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ABSTRACT

Algebraic, Analytic, and Combinatorial Properties of Power Product
Expansions in Two Independent Variables.

Mohamed Elewoday

Let F(x,y) =1+ Y, A, ,x™y" be a formal power series, where the coefficients A, ,
1

p:
m-+n=p
are either all matrices or all scalars. We expand F(x,y) into the formal products
[T+ Guax™"), T1( — HppxX™y™) "L, namely the power product expan-
=1 =1
mg—n:p mg—n:p

sion in two independent variables and inverse power product expansion in two
independent variables respectively. By developing new machinery involving the
majorizing infinite product, we provide estimates on the domain of absolute con-
vergence of the infinite product via the Taylor series coefficients of F(x,y). This
machinery introduces a myriad of “mixed expansions”, uncovers various algebraic
connections between the (A,,,) and the (G, ,), and uncovers various algebraic
connections between the (A,, ,) and the (H,, ,), and leads to the identification of
the domain of absolute convergence of the power product and the inverse power
product as a Cartesian product of polydiscs. This makes it possible to use the trun-

P P
cated power product expansions [] (1+ Gy, X™"), 1 (1 —Hyux™y") ! as
—1 =1
mlin:p minzp

approximations to the analytic function F(x,y). The results are made possible
by certain algebraic properties characteristic of the expansions. Moreover, in the
case where the coefficients A,, , are scalars, we derive two asymptotic formulas
for the Gy, Hin n, With m fixed, associated with the majorizing power series. We
also discuss various combinatorial interpretations provided by these power prod-
uct expansions.
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Chapter 1

Factorization of Bivariate Analytic
functions Via Power Product
Expansion

1.1 Introduction

The subject of this chapter is the expansion of f(x,y) =14+ Y  apx"y" with

p=1
m—+n=p

complex coefficients into an infinite product, where either the defining expression
for f(x,y) is treated as a formal power series expansion or f(x,y) is an analytic
function with £(0,0) = 1. The right side of

o)

fy) =TT+ gmax™y") (1.1)

q=1

m+n=q

is defined to be power product expansion in two independent variables, (or PPE2),
and provides a factorization of f(x,y). Observe that finite truncations of the PPE2,

)

P
namely [T(1+gmnx"y") p . provide polynomial approximations for f(x,y).
=1
mgf”:‘f P=1

A few special cases of PPE2s appear throughout the literature. The infinite
product with elementary factors (1 + x™y") is used as a generating function to



determine the sequence (pq(m,n)),, ,_o

Z pa(m,n)x™y" = H (1+x™y (1.2)
-1

m+n=p

I5

q

where py(m,n) is the number of partitions of (m,n) € Ny x Ny into distinct parts.
There is also Euler’s infinite product in two variables, namely

Y., p(m,n) H (1—x"y")~, (1.3)
m—i—:l 1

n=p n=q

where p(m,n) represents the number of partitions of (m,n) € Ny x Ny into unre-
stricted parts [1], [10]. As these two classical examples suggest, the expansion of

a general infinite product  [](1+ g, x™y") into a power series 1 + Y. ap ,x™y"

m+n=q m-—+n=p

generates an infinite sequence of coefficients a,, , that count the number of ar-
rangements in a variety of combinatorial configurations. The convergence prop-

ertiesof [] (1+ gmxx™y") and its companion power series are very important
=1
min:q
for similar reasons since they are crucial in determining the order of growth of the

coefficients a,, , = pg(m,n), and a,, , = p(m,n) as m+n goes to infinity.

Much research has been done on one variable power product expansions;
see [8],[9],[29],[31],[32]. However, only sporadic work has been done for power
product expansions in two independent variables. Cheema [10] has combinatorial
results involving PPE2s and vector partition identities, while Feld and Newman
[13] have estimated of the domain of convergence of the PPE2 by expressing the
convergence of infinite product in terms of the growth of the coefficients of the

Taylor series of log f(x,y) = Y. cmx™y". There are advantages and insights
mg—jip
gained by the logarithm of the function f(x,y). However, they come with a penalty
since they provide an indirect expression for the coefficients g, , in terms of the
coefficients ¢y o,co,1,- .., ¢; j rather than a direct expression of g, , in terms of the
aip,do,1,---,a; ;. Consequently, an estimate for the domain of convergence of the
PPE2 is not directly expressed in terms of the order of growth of the coefficients
ai0,ao,1,---,a; j. This shortcoming was remedied in the case of one independent



variable by H. Gingold, A. Knopfmacher, and J. Quaintance who expressed g,

as a polynomial in the variables (ai);."zl [17], [19], [22]. In what is perhaps the

most important result of this chapter, we extend this polynomial based approach

of Gingold et al. to the case of two independent variables and thus provide an

estimate for the domain of convergence of a PPE2 directly in terms of the power
series coefficients (@) mn—o -
m—+n=1

This chapter contains two major results. The first main result, Theorem 1.4.1,

provides a domain of convergence for f(x,y) = [](1+ gmnx"y"), in terms of

q=1
m-+n=q

the “majorizing infinite product”

Zsm—i-nmn i nxy)

