1 and that
4sρ(A)‖K‖ |y| < ρ2 < ρ < 1. When working over these refined polydiscs, the previous
inequity becomes∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nJm+nxmyn)k
∥∥∥∥≤ 1

2(1−ρ2)

∞

∑
p=1

m+n=p

[
4sρ(A)‖K‖|x|

]m[4sρ(A)‖K‖|y|
]n
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≤ 1
2(1−ρ)

∞

∑
p=1

m+n=p

ρ
m+n =

1
2(1−ρ)

[
∞

∑
m=0

ρ
m

∞

∑
n=0

ρ
n−1

]

=
2ρ−ρ2

2(1−ρ)3 . (4.75)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed ∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nJm+nxmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk

=
2ρ−ρ2

2(1−ρ2)3 , (4.76)

whenever 4sρ(A)‖K‖ |x|< ρ < 1 and 4sρ(A)‖K‖ |y|< ρ < 1.

Therefore, an estimate for domain of absolute convergence of

LT R
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(A)K]m+nxmyn)−1 is

D2 =
{
(x,y) ∈ C2 : |x|< 1

4sρ(A)‖K‖
and |y|< 1

4sρ(A)‖K‖

}
.

Since |hm,nJm+n| ≤ rm,n[ρ(A)K]m+n ≤ r̂m,n[ρ(A)K]m+n, Definition 4.4.4 implies that D2 is
also an estimate for the domain of absolute convergence of

LT R
∞

∏
q=1

m+n=q

(I−hm,nJm+nxmyn)−1 and of LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1. 2.

In the next theorem we study the expansion of the matrix function F
(
Bx,Cy

)
, where

F(x,y) is a scalar analytic function and B,C ∈Md(C) are both diagonalizable with BC =
CB.

Theorem 4.5.2. Let (am,n) be a sequence of complex numbers, where (m,n) ∈ N0×N0 \
{(0,0)}. Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1, (4.77)

where hm,n ∈ C,(m,n) ∈ N0×N0 \{(0,0)} are scalar coefficients.

Let B and C be d× d commutative diagonalizable matrices. Consider the power series
F
(
Bx,Cy

)
together with its IMPPE2 expansion

F
(
Bx,Cy

)
=I +

∞

∑
p=1

m+n=p

am,nBmCnxmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nBmCnxmyn)−1. (4.78)
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Let (λi)
p
i=1,(λ

′
i )

p
i=1 be the distinct eigenvalues of B and C respectively. Define

ρ(B) := max
i
|λi| i = 1,2, . . . , p (4.79)

ρ(C) := max
i
|λ ′i | i = 1,2, . . . , p (4.80)

s := sup
m+n≥1

|am,n|
1

m+n . (4.81)

(1.) Consider the scalar power series M(x,y) together with its IPPE2 expansion

M(x,y) =1−
∞

∑
p=1

m+n=p

sm+nxmyn =
∞

∏
q=1

m+n=q

(1+ rm,nxmyn)−1, (4.82)

where (rm,n) is a sequence of non-negative real numbers determined by certain
polynomials in s; see Theorem 2.4.1. Let ‖ · ‖ be a suitable norm and

M(ρ(B)Ix,ρ(C)Iy) =I−
∞

∑
p=1

m+n=p

[sρ(B)I]m[sρ(C)I]nxmyn

=
∞

∏
q=1

m+n=q

(1+ rm,n[ρ(B)I]m[ρ(C)I]nxmyn)−1. (4.83)

The IMPPE2 of Equation (4.78) converges absolutely in the sense of inverse con-
vergence over the domain

D1 ={(x,y)∈C2 : 2s
[
ρ(B)|x|+ρ(C)|y|

]
+2[sρ(B)ρ(C)]2|x||y|< 1}. (4.84)

Furthermore, the matrix F(Bx,Cy) is invertible in D1 and its inverse F(Bx,Cy)−1 =

RT L
∞

∏
q=1

m+n=q

(I−hm,nBmCnxmyn) is absolutely convergent D1.

(2.) Define M̂(ρ(B)Ix,ρ(C)Iy), a majorant of M(ρ(B)Ix,ρ(C)Iy) as follows:

M̂
(
ρ(B)Ix,ρ(C)Iy

)
=I−

∞

∑
q=1

(
sρ(B)Ix+ sρ(C)Iy

)q

=LT R
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(B)I]m[sρ(C)I]nxmyn)−1.

1
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Proof. Let B and C be two commutative diagonalizable matrices. By Proposition 6.2.6 of
[40] there is a single invertible matrix S ∈Md(C) such that

D1 = S−1BS (4.85)

D2 = S−1CS, (4.86)

where

D1 =



λ1 0 · · · . . . 0 0
0 λ2 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 0 λp


,D2 =



λ ′1 0 · · · . . . 0 0
0 λ ′2 0 . . . 0 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 0 0

...
...

. . .
. . .

. . . 0
0 . . . 0 0 0 λ ′p


.

By using the similarity transformations of (4.85) and (4.86), we have

F(D1x,D2y) = I +
∞

∑
p=1

m+n=p

am,nDm
1 Dn

2xmyn = I +
∞

∑
p=1

m+n=p

am,n(S−1BS)m(S−1CS)nxmyn

= S−1
[
I +

∞

∑
p=1

m+n=p

am,nBmCnxmyn
]
S = LT R

∞

∏
q=1

m+n=q

(I−hm,nDm
1 Dn

2xmyn)−1

= LT R
∞

∏
q=1

m+n=q

(I−hm,n(S−1BS)m(S−1CS)nxmyn)−1

= LT R
∞

∏
q=1

m+n=q

(
I +

∞

∑
α=1

[
hm,n(S−1BS)m(S−1CS)nxmyn)xmyn]α)

= LT R
∞

∏
q=1

m+n=q

S−1(I + ∞

∑
α=1

[
hm,nBmCnxmyn]α)S

= LT R
∞

∏
q=1

m+n=q

S−1(I−hm,nBmCnxmyn)−1S

= S−1
[
LT R

∞

∏
q=1

m+n=q

(I−hm,nBmCnxmyn)−1
]
S = S−1

[
F(Bx,Cy)

]
S.
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Consequently, the power series and the IMPPE2 in (4.78) converge absolutely if and only
if the power series and its associated IMPPE2 in

F(D1x,D2y) =I +
∞

∑
p=1

m+n=p

am,nDm
1 Dn

2xmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nDm
1 Dn

2xmyn)−1 (4.87)

converge absolutely respectively. We begin by discussing the domain of absolute conver-
gence in the inverse sense. Consider two cases: in the first case, assume that ρ(B) = 0
or ρ(C) = 0. As a result, B or C is a nilpotent matrix and for some integer P the equa-

tion B(P+1) = O or C(P+1) = O holds. For F(x,y) = 1+
∞

∑
p=1

m+n=p

am,nxmyn, B or C nilpotent

implies that

F
(
Bx,Cy

)
=I +

P

∑
p=1

m+n=p

am,nBmCnxmyn = LT R
∞

∏
q=1

m+n=q

(I−hm,nBmCnxmyn)−1,

is a finite polynomial in C.

Now consider the case that ρ(B),ρ(C)> 0. Then we have

|D1| ≤ ρ(B)I (4.88)

|D2| ≤ ρ(C)I, (4.89)

where I is the d×d the identity matrix. By using (4.82), (4.88) and (4.89), and requiring
that |x|< 1

sρ(B)‖I‖ and that |y|< 1
sρ(C)‖I‖ we find that

M
(
ρ(B)Ix,ρ(C)Iy

)
= I−

∞

∑
p=1

m+n=p

[sρ(B)I]m[sρ(C)I]nxmyn

=I−
[ ∞

∑
m=0

[sρ(B)Ix]m
∞

∑
n=0

[sρ(C)Iy]n− I
]

=I−
[(

I− sρ(B)Ix
)−1(I− sρ(C)Iy

)−1− I
]

=I−
(
I− sρ(B)Ix

)−1(I− sρ(C)Iy
)−1
[
I−
(
I− sρ(B)Ix

)(
I− sρ(C)Iy

)]
=
(
I− sρ(B)Ix

)−1(I− sρ(C)Iy
)−1
[
2
(
I− sρ(B)Ix

)(
I− sρ(C)Iy

)
− I
]

=
(
I− sρ(B)Ix

)−1(I− sρ(C)Iy
)−1
[
I−2s[ρ(B)Ix+ρ(C)Iy]+

2s2
ρ(B)ρ(C)Ixy

]
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=LT R
∞

∏
q=1

m+n=q

(I + rm,n[ρ(B)I]m[ρ(C)I]nxmyn)−1. (4.90)

To obtain the domain of inverse convergence as provided by (4.84), since I is an identity
matrix then all of the eigenvalues of I are 1 . Equation (4.90) shows that eigenvalues
of M

(
ρ(B)Ix,ρ(C)Iy

)
are 1−2s[(ρ(B)x+ρ(C)y)]+2s2ρ(B)ρ(C)xy

(1−sρ(B)x)(1−sρ(C)y) . As a result, the eigenvalues of

M(ρ(B)Ix,ρ(C)Iy)−1 are (1−sρ(B)x)(1−sρ(C)y)
1−2s[(ρ(B)x+ρ(C)y)]+2s2ρ(B)ρ(C)xy . Note that

(1−sρ(B)x)(1−sρ(C)y)
1−2s[(ρ(B)x+ρ(C)y)]+2s2ρ(B)ρ(C)xy = 0 or ∞ if and only if sρ(B)x = 1 or sρ(C)y = 1, or 1−
2s[(ρ(B)x+ρ(C)y)]+2s2ρ(B)ρ(C)xy = 0. Thus the nearest singularities of
M
(
ρ(B)Ix,ρ(C)Iy

)−1 to (x,y) = (0,0) are the the points (x,y) satisfy the equation 1−
2s[(ρ(B)x+ρ(C)y)]+ 2s2ρ(B)ρ(C)xy = 0, and the conclusion of (4.84) follows. Since
O ≤ |hm,nDm

1 Dn
2| ≤ rm,n[ρ(B)I]m[ρ(C)I]n, then F(D1x,D2y)−1 and F(Ax,Ay)−1 are also

well defined and absolutely convergent over domain D1.

In order to investigate the convergence of LT R
∞

∏
q=1

m+n=q

(I−hm,nDm
1 Dn

2xmyn)−1 in the sense

of Definition 4.4.4, we define a majorant of M
(
ρ(B)Ix,ρ(C)Iy

)
, namely

M̂
(
ρ(B)Ix,ρ(C)Iy

)
= I−

∞

∑
q=1

(
sρ(B)Ix+ρ(C)Iy

)q

= I−
∞

∑
q=1

q

∑
k=0

(
q
k

)
[sρ(B)Ix]q−k[sρ(C)Iy]k Set m = q− k and n = k

= I−
∞

∑
p=1

m+n=p

(
m+n

n

)
[sρ(B)I]m[sρ(C)I]nxmyn

= I−
∞

∑
p=1

m+n=p

M̂m,nxmyn

= LT R
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(B)I]m[sρ(C)I]nxmyn)−1, (4.91)

where M̂m,n =
(m+n

n

)
[sρ(B)I]m[sρ(C)I]n.

Since Mm,n ≤ M̂m,n, the structure property applied to (4.78) and (4.87) shows that

hm,nDm
1 Dn

2 ≤ rm,n[ρ(B)I]m[ρ(C)I]n ≤ r̂m,n[ρ(B)I]m[ρ(C)I]n. (4.92)

Next we invert M̂
(
ρ(B)Ix,ρ(C)Iy

)
since this inversion will provide an upper bound for
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r̂m,n[ρ(B)I]m[ρ(C)I]n. In particular, we have[
M
(
ρ(B)Ix,ρ(C)Iy

)]−1
=I +

∞

∑
p=1

m+n=p

M̃m,nxmyn

=RT L
∞

∏
q=1

m+n=q

(I + r̂m,n[ρ(B)I]m[ρ(C)I]nxmyn). (4.93)

Since r̂m,n[ρ(B)I]m[ρ(C)I]n >O for each (m,n)∈N0×N0\{(0,0)}, then both RT L
∞

∏
q=1

m+n=q

(I+

r̂m,n[ρ(B)I]m[ρ(C)I]nxmyn), I +
∞

∑
p=1

m+n=p

M̃m,nxmyn have the same domain of convergence.

Moreover, coefficients comparison shows that

O≤ r̂m,n[ρ(B)I]m[ρ(C)I]n ≤ M̃m,n. (4.94)

Combing Equations (4.92) and (4.94) together implies that∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nDm
1 Dn

2xmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖hm,nDm

1 Dn
2‖k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

∥∥r̂m,n[ρ(B)I]m[ρ(C)I]n
∥∥k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk. (4.95)

Equation (4.95) shows that we need to determine an upper bound for M̃m,n. To find the
desired upper bound, recall from (4.91) that

M̂
(
ρ(B)Ix,ρ(C)Iy

)
= I−

∞

∑
q=1

(
sρ(B)Ix+ sρ(C)Iy

)q

= I−
(
sρ(B)Ix+ sρ(C)Iy

)[
I−
(
sρ(B)Ix+ sρ(C)Iy

)]−1

. (4.96)

To make the calculations easier set Z = ρ(B)Ix+ρ(C)Iy, and assume that ‖Z‖ < ρ < 1
to obtain

M̂(Z) = I−Z(I−Z)−1. (4.97)
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Since ‖Z‖< 1, we further require that ‖Z‖‖I−Z‖−1 ≤ ‖I−Z‖−1 < 1. Then we have[
M̂(Z)

]−1
=
[
I−Z

(
I−Z

)−1
]−1

= I +
∞

∑
n=1

[
Z
(
I−Z

)−1
]n

= I +Z
[
I−Z

]−1[
I−Z

[
I−Z

]−1
]−1

= I +Z
[
I−Z

]−1[[
I−Z

]−1[
(I−Z)−Z

]]−1

= I +Z(I−2Z)−1 = I +Z
∞

∑
α=0

(2Z)α

= I +
∞

∑
α=1

2α−1Zα , (4.98)

where for the second to last equality we assumed ‖Z‖ < 1
2 . In Equation (4.98) we set

Z = ρ(B)Ix+ρ(C)Iy to obtain[
M̂
(
ρ(B)Ix,ρ(C)Iy

)]−1

= I +
∞

∑
α=1

2α−1(ρ(B)Ix+ρ(C)Iy)α

= I +
∞

∑
α=1

2α−1
α

∑
p=0

(
α

p

)
[ρ(B)Ix]p[ρ(C)Iy]α−p

= I +
∞

∑
α=1

2α−1
[
[ρ(C)Iy]α +

α

∑
p=1

(
α

p

)
[ρ(B)Ix]p[ρ(C)Iy]α−p

]
= I +

∞

∑
α=1

2α−1[sρ(C)Iy
]α

+
∞

∑
α=1

2α−1
α

∑
p=1

(
α

p

)
[ρ(B)Ix]p[ρ(C)Iy]α−p

= I +
∞

∑
α=1

2α−1[sρ(C)Iy
]α

+
∞

∑
p=1

∞

∑
α=p

2α−1
(

α

p

)
[ρ(B)Ix]p[ρ(C)Iy]α−p

= I +
∞

∑
p=1

m+n=1

2m+n−1[sρ(B)I
]m[sρ(C)I

]n(m+n
m

)
xmyn, p = m, α− p = n

= I +
∞

∑
p=1

m+n=1

M̃m,nxmyn, (4.99)

where M̃m,n = 2m+n−1
[
sρ(B)I

]m[sρ(C)I
]n(m+n

m

)
. So, we have

M̃m,n =2m+n−1[sρ(B)I
]m[sρ(C)I

]n(m+n
n

)
≤22(m+n)−1[sρ(B)I

]m[sρ(C)I
]n
, (4.100)
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where for the last inequality we made use of the fact that the sum of all the entries in the
m+n-th row of Pascal’s triangle is equal to 2m+n.

Plugging the desired upper bound of (4.100) into (4.95), we find that∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nDm
1 Dn

2xmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

∥∥∥22(m+n)−1[sρ(B)I
]m[sρ(C)I

]n∥∥∥k
|x|mk|y|nk

≤ 1
2

∞

∑
p=1

m+n=p

∞

∑
k=1

[∥∥4sρ(B)I
∥∥m∥∥4sρ(C)I

∥∥n|x|m|y|n
]k

=
1
2

∞

∑
p=1

m+n=p

[∥∥4sρ(B)I
∥∥m∥∥4sρ(C)I

∥∥n|x|m|y|n
][

I−
∥∥4sρ(B)Ix

∥∥m∥∥4sρ(C)Iy
∥∥n
]−1

.

(4.101)

where in the penultimate line we assumed
∥∥∥[4sρ(B)I

]m
[ρ(C)I

]nxmyn
∥∥∥< 1. This assump-

tion provides a further refinement on the polydiscs used in the computation of (4.98) where
we assumed that sρ(B)‖I‖ |x|< ρ < 1 and sρ(C)‖I‖ |y|< ρ < 1. Now we have to shrink
these polydiscs and require that 4sρ(B)‖I‖ |x| < ρ1 < ρ < 1 and that 4sρ(C)‖I‖ |y| <
ρ2 < ρ < 1. When working over these refined polydiscs, the previous inequity becomes∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nDm
1 Dn

2xmyn)k
∥∥∥∥≤ 1

2(1−ρ2)

∞

∑
p=1

m+n=p

[
4sρ(B)‖I‖ |x|

]m[4sρ(C)‖I‖ |y|
]n

≤ 1
2(1−ρ)

∞

∑
p=1

m+n=p

ρ
m+n =

1
2(1−ρ)

[
∞

∑
m=0

ρ
m

∞

∑
n=0

ρ
n−1

]

=
2ρ−ρ2

2(1−ρ)3 . (4.102)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed ∥∥∥∥ ∞

∑
p=1

m+n=p

∞

∑
k=1

(hm,nDm
1 Dn

2xmyn)k
∥∥∥∥≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
‖M̃m,n‖k|x|mk|y|nk

=
2ρ−ρ2

2(1−ρ2)3 , (4.103)
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whenever 4sρ(B)‖I‖ |x|< ρ < 1 and 4sρ(C)‖I‖ |y|< ρ < 1.

Therefore, an estimate for domain of absolute convergence of

RT L
∞

∏
q=1

m+n=q

(I + r̂m,n[sρ(B)I]m[sρ(C)I]nxmyn) is

D2 =
{
(x,y) ∈ C2 : |x|< 1

4sρ(B)‖I‖
and |y|< 1

4sρ(C)‖I‖

}
.

Since |hm,nDm
1 Dn

2| ≤ rm,n[ρ(B)I]m[ρ(C)I]n ≤ r̂m,n[ρ(B)I]m[ρ(C)I]n, Definition 4.4.4 im-
plies that D2 is also an estimate for the domain of absolute convergence of

LT R
∞

∏
q=1

m+n=q

(I−hm,nDm
1 Dn

2xmyn)−1 and of LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1. 2.

4.6 Illustrative examples
In this section various examples are given to illustrate the main theorems of the previous
sections. Our first example is an extension of Theorem 4.4.1.

Example 4.6.1. Consider the following special series F(x,y) with the special related
majorant matrix functions series:

F(x,y) =I +
∞

∑
p=1

u+v=p

Auα+β ,vα+β xuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1

C(x,y) =I−
∞

∑
p=1

u+v=p

|Auα+β ,vα+β |xuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1

M(x,y) =I−
∞

∑
p=1

u+v=p

sα(u+v)+2βWxuα+β yvα+β = LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1, (4.104)

where α,β ∈ N0, W ∈Md(C), and it is defined as

W = (wu,v), where wu,v = 1, v,u = 1, . . . ,d.