=1
1n+n p n=p

! Lo o .
where s := sup |am,,|"+. The method of majorizing series is well established

p=1
m-+n=p

in the analytic theory of complex variables; see J.B. Conway [5] and S. Ghorpade
and B. Limaye [28]. However, the same did not hold true for product expansions
until the publication of [22]. The proof of Theorem 1.4.2 makes use of the fact
that [gyn.n| < Ej. See Theorem 1.4.1. The proof of this inequality involves gen-
eralizing the recursive algebraic procedure initiated in [23] and [22] to deduce that
if app, <0, then g, < 0. See Theorem 1.3.2 and Equation (1.28). In the case of
Theorem 1.4.2, the majorizing power

o 1-2 252
. Z Sernxmyn — S(X—i—y)—i— $7XYy (14)
p=1 (l—sx)(l—sy)
m-+n=p

By setting y = 0 Equation (1.4) provides the majorizing function for one variable
case, namely 2” In [19] Gingold and Knopfmacher showed that asymptotic

value of log ! = 2” =) ._odnx" coincides with the asymptotic value of its power

product expans10n [T (1 +gux"), ie. lim, e fl_z = 1. The second major out-
come of this chapter, Theorem 5.1, extends this aforementioned asymptotic result
to PPE2s, where for fixed M , we show that lim,,_. f# = 1 whenever

1-25(x+y)+25%xy E

log =55 =)

dpunx"y". This chapter is organized as follows. In

m+;: 14



Section 2, we study the expansion of a power series into a PPE2 and provide two
algebraic representations for the coefficients g, , as a multivariate polynomials

in (cz,n,,l)‘>,‘1’17,l:0 . In Section 3, we provide another way to express recursively the

m+n=1
coefficients g, , as a multivariate polynomial of the variables a,, ,. The alge-

braic result of Section 3 reveals an intriguing property of these expansions. If
amn < 0, then the coefficients g, , in the PPE2 are non-positive. In Section 4, we
exploit the non-positivity result of Section 3 to determine convergence conditions
of the PPE2 in terms of a majorizing power product. In Section 5, we provide

an asymptotic formula for the g, , associated with 1 — Y. s"""x™y" where
p=1
m-+n=p
S:= sup |amn|™, while in Section 6 we provide combinatorial interpretations
p=1
m-+n=p

for PPE2 in term of partitions of (m,n). Section 6 also provides a convergence the-
orem for the PPE2s associated with combinatorial sequences which states that the
PPE2 and its Taylor series have the same domain of convergence; see Corollary
1.6.1.

1.2 Two Algebraic Formulas for the Coefficients of
a Power Product Expansion

In this section and the next section we study the expansion of a two variable
power series into a PPE2 and provide three algebraic representations for the co-

efficients g, , as polynomials of the (am,n)“,;l’n:() . Unlike the convergence of the

m+n=1
serie )~ ay,, the convergence of the double series Z;"w b, requires additional

considerations. In order to justify the particular order of summation that we uti-
lize throughout this article, we briefly recall some theoretical results. Following J.
Morrow [38], we define )., , by » as a double mn indexed infinite series of com-
plex numbers. (In our particular case, by, , = a,,,xX"'y" .) We define the associated
sequence of partial sums (s, ,) via the finite sum

m n
Sm’n - Z ZbJJC.
j=lk=1

We say 3,  bm,n converges if and only if limy, 0 Sm,n cOnverges. We say Y., , bm.n
converges absolutely if and only if ¥, , |by.»|. The crucial result, [[38], Theorem

4



2], states that if ) ,, , by » absolutely converges, then )., , by » converges and that
the sum of )., ,, by » can be computed by any rearrangement of terms. Since we
will be working with either doubly indexed formal power series or doubly indexed
absolutely convergent series, without loss of generality we define

me,n = b0,0 + Z bm,n
m—+n=p

=boo+b1o+bo1+bro+br1+boo+... . (1.5)

See Definitions 1.2.1 and 1.2.2. But before we even define what we mean by a
PPE2, we need some preliminary notation and definitions.

Remark 1.2.1. Throughout this work, Ny := NU{0}.

Definition 1.2.1. We define a well ordering < on Ny x N via the following binary
relation: for (ny,ny),(n3,n4) € Nog x No, we have (ny,ny) < (n3,ny) if either

1. ni+ny <nz—+ngor
2. ny+ny =n3+n4 and ny > n3, or equivalently n, < ny.

Here < is the usual order relation on Ny. See Figure 1.



Figure 1.1: Ordering of (m,n) € Ny x Ny according to Definition 1.2.1.
For example, (1,0) < (2,0) < (1,1) < (0,2).

Definition 1.2.2. Given a formal power series f(x,y) =14+ Y au.xX"y" or
p=1
m+n=p

analytic function f(x,y) with f(0,0) = 1 whose Taylor series representation is

defined by the well-ordering of Definition 1.2.1, namely

fy) =14 Y anuX™y' =1+aox+agy+arox*+... (1.6)
p=1

m+n=p



we define the power product expansion of f(x,y) in two independent variables,
denoted by PPE2, as

Fy) = [T (1 +gmux™") = (14 g1,0x"y0) (1 4 80,131 ) (1 + g2,06%°) -
g=1
m+n=

(1+g1ax'y) (1 + 202 (1 + 2300 (1 + g2, (1.7

q

where the right equality of (1.7) follows from the conventions of Definition 1.2.1.

Definition 1.2.2 provides a first means of obtaining an algebraic representation
of g in terms of (a,, ,). But we will need one more definition to describe this
algebraic result.

Definition 1.2.3. Let (m,n) € Ng x Ny . A partition of (m,n) is a collection
k
{(p1,P}), - (P, i)} € No x N such that .):,1 (pi,pi) = (m,n). The summands or
=

parts (p;, pi) need not be distinct, and the order of the summands is immaterial.
Let p((m,n)) denote the number of partitions of (m,n), and p4((m,n)) denote the
number of partitions of (m,n) with distinct parts, where p((0,0)) = p4((0,0)) =
L.

For example, the partitions of (2,2) are

{(2,2),(2,0)+(0,2),(2,1)+(0,1),(1,2) +(1,0),(1,1)+ (0,1) + (1,0)} U
{(2,0)+(0,1)+(0,1),(1,1) 4+ (1,1),(1,0) 4+ (0,1) + (1,0) + (0, 1), (1,0) 4 (1,0) 4 (0,2) },

so p((2,2)) =9, and py((2,2)) =5.
Let

[ee]

FE) =14 Y anax™y" = [T (14 gmax™y"). (1.8)
p=1

q=1
m+n=p m+n=q

By expanding the PPE2 of (1.8) into a formal power series, coefficient comparison

shows that

amn = ) 8i1,j18ir.jo+8irsjr (1.9)
i1+ig+...+iy,=m
Jitjt..+jr=n
(170)5(11 7j1)'<'“'<(ir7jr)j(m7n)

where the summation runs over all partitions of (m,n) into distinct parts.

7



Equation (1.9) can be rewritten as

gmn = Ampn — ( Y 8i1,j18i2,jz---gir,jr) ; (1.10)

?1+l:2+...+l'{:m
Jit+ 2+t jr=n,
(lvo)j(ll 7j1)<”'_<(il‘7jr)<(m7n)7
r>2

To obtain the second algebraic formula which writes g, ,, in terms of (ay,,,), start
with Equation (1.8) and take the logarithm of both sides to obtain

log(f(x,y)) =log(1 + Z amax"y") = Z A X"y,

p=1 p=1
m+n=p m+n=p

and to obtain

log(f(x,y)) =1log [T (1+gmax"y") :=}_ log(1+gmax"y")

q=1 q=1
m-+n=q m-+n=q
S S L AT T
g=1 [=1 !
m+n=q

Compare the coefficient of xy" on both sides of Equation (1.11) to obtain the
formulas

1 M_ M
dyn=-7 Y, (1) 'm(gna)m,  M#0, (1.12)
m|M
=t
1 N_ N
dun=v5 ), (=1)" "n(gmn)n,  N#O. (1.13)
n|N
=t

Take Equation (1.12) and set m = M to obtain

1

BMN =dun+ Y, m(=g,, )
m|M

m#M
n

3R

(1.14)



Similarly, take Equation (1.13) and set n = N to obtain

=

1
gun =dun+ Y n(—gm ) (1.15)

N n|N

n#N

_Mn
m=-y

If gcd(M,N) = 1, then we readily deduce from Equations (1.14) and (1.15) that

guN =dun. (1.16)

1.3 Structure Property of the Coefficients of a Power
Product Expansion

There is still another way to recursively express the coefficients g,, , as a multi-
variate polynomial in the variables a,, ,. Start by rewriting Equation (1.8) as

FEY) =1+ Y Ao maX™Y' = [T (1+8gmax™y"),
p=1 1

q=
m+n=p m+n=q

where A1 ) (ju,n) = dmn for all (m,n) € Ng x Nyg. By using the well ordering

of Definition 1.2.1 to factor [] (1+ gm.x™y"), we get the following recursive
q=1
m-+n=q

system of equations: first,

p=1 q=1
m+n=p m—+ =q
(m,n)>=(0,1)



secondly,

1+ Z A(O,l)a(mﬂ)xmyn = (1 +g0,1y> H (1 +gm,nxmyn)
= =2
mg—i’li[) mi]o—n:q
(m,n)=(0,1)
=(1+goy) |14+ Y. Apo)max™Y'|:
mit:lip
and thirdly,
1+ Y Ao ™' =0+g07%) ] (1+8max™")
mg—n:p men:q
(m,n)=(2,0) (m,n)=(1,1)

=(I+g20) |1+ Y Auma?™y'|

p=2
m+n=p
(m,n)=(1,1)
Continue this process inductively to define
1+ Zg A, "Y' = (1 i jpxy™) Hé (1+ gmax™")
min=p min=q
(m,n) = (i, ji) (m,n) = (i1, Jk+1)
= (U8 1+ Y A X" |- (1.17)
=(
m—IOJ—n:p

(m7n)t(ik+l 7jk+l)

We expand the right hand side of Equation (1.17) and compare the coefficient of
xMyN to obtain

Al i), MN) Al 1diesn),MN) T i jiA (s 1k ) (M—iN— i) (1.18)

If (M,N) = (i, jx), Equation (1.18) reduces to
A

ik?jk)7(ik7jk) = gik?jk' (1‘19)

Thus Equation (1.18) becomes
Alig g )\MN) = Al ), MN) = A i) (i) Al s, M—igN—ji) - (1.20)

10



Next, use Equation (1.19) and the binomial theorem to rewrite Equation (1.17) as

1 + ZA(ikﬂlejkﬂLl)ﬁ(m?n)xmyn = (1 +gik7jkxikyjk)_l |:1 + Z A(ikvjk)a(mvn)xmyn]

p={L p={L
m+n=p, m+n=p
(m,n) = (ig 15Jk41) (m,n)=(ix, jk)
= {1 + Z (_1)a(gik7jkxikyjk)a] {1 + Z A(ika)’(m,n)xmyn}
o=1 p={
m+n=p

(mvn)t (ikvjk)

- [1 + Z <_1)aAg'k7jk)7(ik7jk)(xikyjk)a} [1 T Z A(ik»jkk(m’ﬂ)xmyn}' (1.21)

a=1 p=L
m-+n=p
(man)i (ikajk)

By equating the coefficient of x*y’ on both sides of Equation (1.21), we get

— [0y 4
A(ik+l7.jk+l)7(s7t) - . Z (_1) A(l'k,jk),(l'k,jk)A(ikvjk)7(m7n). (1.22)
Qig+m=s
o ji+n=t

Equation (1.22) will be the main tool for proving the following result.