Furthermore, given Auα+β ,vα+β ∈Md(C) where Auα+β ,vα+β =
(
aψ,ω(uα +β ,vα +β )

)
for ψ,ω = 1, . . . ,d, define

a(uα +β ,vα +β ) := max
ψ,ω
|aψ,ω(uα +β ,vα +β )|,
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then s is defined as

s := sup
α,β∈N0
m+n≥1

[
a(uα +β ,vα +β )

] 1
α(u+v)+2β .

Next by requiring |x|< 1
s and that |y|< 1

s , we can derive the closed form of the left hand

side of Equation (4.104)

M(x,y) = I−W
∞

∑
p=1

u+v=p

sα(u+v)+2β xuα+β yvα+β

= I− (s2xy)βW
∞

∑
p=1

u+v=p

sα(u+v)xuαyvα

= I− (s2xy)βW
[

∞

∑
u=0

(sx)uα
∞

∑
v=0

(sy)vα −1
]

= I− (s2xy)βW
[

1
1− (sx)α

· 1
1− (sy)α

−1
]

= I−
W (s2xy)β

[
sα(xα + yα)− (s2xy)α

]
[1− (sx)α ][1− (sy)α ]

=
I−
[
I +(s2xy)βW

][
sα(xα + yα)− (s2xy)α

]
[1− (sx)α ][1− (sy)α ]

= LT R
∞

∏
q=1

m+n=q

(I +Rm,nxnyn)−1. (4.105)

To obtain the domain of inverse convergence as defined in Definition 4.4.1, the straight-
forward computation in Equation (4.105) shows that eigenvalues of M(x,y) are 1 and
1−[1+d(s2xy)β ][sα (xα+yα )−(s2xy)α ]

[1−(sx)α ][1−(sy)α ] . As a result, the eigenvalues of M(x,y)−1 are 1 and
[1−(sx)α ][1−(sy)α ]

1−[1+d(s2xy)β ][sα (xα+yα )−(s2xy)α ]
. Note that [1−(sx)α ][1−(sy)α ]

1−[1+d(s2xy)β ][sα (xα+yα )−(s2xy)α ]
= 0 or ∞ if and

only if (sx)α = 1 or (sy)α = 1, or 1− [1+ d(s2xy)β ][sα(xα + yα)− (s2xy)α ] = 0. Thus
the nearest singularities of M(x,y)−1 to (x,y) = (0,0) are the the points (x,y) satisfy the
equation 1− [1+ d(s2xy)β ][sα(xα + yα)− (s2xy)α ] = 0, which means that M(x,y)−1 =

RT L
∞

∏
q=1

m+n=q

(I +Rm,nxmyn) is absolutely convergent (in the inverse sense) in

D1 = {(x,y) ∈ C2 : [1+ |d(s2xy)β |][sα(|x|α + |y|α)+ |(s2xy)|α ]< 1} (4.106)
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Since O ≤ |Hm,n| ≤ Sm,n ≤ Rm,n, Proposition 4.4.1 implies that F(x,y)−1 and C(x,y)−1

are also well defined and absolutely convergent over domain D1.

Note that if α = 1,β = 0, then the domain D1 defining in Theorem 4.4.1 [(2.)] is a special
case of D1 defining in (4.106) .

In order to investigate the convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 in the sense of Defini-

tion 4.4.4, we define a majorant of M(x,y), namely

M̂(x,y) = I−W
∞

∑
q=1

(s2xy)β

[
(sx)α +(sy)α

]q

= I−W
∞

∑
q=1

q

∑
k=0

(s2xy)β

(
q
k

)[
(sx)α

]q−k[
(sy)α

]k
Set u = q− k and v = k,

= I−W
∞

∑
p=1

u+v=p

(
u+ v

v

)
sα(u+v)+2β xαu+β yαv+β

= I−W
∞

∑
p=1

u+v=p

M̂αu+β ,αv+β xαu+β yαv+β

= LT R
∞

∏
q=1

u+v=q

(I + R̂m,nxmyn)−1, (4.107)

where M̂αu+β ,αv+β =
(u+v

v

)
sα(u+v)+2β .

Since

Mαu+β ,αv+β = sα(u+v)+2βW ≤
(

u+ v
v

)
sα(u+v)+2βW = M̂αu+β ,αv+β ,

then again by the structure property we have

O≤ |Hm,n| ≤ Rm,n ≤ R̂m,n. (4.108)

Next we invert M̂(x,y) since this inversion will provide upper bound for R̂m,n. In particular,
we have [

M̂(x,y)
]−1

=I +
∞

∑
p=1

m+n=p

M̃m,nxnyn

=RT L
∞

∏
q=1

m+n=q

(I + R̂m,nxmyn).
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Since (R̂m,n)
∞
u,v=0 is a sequence of positive matrices, then both RT L

∞

∏
p=1

m+n=p

(I + R̂m,nxmyn)

and I +
∞

∑
p=1

m+n=p

M̃m,nxmyn have the same domain of convergence. Furthermore, coefficients

compassion shows that

O≤ R̂m,n ≤ M̃m,n. (4.109)

Combining Equations (4.108), and (4.109) together implies that∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
p=1

m+n=p

∞

∑
k=1
|Hm,n|k|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

R̂k
m,n|x|mk|y|nk

≤
∞

∑
p=1

m+n=p

∞

∑
k=1

M̂k
m,n|x|mk|y|nk. (4.110)

Equation (4.110) shows that we need to determine an upper bound for M̃m,n. To find the
desired upper bound, we consider special case for α and β .

Case 1: Set α ∈ N and β = 0 in Equation (4.107), then we have

M̂(x,y) =I−W
∞

∑
q=1

[(sx)α +(sy)α ]q = I− (sx)α +(sy)α

1− [(sx)α +(sy)α ]
W

=I−
∞

∑
r=1

u+v=r

M̂αu,αvxαuyαv, where M̂αu,αv =W
(

u+ v
v

)
sα(u+v). (4.111)

We will assume that∣∣∣[(sx)α +(sy)α
]∣∣∣< ∣∣∣(d +1)

[
(sx)α +(sy)α

]∣∣∣< ρ < 1. (4.112)

Then ∣∣∣ (sx)α +(sy)α

1−
[
(sx)α +(sy)α

]∣∣∣≤ ∣∣(sx)α +(sy)α
∣∣∣∣1− ∣∣(sx)α +(sy)α
∣∣ ∣∣ ≤ 1

1−ρ
. (4.113)

So if we further require ‖W‖< 1−ρ , we find that

[M̂(x,y)]−1 = I +
∞

∑
r=1

u+v=r

M̂uα+β ,vα+β xuα+β yvα+β
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=

[
I−

W
[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

]]−1

= I +
∞

∑
n=1

[ (sx)α +(sy)α

1− [(sx)α +(sy)α ]

]n
W n

= I +
W
d

∞

∑
n=1

[
d
[
(sx)α +(sy)α

]
1− [(sx)α +(sy)α ]

]n

= I +
W [(sx)α +(sy)α ]

1− [(sx)α +(sy)α ]

[
1−

d
[
(sx)α +(sy)α

]
1− [(sx)α +(sy)α ]

]−1

= I +
[(sx)α +(sy)α ]W

1− [d +1][(sx)α +(sy)α ]

= I +[(sx)α +(sy)α ]W
∞

∑
k=0

(
[d +1]

[
(sx)α +(sy)α

])k

= I +W
∞

∑
k=1

[d +1]k−1[(sx)α +(sy)α
]k

= I +W
∞

∑
k=1

[d +1]k−1[(sy)α ]k+

W
∞

∑
k=1

[d +1]k−1
k

∑
r=1

(
k
r

)
[(sx)α ]r[(sy)α ]k−r

= I +W
∞

∑
k=1

[d +1]k−1[(sy)α ]k+

W
∞

∑
k=1

[d +1]k−1
k

∑
r=1

(
k
r

)
[(sx)α ]r[(sy)α ]k−r

= I +W
∞

∑
k=1

[d +1]k−1[(sy)α ]k+

W
∞

∑
r=1

∞

∑
k=r

[d +1]k−1
(

k
r

)
[(sx)α ]r[(sy)α ]k−r

= I +W
∞

∑
r=1

u+v=r

[d +1]u+v−1sα(u+v)
(

u+ v
u

)
xαuyαv

= I +W
∞

∑
r=1

u+v=r

M̃αu,αvxαuyαv (4.114)

where M̃αu,αv = [d +1]u+v−1sα(u+v)
(u+v

u

)
W.
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Furthermore, we have

M̃αu,αv = [d +1]u+v−1sα(u+v)
(

u+ v
u

)
W ≤ [d +1]u+v−1(2sα)u+vW. (4.115)

Plugging the desired upper bound of (4.115) into (4.110), we find that

∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
r=1

u+v=r

∞

∑
k=1

(M̃αu,αv)
k|x|αuk|y|αvk

≤
∞

∑
r=1

u+v=r

∞

∑
k=1

[2(d +1)sα ]k(u+v)

(d +1)k W k|x|αuk|y|αvk

≤
∞

∑
r=1

u+v=r

∞

∑
k=1

[2(d +1)sα ]k(u+v)

(d +1)k

[
dk−1W

]
|x|αuk|y|αvk

≤W
∞

∑
r=1

u+v=r

∞

∑
k=1

[2(d +1)sα ]k(u+v)

(d +1)k (d +1)k−1|x|αuk|y|αvk

≤ W
(d +1)

∞

∑
r=1

u+v=r

∞

∑
k=1

[
[2sα(d +1)]u+v|x|αu|y|αv]k

=
W

(d +1)

∞

∑
r=1

u+v=r

[2sα(d +1)](u+v)|x|αu|y|αv

1− [2sα(d +1)|x|α ]u[2sα(d +1)|y|α ]v
, (4.116)

where in the penultimate line we assumed assumed that 2sα(d + 1)|x|α < ρ1 < ρ < 1
and that 2sα(d + 1)|y|α < ρ2 < ρ < 1. When working over these refined polydiscs, the
previous inequity becomes∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ W

(d +1)

∞

∑
r=1

u+v=r

[
2sα(d +1)|x|α

]u[2sα(d +1)|y|α
]u

1−ρ2

≤ W
(d +1)(1−ρ)

∞

∑
r=1

u+v=r

[
2sα(d +1)|x|α

]u[2sα(d +1)|y|α
]v

≤ W
(d +1)(1−ρ)

∞

∑
r=1

u+v=r

ρ
u+v

=
W

(d +1)(1−ρ)

[
∞

∑
u=0

ρ
u

∞

∑
v=0

ρ
v−1

]
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=
W

(d +1)(1−ρ)

[
1

(1−ρ)2 −1
]

=
[2ρ−ρ2]W

(d +1)(1−ρ)3 . (4.117)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed ∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
r=1

u+v=r

∞

∑
k=1

(M̃αu,αv)
k|x|αuk|y|αvk

=
[2ρ−ρ2]W

(d +1)(1−ρ)3 , (4.118)

whenever [2sα(d +1)]|x|α < ρ < 1 and [2sα(d +1)]|y|α < ρ < 1. Therefore, an estimate

for domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I + R̂m,nxmyn)−1 is

D2 =
{
(x,y) ∈ C2 : |x|< 1

[2(d +1)]
1
α s

and |y|< 1

[2(d +1)]
1
α s

}
. (4.119)

Since O≤ |Hm,n| ≤ Sm,n≤ Rm,n≤ R̂m,n, Definition 4.4.4 implies that D2 is also an estimate

for the domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 and of

LT R
∞

∏
q=1

m+n=q

(I +Sm,nxmyn)−1.

Note that if we assume α = 1 and β = 0, then the domain D2 defining in Theorem 4.4.1
[(3.)] is a special case of the domain D2, which is defining in (4.119).

Case2: For simplicity, we set α = 0 and β ∈ N in Equation (4.104), then we have

M(x,y) =I−W (s2xy)β = LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn)−1.

We will assume that |(s2xy)β |< ρ < 1, and further we require ‖W‖|(s2xy)β |< ‖W‖ρ < 1,
i.e. ‖W‖< 1

ρ
. Then we have

M−1(x,y) = [I−W (s2xy)β ]−1 = I +
∞

∑
k=1

[
W (s2xy)β

]k
= I +

W
d

∞

∑
k=1

[
d(s2xy)β

]k
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= I +
W
d

1
1−d(s2xy)β

, which means that |d(s2xy)β |< ρ1 < ρ < 1

= I +
∞

∑
k=1

M̃βk,βkxβkyβk

= RT L
∞

∏
q=1

m+n=q

(I +Rm,nxmyn) (4.120)

where M̃βk,βk = dk−1s2kβW

Note that the penultimate line in Equation (4.120) shows that βk = m and βk = n, and
this will only the nonzero M̃m,n.

Now we repeat inequality chain at (4.110). Since Rm,n ≤ M̃m,n, then we obtain
∞

∑
p=1

m+n=p

∞

∑
k=1
|Rm,n|k|x|mk|y|nk|k ≤

∞

∑
q=1

m+n=q

∞

∑
k=1
|M̂m,n|k|x|mk|y|nk

=
∞

∑
q=1

∞

∑
k=1
|M̂βq,βq|k|x|βqk|y|βqk

=
∞

∑
q=1

∞

∑
k=1

[
dq−1s2qβW

]k|x|βqk|y|βqk

=
W
d

∞

∑
q=1

∞

∑
k=1

[
dqs2qβ

]k|x|βqk|y|βqk

≤ W
d

∞

∑
q=1

∞

∑
k=1

[
ds2β ]kq|x|βqk|y|βqk,

≤ W
d

∞

∑
q=1

∞

∑
k=1

d2kq|sx|βqk|sy|βqk, since 1≤ d ≤ d2

=
W
d

∞

∑
q=1

∞

∑
k=1

[
d|sx|β

]qk[d|sy|β
]qk

. (4.121)

Now we assume d|sx|β < ρ1 < ρ < 1, d|sy|β < ρ2 < ρ < 1, then we have
∞

∑
p=1

m+n=p

∞

∑
k=1
|Rm,n|k|x|mk|y|nk|k ≤W

d

∞

∑
q=1

∞

∑
k=1

[ρ2]qk

=
W
d

∞

∑
q=1

ρ2q

1−ρ2q

≤ W
d(1−ρ)

∞

∑
q=1

ρ
2q =

Wρ2

d(1−ρ)(1−ρ2)
. (4.122)
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Therefore, an estimate for domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I +Rm,nxmyn) is

D2 =
{
(x,y) ∈ C2 : |x|< 1

sd
1
β

and |y|< 1

sd
1
β

}
. (4.123)

Since O ≤ |Hm,n| ≤ Sm,n ≤ Rm,n, Definition 4.4.4 implies that D2 is also an estimate

for the domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 and of LT R
∞

∏
q=1

m+n=q

(I +

Sm,nxmyn)−1.

Case3: Let α,β ∈ N, then we have

M̂(x,y) =I−W
∞

∑
q=1

(s2xy)β

[
(sx)α +(sy)α

]q
= I−

W (s2xy)β

[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] . (4.124)

We will assume that∣∣∣(s2xy)β
[
(sx)α +(sy)α

]∣∣∣< ∣∣∣[d(s2xy)β +1
][
(sx)α +(sy)α

]∣∣∣< ρ < 1.

Then ∣∣∣(s2xy)β
[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] ∣∣∣≤ ∣∣(s2xy)β
[
(sx)α +(sy)α

]∣∣∣∣1− ∣∣(sx)α +(sy)α
∣∣ ∣∣ ≤ 1

1−ρ
.

So if we further require ‖W‖< 1−ρ , we find that

[M̂(x,y)]−1 = I +
∞

∑
p=1

u+v=p

M̂uα+β ,vα+β xuα+β yvα+β

=

[
I−

W (s2xy)β
[
(sx)α +(sy)α

]∣∣1−[(sx)α +(sy)α

] ]−1

= I +
∞

∑
n=1

[(s2xy)β
[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] ]n
W n

= I +
W
d

∞

∑
n=1

[
d(s2xy)β

[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] ]n

= I +
W (s2xy)β

[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] [
1−

d(s2xy)β
[
(sx)α +(sy)α

]
1−
[
(sx)α +(sy)α

] ]−1
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= I +
(s2xy)β

[
(sx)α +(sy)α

]
W

1− [d(s2xy)β +1]
[
(sx)α +(sy)α

]
= I +(s2xy)β

[
(sx)α +(sy)α

]
W

∞

∑
k=0

([
d(s2xy)β +1

][
(sx)α +(sy)α

])k

= I +(s2xy)β
[
(sx)α +(sy)α

]
W

∞

∑
k=0

∑
i+ j+p+q=k

(
k

i j p q

)
(sx)αi(sy)α j×

(ds2β+αxβ+αyβ )p(ds2β+αxβ yα+β )q

= I +
[
xα+β yβ + xβ yα+β

]
sα+2βW

∞

∑
k=0

sαk
∑

i+ j+p+q=k

(
k

i j p q

)
s2β (p+q)×

dp+qxα(i+p)+β (p+q)yα( j+q)+β (p+q)

= I +S1 +S2, (4.125)

where

S1 =sα+2βW
∞

∑
k=0

sαk
∑

i+ j+p+q=k

(
k

i j p q

)
s2β (p+q)dp+qxα(i+p+1)+β (p+q+1)yα( j+q)+β (p+q+1),

and

S2 =sα+2βW
∞

∑
k=0

sαk
∑

i+ j+p+q=k

(
k

i j p q

)
s2β (p+q)dp+qxα(i+p)+β (p+q+1)yα( j+q+1)+β (p+q+1)

From S1 we set

u = i+ p+1,w = p+q+1,v = j+q, then we have u+ v = k+1. Also,

i+ j = u+ v−w.

So, k = u+ v−1.