Theorem 1.3.1. Let (i, jx) € No x No \ {(0,0)}. Define A, ;)00 = 1 and
Afiy.jy).(mn) = 0 for (1,0) = (m,n) = (ix—1,jk-1)- Assume that A j) () <O
Jor all (ix, jx) = (m,n). Then A, ., .. ),(s.x) < O whenever (ix11, jir1) = (s,1).

Proof. Equation (1.22) is equivalent to

A(ik+17jk+1)7(s7[) = . Z (_1)aAgk7jk)7(ik7jk)A(ik’jk)7(m’n)
(Xl;.(+m:s
O jp+n=t
(m7n)7£(070)7(ik7jk)
Y S, i
T (_A)(I;bjk):(ibjk) +(=1)% (A)(I;k»jk)7(ik»jk). (1.23)

Rewrite Equation (1.23) as A = B + 7, where

ik 15Jk+1)5 (5,

R [0
ﬁ T ai ; (_1) A(ik7jk)7(ik7jk)A(ik>jk)7(m7n)7
1 m=s
Otj]'(k-O-n:t

(m’n)7é(0v0)a(ikvjk)

11



and
S
I

V= (_A)(ikvjk)7(ik7jk) +(=1)% <A)(ik7jk)7(ik7jk)'

S

By the hypothesis, Agk7jk)7(ik7jk)A(ik’jk)’(m’n)

numbers and is either zero or has a sign of (—1)**!. Thus
(—1)O‘A?l‘.wk)?(ik’jk)A(ik_/ jo),(mn) 18 €ither zero or negative, and each summand in f3

is the product of & + 1 non-positive

is non-positive.

It remains to show that ¥ is also non-positive . Note that y only exists if o = i
is a positive integer, say % = o > 1. Then y becomes

_ a -1 a _
y_ (_A)gkvjk)7(ik7jk) + (_1>a (A)gkvjk)v(ihjk) - O (1‘24)

Therefore, the representation of y provided by Equation (1.24) shows that vy is
non-positive. O

It will be convenient to insert a definition before stating the main result in this
section.

Definition 1.3.1. The symbol ¢ = ((i1, j1), (i2,J2),---s (in, jn)) Stands for a vector
with n components, where n € N and i1,iy,...,in, 1, J2,---s jn € No. Let T=1(0)
be the length of ¢, i.e. T =n. Let |@| denote the sum of the components, i.e.

n n
|¢| = ( Y ig, Y jd>. We denote the symbol A;, ;) ¢ as
d=1 d=l1

ik, Jk)
(i), 01,1 YA i) (2, 2) At i) i )
The following example illustrates the meaning of Definition 1.3.1.
Example 1.3.1. Ler ¢ = ((2,2),(1,3),(4,0),(2,2),(0,4)), then T = t(¢) =5,
la| = (9,11), and

A2
A (l'ka) , ((272)_‘(] 73)7(470)7(272)’(074)) - A(ik7jk),(2,2)A(ikvjk)v(l73)A(ik>jk)a(470)A(ikajk)7(0>4) ’
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Theorem 1.3.2. (Structure Property) Let (iy, ji) € No x Ng\ {(0,0)}. Then
-1
Al (s) —Z(—l)w( A G g0

; A G, o) (1.25)

where the sum is over all (n) = ((i1, j1), (i2, j2), .., (iz, jz)) such that
|0(n)| = (s,¢) and at most one component (lg,lp) # (ix, jx), where 1 < 0 < .

Moreover; define A, ji).o(n) = Alig,jp),(ir.1) Ao iee) I Al (s0) < 0 and
all (ix, jx) =< (s,t), then Equation (1.25) is equivalent to
At (s Z Ao |-+ Ao Gz (1.26)

where the sum is over all (1) = ((il,jl), (i2,]2), s (ir,jr)) such that
|0(n)| = (s,1) and at most one (lg,ly) # (ix, j), where 1 < 6 < 1.
gkdk):(lk>Jk)A(ik7jk)7(m7n
),6(n)- Note that (—1)% = (=1)" (o(m)-1 o

Proof. We obtain the desired result by representing A
Equation (1.22 ) as A

) in
lk ]k

Let us see what happens when we repeat Equation (1.26). In order to efficiently
record the results, let ¢ = ((i1, j1), (i2, j2), .-, (in, jn)) denote a vector with n com-
ponents, where n € N, and iy, 12, ...,in, j1, j2,---» jn € No. Then a4y denotes the
expression a;, j,di, j,---di, j,- After L iterations, and assuming A( )(st) S 0,
whenever (iy, ji) =< (s,t), we obtain

A(ik+17jk+l)7(SJ) = Z(_I)T(Mn))_lad)(n) = —Z|Cli17j1||ai2,j2|, ’) ’aiﬁjT’- (1.27)
n n

IksJk

where the sum is over all ¢(n) = ((i1, j1), (i2, j2), -, (iz, jz)) such that [p(n)| =
(s,1).

If (s,¢) = (igx+1, jkr1)> then Equation (1.27) becomes

-1
Ali i) (i 1jert) = 8ikatofirs = Z(—I)T(‘P(n)) o)
n
- _Z|ai17j1|’ai27j2""|ai1;,j7|' (1.28)
n

where the sum is over all ¢(1) = ((i1, j1), (i2, j2), ---, (iz, jz)) such that
[0 (M)| = (k15 Jir1)-

13



The following example illustrates applications of the structure property to calcu-
late g5 1:

82,1 = By using Equation (1.19)

By using Equation (1.22)

=(—1)"A0.1).0.040.1).2.0) TA0.1).2.1)

=(=1)'A(1,0),0.)A(1,0),20) + (=1 'A(1.0) (1.0A10),01.1)
(—1)214%1,0)7(1,0)‘4(1,0),(0,1) +An0),21)

=—ap,1a2,0 —a1,0d1,1 + a%,oao,l +az;.

Below we explicitly list g, , for 1 <m+n < 4.

g1.0=(—1)’a

go.1 =(—1)%ag,;

20 =(—1)%az

802 =(—1)%ag

g1 =(—1)°a11 + (=1)'ar pag,

30 =(—1)%azo+ (—=1)'az a1

g2.1 =(—1)%az; + (—=1)'ag1a2,0+ (—1)'a1 a1, + (—1)%ai yao,1
g12=(=1) a2+ (1) arpa02+ (= 1) ao 1a1,1 + (—1)*ag ya1,0
g03 =(—1)%ag 3+ (—1)'ag a0,

840 =(—1)%as0+ (—1)'ar paz 0+ (—1)%az 04

31 =(—1)%az 1+ (=1)°ai gao,1 + (—1)%ai gar1 + (—1)'ag as 0+ (—1)'ar 1420

+(=1)'ay paz,1 + (—1)*2ag 141 0a2,0
822 =(—1)az2+ (1) az a0z + (—1)*2a7 gag  + (—1)'ap,1a2,1 + (—1)*ag a2
(—1)%at gao2 + (—1)*2ay pao,1a1,1 + (—1) '@y par 2 + (—1)ar 0a1 00,2
g13=(—1) a3+ (—1)’ay a10+ (=1)%ag ja1,1 + (—1)'a10a03+ (—1)"a1,1a02

+ (—l)laoylahz + (—1)22ao,1a1,oa0,2

+

14



g04 =(—1)%ap 4+ (—1)'ag1a03 + (—1)%ap2ag ;.

1.4 Convergence Criteria for Power Product Expan-
sion

Our primary purpose in this section is to apply the results of Section 1.3 in order
to determine a lower bound for the domain of convergence of the right hand side
of Equation (1.7). Since we are dealing with doubly indexed infinite products, we

must carefully define what is meant by the convergence [] (1 + g .x"y").
q=1
m-+n=q

(o)

Definition 1.4.1. A PPE2 [](1+ gm.x™y") converges if and only if

g=1
m+n=q

P
limp_yeo [](14 gmnx™y") converges to a nonzero complex number. Note that the
=1
m—qQ—n:q

P
order of the elementary factors within ] (14 gm x™y") follows the conventions

q=1
m-+n=q

of Definition 1.2.1.

We are primarily interested in the absolute convergence of [T (1 + gm.x"y").

g=1
m-—+n=q

Therefore, following the lead of J. Thunder [43], we make the following defini-
tion:

(o)

Definition 1.4.2. The PPE2 [](1+ gma.x™y") is absolutely convergent if and

q=1
m+n=q
onlyif  TI(1+|gm,nl |x"y"|) converges, that is if and only if Timy, n—se [ 172 TT72 (14
g=1
m—+n=q

x'y’|) converges to a nonzero real number.

|gi7j

15



Since ¢* > x + 1 whenever x > 0, we observe that

m n
Y ) lgiillxy] <HH L+ gill x'y’])

i=1j=1 i= 1]

elily | — i Ky eIy

:s

l:1

Thus Lemma 2 of [43] is applicable and we have the following proposition:

Proposition 1.4.1. A PPE2 [](1+ gmunx™y") is absolutely convergent if and only

g=1
m-+n=q
(o)
if Y |gmnallx™y"| is an absolutely convergent series of real numbers.
q=1
m+n=q

As it the case of a double series, if a PPE2 [](1 4+ g »x"y") is absolutely

g=1
m—+n=q

convergent, then order of multiplication is immaterial and thus we choose to apply
the ordering of Definition 1.2.1. We implicitly made use of this fact in Proposition
1.4.1.

if (gm,n) is a sequence of complex numbers, we define

log H (14+gmax™y") | == Z log(1+ gmx"y"), (1.29)
mineq mineq
where
log(1 4 gmax™y") = i fg’”"xmf . (1.30)

Equation (1.29) implies that

exp( i log(1 +gm7nxmy")) :=exp [log( Io_:Il(l +gm’nxmy")>]

g=1 q=
m+n=q m+n=q
=[T+gmax™y") (1.31)
=1
m?i-n:q

16



and implies that for a sequence of complex coefficients (g, »), the PPE2

[T(14 gmnx™y") will be absolutely convergent if and only if the double series

q=1
m+n=q

<) o - g
8
Z log(1+ gmx"y") := Z Z(_l)tz Z,nxmfynﬂ,
L g=1 i=1
m-+n=q mtn—q

is absolutely convergent, i.e. if and only if
5 & gl
¥ Y e <o
q=1 (=1
m—+n=q

By adapting the Taylor series argument found on Page 165 of [5], we have

1/2|A] < [log(1+A)[ <3/2/A|,  |Al < 1/2. (1.32)
(In our case A = g, ,x™y".) Equation (1.32) implies that Y. log(1+ gmx"y")
=1
m—qQ—n:q
is absolutely convergent if and only if ) g,, ,x"'y" is absolutely convergent, a
qg=1
m-—+n=q

fact we record in the following Theorem:

Theorem 1.4.1. Let f(x,y) =14+ Y amx"y". Then f(x,y) is represented by
p=1

m+n=p
the PPE2 . N
fay) =1+ Y, ama™y" = [T (1+gmax"y"). (1.33)
mhamp ity
Consider the following auxiliary functions:
Cx,y)=1= Y |ama™y" = T] (1—Guux™") (1.34)
mizip m?‘;]:q
D(x,y)=1-— Z Appx"y" = H (1 =Epnx"y"). (1.35)
p=1 g=1
m-+n=p m-+n=q

Assume 0 < |ay | < Ay for all (n,m) € Nog x No\ {(0,0)}. Then
|gm7n| < Gmpn < Epp for all (n,m) € No x Ny \ {(0,0)}.