Hence, the coefficient of xαu+βwyαv+βw in S1 is

sα+2β sα(u+v−1)
(

u+ v−1
i j u− i−1 v− j

)
s2β (w−1)dw−1W

= s2βw+α(u+v)dw−1
(

u+ v−1
i j u− i−1 v− j

)
W

≤ (u+ v−w+1)s2βw+α(u+v)dw−12u+v−1W

≤ s2βw+α(u+v)dw−122(u+v)−wW (4.126)

From S2 we set

k = u+ v−1, i+ j = u+ v−w; with u = i+ p, w = p+q+1, v = j+q+1
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Hence, the coefficient of xαu+βwyαv+βw in S2 is

sα(u+v)+2βwdw−1
(

u+ v−1
i j u− i v− j−1

)
W, subject to i+ j = u+ v−w

≤ sα(u+v)+2βwdw−122(u+v)−wW. (4.127)

Therefore, we have

[M̃(x,y)]−1 = I +
∞

∑
r=1

u+v=r

∞

∑
w=1

M̃αu+βw,αv+βwxαu+βwyαv+βw, (4.128)

and Inequalities (4.126), (4.127) show that

M̃αu+βw,αv+βw ≤ sα(u+v)+2βwdw−122(u+v)−wW. (4.129)

Plugging the desired upper bound of (4.129) into (4.110), we find that∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣= ∣∣∣∣ ∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[M̃αu+βw,αv+βwxαu+βwyαv+βw]k
∣∣∣∣

=

∣∣∣∣ ∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[sα(u+v)+2βwdw−122(u+v)−wWxαu+βwyαv+βw]k
∣∣∣∣

≤ W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[sα(u+v)+2βwdw22(u+v)−w|x|αu+βw|y|αv+βw]k since W k = dk−1W

=
W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[dw22(u+v)−w|sx|αu+βw|sy|αv+βw]k

≤ W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[dα(u+v)+2βw22(u+v)+4βw|sx|αu+βw|sy|αv+βw]k

=
W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[4α(u+v)+2βw|dsx|αu+βw|dsy|αv+βw]k

=
W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[|4dsx|αu+βw|4dsy|αv+βw]k

=
W
d

∞

∑
r=1

u+v=r

∞

∑
w=1

|4dsx|αu+βw|4dsy|αv+βw

1−|4dsx|αu+βw|4dsy|αv+βw (4.130)
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where in the penultimate line we assumed that |4dsx|< ρ1 < ρ < 1 and that |4dsy|< ρ2 <
ρ < 1. When working over these refined polydiscs, the previous inequity becomes∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ W

d

∞

∑
r=1

u+v=r

∞

∑
w=1

|4dsx|αu+βw|4dsy|αv+βw

1−ρ2

≤ W
d(1−ρ)

∞

∑
r=1

u+v=r

∞

∑
w=1
|4dsx|αu+βw|4dsy|αv+βw

≤ W
d(1−ρ)

∞

∑
r=1

u+v=r

∞

∑
w=1

ρ
α(u+v)+2βw

≤ W
d(1−ρ)

∞

∑
r=1

u+v=r

ρ
α(u+v)

∞

∑
w=1

ρ
2βw

=
ρ2βW

d(1−ρ)(1−ρ2β )

[
∞

∑
u=0

ρ
αu

∞

∑
v=0

ρ
αv−1

]
=

ρ2βW
d(1−ρ)(1−ρ2β )

[
1

(1−ρα)2 −1
]

=
ρ2β [1− (1−ρα)2]W

d(1−ρ)(1−ρ2β )(1−ρα)2 . (4.131)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed∣∣∣∣ ∞

∑
p=1

m+n=p

∞

∑
k=1

(Hm,nxmyn)k
∣∣∣∣≤ ∞

∑
r=1

u+v=r

∞

∑
w=1

∞

∑
k=1

[M̃αu+βw,αv+βw]
k|x|(αu+βw)k|y|(αv+βw)k

=
ρ2β [1− (1−ρα)2]W

d(1−ρ)(1−ρ2β )(1−ρα)2 , (4.132)

whenever |4dsy|< ρ < 1 and |4dsy|< ρ < 1.

Therefore, an estimate for domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I + R̂m,nxmyn) is

D2 =
{
(x,y) ∈ C2 : |x|< 1

4ds
and |y|< 1

4ds

}
. (4.133)

Since O≤ |Hm,n| ≤ Sm,n≤ Rm,n≤ R̂m,n, Definition 4.4.4 implies that D2 is also an estimate

for the domain of absolute convergence of LT R
∞

∏
q=1

m+n=q

(I−Hm,nxmyn)−1 and of LT R
∞

∏
q=1

m+n=q

(I +

Sm,nxmyn)−1. We turn to concrete examples where F(x,y) is a scalar function.
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Example 4.6.2. Let α ≥ 0 and θm,n be a sequence of real numbers, where (m,n) ∈ N0×
N0 \{(0,0)} . Let

F(x,y) = 1+
∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)αxmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1, (4.134)

where hm,n ∈ C,(m,n) ∈ N0×N0 \{(0,0)} are scalar coefficients.

Let A be a d by d matrix. Consider the power series F(Ax,Ay) together with its IMPPE2
expansion

F(Ax,Ay) =I +
∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)αAm+nxmyn

=LT R
∞

∏
q=1

m+n=q

(I−hm,nAm+nxmyn)−1. (4.135)

Theorem 4.5.1 along with sup
m+n≥1

[m+n]
α

m+n = 3
α

3 implies that the IMPPE2 of Equation

(4.135) converges absolutely in the sense of inverse convergence over the domain

D1 = {(x,y) ∈ C2 : 2(3
α

3 )ρ(A)
(
|x|+ |y|

)
+2[(3

α

3 )ρ(A)]2|x||y|< 1},

and in the sense of Definition 4.4.4 in the polydiscs

D2 =
{
(x,y) ∈ C2 : |x|< 1

4(3
α

3 )ρ(A)
and |y|< 1

4(3
α

3 )ρ(A)

}
.

Now let B,C ∈Md(C) be two commuting diagonalizable matrices and consider the power
series F(Bx,Cy) together with its associated IMPPE2 expansion

F
(
Bx,Cy

)
=I +

∞

∑
p=1

m+n=p

exp(iθm,n)(m+n)α [Bx]m[Cy]n

=LT R
∞

∏
q=1

m+n=q

(
I−hm,n[Bx]m[Cy]n

)−1
. (4.136)

To determine the domain of convergence for the IMPPE2 of Equation (4.136) in the sense
of inverse convergence, we apply Theorem 4.5.2 [(2.)] with s = 3

α

3 to obtain

D=
{
(x,y) ∈ C2 : 2(3

α

3 )
[
ρ(B)|x|+ρ(C)|y|

]
+2(3

2α

3 )ρ(B)ρ(C)|x||y|< 1
}
, (4.137)
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and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 1

4(3
α

3 )ρ(B)
and |y|< 1

4(3
α

3 )ρ(C)

}
.

Example 4.6.3. Let p∈N and consider the scalar bivariate exponential function together
with its IPPE2 expansion

F(x,y) = exp(xy) = 1+
∞

∑
p=1

1
p!
(xy)p =

∞

∏
p=1

(1−hq(xy)q)−1, (4.138)

where hq ∈ C

Let A be a d by d matrix. Consider the power series F(Ax,Ay) together with its IMPPE2
expansion

F(Ax,Ay) = exp(A2xy) = I +
∞

∑
p=1

A2p

p!
(xy)p = LT R

∞

∏
p=1

(I−hqA2q(xy)q)−1.

By the Jordan-Chevalley decomposition [see [30], page 17], every matrix A ∈Md(C) can
be uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A =V +Q

The matrices V,Q ∈Md(C) satisfy the following properties:

1) V is diagonalizable and Q nilpotent, i.e.

T−1V T = D =


u1 0 · · · 0

0 u2 0
...

... 0
. . . 0

0 0 · · · ud

 ,Qd = O,

where u j, j = 1,2, . . . ,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. V Q =V Q,

3) V and Q are polynomials in A, i.e. ∃ p(x) s.t V = p(A) and Q = A− p(A).
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We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as

exp(A2) =
∞

∏
p=1

(I−hqA2q)−1

=exp[(V +Q)(V +Q)] = exp[V 2 +2QV +Q2] =
[

exp(V 2)
][

exp(2QV )
][

exp(Q2)
]

=

[
∞

∏
q=1

(I−hqV 2q)−1

][
d

∏
q=1

(I−hq[2QV ]2q)−1

][
d

∏
q=1

(I−hqQ2q)−1

]
. (4.139)

To determine the domain of convergence for exp(A2) = ∏
∞
q=1(I − hqA2q)−1, it suffices

to determine a domain of convergence for ∏
∞
q=1(I − hqV 2q)−1. Since sup

(
1
p!

) 1
p
= 1,

Theorem 4.5.1[(2.)] implies an estimate for the domain of convergence in the sense of
inverse convergence of ∏

∞
q=1(I−hqV 2q)−1 is

D1 =
{
(x,y) ∈ C2 : 4ρ(V )+2[ρ(V )]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of V . Since
2[ρ(V )]2 < 1, we deduce that

ρ(V )<
1√
2
.

A similar calculation shows that
ρ(A)<

1√
2
,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(A)
and |y|< 1

4ρ(A)

}
.

Now let B,C ∈ Md(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its IMPPE2 expansion

F(Bx,Cy) = exp(BCxy) = I +
∞

∑
p=1

(BC)p

p!
(xy)p = LT R

∞

∏
q=1

(I−hq(BCxy)q)−1.

To determine the domain of convergence for exp(BC) = ∏
∞
q=1(I− hq(BC)q)−1, we use

Theorem 4.5.2[(2.)], along with sup
(

1
p!

) 1
p
= 1, to obtain the following estimate in the

sense of inverse convergence:

D′1 = {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
+2ρ(B)ρ(C)< 1}.
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We may use this information to obtain an upper bound on the spectrum of B and C. Since
2ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
1
2
,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D′2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(B)
and |y|< 1

4ρ(C)

}
.

Example 4.6.4. Let A,B,C,∈Md(C), where B and C are diagonalizable with BC =CB 6=
O. The techniques of Example 4.6.3 may also be applied to other matrix function such as

I + log(I−A2), A−2 log(I−A2), cosA2, I + sinA2, A2 sinA2,

coshA2, I + sinhA2, A−2 tanA2, arccosA2, I + arcsinA2,

I + log(I−BC), BC log(I−BC), cosBC, I + sinBC, BC sinBC,

coshBC, I + sinhBC, BC tanBC, arccosBC, I + arcsinBC.

We will demonstrate these techniques for cosA2, cosBC, A2 sinA−2, and [BC]−1 sinBC,
leaving the rest to the reader. Let hq and ĥq be the scalar coefficients in the IPPE2 expan-
sions of the even scalar functions

cosxy = 1+
∞

∑
p=1

(−1)px2py2p

(2p)!
=

∞

∏
q=1

(1−hqx2qy2q)−1,

sinxy = xy
[

1+
∞

∑
p=1

(−1)px2py2p

(2p+1)!

]
= xy

∞

∏
q=1

(1− ĥqx2qy2q)−1.

First,

cosA2 = I +
∞

∑
p=1

(−1)pA4p

(2p)!
=

∞

∏
q=1

(I−hqA4q)−1. (4.140)

Since s := supp≥1

∣∣∣ (−1)p

(2p)!

∣∣∣ 1
p
= 1

2 , Theorem 4.5.1[(2.)] implies an estimate for domain of

convergence of
∞

∏
q=1

(I−hqA4q)−1 in the sense of inverse convergence is

D1 =

{
(x,y) ∈ C2 : 2ρ(A)+

1
2
[ρ(A)]2 < 1

}
.

166



We may use this information to obtain an upper bound on the spectrum of A. Since
1
2 [ρ(A)]

2 < 1, we deduce that
ρ(A)<

√
2,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 1

2ρ(A)
and |y|< 1

2ρ(A)

}
.

For

cosBC = I +
∞

∑
p=1

(−1)pB2pC2p

(2p)!
=

∞

∏
q=1

(I−hqB2qC2q)−1. (4.141)

Theorem 4.5.2[(2.)] implies an estimate for the domain of convergence of
∞

∏
q=1

(1−hqx2qy2q)−1

in the sense of inverse convergence is

D′1 = {(x,y) ∈ C2 :
[
ρ(B)+ρ(C)

]
+

1
2

ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
1
2 ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)< 2,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we

apply Theorem 4.5.2 [(3.)] to get

D′2 =
{
(x,y) ∈ C2 : |x|< 1

2ρ(B)
and |y|< 1

2ρ(C)

}
.

Next

sinA2 = A2
[

I +
∞

∑
p=1

(−1)pA4p

(2p+1)!

]
= A2

∞

∏
q=1

(I− ĥqA4q)−1. (4.142)

Since s := supp≥1

∣∣∣ (−1)p

(2p+1)!

∣∣∣ 1
p
= 1

6 , Theorem 4.5.1[(2.)] implies an estimate for domain of

convergence of
∞

∏
q=1

(I− ĥqA4q)−1 in the sense of inverse convergence is

D1 =

{
(x,y) ∈ C2 :

2
3

ρ(A)+
1
18

[ρ(A)]2 < 1
}
.
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We may use this information to obtain an upper bound on the spectrum of A. Since
1
18 [ρ(A)]

2 < 1, we deduce that
ρ(A)< 3

√
2,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 3

2ρ(A)
and |y|< 3

2ρ(A)

}
.

Finally it can be shown that an estimate for the domain of convergence of

sinBC = BC
[

I +
∞

∑
p=1

(−1)pB2pC2p

(2p+1)!

]
= BC

∞

∏
q=1

(I− ĥqB2pC2p)−1, (4.143)

in the sense of inverse convergence is

D′1 = {(x,y) ∈ C2 :
1
3
[
ρ(B)+ρ(C)

]
+

1
18

ρ(B)ρ(C)< 1},

and that

ρ(B) , ρ(C)< 18,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 3

2ρ(B)
and |y|< 3

2ρ(C)

}
.

Example 4.6.5. Consider the scalar bivariate exponential function together with its IPPE2
expansion

F(x,y) = exp(x+ y) = 1+
∞

∑
p=1

m+n=p

1
m!n!

xmyn =
∞

∏
q=1

m+n=q

(1−hm,nxmyn)−1, (4.144)

where hm,n ∈C. By the Jordan-Chevalley decomposition, every matrix A ∈Md(C) can be
uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A =V +Q

The matrices V,Q ∈Md(C) satisfy the following properties:
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1) V is diagonalizable and Q nilpotent, i.e.

T−1V T = D =


u1 0 · · · 0

0 u2 0
...

... 0
. . . 0

0 0 · · · ud

 ,Qd = O,

where u j, j = 1,2, . . . ,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. V Q =V Q,

3) V and Q are polynomials in A, i.e. ∃ p(x) s.t V = p(A) and Q = A− p(A).

We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as

exp(2A) =
∞

∏
q=1

m+n=q

(I−hm,nAm+n)−1

=exp(2V +2Q) = exp(2V )exp(2Q)

=

[
∞

∏
q=1

m+n=q

(I−hm,nV m+n)−1

][
d

∏
q=1

m+n=q

(I−hm,nQm+n)−1

]
. (4.145)

To determine the domain of convergence for exp(2A) =
∞

∏
q=1

m+n=q

(I−hm,nAm+n)−1, it suffices

to determine a domain of convergence for
∞

∏
q=1

m+n=q

(I−hm,nV m+n)−1. Since sup
m+n≥1

[ 1
m!n!

] 1
m+n =

1, Theorem 4.5.1[(2.)] implies an estimate for the domain of convergence of
∞

∏
q=1

m+n=q

(I−

hm,nV m+n)−1 in the sense of inverse convergence is

D1 =
{
(x,y) ∈ C2 : 4ρ(V )+2[ρ(V )]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of V . Since
2[ρ(V )]2 < 1, we deduce that

ρ(V )<
1√
2
.

A similar calculation shows that
ρ(A)<

1√
2
,
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and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(A)
and |y|< 1

4ρ(A)

}
.

Now let B,C ∈ Md(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its IMPPE2 expansion

F(Bx,Cy) = exp(Bx+Cy) = I +
∞

∑
p=1

m+n=p

BmCn

m!n!
xmyn

= LT R
∞

∏
q=1

m+n=q

(I−hm,nBmCnxmyn)−1.

To determine the domain of convergence for exp(B+C) =
∞

∏
q=1

m+n=q

(I− hm,nBmCn)−1, we

use Theorem 4.5.2, along with sup
m+n≥1

[ 1
m!n!

] 1
m+n = 1, to obtain the following estimate in

the sense of inverse convergence.

D′1 = {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
+2ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
1
2
,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D′2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(B)
and |y|< 1

4ρ(C)

}
.

Example 4.6.6. Let A,B,C,∈Md(C), where B and C are diagonalizable with BC =CB 6=
O. The techniques of Example 4.6.5 may also be applied to other matrix function such as

I + log(I−2A), (2A)−1 log(I−2A), cos2A, I + sin2A, 2Asin2A,

cosh2A, I + sinh2A, (2A)−1 tan2A, arccos2A, I + arcsin2A,

I + log(I− [B+C]), [B+C] log(I− [B+C]), cosB+C, I + sin(B+C),

[B+C]sin(B+C), cosh(B+C), I + sinh [B+C], [B+C] tan(B+C),

arccos(B+C), I + arcsin(B+C).
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We will demonstrate these techniques for cos2A, cos(B+C), [2A]−1 sin2A, and [B +
C]−1 sin(B+C), leaving the rest to the reader. Let hm,n and ĥm,n be the scalar coefficients
in the IPPE2 expansions of the even scalar functions

cos(x+ y) = 1+
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
xmyn =

∞

∏
q=1

m+n=2q

(1−hm,nxmyn)−1,

sin(x+ y) = (x+ y)

[
1+(x+ y)−1

∞

∑
n=1

(−1)n

(2n+1)!
(x+ y)2n+1

]

= (x+ y)

[
1+

∞

∑
n=1

(−1)n

(2n+1)!

2n

∑
j=0

(
2n
j

)
x jy2n− j

]

= (x+ y)
[

1+
∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
xmyn

]

= (x+ y)
∞

∏
q=1

m+n=2q

(1− ĥm,nxmyn)−1.

First,

cos2A = I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
Am+n =

∞

∏
q=1

m+n=2q

(I−hm,nAm+n)−1. (4.146)

Since s := sup
p≥1

m+n=2p

∣∣∣ (−1)
m+n

2

m!n!

∣∣∣ 1
m+n

= 1, Theorem 4.5.1 implies an estimate for domain of con-

vergence of
∞

∏
q=1

m+n=2q

(I−hm,nAm+n)−1 in the sense of inverse convergence is

D1 =
{
(x,y) ∈ C2 : 4ρ(A)+2[ρ(A)]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of A. Since
2[ρ(A)]2 < 1, we deduce that

ρ(A)<
1√
2
,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we

apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(A)
and |y|< 1

4ρ(A)

}
.
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For

cos(B+C) = I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

m!n!
BmCn =

∞

∏
q=1

m+n=2q

(I−hm,nBmCn)−1. (4.147)

Theorem 4.5.2 [(2.)] implies an estimate for the domain of convergence of
∞

∏
q=1

m+n=2q

(I −

hm,nBmCn)−1 in the sense of inverse convergence is

D′1 = {(x,y) ∈ C2 : 2
[
ρ(B)+ρ(C)

]
+2ρ(B)ρ(C)< 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2ρ(B)ρ(C)< 1, we deduce that

ρ(B) , ρ(C)<
1
2
.

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D′2 =
{
(x,y) ∈ C2 : |x|< 1

4ρ(B)
and |y|< 1

4ρ(C)

}
.

Next

sin2A = 2A
[

I +
∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
Am+n

]
= 2A

∞

∏
q=1

m+n=2q

(I− ĥm,nAm+n)−1. (4.148)

Since s := sup
p=1

m+n=2p

∣∣∣ (−1)
m+n

2

(m+n+1)!

(m+n
m

)∣∣∣ 1
m+n

= 1√
3
, Theorem 4.5.1 implies an estimate for domain

of convergence of
∞

∏
q=1

m+n=2q

(I− ĥm,nAm+n)−1 in the sense of inverse convergence is

D1 =

{
(x,y) ∈ C2 :

4√
3

ρ(A)+
2
3
[ρ(A)]2 < 1

}
.

We may use this information to obtain an upper bound on the spectrum of A. Since
2
3 [ρ(A)]

2 < 1, we deduce that

ρ(A)<

√
3√
2
.
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and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D2 =
{
(x,y) ∈ C2 : |x|<

√
3

4ρ(A)
and |y|<

√
3

4ρ(A)

}
.

Finally it can be shown that an estimate for the domain of convergence of

sin(B+C) =[B+C]

[
I +

∞

∑
p=1

m+n=2p

(−1)
m+n

2

(m+n+1)!

(
m+n

m

)
BmCn

]

=[B+C]
∞

∏
q=1

m+n=2q

(I− ĥm,nBmCn)−1, (4.149)

in the sense of inverse convergence is

D′1 = {(x,y) ∈ C2 :
2√
3

[
ρ(B)+ρ(C)

]
+

2
3

ρ(B)ρ(C)< 1},

and that

ρ(B) , ρ(C)<
3
2
,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D′2 =
{
(x,y) ∈ C2 : |x|<

√
3

4ρ(B)
and |y|<

√
3

4ρ(C)

}
.
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Appendix A

Double Series

In order to study the factorization of complex bivariate analytic function, we will need to
know some things about double series. As in the case of single series ∑n an we will define
convergence of a double series ∑m,n=0 am,n in terms of convergence of double sequence
(am,n)

∞
m,n=0.