17



Proof. By Equation (1.28) we have

Emn = Z (_1)T(¢(n))_la¢(n) = Z (_1)T(¢(n))_lai17j1ai27jz'“air:jr'
|¢(11)|n:(m7") W(n)\n:(

" (1.36)
Observe that Equation (1.36) implies that
gmal=| ¥ (=) g a,
|¢(n)\n:(m7n)
< Z ’ailvjlHai27j2|"“airvjr" (1.37)
\¢(n)\n:(rn-,n)

Similarly, when we apply Equation (1.28) to Equation (1.34), we obtain

0< é\m,n = Z (_1)T(¢(n))(_|ai17h |) ( - |ai27jz|)"'( - |airvjr|)

\‘P(W)\i(mJl)

- Z (_1)r(2¢(n)) (|ai17j1 |) (|ai27jz |) (lair7j7|)
\‘P(W)\i(mﬂ)

= Z ’ailajlHai27j2|"'|ai7::jr|‘ (1.38)
\¢(’7)\n:(m-n)

By combining Equations (1.37) and (1.38), we deduce that |g, | < @mﬂ. Also,
due to the inequality |ap, | < A, pn, We have

0< Gm,n = Z ’ailajl||ai2»j2|"'|aif:j1:|
(b))
< Y AnjAbAij = Enp
(b))

where the last equality follows from Equation (1.28). O

Remark 1.4.1. Theorem 3.1, Part i, of [17] and Theorem 3.1 of [22] are special
cases of Theorem 1.4.1.

We now consider the special case for D(x,y), particularly

Dx,y)=1—"Y s""x"y'= ] (1 —Ennx™y"), (1.39)

9=1
m+n=p m+n=q

18



where s := sup |am7n|#ﬂ.

p=1
m+n=p

Our objective is to find a domain of definition such that the PPE2 of Equation
(1.39) is absolutely convergent. Define

. (E,py X" 12
log(1 — Epnx"y") == — Z Ennx"") .
=1 4
Next define
Y log(l—Ep?™y):=— Y Y % (1.40)
p=1 p= /=1
m+n=p m+n=p

The equality in (1.40) tells us that absolute convergence of the double series on the
right hand side implies that both Y. log(l — E,, ,x™y") and log(1 — E,,, ,x™y")
p=1

m-+n=p

are absolutely convergent. Moreover, since

exp ( Y log(1 = Enp"™y")) = ] (1= Enpd™"),

q=1
m+n=q m+n=q

the absolute convergence of the double series implies the absolute convergence of

o)

[T (1 —E, ,x"y") as well. Therefore, in order to determine where

q=1
m-+n=q

[}

[T (1 —E;x™y") will be absolutely convergent, it suffices to consider the ab-

g=1
m+n=q

solutely convergence of Y. log(1 — E,, ,x™'y"). Taking the logarithm of the both

q=1
m-+n=q

sides of Equation (1.39) gives

[ [eo)

log(1— Z sy =log H (1 =Epx"y")
namp g
= Z log(l—Em,nxmy”). (1.41)
mij]:q

19



Observe that

i 1 L\ 1=2s(x+y)+2s%xy
B l—sx 1—sy  (I=sx)(1—sy)

This implies that
log ( 1—2s(x+y)+ 2s2xy>

(1 —sx)(1—sy)
=log (1—[2s(x+y) —2s2xy]) —log(1 —sx) —log(1—sy)

oo ! oo Y 0 _ 2 l
D i
=1 (=1 =1

The three series in (1.42) are absolutely convergent for |x| < %, ly| < %, and for
‘2s(x +y)— 2s2xy| < 1, respectively. By triangular inequality, we have

|25(x+y) — 25%xy| < 2s(|x| + [y]) + 257 |x]]y]. (1.43)

If we require 2s(|x| 4 [y|) +2s2|x||y| < 1, since 2s|x| < 2s(|x| + |y|) +2s%|x||y| < 1,
we find that |x| < 2% Similarly, |y| < 2%

Therefore, the estimate of a convergence domain of (1.42) is given by

D— {<x,y> € €2 25(Ix| + ) + 252l y] < 1}.

See Figure 1.2.

Relation (1.43) makes it possible to also obtain a domain of absolute conver-
gence in terms of polydiscs. Let |x| < p and |y| < p. Inequality (1.43) implies
that the PPE2 will be absolutely convergent if

25(2p) +2s°p* =2[(sp+1)*—1] < 1,

or equivalently if p < 57! [\/g — 1} . The inequalities for p obtained from the

defining quadratic equation of D, namely

xf <s7! [\@—1], byl <s7! [\@—1],

20



are sharp in the sense that if

] ]

then ‘2s(x+ y)— 2s2xy| = 1 and the sum of the absolute values of the terms in the
logarithmic power series of (1.42) diverge.