A.1 Double sequence
This section on double sequences is meant to be used as a preparation for the upcoming
sections on double series.

A double sequence (in C) is a complex-valued function f whose domain of definition
is the set N2

0 =N0×N0 := {(m,n) : m,n ∈N0} and whose domain contained in C, where
N0 =N∪{0} and am,n = f (m,n) for all (m,n) ∈N2

0. We will denote double sequences by
(am,n)(m,n)∈N2

0
. The double sequence may also be written schematically as follows:

(am,n) =

a0,0 a0,1 . . . a0,n . . .
a1,0 a1,1 . . . a1,n . . .
...

...
...

...
am,0 am,1 . . . am,n . . .
...

...
...

...
. . .

Most of the results about a double sequence are analogues to results about a single se-
quence.

Definition A.1.1. [28]. We say that a complex double sequence (am,n) is convergent
if there exists a ∈ C satisfying the following condition: For every ε > 0, there exists
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(m0,n0) ∈ N2
0 such that

|am,n−a|< ε ∀ (m,n)� (m0,n0)

A double sequence that is not convergent is said to be divergent. In particular, if for
every α ∈R+, there is (m0,n0)∈N2

0 such that |am,n|> α for all (m,n)� (m0,n0), then we
say that (am,n) diverges to ∞ and we write am,n→ ∞. Similarly, (am,n) diverges to −∞ if
for every β ∈R+, there is (m0,n0)∈N2

0 such that am,n <−β for all (m,n)� (m0,n0). For
example, if (am,n) := 1/(m+n) if (m,n) ∈N2

0 \{(0,0)} and (am,n) := 0 if (m,n) = (0,0),
bm,n := m+n, and cm,n = (i)m+n for (m,n) ∈ N2

0, then am,n→ 0 and (bm,n) diverges to ∞,
while the double sequence (cm,n) is bounded, but divergent.

Theorem A.1.1. Suppose am,n = xm,n + iym,n and a = x+ iy. Then,

lim
(m,n)→(∞,∞)

am,n = a (A.1)

if and only if

lim
(m,n)→(∞,∞)

xm,n = x and lim
(m,n)→(∞,∞)

ym,n = y (A.2)

Proof. First, we suppose the condition (A.1) holds. Then, for each positive number ε

there is (m0,n0) ∈ N2
0 such that

|(xm,n + iym,n)− (x+ iy)|< ε, whenever (m,n)� (m0,n0).

Since,

|xm,n− x| ≤ |(xm,n− x)+ i(ym,n− y)|= |(xm,n + iym,n)− (x+ iy)|,

and

|ym,n− y| ≤ |(xm,n− x)+ i(ym,n− y)|= |(xm,n + iym,n)− (x+ iy)|,

consequently, we have

|xm,n− x|< ε and |ym,n− y|< ε, whenever (m,n)� (m0,n0).

Evidently, conditions (A.2) are satisfied.

Conversely, assume that conditions (A.2) hold. Then, there exist for each positive ε ,
(m1,n1),(m2,n2) ∈ N2

0 such that

|xm,n− x|< ε

2
, whenever (m,n)� (m1,n1),
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and

|ym,n− y|< ε

2
, whenever (m,n)� (m2,n2).

Let (m0,n0) = max
{
(m1,n1),(m2,n2)

}
. Then, we have

|xm,n− x|< ε

2
, and |ym,n− y|< ε

2
, whenever (m,n)� (m0,n0).

Since, ∣∣(xm,n + iym,n)− (x+ iy)
∣∣= ∣∣(xm,n− x)+ i(ym,n− y)

∣∣
≤
∣∣xm,n− x|+ |ym,n− y

∣∣.
Hence, ∣∣am,n−a

∣∣≤ ε

2
+

ε

2
= ε, whenever (m,n)� (m0,n0).

Thus, the condition A.2 holds. 2

The Limit Theorem for double sequences says that if am,n → a and bm,n → b, then
am,n + bm,n → a+ b, ram,n → ra for any r ∈ C, am,nbm,n → ab, and if a 6= 0, then there
is (m0,n0) ∈ N2

0 such that am,n 6= 0 for all (m,n) � (m0,n0) and 1/am,n → 1/a; further,
if there is (m1,n1) ∈ N2

0 such that am,n ≤ bm,n for all (m,n) � (m1,n1), then a ≤ b, and
if am,n ≥ 0 for all (m,n) ∈ N2

0, then a1/k
m,n → a1/k for any k ∈ N. Also, if am,n → a, then

|am,n| → |a|, but the converse does not hold unless a = 0.

Another useful result is the Sandwich Theorem for real double sequences: If (am,n),
(bm,n), and (cm,n) are real double sequences such that am,n ≤ cm,n ≤ bm,n, and if c ∈ C is
such that am,n→ c and bm,n→ c, then cm,n→ c as well.

A double sequence (am,n) is called a Cauchy double sequence if for every ε > 0,
there exists (m0,n0) ∈ N2

0 such that

|ap,q−am,n|< ε for all (m,n),(p,q)� (m0,n0).

The following result enables us to confirm that a double sequence converges without spec-
ifying its limit.

Theorem A.1.2. (Cauchy Criterion for Double Sequences)[28]. A double sequence is
convergent if and only if it is a Cauchy double sequence.

Proof. Let am,n → a as (m,n)→ (∞,∞) and let ε > 0. Then there exists (m0,n0) ∈ N2
0

such that |am,n−a|< ε for all (m,n)� (m0,n0). Hence,
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for all (p,q)� (m,n)� (m0,n0), we have

|ap,q−am,n|=|ap,q−a+a−am,n|
≤|ap,q−a|+ |am,n−a|

≤ε

2
+

ε

2
= ε.

Conversely, let (am,n) be a Cauchy double sequence and consider the subsequences (bn)
defined by bn := (an,n) for all n ∈ N0. Therefore, by Cauchy’s Criterion for single se-
quences, the sequence (bn) converges. Let bn→ b and let ε > 0 be given. Then there is
n ∈ N such that

|bn−b| ≤ ε

2
for all n≥ N. (A.3)

Since (an,m) is a Cauchy sequence, there exists (N′,N′)� (N,N) such that

|am,n−ap,q| ≤
ε

2
for all (m,n),(p,q)� (N′,N′). (A.4)

Then by (A.3) and (A.4) we have

|am,n−a| ≤ |am,n−aN′,N′ |+ |b′N−b|

<
ε

2
+

ε

2
= ε for all (m,n)� (N′,N). (A.5)

Hence, (an,m) converges to b. 2

To each double sequence (am,n) there corresponds three important limits; namely:

(i) lim(m,n)→(∞,∞) am,n.

(ii) limm→∞

(
limn→∞ am,n

)
.

(iii) limn→∞

(
limm→∞ am,n

)
.

The important question that is usually considered in this regard is the question of when
can we interchange the order of the limit for a double sequence an,m; that is, when the
limit (ii) above equals the limit (iii) above. The following result gives a necessary and
sufficient condition for the existence of an iterated limit of a convergent double sequence:

Theorem A.1.3. [28] (Iterated Limits of Double Sequences). Suppose (am,n) is a con-
vergent double sequence and let am,n→ a as m→ ∞ and n→ ∞.

(i) If limn→∞ am,n exists for each m ∈ N0, then the iterated limit

lim
m→∞

(
lim
n→∞

am,n
)
.

exists and it is equal to a.
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(ii) If limm→∞ am,n exists for each n ∈ N0, then the iterated limit

lim
n→∞

(
lim

m→∞
am,n

)
.

exists and it is equal to a

(iii) If the hypotheses in (i) and (ii) above hold, then the double sequence (am,n) is
bounded and

lim
m→∞

(
lim
n→∞

am,n
)
= a = lim

n→∞

(
lim

m→∞
am,n

)
.

Proof. Let am,n→ a as (m,n)→ (∞,∞) and let ε > 0 be given, then there exists (m0,n0)∈
N2

0 such that

|am,n−a|< ε

2
, ∀ (m,n)� (m0,n0).

Assume that limn→∞ am,n = bm exists for each m∈N0. We need to show that limm→∞ bm =
a for each m ∈ N0. Let ε > 0 be given, then for each m ∈ N0 there is km ∈ N0 such that

|am,n−bm|<
ε

2
∀ n≥ km.

Let m≥ m0, if we let n1 := max{n0,km}, then

|bm−a| ≤ |bm−am,n1 |+ |am,n1−a|< ε

2
+

ε

2
= ε

Hence, bm→ a as m→∞. This proves (i). The proof of (ii) is similar with an interchange
of the n and m symbols.

Suppose now that the hypotheses in (i) and (ii) hold. Since |am,n| → |a|, there exists
(m1,n1) ∈ N2

0 such that

|am,n|< 1+ |a| ∀ (m,n)� (m1,n1). 2

We give examples to show that if any of the hypotheses in the above proposition is
not satisfied, then the conclusion(s) may not hold.

Example A.1.1. (i) Let

am,n :=

{
(−1)m+n( 1

m + 1
n) for (m,n) ∈ N2

0 \S
0 for (m,n) ∈ S
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where S = {(0,0)}∪ {(m,0)}∪ {(0,n)}, m,n ∈ N. Since |am,n| ≤ 1/m+ 1/n for
(m,n) ∈ N2

0 \ {(0,0)}, we see that am,n → 0. However, limn→∞ am,n does not exist
for any fixed m ∈ N. Indeed,

am,n = (−1)m
[
(−1)n/n+(−1)m/m

]
for all (m,n) ∈ N2

0 \S.

and (−1)n/n→ 0 as n→ ∞, while limn→∞(−1)n/m does not exist.

(ii) Let

am,n :=

{
mn/(m2 +n2) for (m,n) ∈ N2

0 \S
0 for (m,n) ∈ S

where S = {(0,0)} ∪ {(m,0)} ∪ {(0,n)}, m,n ∈ N. Then for each fixed m ∈ N,
limn→∞ am,n exists and it is equal to 0, since |am,n| ≤ m/n for all n ∈ N. Similarly,
for each fixed n ∈ N, limm→∞ am,n exists and it is equal to 0. However, (am,n) is not
convergent, since (am,n) = 1/2 if m = n and am,n = 2/5 if m = 2n.

(iii) Let

am,n :=

{
m/(m+n) for (m,n) ∈ N2

0 \S
0 for (m,n) ∈ S

where S = {(0,0)}∪ {(m,0)}∪ {(0,n)}, m,n ∈ N. . Then for each fixed m ∈ N,
limn→∞ am,n = 0, and for each fixed m∈N, limm→∞ am,n = 1. Hence, limm→∞(limn→∞ am,n)=
0, whereas limn→∞(limm→∞ am,n) = 1. Notice that (am,n) is not convergent, since
am,n = 1/2 if m = n and am,n = 2/3 if m = 2n.

A.2 Monotone Double Sequences
In this section, we define increasing and decreasing sequences of real numbers and we
demonstrate a monotone convergence theorem for such sequences that are parallel to their
counterparts for single sequences.

Definition A.2.1. [28]. Let (am,n) be a double sequence of real numbers.

(i) If am,n ≤ am+1,n and am,n ≤ am,n+1 for all (m,n) ∈ N2
0, we that say the sequence is

monotonically increasing.

(ii) If am,n ≥ am+1,n and am,n ≥ am,n+1 for all (m,n) ∈ N2
0, we that say the sequence is

monotonically decreasing.
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Observe that a double sequence (am,n) is monotonically increasing if and only if

am,n ≤ ap,q for all (m,n),(p,q) ∈ N2
0 with (m,n)� (p,q).

Also, a double sequence (am,n) is monotonically increasing if and only if for each fixed
m ∈ N0, the sequence given by n→ am,n is (monotonically) increasing and for each fixed
n ∈ N0, the sequence given by m→ am,n is (monotonically) increasing. Likewise for
monotonically decreasing double sequences. A double sequence is said to be monotonic
if it is monotonically increasing or monotonically decreasing.

Theorem A.2.1. [28]. (Monotone Convergence Theorem) A monotone double sequence
of real numbers is convergent if and only if it is bounded. Further:

(i) A monotonically increasing double sequence (am,n) is convergent if and only if it is
bounded above. In this case,

am,n→ sup{am,n : (m,n) ∈ N2
0}

If (am,n) is monotonically increasing, but not bounded above, then am,n→ ∞.

(ii) A monotonically decreasing double sequence (am,n) is convergent if and only if it
is bounded below. In this case,

am,n→ inf{am,n : (m,n) ∈ N2
0}

If (am,n) is monotonically increasing, but not bounded below, then am,n→−∞.

Proof. Let (am,n) be a monotonically increasing double sequence. Suppose it is bounded
above, and let a := sup{am,n : (m,n) ∈ N2

0}. Given ε > 0, there is (m0,n0) ∈ N2
0 such

that a− ε < am0,n0 ( then a− ε is not an upper bound for the set sup{am,n : (m,n) ∈ N2
0}).

Hence

a− ε < am0,n0 ≤ am,n ≤ a < a+ ε for all (m,n)� (m0,n0).

Thus am,n→ a

Conversely, suppose (am,n) is convergent and am,n→ a. Then there is (m0,n0) ∈ N2
0

such that

am,n < a+1 for all (m,n)� (m0,n0).

Now given any (m,n) ∈ N2
0 , we have (m+m0,n+ n0) � (m,n) as well as (m+m0,n+

n0)� (m0,n0), and so

am,n ≤ am+m0,n+n0 < a+1.

Therefore, (am,n) is bounded above by a+ 1. If (am,n) is not bounded above, then given
α ∈ R, there is (m0,n0) ∈ N2

0 such that am0,n0 > α . But then am,n ≥ am0,n0 > α for all
(m,n)� (m0,n0). Thus am,n→∞. This completes the proof of (i). A similar proof can be
given for (ii). 2
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Corollary A.2.1. A monotonic double sequence (am,n) is convergent if and only if the
sequence (ap,p) of its diagonal terms is convergent. In this case,

lim
(m,n)→(∞,∞)

am,n = lim
p→∞

ap,p.

Proof. Suppose (am,n) is a monotonically decreasing sequence. For any (m,n) ∈ N2
0

we let p := max{m,n}, then am,n ≥ ap,p . Consequently, {am,n : (m,n) ∈ N2
0} is bounded

below if and only if {ap,p : p ∈N0} is bounded below, and in this case, inf{am,n : (m,n) ∈
N2

0} = inf{ap,p : p ∈ N0}. Hence Theorem A.2.1 yields the desired result. The case of
when (am,n) is a monotonically increasing double sequence is proved similarly. 2

A.3 Convergence of Double Series
Let (ak,`) be a double sequence of complex numbers, we define ∑∑(k,`) ak,` as a double
indexed infinite series of complex numbers. We define the associated sequence of partial
sums (sm,n) via the finite sum

sm,n =
m

∑
k=0

n

∑
`=0

ak,` = ∑
0≤k≤m
0≤`≤n

ak,` = (a0,0 + · · ·+a0,n)+ · · ·+(am,0 + · · ·+am,n),

for all (m,n) ∈ N2
0. Moreover, we have

ak,` = sk,`− sk,`−1− sk−1,`+ sk−1,`−1 ∀ (k, `) ∈ N2
0,

where sk,−1 := 0 for all k = 0,1,2, . . . and s−1,` := 0 for all `= 0,1,2, . . . .

We say that a double series ∑∑(k,`) ak,` is convergent to the sum s if
limm,n→∞ sm,n = s. If no such limit exists, we say that the double series
∑∑(k,`) ak,` is divergent.

By considering the real and imaginary parts, we see that the series ∑∑(k,`) ak,` con-
verges if and only if both ∑∑(k,`) Re(ak,`) and ∑∑(k,`) Im(ak,`) converge. If this is the
case, then

∑∑(k,`) ak,` = ∑∑(k,`) Re(ak,`)+ i
(

∑∑(k,`) Im(ak,`)

)
.

Indeed, for any (m,n) ∈ N2
0, sm,n = Resm,n + i Imsm,n, and sm,n converges if and only

if both sm,n = Resm,n and sm,n = Imsm,n converge.

As with single series, a simple and useful way to demonstrate that a double series is
divergent is to use the following test, which gives a necessary condition for a double series
convergence:
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Theorem A.3.1. ((k, `)th Term Test)[28]. If ∑∑(k,`) ak,` is convergent, then ak,`→ 0 as
k, `→ ∞. In other words, if ak,` 9 0 as k, `→ ∞, then ∑∑(k,`) ak,` is divergent.

Proof. Let ∑∑(k,`) ak,` be a convergent double series. If (sk,`) is the double sequence of
its partial double sums, such that sk,`→ a as (k, `)→ (∞,∞). So given ε > 0, there exists
(k0, `0) ∈ N2

0 such that

|sk,`−a| ≤ ε

4
∀ (k, `)� (k0, `0),

then we have

|ak,`|= |sk,`− sk,`−1− sk−1,`+ sk−1,`−1|
≤ |sk,`−a|+ |sk,`−1−a|+ |sk−1,`−a|+ |sk−1,`−1−a|

<
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

Therefore, ak,`→ 0 as (k, `)→ (∞,∞). 2

The following result gives a sufficient condition for the convergence of certain “prod-
uct series,” and is often helpful:

Theorem A.3.2. [28]. Let ∑k bk and ∑` c` be series of real numbers and let ak,` = bkc`
for (k, `) ∈ N2

0. Then the following results hold:

(i) If ∑k bk and ∑` c` are both convergent, then the double series
∑∑(k,`) a(k,`) is convergent and moreover, ∑∑(k,`) a(k,`) = ∑k bk ∑` c`.

(ii) If ∑k bk and ∑` c` are both diverge to ∞, then the double series
∑∑(k,`) a(k,`) diverges to ∞.

(iii) If ∑k bk converges to B 6= 0, while ∑` c` is divergent, then the double series ∑∑(k,`) a(k,`)
is divergent.

Proof. Let (Bm) and (Cn) denote the sequences of partial sums of the series ∑k bk and
∑` c` respectively. Also, let (sm,n) denote the double sequence of partial double sums of
∑∑(k,`) a(k,`). Then

sm,n =

( m

∑
k=0

bk

)( n

∑
`=0

c`

)
= BmCn ∀ (m,n) ∈ N2

0.

Therefore, if Bm→ b and Cm→ c for all b,c ∈ C, then sm,n→ bc. Also, if Bm→ ∞ and
Cm→ ∞, then sm,n→ ∞. This proves (i) and (ii) Moreover, if Bm→ b with b 6= 0 and if
the double sequence (sm,n) converges to s, then (Cn) converges to s/b. This proves (iii).
2
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Example A.3.1. [28].

(i) (Geometric Double Series) Let x,y ∈ C. Define ak,` := xky` for k, ` ∈ N0. The
double series ∑∑(k,`) a(k,`), where the index (k, `) varies over pairs of non-negative
integers is called the geometric double series. Hence from part (i) of Theorem
A.3.2, we see that the geometric double series is convergent if |x|< 1 and |y|< 1;
moreover,

∑∑(k,`)ak,` = ∑∑(k,`)�(0,0)x
ky`

=
1

(1− x)(1− y)
for |x|< 1 and |y|< 1.

Further, if |x| ≥ 1 and |y| ≥ 1, then |xky`| = |x|k|y|` ≥ 1 for all k, l ∈ N0. Hence
from the (k, l)th Term Test (Theorem A.3.1), we see that the geometric double series
is divergent. Finally, since 1

1−z is nonzero whenever z ∈ C with |z| < 1, it follows
from part (iii) of Theorem A.3.2 that if only one of |x| and |y| is less than 1, then
the geometric double series is divergent. Thus we see that geometric double series
∑∑(k,`)ak,` is convergent if and only if |x|< 1 and |y|< 1.