In summary, we have shown that Y. log(1 — E,, ,x"y") will be absolutely
gq=1

m-+n=q
convergent whenever (x,y) € D or whenever (x,y) € Dy, X Dy, with

p<s! {\/g— 1] , where

Dy :={x:|x|<p},  Dyp:={y:lyl<p}

Hence, T[] (1 —E,x™y") will also be absolutely convergent for the same re-
g=1
m+n=q
gions. We claim this information provides a lower bound on the range of abso-
lute convergence for the PPE2 of Equation (1.33). To determine the domain of
convergence of the PPE2 of Equation (1.33), we must determine the domain of

convergence of
(]

log[T (1+gmax™y"):= Y log(1+gm.x"y"), where the right hand side is de-
g=1 g=1

m+n=q m-+n=q
. . ad ad (71)i_l(gm nxmyn)g
fined via the convergence of the double series ). Y} 7 . However,
g=1 (=1
m+n=q

log H (l—i—gm,nxmy”)‘ = Z log(l—l—gm,nxmy”)’
gq=1 =

m+n=q m+n=q

< Y [log(1+gmax"y")|
mi:nlzq

_ i i(—l)“(gm,nxmy”)g
g=1 1/=1] ¢
m+n=q
= (gmal ™y

S
9=1 (=1
m+n=q
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& (Emnlx" )"
< —_— 1.44
Zl ; / (1.44)
m+n=q
where the last 1nequa11ty follows from Theorem (1.4.1). Inequality (1.44) shows
that if Z Z M and hence Z log(1 — E;, nx™y") are absolutely con-
=1

m+n:p m+n=q
oo

vergent, then Y. log(1+ g, x"y")and logﬁ (14 gmnx"y") will be absolutely
g=1

p=1
m-+n=p m+n=q

convergent as well.
We can therefore summarize what we have shown so far in the following the-
orem.

Theorem 1.4.2. (i) Let f(x,y) =1+ E‘, am nX™y". Define
=1

m+n=p
§:= sup ]am7n|ﬂ++n. Then both f(x,y) and its PPE2,
mﬁjip
fay) =14 Y ana™y" = ] 1+ gmax™y"), (1.45)
p=1 g=1
m+n=p m-+n=q

and the auxiliary function, along with its PPE2

[e ) oo

D(x,y)=1—"Y """ = T (1= Ennx™y"), (1.46)
p=1 g=1
m+n=p m+n=q

will be absolutely convergent whenever (x,y) € D, where

D= {(x,y) € C%: 2s(|x| + |y|) +2s%|x||y| < 1}.

See Figure 1.2.

(ii) With the same conventions as in Part (i.), both f(x,y) and its PPE2, along
with D(x,y) and its PPE2, will be absolutely convergent whenever (x,y) €

Dyp X Dy with p < 51 [\/g— 1], where
Dy :={x:|x|<p}, Dy :={y:ly|<p}
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><

2s(|x|+lyD+2s?|x||ly|=1

> |x|

Figure 1.2: A domain of absolute convergence of Equations (2.4.2) and (2.4.2).

1.5 Asymptotic Approximation for a Special Power
Product Expansion

We will now derive an asymptotic representation for the majorizing product ex-

1
: : : m-+n n — et
pansion associated with 1 — ):,1 sy where s = su;l) |G| 747
p= p=
m+n=p m+n=p

The following lemma will be used in the derivation of asymptotic formula.

Lemma 1.5.1. Let M be fixed element of N, N.g e N, and N < g < M+ N. As
N — oo, we have

1. g~N
2 ()~

23



Proof. The inequality N < g < M + N implies that 1 <
fixed M, g ~ N as N — oo,

q M
v < 1+ - Hence, for

To prove the second statement, observe that

M times
(;14) _ q(q—l)(q—ij;-.(q—MH) _ I%MM_’_O(QMI)]
Z%[lJrAz(fI)},
where Ay (gq) = % — 0 as g — . From Part 1, since g ~ N as N — oo, the
result follows. O

Let (M,N) € NxN. Arrange (guy ) in an infinite array as shown in Table 1.1.
Then for fixed M € N, the limit Al’im gm N 1s along the M-th row of Table 1.1.
—>00

81,1 812 813
82,1 822 823
831 832 833

84,1 842 8473

Table 1.1: The row asymptotics are calculated in Theorem 1.5.1.

Theorem LS.1. Let f(xy) =1 =% "2y = % where s > 0.

m+n=p

For this special function f(x,y) and its associated PPE2 ] (1+ gM7NxM ),
1

pe
M+N=p
we have

M 2n(g— D=

M~+N
—8MN S )
L (g m)g NI N g

as N — oo, (1.47)

where M is a fixed element of N and (M,N) € N x N.
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Proof. Let

o)

flxy)=1+ am X"y = H (1+gmnx"y").
mijip mflljtlzq

Define
log(f(x,y)) =log(1+ Y amux™y")= Y dunxy". (1.48)

p
m+n=p M+N=p

Since f(x,y) =1— Z S — 1-2s(xty) 425"y , we find that

(1—sx)(1—sy)
m+n P
log (f(x,y Z dy nXMyN = Tlog(1 Z s
M+N =p ity
~log (1—2s x+y)+2s xy>
1 —sx)(1—sy)

log(l [2s(x+y) —2s xy])—log(l—sx)—log(l—sy)
¥ sx+sy—s 2xy)4 i (Sx)q+iM

q=1 =1 14 <41 4

> 24 (sx)% (s s2x -l > (sy)4
vy ¥ q()('y)'( y)* Z +Z(y)

g=1 q « G+ tos=q 061.062.063. g=1 =1 q

2q q o —0n X q—0 Ky q—0o had SX q o Ky q
-y Z q'( ' (sx) ('y) N ( +Z(y) _
= o= alop!(g—on—o)lq s T e R
q—o1— O£2>O
(1.49)