(ii) (Exponential Double Series) Let x,y ∈ C. Define ak,` =
xky`
k!`! for k, ` ∈ N0. The

double series ∑∑(k,`)ak,`, is called the exponential double series. From part (i) of
Theorem A.3.2, we readily see that the exponential double series is always conver-
gent and

∑∑(k,`)ak,` = ∑∑(k,`)�(0,0)
xk

k!
y`

`!
= exp(x)exp(y) = exp(x+ y) for x,y ∈ C.

(iii) (Harmonic Double Series and Their Variants) The double series

∑∑(k,`)
1

(k+1)(`+1) can be regarded as analogues of the harmonic series

∑k=0
1

k+1 , and either of the two double series may be referred to as a harmonic
double series. We know from the theory of (single) series that the harmonic series
diverges to ∞. Hence by part (ii) of Theorem A.3.2, we see that the double series
∑∑(k,`)

1
(k+1)(`+1) diverges to ∞. More generally, for any p ∈ R, we know that the

series ∑k=0 1/(k+1)p is convergent for p > 1 and it diverges to ∞ for p≤ 1. Thus,
using parts (i), (ii), and (iii) of Theorem A.3.2, we see that for any p,q ∈ R,

∑∑
(k,`)

1
(k+1)p(1+ `)q ⇐⇒ p > 1 and q > 1.
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As for the other version of the harmonic series, namely the double series ∑∑(k,`) 1(k+
`+2), we also find that it diverges to ∞, since

m

∑
k=0

n

∑
`=0

1
(k+ `+2)

≥ 1
2

m

∑
k=0

n

∑
`=0

1
(k+1)(`+1)

for all (m,n) ∈ N2
0.

Next, we consider the series ∑∑(k,`) 1/(k + `+ 2)2. For n ∈ N0, the terms of a
double sequences (ak,`) = 1/(k+ `+2)2 are given schematically as follows:

(ak,`) =

1
4

1
9

1
16

1
25

1
36

1
49 . . .

1
9

1
16

1
25

1
36

1
49

1
64 . . .

1
16

1
25

1
36

1
49

1
64

1
81 . . .

1
25

1
36

1
49

1
64

1
81

1
100 . . .

1
36

1
49

1
64

1
81

1
100

1
121 . . .

1
49

1
64

1
81

1
100

1
121

1
144 . . .

...
...

...
...

...
...

. . .

Summing the terms (ak,`) = 1/(k+ `+2)2 diagonally shows that

∑∑
(k,`)

1/(k+ `+2)2 =
∞

∑
n=2

n−1
n2 .

Thus the double series ∑∑(k,`) 1/(k+ `+2)2 diverges to ∞. This indicates that the
threshold for the convergence of ∑∑(k,`) 1/(k+ `+2)p is not p = 1.

The following statements concerning the convergence of a double series are extracted
from the corresponding statements for the convergence of a double sequence given in
Section A.1:

(i) (Limit Theorem) Let ∑∑(k,`)ak,` = A and ∑∑(k,`)bk,` = B. Then ∑∑(k,`)(ak,`+
ak,`) = A+B and ∑∑(k,`)(rak,`) = rA for any r ∈ C. Further, if ak,` ≤ bk,` for all
(k, `) ∈ N2, then A≤ B.

(ii) (Sandwich Theorem) If (ak,l), (bk,l), and (ck,l) are double sequences of real num-
bers such that ak,l ≤ ck,l ≤ bk,l for each (k, `) ∈ N2

0, and further if ∑∑(k,`)ak,` = A
as well as ∑∑(k,`)bk,` = A, then ∑∑(k,`)ck,` = A.

(iii) (Cauchy Criterion) Consider the associated sequence sm,n =
m
∑

k=0

n
∑
`=0

ak,` of partial

sums of ∑∑(k,`)ak,`. the given series converges if and only if its sequences of
partial summs sm,n is convergent and that is convergent if and only if it is Cauchy
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(Theorem A.1.2). Thus ∑∑(k,`)ak,` is convergent if and only if for ε > 0 there exists
(m0,n0) ∈ N2

0 such that

|sp,q− sm,n|< ε for all (m,n)� (p,q)� (m0,n0).

But for (m,n)� (p,q), we have

|sp,q− sm,n|=
∣∣∣∣ m

∑
k=p+1

n

∑
`=q+1

ak,`+
p

∑
k=1

n

∑
`=1

ak,`+
m

∑
k=p+1

q

∑
`=1

ak,`

∣∣∣∣< ε.

We will now relate the convergence of a double series ∑∑(k,`)ak,` to the convergence
of the two series ∑

∞
k=0
(

∑
∞
`=0 ak,`

)
and ∑

∞
`=0
(

∑
∞
k=0 ak,`

)
. For each fixed k∈N0, the (single)

series ∑` ak,` is called a row-series, and for each fixed ` ∈N0, the (single) series ∑k ak,` is
called a column-series

(
corresponding to the double series ∑∑(k,`)ak,`

)
.

Theorem A.3.3. [28]. (Fubini’s Theorem for Double Series)
Assume that ∑∑(k,`)ak,` is a convergent double series and let s denote its double sum.

(i) If each row-series is convergent, then the corresponding iterated series ∑
∞
k=0(∑

∞
`=0 ak,`)

is convergent and its sum is equal to s.

(ii) If each column-series is convergent, then the corresponding iterated series ∑
∞
`=0(∑

∞
k=0 ak,`)

is convergent and its sum is equal to s.

(iii) If each row-series as well as each column-series is convergent, then the double
sequence of partial double sums of ∑∑(k,`)ak,` is bounded, and

∞

∑
k=0

(
∞

∑
`=0

ak,`) = ∑∑(k,`)ak,` =
∞

∑
`=0

(
∞

∑
k=0

ak,`)

Proof. Let sm,n be the double sequence of partial double sums of ∑∑(k,`)ak,`. By our
assumption, sm,n→ s.

Suppose each row-series is convergent. Then for each fixed m ∈ N0,

sm := lim
n→∞

sm,n = lim
n→∞

m

∑
k=0

n

∑
`=0

ak,` =
m

∑
k=0

(
lim
n→∞

n

∑
`=0

ak,`

)
=

m

∑
k=0

(
∞

∑
`=0

ak,`

)
.

Hence by Theorem A.1.3, the iterated limit lim
m→∞

( lim
n→∞

sm,n) exists and is equal to s, that is,

lim
m→∞

m

∑
k=0

(
∞

∑
`=0

ak,`

)
= s.

185



Thus the iterated series lim
m→∞

( lim
n→∞

sm,n) converges and its sum equals s. This proves (i).
The proof of (ii) is similar.

Finally, suppose each row-series as well as each column-series is convergent. Then
for each fixed m ∈ N0, the limit limn→∞ sm,n exists, and for each fixed n ∈ N0, the limit
limm→∞ sm,n exists. Hence by part (iii) of Theorem A.1.3, sm,n is bounded. The last part
of (iii) follows from (i) and (ii). 2

Example A.3.2. [28].

(i) Even if a double series ∑∑(k,`)ak,` converges, both the iterated series may diverge.
For instance, consider a double sequences (ak,l), (sm,n) given schematically as
follows:

(ak,`) =

1 1 1 1 . . .
1 −3 −1 −1 . . .
1 −1 0 0 . . .
1 −1 0 0 . . .
...

...
...

...
. . .

(sm,n) =

1 2 3 4 . . . → ∞

2 0 0 0 . . . → 0
3 0 0 0 . . . → 0
4 0 0 0 . . . → 0
...

...
...

...
. . . ↓

↓ ↓ ↓ ↓ ↘ 0
∞ 0 0 0 → 0 0

Then s0,n = n for all n ∈ N0 and sm,0 = m for all m ∈ N0,while sm,n = 0 for all
m,n > 0. Hence ∑∑(k,`)ak,` = lim(m,n)→(∞,∞) sm,n = 0. But ∑

n
`=0 a0,` = n for all

n ∈ N and ∑
n
`=0 a1,` = −n for all n ≥ 1, while ∑

m
k=0 ak,0 = m for all m ∈ N and

∑
m
k=0 ak,1 =−m or all m≥ 1. Hence ∑

∞
`=0 a0,` and ∑

∞
k=0 ak,0 diverge to ∞, whereas

∑
∞
`=0 a1,` and ∑

∞
k=0 ak,1 diverge to −∞. Clearly, none of the iterated series is even

well defined.

(ii) Even if both iterated series ∑
∞
k=0(∑

∞
`=0 ak,`) and ∑

∞
`=0(∑

∞
k=0 ak,`) converge and have

the same sum, the double series may diverge. For example, consider a double
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sequences (ak,`), (sm,n) given schematically as follows:

(ak,`) =

2 0 −1 0 0 0 . . .
0 2 0 −1 0 0 . . .
−1 0 2 0 −1 0 . . .
0 −1 0 2 0 −1 . . .
0 0 −1 0 2 0 . . .
...

...
...

...
...

. . .

(sm,n) =

2 2 1 1 1 1 . . . → 1
2 4 3 2 2 2 . . . → 2
1 3 4 3 2 2 . . . → 2
1 2 3 4 3 2 . . . → 2
1 2 2 3 4 3 . . . → 2
...

...
...

...
...

...
. . . ↓

↓ ↓ ↓ ↓ ↓ ↓ ↘ 2
1 2 2 2 2 2 → 2 4

Then ∑
∞
`=0 ak,` is equal to 1 if k = 0 or 1, and it is equal to 0 if k ≥ 2. Simi-

larly, ∑
∞
k=0 ak,` is equal to 1 if ` = 0 or 1, and it is equal to 0 if ` ≥ 2. Thus

∑
∞
k=0(∑

∞
`=0 ak,`)= 2=∑

∞
`=0(∑

∞
k=0 ak,`). But sm,n = 4 for all m= n≥ 1 and sm,m−1 =

3 for all m≥ 2, so that the double sequence (sm,n) is divergent, that is, the double
series ∑∑(k,`)ak,` is divergent.

(iii) Even if both iterated series ∑
∞
k=0(∑

∞
`=0 ak,`) and ∑

∞
`=0(∑

∞
k=0 ak,`) converge, their

sums may be unequal. For example, consider a double sequences (ak,l), (sm,n)
given schematically as follows:

(ak,`) =

0 1 0 0 0 . . .
−1 0 1 0 0 . . .
0 −1 0 1 0 . . .
0 0 −1 0 1 . . .
...

...
...

...
...

. . .
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(sm,n) =

0 1 1 1 . . . → 1
−1 0 1 1 . . . → 1
−1 −1 0 1 . . . → 1
−1 −1 −1 0 . . . → 1
...

...
...

...
. . . ↓

↓ ↓ ↓ ↓ ↘ 1
−1 −1 −1 −1 → −1 0

Then ∑
∞
`=0 ak,` is equal to 1 if k = 0 and it is equal to 0 if k ≥ 1, whereas ∑

∞
k=0 ak,`

is equal to −1 if ` = 0 and it is equal to 0 if ` ≥ 1. Hence ∑
∞
k=0(∑

∞
`=0 ak,`) = 1 ,

while ∑
∞
`=0(∑

∞
k=0 ak,`) =−1. Since sm,m = 0 for all m ∈ N0, sm,n = 1 for all m < n

and sm,n =−1 for all m > n, then ∑∑(k,`)ak,` is divergent.

A.4 Cauchy Product of Double Series
The Cauchy product of sequences (ak) and (bk) with k ∈N0, is defined to be the sequence
(ak ∗bk), where ak ∗bk := ∑

k
i=0 aibk−i for k ∈ N0 and the Cauchy product of single series

∑k=0 ak and ∑k=0 bk is defined to be the double series ∑k=0 ak ∗ bk . Analogously, the
Cauchy product of double sequences (ak,`) and (bk,`) with (k, `) ∈N2

0, is defined to be the
sequence (ak,` ∗bk,`) defined as

(ak,` ∗bk,`) =
k

∑
i=0

`

∑
j=0

ai, jbk−i,`− j for all (k, `) ∈ N2
0,

and the Cauchy product of double series ∑
∞
k,`=0 ak,` and ∑

∞
k,`=0 bk,` is defined to be the

double series ∑
∞
k,`=0 ak,` ∗bk,`. A classical result of Mertens states that if one of the given

single series is absolutely convergent and the other is convergent, then their Cauchy prod-
uct series is convergent. Another result due to Abel states that if both the given single
series and their Cauchy product series are convergent, then the sum of the Cauchy prod-
uct series is equal to the product of the sums of the given series. It has been known for long
that the exact analogue of Mertens’ result does not hold for double series. The example
below shows that the exact analogue of Abel’s result does not hold for double series.

Example A.4.1. Consider a double sequences (ak,`),(bk,`)given schematically as follows:

(ak,`) =

1 1 1 1 1 . . .
−1 −1 −1 −1 −1 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .
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(bk,`) =

1 −1 0 0 0 . . .
1 −1 0 0 0 . . .
1 −1 0 0 0 . . .
1 −1 0 0 0 . . .
...

...
...

...
...

. . .

Then, the double series ∑k,`=0 ak,`, ∑k,`=0 bk,` are convergent, and the sum of each is equal
to 0. Also, it is easy to see that

(ak,` ∗bk,`) =

1 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .

so that ∑k,`=0 ak,` ∗bk,` is convergent, and its sum is 1.

A.5 Double Series with Non-negative Terms
The following necessary and sufficient condition for the convergence of a double series
with non-negative terms is very useful:

Theorem A.5.1. [28]. Let (ak,l) be a real double sequence such that ak,l ≥ 0 for all
(k, l) ∈ N2

0 . Then ∑∑(k,`)ak,` is convergent if and only if the double sequence (sm,n) of its
partial double sums is bounded above, and in this case

∑∑(k,`)ak,` = sup{sm,n : (m,n) ∈ N2
0}.

If (sm,n) is not bounded above, then ∑∑(k,`)ak,` diverges to ∞.

Proof. Let ∑∑(k,`)ak,` be a double series with ak,` ≥ 0 ∀ (k, `) ∈ N2
0, then we have

sm+1,n = sm,n+am+1,1+ · · ·+am+1,n≥ sm,n and sm,n+1 = sm,n+a1,n+1+ · · ·+am,n+1≥ sm,n

for all (m,n)∈N2
0. Hence the double sequence (sm,n) is monotonically increasing. By part

(i) of Theorem (A.2.1), we see that (sm,n) is convergent if and only if it is bounded above,
and in this case

∑∑(k,`)ak,` = lim
(m,n)→(∞,∞)

sm,n = sup{sm,n : (m,n) ∈ N2
0}.

Moreover, if (sm,n) is not bounded above, then sm,n→∞, that is, the double series ∑∑(k,`)ak,`
diverges to ∞. 2
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The previous theorem shows that if a double series ∑∑(k,`)ak,` with non-negative terms
is convergent and s is its double sum, then the double sequence (ak,l) of its terms as well
as the double sequence (sm,n) of its partial double sums is bounded. This follows by
observing that in this case, 0≤ ak,l ≤ sk,l ≤ s for all (k, `) ∈ N2

0.

Corollary A.5.1. [28]. A double series of non-negative terms ∑∑(k,`)ak,` either converges
to a finite number s or else it diverges properly to ∞.

A result similar to Theorem A.5.1 holds for double series with non-positive terms.
More generally, when the terms ak,l have the same sign except possibly for a finite number
of them, then ∑∑(k,`)ak,` is convergent if and only if (sm,n) is bounded. However, if
infinitely many ak,l’s are positive and infinitely many ak,l’s are negative, then ∑∑(k,`)ak,`
may diverge even though (sm,n) is bounded, and (sm,n) may be unbounded even though
∑∑(k,`)ak,` is convergent. These two statements are illustrated respectively by the double
series given schematically as follows:

(ak,`) =

1 0 0 0 . . .
−1 0 0 0 . . .
1 0 0 0 . . .
−1 0 0 0 . . .
...

...
...

...
. . .

and (bk,`) =

1 −1 0 0 . . .
1 −1 0 0 . . .
1 −1 0 0 . . .
1 −1 0 0 . . .
...

...
...

...
. . .

For double series with nonnegative terms, the following result is an improvement over
Fubini’s Theorem for double series (Theorem A.3.3):

Theorem A.5.2. (Tonelli’s Theorem for Double Series)[28]. Let (ak,l) be a double se-
quence such that ak,l ≥ 0 for all (k, l)∈N2

0 . Then the following statements are equivalent.

(i) The double series ∑∑(k,`)ak,` is convergent.

(ii) Each row-series is convergent and the iterated series ∑
∞
k=0(∑

∞
`=0 ak,`) is convergent.

(iii) Each column-series is convergent and the iterated series ∑
∞
`=0(∑

∞
k=0 ak,`) is con-

vergent.

In this case,

∞

∑
k=0

(
∞

∑
`=0

ak,`) = ∑∑(k,`)ak,` =
∞

∑
`=0

(
∞

∑
k=0

ak,`)

Proof. Suppose (i) holds. If ∑∑(k,`)ak,` = s, then in view of Theorem A.5.1, ∑
n
`=1 ak,` ≤

sk,n ≤ s for each fixed k ∈ N0 and all n ∈ N. Thus each row-series is a (single) series
with non-negative terms whose partial sums are bounded, and hence it is convergent. By
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Fubini’s Theorem (Theorem A.3.3), it follows that the iterated series ∑
∞
k=0
(

∑
∞
`=0 ak,`

)
is

convergent and its sum is equal to s.

Suppose (ii) holds. Then for

sm,n =
m

∑
k=0

n

∑
`=0

ak.` ≤
m

∑
k=0

(
∞

∑
`=0

ak.`

)
≤

∞

∑
k=0

(
∞

∑
`=0

ak.`

)
= a.

Therefore, by Theorem A.5.1 the double series ∑∑(k,`)ak,` is convergent.

This establishes the equivalence of the statements (i) and (ii). The proof of the equiv-
alence of the statements (i) and (iii) is similar. The equality of the double sum and the
sum of either of the two iterated series is also established in this process. 2

Examples A.3.2 show that the non-negativity of the terms of the double series in
Tonelli’s Theorem cannot be omitted. The question of the convergence of a double series
∑∑(k,`)ak,` with non-negative terms can be reduced to the question of the convergence of
each of the following two (single) series, which correspond to summing the double series
∑∑(k,`)ak,` “by squares” or “by diagonals” as illustrated in Figure 1.

1. The (single) series ∑
∞
j=0 b j where for each j ∈ N0, b j is the sum of all those terms

ak,` such that one of k and ` is equal to j and the other is at most j, that is, b j :=
∑

j
i=0 ai, j +∑

j−1
i=0 a j,i. Thus b0 = a0,0,b1 = a0,1+a1,1+a1,0,b2 = a0,2+a1,2+a2,2+

a2,0 +a2,1, and so on.

2. The (single) series ∑
∞
j=0 c j where for each j ∈ N0, c j is the sum of all those terms

ak,l such that k+`= j, that is, c j :=∑
j
i=0 a j−i,i. Thus c0 = a0,0,c1 = a1,0+a0,1,c2 =

a2,0 +a1,1 +a0,2, and so on.

a0,0 a0,1 a0,2 . . .

a1,0 a1,1 a1,2 . . .

a2,0 a2,1 a2,2 . . .

...
...

...
. . .

a0,0 a0,1 a0,2 . . .

a1,0 a1,1 a1,2 . . .

a2,0 . . . . . . . . .

...
...

...
. . .

Figure A.1: Summing a double series “by squares” and “by diagonals.” .
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The series ∑
∞
j=0 c j is sometimes referred to as the diagonal series corresponding to the

double series ∑∑(k,`)ak,`.

Theorem A.5.3. [28]. Let ∑∑(k,`)ak,` be a double series with non-negative terms, and
b j,c j be as above. Then the following statements are equivalent.

(i) (Summing by Rectangles) ∑∑(k,`)ak,` is convergent.

(ii) (Summing by Squares) ∑
∞
j=0 b j is convergent.

(iii) (Summing by Diagonals) ∑
∞
j=0 c j is convergent.

In this case,

∑∑(k,`)ak,` =
∞

∑
j=0

b j =
∞

∑
j=0

c j.

Proof. Let sm,n := ∑
m
k=0 ∑

n
`=0 ak,` be the double partial sum of the series ∑∑(k,`) ak,`, and

also let Bn := ∑
n
j=0 b j be the partial sum of the series ∑

∞
j=0 b j. Then by the definition

of b j, we have Bn = sn,n for all n ∈ N0.Thus, in view of Corollary A.2.1, (i) and (ii) are
equivalent, and in this case

∑∑(k,`)ak,` = sup{sm,n : (m,n) ∈ N2
0}= sup{Bn = sn,n : n ∈ N0}=

∞

∑
j=0

b j.

Next, for n ∈ N0, let Cn := ∑
n
j=0 c j be the partial sum series of the diagonal series

∑
∞
j=0 c j, where k+`= n. Then k≤ n and `≤ n. This implies that Cn ≤ sn,n for all n ∈N0.

Also, for any (k, `) ∈ N2
0 with (k, `) � (m,n) we have k+ ` ≤ m+ n = (m+ n− 1)+ 1.

This implies that sm,n ≤Cm+n−1 for all (m,n) ∈N2
0. In view of these relations, we see that

(i) and (iii) are equivalent, and in this case

∑∑(k,`)ak,` = sup{sm,n : (m,n) ∈ N2
0}= sup{Cn : n ∈ N0}=

∞

∑
j=0

c j. 2

Example A.5.1. [28]

(i) Let p> 0 and for (k, `)∈N2
0, let ak,l := 1/(k+ l+1)p. Then c j =∑

j
i=0 1/( j+1)p =

j/( j+1)p for j ∈ N0. Since

1
2( j+1)p−1 ≤

j
( j+1)p <

1
( j+1)p−1 for all j ∈ N0.

The series ∑
∞
j=0 c j is convergent if and only if p > 2. So by Theorem A.5.3 , we see

that ∑∑(k,`)1/(k+ `+1)p is convergent if and only if p > 2.
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(ii) Since sm,n → s as (m,n)→ (∞,∞) implies that sn,n → s as n→ ∞, we see that in
Theorem A.5.3 the statement (i) implies the statement (ii) irrespective of the sign
of the terms of the double series. However, the converse does not hold in general,
as Example A.3.2 (ii) shows. In this example, sn,n = 4 for all m = n ≥ 1, so that
∑

∞
j=0 b j = 4. However, the double series does not converge. This follows by noting

that sn,n+1 = 3 for n≥ 1.

(iii) Let a double sequence (ak,l) be schematically given as follows:

(ak,`) =

0 1 1 1 1 . . .
1 −2 −1 −1 −1 . . .
0 0 0 0 0 . . .
1 −1 0 0 0 . . .
0 0 0 0 0 . . .
1 −1 0 0 0 . . .
...

...
...

...
...

. . .

(sm,n) =

0 1 2 3 4 . . . → ∞

1 0 0 0 0 . . . → 0
1 0 0 0 0 . . . → 0
2 0 0 0 0 . . . → 0
2 0 0 0 0 . . . → 0
...

...
...

...
...

. . . ↓
↓ ↓ ↓ ↓ ↓ ↘ 0
∞ 0 0 0 0 → 0 0

Here sm,n = 0 for all m,n ≥ 1 and so ∑∑(k,`)ak,` is convergent and its double sum
is equal to 0. However, since c0 = 0,c1 = 2 and c j = (−1) j for j ≥ 2, we see that
∑

∞
j=0 c j is divergent. On the other hand, Example A.3.2 (ii) shows that ∑∑(k,`)ak,`

may be divergent, while ∑
∞
j=0 c j is convergent. In this example we note that c0 = 2

and c j = 0 ∀ j ≥ 1, so that ∑
∞
j=0 c j = 2. It is also possible that both ∑∑(k,`)ak,`

and ∑
∞
j=0 c j are convergent but the double sum is not equal to the “sum by diago-

nals.” To illustrate this, consider the double sequence (ak,`) schematically given as
follows:

(ak,`) =

1 1 1 1 1 . . .
1 −1 −1 −1 −1 . . .
1 −1 0 0 0 . . .
1 −1 0 0 0 . . .
1 −1 0 0 0 . . .
...

...
...

...
...

. . .
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(sm,n) =

1 2 3 4 5 . . . → ∞

2 2 2 2 2 . . . → 2
3 2 2 2 2 . . . → 2
4 2 2 2 2 . . . → 2
5 2 2 2 2 . . . → 2
...

...
...

...
...

. . . ↓
↓ ↓ ↓ ↓ ↓ ↘ 2
∞ 2 2 2 2 → 2 2

Here sm,n = 2 for m = n ≥ 1, and so the double sum is equal to 2. But since
c0 = 1,c1 = 2,c2 = 1,c j = 0 ∀ j ≥ 3, we have ∑

∞
j=0 c j = 4.

A.6 Absolute Convergence of Double Series
This section addresses the convergence and divergence of the double series
∑∑(k,`)|ak,`| formed by considering the absolute values of the terms of a double series
∑∑(k,`)ak,`. A double series ∑∑(k,`)ak,` is said to be absolutely convergent if the double
series ∑∑(k,`)|ak,`| is convergent.

Theorem A.6.1. [28]. An absolutely convergent double series is convergent.

Proof. Let ∑∑(k,`)ak,` be an absolutely convergent double series. For each (k, `)∈N2
0,

define

a+k,` :=
|ak,`|+ak,`

2
and a−k,` :=

|ak,`|−ak,`

2
.

Let (sm,n), (s+m,n), (s
−
m,n), and (s̃m,n) denote the double sequences of

∑∑(k,`)ak,`, ∑∑(k,`)a
+
k,`, ∑∑(k,`)a

−
k,`, and ∑∑(k,`)|ak,`| respectively. By Theorem A.5.1,

(s̃m,n) is bounded. Also, 0≤ a+k,` ≤ |ak,`| and 0≤ a−k,` ≤ |ak,`| for all (k, `) ∈ N2
0, and so

0≤ s+k,` ≤ s̃m,n and 0≤ s−k,` ≤ s̃m,n for all (k, `) ∈ N2
0,

and therefore, the double sequences (s+m,n) and (s−m,n) are bounded. Using Theorem A.5.1
once again, we see that the double series ∑∑(k,`)a

+
k,`, ∑∑(k,`)a

−
k,` are convergent. But

ak,` = a+k,`−a−k,` for all (k, `) ∈ N2
0. Hence, the double series ∑∑(k,`)ak,` is convergent. 2

The concepts of row-series and column-series presented earlier can be used to get the
following useful characterization of absolute convergence:

Theorem A.6.2. [28]. A double series ∑∑(k,`)ak,` is absolutely convergent if and only if
the following conditions hold:
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(i) There are (k0, `0) ∈ N2
0 and α0 > 0 such that
m

∑
k=k0

n

∑
`=`0

|ak,`| ≤ α0 ∀ (m,n)� (k0, `0).

(ii) Each row-series as well as each column-series is absolutely convergent.

Proof. Suppose ∑∑(k,`)ak,` is absolutely convergent. Since |ak,`| ≥ 0 for all (k, `) ∈
N2

0. Theorem A.5.1 shows that condition (i) holds with (k0, l0) := (0,0), and Tonelli’s
Theorem for Double Series (Theorem A.5.2) shows that condition (ii) also holds.

Conversely, suppose conditions (i) and (ii) hold. Let (k0, `0) ∈N2
0 and α0 > 0, we see

that for each fixed k ∈ N0, there is βk > 0 such ∑` |ak,`| ≤ βk, and for each fixed ` ∈ N0,
there is γ` > 0 such ∑k |ak,`| ≤ γ`. Let (s̃m,n) be the double sequence of partial double
sums of the double series ∑∑(k,`)|ak,`| and let p0 := max{k0, `0}. Then

s̃p,p =
p

∑
k=0

p

∑
`=0
|ak,`|=

p

∑
k=k0

p

∑
`=`0

|ak,`|+
p0−1

∑
k=0

p

∑
`=0
|ak,`|+

p0−1

∑
`=0

p

∑
k=p0

|ak,`|

≤ α0 +
p0−1

∑
k=0

βk +
p0−1

∑
`=0

γ` ∀ p ∈ N0 with p≥ p0.

This implies that the diagonal sequence (s̃p,p) is bounded, and therefore by Corollary
A.2.1, the monotonically increasing double sequence (s̃p,p) is bounded. Hence by Theo-
rem A.5.1, (s̃p,p) is convergent, which implies that the double series ∑∑(k,`)ak,` is abso-
lutely convergent. 2

Remark A.6.1. Conditions (i) and (ii) in Theorem A.6.2 are both needed to character-
ize absolute convergence. For instance, consider a double sequences (ak,l), (sm,n) given
schematically as follows:

(ak,`) =

1 0 0 0 . . .
1 0 0 0 . . .
1 0 0 0 . . .
1 0 0 0 . . .
...

...
...

...
. . .

(sm,n) =

1 1 1 1 . . . → 1
2 2 2 2 . . . → 2
3 3 3 3 . . . → 3
4 4 4 4 . . . → 4
...

...
...

...
. . . ↓

↓ ↓ ↓ ↓ ↘ ∞

∞ ∞ ∞ ∞ → ∞ ∞
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Then condition (i) is satisfied with k0 := 0 and `0 := 1, but ∑∑(k,`)ak,` is not (absolutely)
convergent, since sm,n = m+ 1 for all (m,n) ∈ N2

0 with m ≥ 1. On the other hand, if we
let ak,` := 1/(k+ `+2)2 for (k, `) ∈ N2

0 , then condition (ii) is satisfied, but ∑∑(k,`) ak,` is
not absolutely convergent.

We now show that several results for convergent double series with non- negative
terms remain valid for absolutely convergent double series.

Theorem A.6.3. [28]. Let ∑∑(k,`)ak,` be an absolutely convergent double series. Then
the following hold.

(i) The double sequence (sm,n) of partial double sums is bounded.

(ii) Each row-series as well as each column-series is absolutely convergent, and

∞

∑
k=0

(
∞

∑
`=0

ak,`

)
= ∑∑(k,`)ak,` =

∞

∑
`=0

(
∞

∑
k=0

ak,`

)
.

(iii) The corresponding diagonal series ∑
∞
j=0 c j is absolutely convergent, and

∞

∑
j=0

c j = ∑∑(k,`)ak,`.

Proof. For (m,n) ∈ N2
0, let sm,n and s̃m,n denote the (m,n)th partial double sums of

∑∑(k,`)ak,` and ∑∑(k,`)|ak,`| and let s and s̃ denote their double sums, respectively.

Now (i) follows from Theorem A.5.1, since |sm,n| ≤ s̃m,n for all (m,n) ∈N2
0, while (ii)

follows from Theorem A.6.2 and Fubini’s Theorem (Theorem A.3.3).

To prove (iii), let ∑1 := ∑
∞
j=0 c j and ∑2 := ∑

∞
j=0 d j denote the diagonal series corre-

sponding to the double series ∑∑(k,`)ak,` and ∑∑(k,`)|ak,`| respectively, and for n∈N0, let
Cn and Dn denote the corresponding nth partial sums of the series ∑1 and ∑2 respectively.
By Theorem A.5.3, it follows that Dn→ s̃. But since |c j| ≤ d j for all j ∈ N0 and the se-
quence (Dn) is bounded, we see that the sequence

(
∑

∞
j=0 c j

)
is bounded, and so the series

∑
∞
j=0 c j converges absolutely. Now it can be easily seen that |sn,n−Cn| ≤ |s̃n,n−Dn| for

all n ∈N0. Since s̃n,n→ s̃ and also Dn→ s̃, we see that the sequences (sn,n) and (Cn) have
the same limit, that is, ∑

∞
j=0 c j = ∑∑(k,`)ak,` as desired. 2

Example A.3.2 (ii) shows that a double series may diverge even if the corresponding
diagonal series is absolutely convergent.
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A.7 Convergence Tests for Double Series
The following results provide techniques to test weather double series converge absolutely
or not.

Theorem A.7.1. (Comparison Test for Double Series)[28]. Let ak,` be complex numbers
and bk,` real numbers such that |ak,l| ≤ bk,` for all (k.`) ∈ N2

0. If
∑∑(k,`) b(k,`) is convergent, then ∑∑(k,`) a(k,`) is absolutely convergent and∣∣∣∣∑∑

(k,`)
ak,`

∣∣∣∣≤∑∑(k,`)bk,`

Proof. Suppose ∑∑(k,`)bk,` is convergent. For (m,n) ∈ N2
0, we have∣∣∣∣ m

∑
k=1

n

∑
`=1

ak,`

∣∣∣∣≤ m

∑
k=1

n

∑
`=1
|ak,`| ≤

m

∑
k=1

n

∑
`=1

bk,`. (A.6)

Since bk,` ≥ 0 for all (m,n) ∈N2
0, the double sequence of the partial double partial sum of

∑∑(k,`)bk,` is bounded above (Theorem A.5.1). By Inequalities (A.6) the same holds for
∑∑(k,`)|ak,`|. Also, since |ak,`| ≥ 0 for all (m,n)∈N2

0, it follows from Theorem A.5.1 that
∑∑(k,`)|ak,`| is convergent, that is ∑∑(k,`)ak,` is absolutely convergent. Inequalities (A.6)
also imply that

∣∣∑∑(k,`) ak,`
∣∣≤ ∑∑(k,`) |ak,`| ≤ ∑∑(k,`) bk,`. 2

We will now consider analogues of the limit comparison test, the root test, and the
ratio test for double series. We first state some basic results in the case of a (single) series
for ease of reference.

Fact A.7.1. [28] Let (ak) be a sequence of real numbers.

(i) Assume that ak > 0 for all k ∈ N0. Let (bk) be a sequence of positive real numbers
such that ak/bk → r as k→ ∞, where r ∈ N0 with r 6= 0. Then the series ∑k ak is
convergent if and only if the series ∑k bk is convergent.

(ii) If there is α ∈ R with α < 1 such that|ak|1/k ≤ α for all large k, then the series
∑k ak is absolutely convergent. If |ak|1/k ≥ 1 for infinitely many k ∈ N0, then the
series ∑k ak is divergent.

(iii) If there is α ∈R with α < 1 such that |ak+1| ≤ α|ak| for all large k, then the series
∑k ak is absolutely convergent. If |ak+1| ≥ |ak| > 0 for all large k ∈ N, then the
series ∑k ak is divergent.

The result below leads to the limit comparison test for double series, which is often
easier to use than the comparison test.
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Theorem A.7.2. [28]. Let (ak,`) and (bk,`) be double sequences such that bk,` 6= 0 for all
(k, `)∈N2

0. Suppose each row-series as well as each column-series corresponding to both
∑∑(k,`)ak,` and ∑∑(k,`)bk,` is absolutely convergent, and ak,`/bk,`→ r as (k, `)→ (∞,∞),
where r ∈ R∪{±∞}.

(i) If bk,` > 0 for all (k, `) ∈ N2
0, ∑∑(k,`)bk,` is convergent, and r ∈ R, then ∑∑(k,`)ak,`

is absolutely convergent.

(ii) If ak,` > 0 for all (k, `) ∈ N2
0, ∑∑(k,`)ak,` is convergent, and r 6= 0, then ∑∑(k,`)bk,`

is absolutely convergent.

Proof.

(i) Suppose bk,` > 0 for all (k, `)∈N2
0, and the double series ∑∑(k,`)bk,` is convergent.

Let r ∈R such that ak,`/ak,`→ r as (k, `)→ (∞,∞), then there is (k0, `0) ∈N2
0 such

that for all (k, `)� (k0, `0)

(r−1)bk,` < ak,` < (r+1)bk,` and so |ak,`|< max{|r−1|, |r+1|}bk,`.

Also, by Theorem A.5.1 there is β > 0 such that ∑
m
k=1 ∑

n
`=1 ak,`≤ β for (m,n)∈N2

0.
Hence for all (m,n)� (k0, `0), we have

m

∑
k=k0

n

∑
`=`0

|ak,`| ≤max{|r−1|, |r+1|}
m

∑
k=k0

n

∑
`=`0

bk,` ≤max{|r−1|, |r+1|}β .

By Theorem A.6.2, the double series ∑∑(k,`)ak,` is absolutely convergent.

(ii) Suppose ak,` > 0 for all (k, `)∈N2
0 and r 6= 0. Then the limit of bk,`/ak,` as (k, `)→ (∞,∞)

is 1/r or 0 according as r ∈ R or r = ∞. By interchanging ak,` and bk,` in (i) above, the
desired result follows. 2

Corollary A.7.1. (Limit Comparison Test for Double Series)[39]. Let (ak,`) and (bk,`)
be double sequences of positive real numbers. Suppose each row-series as well as each
column-series corresponding to both ∑∑(k,`)ak,` and ∑∑(k,`)bk,` are convergent, and

lim
(k,`)→(∞,∞)

ak,`

ak,`
= r where r ∈ R with r 6= 0.

Then

∑∑(k,`)ak,` is convergent ⇐⇒ ∑∑(k,`)bk,` is convergent
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Remark A.7.1. [39]. In the Limit Comparison Test for Double Series,it is not possible to
drop the condition r ∈ R and r 6= 0. To see that r = 0 will not work, let

ak,` :=
1

(k+1)2(`+1)2 and bk,` :=
1

(k+ `+2)2 for (k, `) ∈ N2
0.

Then lim`→∞ ak,`/bk,` = 1/(k + 1)2 for each k ∈ N0, and limk→∞ ak,`/bk,` = 1/(`+ 1)2

for each ` ∈ N0. Hence by Fact A.7.1 (i), we see that each row-series as well as each
column-series corresponding to both ∑∑(k,`)ak,` and ∑∑(k,`)bk,` is convergent. How-
ever, lim(k,`)→(∞,∞) ak,`/bk,` = 0, and as shown in Examples A.3.1 (iii), the double series
∑∑(k,`)ak,` converges, while the double series ∑∑(k,`)bk,` diverges. By interchanging the
definitions of ak,` and bk,`, we see that r = ∞ will also not work.

Example A.7.1. [39].

(i) Let ak,` := sin
(

1/[(k+1)2(`+1)2]

)
for all (k, `) ∈ N2

0. Consider bk,` := 1/[(k+

1)2(`+1)2] for all (k, `) ∈N2
0, and observe that (ak,`/ak,`)→ 1 as (k, `)→ (∞,∞).

Since ∑∑(k,`)bk,` is convergent. Corollary A.7.1 shows that ∑∑(k,`)ak,` is conver-
gent.

(ii) Let ak,` := sin
(
1/(k + `+ 2)2

)
for all (k, `) ∈ N2

0. Consider bk,` := 1/(k + `+
2)2 for all (k, `) ∈ N2

0, and observe that (ak,`/ak,`)→ 1 as (k, `)→ (∞,∞). Since
∑∑(k,`)bk,` is divergent. Corollary A.7.1 now shows that ∑∑(k,`)ak,` is divergent.

The following result will lead us to Cauchy’s root test, or simply the root test, which
is one of the most basic tests to determine the absolute convergence of a double series:

For the rest of this section, we will say that a statement holds whenever “both k and `
are large” to mean that there is (k0, `0) ∈ N2

0 such that the statement holds for all (k, `) ∈
N2

0 \{(0,0)} with (k, `)� (k0, `0).

Theorem A.7.3. [39]. Let (ak,l) be a double sequence of complex numbers.

(i) Suppose each row-series as well as each column-series corresponding to ∑∑(k,`)ak,`

is absolutely convergent. If there is α ∈ R with α < 1 such that |ak,`|1/k+` ≤ α

whenever both k and l are large, then ∑∑(k,`)ak,` is absolutely convergent.

(ii) If for each (k0, `0)∈N2
0 \{(0,0)}, there is (k, `)∈N2

0 such that (k, `)� (k0, `0) and
|ak,`|1/k+` ≥ 1, then ∑∑(k,`)ak,` is divergent.

Proof.
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(i) Suppose there are α ∈R with α < 1 and (k0, `0)∈N2
0\{(0,0)} such that |ak,`|1/k+`≤

α for all (k, `)� (k0, `0). Then α ≥ 0 and

m

∑
k=k0

n

∑
`=`0

|ak,`| ≤
( m

∑
k=k0

α
k)( n

∑
`=`0

α
`
)
=

1
(1−α)2 for all (m,n)� (k0, `0).

Therefore, (i) follows from Theorem A.6.2.

(ii) Suppose for each (k0, `0) ∈N2
0 \{(0,0)}, there is (k, `) ∈N2

0 such that (k, `)� (k0, `0) and
|ak,`|1/k+` ≥ 1, that is, |ak,`| ≥ 1. Hence ak,l 9 0 as (k, l)→ (∞,∞). By the (k, `)th Term
Test (Theorem A.3.1), it follows that ∑∑(k,`)ak,` is divergent. 2

Corollary A.7.2. (Root Test for Double Series)[39]. Let (ak,l) be a double sequence
of complex numbers such that |ak,`|1/k+`→ a as (k, `)→ (∞,∞), where a ∈ R∪{∞}. If
each row-series as well as each column-series corresponding to ∑∑(k,`)ak,` is absolutely
convergent and a < 1, then ∑∑(k,`)ak,` is absolutely convergent. On the other hand, if
a > 1 , then ∑∑(k,`)ak,` is divergent, and all but finitely many row-series and column-
series are also divergent.

Proof. The first assertion follows from part (i) of Theorem A.7.3 with α := (1+ a)/2.
Now suppose a > 1. Then there is (k0, `0) ∈ N2

0 such that |ak,`|1/k+` ≥ 1 for all (k, `) �
(k0, `0). Part (ii) of Theorem A.7.3 shows that ∑∑(k,`)ak,` is divergent. Also, for each
fixed k ≥ k0, we see that ak,` 9 0 as `→ ∞ and hence the row-series ∑`ak,` is diverges.
Similarly, for each fixed `≥ `0, the column-series ∑kak,` diverges. 2

The following result will lead us to D’Alembert’s ratio test, or simply the ratio test,
which is another basic test to determine the absolute convergence of a double series:

Theorem A.7.4. [28]. Let ak,` be a double sequence of complex numbers.

(i) Suppose each row-series as well as each column-series corresponding to the double
series ∑∑(k,`)ak,` is absolutely convergent. If there is α ∈ R with α < 1 such
that either |ak,`+1| ≤ α|ak,l| whenever both k and ` are large, or |ak+1,`| ≤ α|ak,l|
whenever both k and ` are large, then ∑∑(k,`)ak,` is absolutely convergent.

(ii) If min{|ak,`+1|, |ak+1,`|}≥ |ak,`|> 0 whenever both k and l are large, then ∑∑(k,`)ak,`
is divergent, and all but finitely many row-series and column-series is also diver-
gent.

Proof.

(i) Suppose there are α ∈ R with α < 1 and (k0, `0) ∈ N2
0 such that |ak,`+1| ≤ α|ak,`|

for all (k, `)� (k0, `0). We may assume that α > 0. Now

|ak,`| ≤ α|ak,`−1| ≤ · · · ≤ α
`−`0 |ak,`0 | for all (k, `)� (k0, `0).
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Since 0 < α < 1, we see that ∑
n
`=0 αn ≤ 1

1−α
for all n∈N0. Also, the series ∑k ak,`0

is absolutely convergent, there is β > 0 such that ∑
m
k=1 |ak,`0 | ≤ β , for all m ∈ N0.

Consequently,

m

∑
k=k0

n

∑
`=`0

|ak,`| ≤
α−`0β

1−α
for all (m,n)� (k0, `0).

Hence by Theorem A.6.2, ∑∑(k,`)ak,` is absolutely convergent. A similar argument
holds if there is α ∈ R with α < 1 and (k0, `0) ∈ N2

0 such that |ak+1,`| ≤ α|ak,`| for
all (k, `)� (k0, `0).

(ii) Suppose there is (k0, `0) ∈ N2
0 such that min{|ak,`+1|, |ak+1,`|} ≥ |ak,`| > 0 for all

(k, `)� (k0, `0). Then,

|ak,`| ≥ |ak,`−1| ≥ · · · ≥ |ak,`0 | ≥ |ak−1,`0 | ≥ · · · ≥ |ak0,`0 |> 0

for all (k, `) � (k0, `0). Since ak0,`0 6= 0, we see that ak,` 9 0 as (k, `)→ (∞,∞), and
further, and further, for each fixed k ≥ k0, ak,` 9 0 as `→ ∞ and for each fixed ` ≥ `0,
ak,` 9 0 as k→ ∞. The desired results now follow from the (k, `)th Term Test for double
series (Theorem A.3.1) and the kth Term Test for (single) series. 2

Corollary A.7.3. [28]. (Ratio Test for Double Series). Let (ak,l) be a double sequence
of nonzero real numbers such that either |ak,`+1|/|ak,`| → a or
|ak+1, `|/|ak,l| → ã as (k, `)→ (∞,∞), where a, ã ∈ R∪{∞}. If each row-series as well
as each column-series corresponding to ∑∑(k,`)ak,` is absolutely convergent and a < 1
or ã <1, then is ∑∑(k,`)ak,` absolutely convergent. On the other hand, if a > 1, then
∑∑(k,`)ak,` is divergent and all but finitely many row-series are also divergent, while if
ã >1, then ∑∑(k,`)ak,` is divergent and all but finitely many column-series are also diver-
gent.

Proof. The first result is a consequence of part (i) of Theorem A.7.4 with α := (1+a)/2
or α := (1+ ã)/2 according as a < 1 or ã < 1 .

Now suppose a > 1. Then there is α ∈ R with α > 1 and (k0, `0) ∈ N2
0 such that

|ak,`+1|/|ak,l| ≥ α for all (k, `)� (k0, `0). Then

|ak,`+1|/|ak,`| ≥ α for all (k, `)� (k0, `0).

Given any (k1, `1) ∈ N2
0, let k := max{k0,k1}. Since α > 1 and ak,`0 6= 0, we can find

`≥max{`0, `1} such that α`−`0 |ak,`0 | ≥ 1. Then k≥ k1, `≥ `1, and |ak,`| ≥ 1. This shows
that ak,` 6= 0 as (k, `)→ (∞,∞), and so ∑∑(k,`)ak,` is divergent by the (k, `)th Term Test.
Also, for each fixed k ≥ k0, we have |ak,`| ≥ α`−`0 |ak,`0 | ≥ |ak,`0 | > 0 for all ` ≥ `0, and
so ak,` 9 0 as `→ ∞, which implies that ∑` ak,` is divergent. Similar arguments hold if
ã > 1. 2
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Example A.7.2. [28]

(i) If the limit a in the Root Test (Corollary A.7.2) is equal to 1, then the double series
∑∑(k,`)ak,` may converge absolutely or it may diverge. The same holds if the limits
a and ã in the Ratio Test (Corollary A.7.3) are equal to 1. For example, let ak,` :=
1/(k + 1)2(`+ 1)2 and bk,` : 1/(k + `+ 2)2 for all (k, `) ∈ N2

0. Then it is easy
to see that each row-series as well as each column-series corresponding to both
∑∑(k,`)ak,` and ∑∑(k,`)bk,` is (absolutely) convergent and all the above-mentioned
limits are equal to 1 for both cases. However, as we have seen in Example A.3.1
(iii) ∑∑(k,`)ak,` is (absolutely) convergent, but ∑∑(k,`)bk,` is divergent.

(ii) Let p > 0 and for (k, `) ∈ N2
0, let ak,` := (k+ `)p/2k3`. It easy to see

(
using Fact

A.7.1 (iii), for example
)

that each row-series as well as each column-series corre-
sponding to ∑∑(k,`)ak,` is (absolutely) convergent. Since,
|ak,`+1|/|ak,`| → 1

3 as (k, `)→ (∞,∞), Corollary A.7.3 shows that
∑∑(k,`)ak,` is (absolutely) convergent. Alternatively, the same conclusion follows
by noting that |ak+1,`|/|ak,`| → 1

2 as (k, `)→ (∞,∞).

(iii) For (k, `) ∈ N2
0, let ak,` := (k+ `)!/2k3`. Since ak,`+1/ak,`→ ∞ as (k, `)→ (∞,∞),

Corollary A.7.3 shows that ∑∑(k,`)ak,` is divergent. Alternatively, observe that
ak,` ≥ (k!/2k)(`!/3`) ≥ 1 for (k, `) � (4,7), and so the (k, `)-th Term Test shows
that ∑∑(k,`)ak,` is divergent.

(iv) For (k, `) ∈N2
0, let ak,` := (k+`+2)!/(k+`+2)k+`+2. Since

(
1+(1/n)

)n→ e as
n→ ∞, where e is the base of the natural logarithm, we see that ak,`+1/ak,`→ 1/e
as (k, `)→ (∞,∞). Also, for each fixed k ∈ N0, we have lim`→∞ ak,`+1/ak,` = 1/e,
and for each fixed `∈N0, we have lim`→∞ ak+1,`/ak,` = 1/e. Since e> 1, Corollary
A.7.3 and Fact A.7.1 (iii) show that ∑∑(k,`)ak,` is (absolutely) convergent.

(v) For (k, `) ∈ N2
0, let

ak,` :=

{
1

2k+`+2 if k+ ` is even
1

3k+`+2 if k+ ` is odd

Since |ak,`+1|/|ak,l| = |ak+1,`|/|ak,l| = 2k+`+2/3k+`+3 ≤ 4/27 if k+ ` is even, and
|ak,`+1|/|ak,l| = |ak+1,`|/|ak,l| = 3k+`+2/2k+`+3 ≥ 27/16 is odd, the Ratio test for
Double Series (Corollary A.7.3) is not applicable to this example. For the same
reason, Theorem A.7.4 is also not applicable. Further, since the double sequence
(|ak,`|1/(k+`)) does not converge, the Root Test for Double Series (Corollary A.7.2)
is not applicable. However, since |ak,`|1/` and |ak,`|1/k are less than or equal to
1/2 for all (k, `) ∈ N2

0, we see that each row-series as well as each column-series
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corresponding to ∑∑(k,`)ak,` is (absolutely) convergent. Also, |ak,`|1/k+` ≤ 1/2 < 1
for all (k, `) ∈ N2

0, and hence Theorem A.7.3 is applicable. Thus ∑∑(k,`)ak,` is
(absolutely) convergent.

A.8 Double Power Series
For k, ` ∈ N0, let ck,` ∈ R. The double series

∑
p=0

k+`=0

ck,`xky` = ∑ ∑
(k,`)�(0,0)

ck,`xky`,

is called a double power series (around (0,0)), and for (k, `) � (0,0), the real number
ck,` is called its (k, `)th coefficient. Henceforth when we consider a double power series

∑∑
(k,`)�(0,0)

ck,`xky`, it will be tacitly assumed that the index (k, `) varies over the set of all

pairs of N2
0. For (m,n)� (0,0), the (m,n)th partial double sum of the double power series

∑∑(k,`) ck,`xky` is

Am,n(x,y) :=
m

∑
k=0

n

∑
`=0

ck,`xky`.

It is clear that if (x,y) = (0,0), then for any choice of the coefficients ck,`, the double
power series ∑∑(k,`) ck,`xky` is convergent and its double sum is equal to c0,0. Also, if
x ∈ R and y = 0, then the double power series is convergent if and only if the (single)
power series ∑

∞
k=0 ck,0xk is convergent, and likewise, if x = 0 and y ∈ R, then the double

power series is convergent if and only if the (single) power series ∑
∞
`=0 c0,`y` is convergent.

On the other hand, if there is (k0, `0) ∈ N2
0 such that ck,` = 0 whenever either k > k0 or

` > `0, then the double power series is convergent for any (x,y) ∈ R2, and its double sum
is equal to

k0

∑
k=0

`0

∑
`=0

ck,`xky`.

More generally, if (x0,y0) ∈ R2, then the double series

∑∑
(k,`)�(0,0)

(x− x0)
k(y− y0)

`,

is called a double power series around (x0,y0). Its convergence can be discussed by
letting x̃ = x−x0 and ỹ = y−y0, and considering the double power series ∑∑(k,`) ck,`x̃kỹ`.

Typical sets of points (x,y) in R2 for which a double power series is convergent are
illustrated by the following examples:
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Example A.8.1. [28].

(i) Let ck,` :=(k+1)(k+1)(`+1)(`+1) for (k, `)� (0,0), and let (x,y)∈R2. If |ck,`xky`|>
1 for all (k, `) ∈ N2

0 satisfying k > 1/|x|k+1−1 and ` > 1/|y|`+1−1, and so by the
(k, `)th Term Test (Theorem A.3.1), the double power series is divergent. Similarly,
if x 6= 0 and y = 0, then the series ∑

∞
k=0 ck,0xk is divergent, and if x = 0 and y 6= 0,

then the series ∑
∞
`=0 c0,`y` is divergent. Thus we see that the double power

∑∑(k,`) ck,`xky` is convergent if and only if (x,y) = (0,0).

(ii) Let ck,` := 1/k!`! for (k, `) � (0,0). It follows from Example A.3.1 (ii) that the
double power series ∑∑(k,`) ck,`xky` is convergent for all (x,y) ∈ R2.

(iii) Let a and b be nonzero real numbers, and let ck,` := akb` for (k, `)� (0,0) It follows
from Example A.3.1 (i) that the double power series ∑∑(k,`) ck,`xky` is convergent
if and only if |ax|< 1 and |by|< 1, that is, |x|< 1/|a| and |y|< 1/|b|.

(iv) For (k, `)� (0,0), let

ck,` :=

{
1 if k = 1
0 if k 6= 1

Then for (x,y)∈R2, the partial double sums of the double power series ∑∑(k,`) ck,`xky`

are A0,n(x,y) := 0 for n≥ 0, and

Am,n(x,y) = x
n

∑
`=0

y` for (m,n)� (1,0).

Consequently, the double power series converges absolutely if x = 0 or |y| < 1,
while it diverges if x 6= 0 and |y| ≥ 1. It follows that the set of (x,y) ∈R2 for which
this double power series converges is the horizontal strip R×(−1,1) together with
the y-axis, as shown in Figure A.2. On this set, the convergence is absolute.

(v) For (k, `)� (0,0), let

ck,` :=

{
1 if k = `

0 if k 6= `

Then for (x,y)∈R2, the partial double sums of the double power series ∑∑(k,`) ck,`xky`

are

Am,n(x,y) =
min{m,n}

∑
p=0

(xy)p for (m,n)� (0,0).
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Figure A.2: Illustration of sets of convergence: The horizontal strip and the y-axis,
the region bounded by rectangular hyperbolas, and the diamond-shaped region
on which the double power series in Examples A.8.1 (iv), (v), and converge,
respectively.

Using the fact that the geometric series ∑p ap converges absolutely if |a|< 1 , while
it diverges if |a| ≥ 1, we see that the double power series converges absolutely if
|xy| < 1, while it diverges if |xy| ≥ 1. Thus the subset of R2 on which this double
power series converges is precisely the region {(x,y)∈R2 :−1 < xy < 1} bounded
by the rectangular hyperbolas xy = 1 and xy = −1, as shown in Figure A.2. On
this set, the convergence is absolute.

(vi) ck.` := (k+ `)/k!`! for (k, `) � (0,0), and let (x,y) ∈ R2. As in the proof of part
(iii) of Theorem A.5.3,

m

∑
k=0

n

∑
`=0
|ck,`||x|k|y|` ≤

m+n

∑
j=0

j

∑
k=0

j!|x|k|y| j−k

k!( j− k)!
=

m+n

∑
j=0

(|x|+ |y|) j

for (m,n)� (0,0), whereas

n

∑
k=0

n

∑
`=0
|ck,`||x|k|y|` ≥

n

∑
j=0

j

∑
k=0

j!|x|k|y| j−k

k!( j− k)!
=

n

∑
j=0

(|x|+ |y|) j

for n ≥ 0. Thus, in view of Example A.3.1 (i), we see that the double power series
∑∑(k,`) ck,`xky` converges absolutely if and only if |x|+ |y| < 1. The subset of R2

on which this double power series converges absolutely is the diamond-shaped
region {(x,y) ∈ R2 : |x|+ |y| < 1} . It turns out that the set on which the double
series converges is this diamond-shaped region together with the open line segment
joining (−1,0) and (0,−1), as shown in Figure A.2.

The above examples show that the set of all (x,y) ∈ R2 for which a double power
series ∑∑(k,`) ck,`xky` converges absolutely can be of a varied nature. This is in contrast
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to the convergence of a (single) power series for which the corresponding subset of R is
always an interval. In this connection, we recall following result for (single) power series.

Fact A.8.1. (Abel’s Lemma)[28]. Let x0 ∈R and let ck ∈R for k≥ 0. If the set {ckxk
0 : k≥

0} is bounded, then the power series ∑
∞
k=0 ckxk is absolutely convergent for every x ∈ R

with |x|< |x0|.

This leads to the following fundamental result about the (absolute) convergence of a
(single) power series.

Fact A.8.2. [28]. Either a power series ∑k ckxk converges absolutely for all x ∈ R, or
there is a non-negative real number r such that it converges absolutely for all x ∈ R with
|x|< r and diverges for all x ∈ R with |x|> r.

The radius of convergence of the power series is defined to be ∞ in the former case,
and it is defined to be the unique non-negative real number r with the stated properties in
the latter case. We will now attempt to obtain analogues of the above results for double
power series.

Lemma A.8.1. (Abel’s Lemma for Double Power Series)[28]. Let (x0,y0) be in R2 and
let ck,` ∈ R for (k, `) � (0,0). If the set {ck,` : xk

0y`0 : (k, `) � (0,0)} is bounded, then the
double power series ∑∑(k,`) ck,`xky` is absolutely convergent for every (x,y) ∈ R2 with
|x|< |x0| and |y|< |y0|.

Proof. If x0 = 0 or y0 = 0, then there is nothing to prove. Suppose x0 6= 0 and y0 6= 0.
Let α ∈ R be such that |ck,`xk

0y`0| ≤ α for all (k, `) � (0,0). Given any (x,y) ∈ R2 with
|x|< |x0| and |y|< |y0|, let β := |x|/|x0| and γ := |y|/|y0|. Then

|ck,`xky`|= |ck,`xk
0y`0|β k

γ
` ≤ αβ

k
γ
` for all (k, l)� (0,0).

Since β < 1 and γ < 1, the geometric double series ∑∑(k,`) ck,`β
kγ` is convergent (See Ex-

ample A.3.1 (i).) By the Comparison Test for the Double Series it follows the ∑∑(k,`) ck,`xky`

is absolutely convergent. 2

Theorem A.8.1. [28]. Either the double series ∑∑(k,`) ck,`xky` converges absolutely for
all (x,y) ∈ R2, or there are non-negative real numbers r and s such that it converges
absolutely for all (x,y)∈R2 with |x|< r and |y|< s, while the set {ck,`xky` : (k, `)� (0,0)}
is unbounded for all (x,y) ∈ R2 with |x|> r and |y|> s.

Proof. For (x,y) ∈ R2, let Cx,y = {ck,`xky` : (k, `) � (0,0)}. Consider E := {(x,y) ∈
R2 : Cx,y is bounded}. For (x,y) ∈ R2, note that (x,y) ∈ E if and only if (|x|, |y|) ∈ E. If
E = R2, then given any (x,y) ∈ R2, we can find (x0,y0) ∈ E such that |x|< |x0| and |y|<
|y0|. Since the set Cx0,y0 is bounded, by Lemma A.8.1, the double series ∑∑(k,`) ck,`xky` is
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absolutely convergent. Next, suppose E 6= R . The set E is nonempty since (0,0). Then
E has a boundary point (x∗,y∗) ∈ R2 . Define r := |x∗| and s := |y∗|. Let (x,y) ∈ R2

with |x| < r and |y| < s. By the definition of a boundary point, there is a sequence in E
converging to (x∗,y∗), and so we can find (x0,y0) ∈ E such that |x| < |x0| and |y| < |y0|.
Hence by Lemma A.8.1, ∑∑(k,`) ck,`xky` is absolutely convergent. On the other hand,
let (x,y) ∈ R2 with |x| > r and |y| > s. By the definition of a boundary point, there is
a sequence in R2 \E converging to (x∗,y∗), and so we may find (x1,y1) ∈ R2 such that
|x1|< |x| and |y1|< |y|. Now since the set Cx1,y1 is unbounded, it follows that the set Cx,y

is also unbounded. This proves the existence of non-negative real numbers r and s with
the desired properties.2

If a double power series ∑∑(k,`) ck,`xky` is absolutely convergent for all (x,y) ∈ R2,
then we say that its biradius of convergence is (∞,∞); otherwise, a pair (r,s) of non-
negative real numbers is said to be a biradius of convergence of the double power series,
provided the double series converges absolutely for all (x,y)∈R2 with |x|< r and |y|< s,
while the set Cx,y := {ck,`xky` : (k, `)� (0,0)} is unbounded for all (x,y)∈R2 with |x|> r
and |y| > s. This phenomenon is illustrated in Figure A.3. Proposition A.8.1 says that
every double power series has a biradius of convergence.

Remark A.8.1. [28].

(i) It is interesting to observe that if r is the radius of convergence of a (single) power
series, then the power series diverges for all x ∈ R with |x|> r, whereas if (r,s) is
a biradius of convergence of a double power series, then the set Cx,y := {ck,`xky` :
(k, `) � (0,0)} is unbounded for all (x,y) ∈ R2 with |x| > r and |y| > s. The un-
boundedness of the set Cx,y cannot be replaced by the divergence of the double
power series at (x,y), as the following example shows. Let c0,0 := 1, ck,0 = c0,` := 1
for all k, ` ∈ N , c1,1 := −1, ck,1 = c1,` := −1/2 for all k, ` ≥ 2,and ck,` := 0
for all (k, `) � (2,2). If Am,n(x,y) denotes the (m,n)th partial double sum of
∑∑(k,`) ck,`xky`, then A0,0(x,y) = 1 and for (m,n) ∈ N2, we have

Am,0(x,y) =
m

∑
k=0

xk, A0,n(x,y) =
n

∑
`=0

y`,

and

Am,n(x,y) = 1+(1− y
2
)

m

∑
k=0

xk +(1− x
2
)

n

∑
`=0

y`.

It is easy to see that the double power series converges absolutely for all (x,y)∈R2

with|x|< 1 and |y|< 1,and it diverges to ∞ for all (x,y) with x≥ 1 and y≥ 1 except
for (x,y) = (2,2). At (2,2), a peculiar phenomenon occurs: Since ck,02k20 = 2k
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Figure A.3: When (r,s) is a biradius of convergence of a double power series,
it converges absolutely in the shaded rectangle, while the set of its terms is un-
bounded in the four quadrangles marked by ×.

and c0,`202` = 2` for all (k, `)∈N2 , we see that the set C2,2 is unbounded, but since
Am,n(2,2) = 1 for all (m,n) ∈ N2, we see that the double power series converges
to 1 at (2,2). It follows that there are no non-negative numbers r and s such that
the double power series converges absolutely for all (x,y) ∈ R2 with |x| < r and
|y|< s, and it diverges for all (x,y) ∈ R2 with |x|> r and |y|> s.

(ii) The radius of convergence of a (single) power series is unique. However, a double
power series may have several biradii of convergence. For example, let ck,` := 1
if k = ` and ck,` := 0 if k 6= ` for (k, `) � (0,0). Then the double power series
∑∑(k,`) ck,`xky` = ∑

∞
k=0 xkyk converges absolutely if |xy|< 1. On the other hand, if

|xy|> 1, then the set Cx,y := {xkyk : k ≥ 0} is unbounded. It follows that (t,1/t) is
a biradius of convergence for each positive real number t.

It is therefore important to find all biradii of convergence, or failing this, as many
biradii of convergence as possible, in order to obtain a fuller picture of the convergence
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behavior of a double power series.

If r is the radius of convergence of a (single) power series, then the set (−r,r) is
known as the interval of convergence of the power series. It is the largest open subset
of R in which the power series is absolutely convergent. Analogously, the domain of
convergence of a double power series is defined to be the set of all (x,y) ∈ R2 such that
the double power series converges absolutely at every point in some open square centered
at (x,y). Note that if D is the domain of convergence of a double power series, then D
is an open subset of R2 and moreover, (x,y) ∈ D if and only if (|x|, |y|) ∈ D. It follows
from the Comparison Test and Lemma A.8.1 that (x0,y0) ∈ R2 belongs to the domain of
convergence of ∑∑(k,`) ck,`xky` if and only if the set Cx,y := {ck,`xky` : (k, `) � (0,0)} is
bounded for every (x,y) in some open square centered at (x0,y0). It also follows that the
domain of convergence of a double power series is empty if and only if (0,0) is a biradius
of convergence of that double power series.

In the following table we give the domains of convergence and biradii of convergence
of the double power series considered in Example A.8.1.

Double Power Series Domain of Convergence Biradii of Convergence
∑∑
(k,`)

kk``xky` φ (0,0)

∑∑
(k,`)

1
k!`! x

ky` R2 (∞,∞)

∑∑
(k,`)

akb`xky` {(x,y) ∈ R2 : |x|< 1
a and |y|< 1

b}
(r, 1
|b|) for 0≤ r ≤ 1

|a|

( 1
|a| ,s) for 0≤ s≤ 1

|b|

x
∞

∑
`=0

y` {(x,y) ∈ R2 : |y|< 1} (r,1) for 0≤ r < ∞

∞

∑
k=0

(xy)k {(x,y) ∈ R2 : |xy|< 1} (t, 1
t ) for 0≤ t < ∞

∑∑
(k,`)

(k+`)!
k!`! xky` {(x,y) ∈ R2 : |x|+ |y|< 1} (t, t−1) for 0≤ t < 1

The above examples are typical and exhibit the variety of shapes that a domain of
convergence of a double power series can have. The example in the penultimate row of
the above table shows that such a domain D need not be a convex subset of R2 . However,
according to a result of Fabry (1902), the domain of convergence of every double power
series is log-convex, that is, it is an open subset D of R2 such that {(ln |x|, ln |y|) : (x,y) ∈
D and xy 6= 0} is a convex subset of R2.
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A.9 Taylor Double Series and Taylor Series
Let D ⊆ R2, (x0,y0) be an interior point of D and let f : D→ R be such that all partial
derivatives of f of all orders exist and are continuous on a square neighborhood of (x0,y0).
In analogy with the Taylor series of a function of one variable, the double power series

∑∑
(k,`)

∂ k+` f
∂xk∂y`

(x0,y0)
(x− x0)

k

k!
(y− y0)

`

`!
.

is called the Taylor double series of f around (x0,y0). Note that the coefficients of this
double power series are

ck,` :=
1

k!`!
∂ k+` f
∂xk∂y`

(x0,y0) for (k, `)� (0,0).

We observe that for n = 0,1,2, . . . , the nth partial sum of the diagonal series ∑ j=0 c j(x,y)
corresponding to the above double series is

n

∑
j=0

c j(x,y) =
n

∑
j=0

∑
k≥0

∑
`≥0

k+`= j

∂ k+` f
∂xk∂y`

(x0,y0)
(x− x0)

k

k!
(y− y0)

`

`!

=
n

∑
j=0

j

∑
k=0

∂ j f
∂xk∂y j−k (x0,y0)

(x− x0)
k

k!
(y− y0)

j−k

( j− k)!
,

which is in fact nth bivariate Taylor polynomial Pn(x,y) of f around (x0,y0).
∞

∑
j=0

c j(x,y) where c j(x,y) := ∑
k≥0

∑
`≥0

k+`= j

ck,`(x− x0)
k(y− y0)

` for j ≥ 0,

is called the Taylor series of f around (x0,y0). Thus the Taylor series of a function of
two variables is the diagonal series corresponding to its Taylor double series.

An important question one would like to consider is whether the Taylor double series
and/or the Taylor series of f around (x0,y0) converges (absolutely) at a given point (x,y)∈
R2, and if so, then whether the corresponding double sum and/or the corresponding sum
is equal to f (x,y), provided (x,y)∈D. If (x,y) := (x0,y0), then each partial double sum of
the Taylor double series of f around (x0,y0) as well as each partial sum of the Taylor series
of f around (x0,y0) is obviously equal to f (x0,y0), and so our question has an affirmative
answer if (x,y) = (x0,y0). It is, however, possible that for each (x,y) ∈ D \ {(x0,y0)},
both the Taylor double series and the Taylor series of f around (x0,y0) converge but not
to f (x,y). For instance, let f : R2→ R be defined by

f (x,y) :=

{
e
− 1

(x2+y2) if (x,y) 6= (0,0)
0 if (x,y) = (0,0)
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By considering the function g : R→ R given by g(0) := 0 and g(t) := e−1/t2, and noting
that g(k)(0) = 0 for all k ∈ N, it can be seen that

∂ k+` f
∂xk∂y`

(0,0) = 0 for all (k, `)� (0,0).

Thus the Taylor double series of f around (0,0) as well as the Taylor series of f around
(0,0) is identically zero, and neither converges to f (x,y) at any (x,y) 6= (0,0).

If the Taylor double series of f around (x0,y0) converges absolutely at (x,y) ∈ R2,
then by part (iii) of Theorem A.6.3, the Taylor series of f around (x0,y0) also converges
absolutely at (x,y). But the converse is not true, as we will see in Example A.9.1 (ii).
For (x,y) ∈ D and n = 0,1,2, . . . , let Rn(x,y) := f (x,y)−Pn(x,y) and note that the Taylor
series of f around (x0,y0) converges to f (x,y) if and only if Rn(x,y)→ 0 as n→ ∞.
The following results give sufficient conditions for the absolute convergence on R2 of the
Taylor double series of a function and for deciding whether it converges to the function
itself.

Theorem A.9.1. [28]. Let D be an open subset of R2, and let (x0,y0) ∈ D. Suppose
f : D→ R has continuous partial derivatives of all orders on D, and there are positive
real numbers M0,α0, and β0 such that∣∣∣∣ ∂ k+` f

∂xk∂y`
(x0,y0)

∣∣∣∣≤M0α
k
0β

`
0 for all (k, `)� (0,0).

Then the Taylor double series of f and the Taylor series of f around (x0,y0) converge
absolutely for all (x,y) ∈ R2 . Moreover, both of these converge to f (x,y), provided the
line L joining (x0,y0) and (x,y) lies in D and there are positive real numbers M,α , and β

such that∣∣∣∣ ∂ k+` f
∂xk∂y`

(x̃, ỹ)
∣∣∣∣≤Mα

k
β
` for all (x̃, ỹ) ∈ L and all (k, `)� (0,0).

Proof. Since the exponential double series

∑∑
(k,`)

[α(x− x0)]
k

k!
[β (y− y0)]

`

`!

converges absolutely for all (x,y) ∈ R2, the Comparison Test for Double Series shows
that the Taylor double series of f around (x0,y0) converges absolutely for all (x,y) ∈ R2 .
Consequently, by part (iii) of Theorem A.6.3, the corresponding diagonal series, namely
the Taylor series of f around (x0,y0), also converges absolutely for all (x,y) ∈ R2.
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Next, let (x,y) ∈D be such that the line L joining (x0,y0) and (x,y) lies in D and there
are positive real numbers M,α , and β such that∣∣∣∣ ∂ k+` f

∂xk∂y`
(x̃, ỹ)

∣∣∣∣≤Mα
k
β
` for all (x̃, ỹ) ∈ L and all (k, `)� (0,0).

Then by the Classical Version of the Bivariate Taylor Theorem, there is (c,d) ∈ L such
that

Rn(x,y) := f (x,y)−Pn(x,y) = ∑
k≥0

∑
`≥0

k+`=n+1

∂ n+1 f
∂xk∂y`

(c,d)
(x− x0)

k

k!
(y− y0)

`

`!

and consequently,

Rn(x,y) := f (x,y)−Pn(x,y) = ∑
k≥0

∑
`≥0

k+`=n+1

M
(α|x− x0|)k

k!
(β |y− y0|)`

`!

=M
n+1

∑
k=0

(α|x− x0|)k

k!
(β |y− y0|)n+k−1

(n+ k−1)!

=
M(α|x− x0|+β |y− y0|)n+1

(n+1)!
.

This implies that Rn(x,y)→ 0 as n→ ∞. Hence the Taylor series of f about (x0,y0)
converges to f (x,y) at (x,y). Finally, the absolute convergence of the Taylor double series
of f around (x0,y0) at (x,y) implies that its double sum is also equal to f (x,y). 2

Example A.9.1. [28].

(i) Let D := {(x,y) ∈ R2 : x < 1 and y < 1} and let f : D → R be defined by
f (x,y) := 1/(1− x)(1− y). It is easy to see that

∂ k+` f
∂xk∂y`

(0,0) = k!`! for all (k, `)� (0,0).

Hence the Taylor double series of f around (0,0) is the geometric double series
∑∑(k,`) xky` . As we have seen in Example A.3.1 (i), it converges absolutely if
|x| < 1 and |y| < 1, while it diverges otherwise; moreover, if |x| < 1 and |y| < 1,
then the double sum is 1/(1− x)(1− y) = f (x,y). The Taylor series of f around
(0,0) is

∞

∑
j=0

c j(x,y) where c j(x,y) :=
j

∑
k=0

xky j−k for (x,y) ∈ R2.
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By part (iii) of Theorem A.6.3, it converges absolutely if |x| < 1 and |y| < 1, and
then its sum is equal to f (x,y). We show that it diverges if |x| ≥ 1 or |y| ≥ 1. Assume
that |x| ≥ 1, and let u := y/x. Then

c j(x,y) = x j
j

∑
k=0

u j−k = x j(1+u+ · · ·+u j) for j ≥ 0.

If u = 1, then |c j(x,y)|= |x| j( j+1)≥ j+1, and if u 6=1, then

|c j(x,y)|=
|x| j|u j+1−1|

u−1
≥ |u

j+1−1|
u−1

for j ≥ 0.

It follows that c j(x,y) 9 0 as j→ ∞. Hence the Taylor series of f around (0,0)
diverges if |x| ≥ 1. Similarly, we see that it diverges if |y| ≥ 1.

(ii) Let D := {(x,y) ∈ R2 : x + y < 1} and let f : D → R be defined by f (x,y) :=
1/(1− x− y). It is easy to see that

∂ k+` f
∂xk∂y`

(0,0) = (k+ `)! for k, `= 0,1,2 . . . .

Hence the Taylor double series of f around (0,0) is

∑∑
(k,`)

(k+ `)!
k!`!

xky`.

As shown in Example A.8.1 (vi), this double series converges absolutely if and only
if |x|+ |y|< 1. The Taylor series of f around (0,0) is

∞

∑
j=0

( j

∑
k=0

j!
k!( j− k)!

xky j−k
)
=

∞

∑
j=0

(x+ y) j

Clearly, this geometric series converges if and only if |x+ y|< 1, and in this case,
the convergence is absolute and the sum of the series at (x,y) is equal to 1/[1−(x+
y)]= f (x,y). Thus if (x,y)∈R2 satisfies |x+y|< 1≤ |x|+|y|, then the Taylor series
of f around (0,0) converges absolutely at (x,y), but the Taylor double series of f
around (0,0) does not. Since the Taylor series of f around (0,0) is the diagonal
series corresponding to the Taylor double series of f around (0,0), it follows from
Theorem A.5.3 that if (x,y)∈R2 and |x|+ |y|< 1, then the double sum of the Taylor
double series of f around (0,0) at (x,y) is equal to f (x,y). It can be shown that this
Taylor double series converges conditionally at (x,y)∈R2 if and only if x∈ (−1,0)
and x+ y = 1, and then its double sum is equal to 1/2.
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(iii) Let D := R2 and let f : D→ R be defined by f (x,y) := sin(x+ y). Letting g(u) :=
sinu for u ∈ R, it is easy to see that for k, `= 0,1,2, . . . ,

∂ k+` f
∂xk∂y`

(0,0) = gk+`(0) =

{
0 if k+ ` is even
(−1)(k+`−1)/2 if k+ ` is odd.

Hence the Taylor double series of f around (0,0) is

∑∑
(k,`)

ck,`xky`, where ck,` =

{
0 if k+ ` is even
(−1)(k+`−1)/2

k!`! if k+ ` is odd.

The Taylor series of f around (0,0) is

∞

∑
j=0

c j(x,y), where c j(x,y) =
j

∑
k=0

g j(0)
xk

k!
y j−k

( j− k)!
=

g j(0)
j!

(x+ y) j,

that is, by ∑
∞
j=0(−1) j(x+ y)2 j+1/(2 j + 1)! . It follows from Theorem A.9.1 that

both the Taylor double series and the Taylor series of f around (0,0) converge
absolutely to f (x,y) at all (x,y) ∈ R2.

(iv) Let D := R2 and let f : D→ R be defined by f (x,y) := exp(x+ y). Proceeding as
(ii) above, we see that both the Taylor double series ∑∑(k,`) xky`/k!`! of f around
(0,0) and the Taylor series ∑

∞
j=0(x+ y) j/ j! of f around (0,0) converge absolutely

to f (x,y) at all (x,y) ∈ R2.

Remark A.9.1. [28]. Let D be an open subset of R2 and let f : D→ R be such that all
partial derivatives of f of all orders exist and are continuous on D. If for every (x0,y0) ∈
D, there are r > 0 and s > 0 such that the Taylor double series of f around (x0,y0)
converges absolutely to f (x,y) for all (x,y)∈D with |x−x0|< r and |y−y0|< s, then f is
said to be real analytic on D. In this case, by part (iii) of Theorem A.6.3, the Taylor series
of f around (x0,y0) also converges absolutely to f (x,y) for all (x,y) ∈ D with |x− x0|< r
and |y− y0| < s. Clearly, polynomial functions in two variables are real analytic on
R2 . Also, using Theorem A.9.1, it can be seen that the functions defined by f1(x,y) :=
sin(x+ y) and f2(x,y) := exp(x+ y) for (x0,y0) ∈ D are real analytic on R2. In fact, if D
is the domain of convergence of a double power series and if its double sum is denoted
by f (x,y) for (x,y) ∈ D, then the function f is real analytic on D. On the other hand, a
function having continuous partial derivatives of all orders on an open subset of R2 need
not be real analytic there. Indeed, as noted earlier, it suffices to consider f : R2 → R
defined by f (0,0) := 0 and f (x,y) := e−1/(x2+y2) for (x,y) 6= (0,0).
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