If, in the first sum at (1.49), we let ¢ — ap = M and g — oy = N, Equation (1.49)
becomes

IOg Z dMNXMyN
3 21(q — 1)!(=D)M N4 (5)* (sy)?
- _ SMJrNxM .
q; q{:laXX{ZMW}(q—M)!(q—N)!(M+N—Q)!+q§ q +q§’1 q
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Our aim is to use the right side of Equation (1.50) to determine an asymptotic
formula for dy y whenever M € N is fixed. Since M and N are both non-zero,
the coefficient of dy; y depends only on the first sum on the right side of (1.50),
namely

N+M 24(g— 1)1(—1\M+N—q
iy == (c]' 2 i : - (1.51)
g=max{M,N} (g—M)!(qg—N)!(M+N —q)!
Then for a fixed positive integer M, as N — oo, Lemma 1.5.1 implies that
dy = —sMJFNNiM 24(g—1)1(—1)M+N=q
’ = (g=M)(g—N)!(M+N—q)!
M.S'NNiM IN2g—=N N q! M!(—I)M(—l)N*‘I
= —s L )
S N g (g-M)M! (g—N)(M+N—q)
—(—=s)M2)" N NN g\ [ M
e el CATORN
q=N 4q q
oM i N
=—— L ()T (1+Ai(g) 7 (1 +A
N q;v( )N (1+ 1(q))M!( +M2(q)) SN
(—s5)M(25)NNM-! N+M v M
T (=2)? (1+A(9)), (1.52)
M q;\/ q—N

where (1+A(g)) = (1+Ai(q)) (14+22(q)), Ai(g) —0,and Ay(q) — 0 as N — .
Hence, A(g) — 0 as N — co.

Denote the right hand side of Equation (1.52) as 71 + 7>, where

—SM SN M—1 N+M
T ::_( ) (2) N Z(_z)qN(qM )7

M! = N
o (_S)M<2S)NNM—I N+M B M
o= - CEEET Y o (M )a@
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A change of variable and an application of the binomial theorem shows that

T, = — (_S)M(ZS)NNM_I f (M) (—2)V- M-V

M! = \Vv
_ (—S)M(ZS)NNM_I | _ 2NSM+NNM—1
7 A TR

Then since A(g) — 0 as N — oo, the closed form of 77 implies that

T (—1)M I A VA
q=N

)AM(q) -0 as N — oo,

which means that
2N SM +N NM -1

i [1+0(1)] as N — oo (1.53)

dyn = —
Equation (1.53) is the desired asymptotic formula for dy y. We now use this
formula to obtain an asymptotic formula for gy y whenever M € N is fixed. From
Equation (1.12) or (1.14) we have

>0 >0 | >0
—_—~— — P M
TOIN = —dy N —— T2 ) < —dy . .
guN = —dun =4 ;'4 M(=8py 2m) " < —dy N (1.54)
l<m<L%J
“a

1 M 1 M
| o] 4]
1 s™(2s) " (Nomym—1 " N\ 1"
= — Z m M 1+A{m,—
M o m! M
1<m§L%J
M N(Nm\M 0
1 2 =2 N. "
-— y = (S])V (%) 1+A<m,—m)] , (1.55)
Mo M
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where in the penultimate line we used Equation (1.53), which implies that
N
A(m,ﬁ") —0as N — oo,
Since
N M+NpM—1

[+ AM,N)], (1.56)

dyn=—

where A(M,N) — 0 as N — o, we deduce that for fixed M, there exist a positive
real number Q(M) such that forall | <m <M

|A(m,N)| < Q(M). (1.57)

Since the right side inequality (1.57) is independent of N, we also have

'A@%’")' <o(m), (1.58)

whenever 1 < m < M. We now return to (1.55) and use (1.58) to discover that for
N — oo, Hence, as N — oo,

—A 15M(2 Moy m(NmM M! (14 A(m, X))o
_ L Mng ,
—du N M oy’ [my(%)]% ON M+N NM—1 1+A(M,N)
1<m<L%J
mAM 71 4 |A(m, N o
<NM-1)! Y my)” (1] (m, 5 I (1.59)
am [mi(Nmy) 1—=A(M,N)
1<m<| Y|

Since A(M,N) — 0 as N — oo, we may assume without loss of generality that
|A(M,N)| < 1/2 for N large enough. Thus

| 1
1—|AM,N)|>1—= that ——— <
| ( ) )|— 27 or a 1—|A(M,N)| —

ST

Returning to (1.59), for N — oo, we find that

_A mAM- 1] A (m, N |
‘ SN(M—I)! Z m(M) M[ | (”;l M)H
_deN m|M [m‘(NWm)]m 2
1<m<| M|



(M u
<ON(M - 1)! 1+ Q)]
Q%fm m! (5] m
m\M
<2N(M—1D)[1+ QM) )"
SO B
1<m<| Y|
m\M
SNMM-1)[1+0oM)" Y % since m < ¥
vt [mU (S|
1<m<| Y
1 1
SNM!<_)M[1+Q(M)]M M M
2 %MJ (1) w (M)
<nmouny Y L since Ly <1
wvt (G )" mi)m
1§m§L%J
1 1
<NMME+eO Y ——
()
1<m<| Y|
SNM!(%)M[HQ(M)]M Y oy
1<nr:‘<ﬁf% (AM/I)%
1 1
SNM!(E)MUJFQ(M)]M N
m|M ]\_4)

< NMIM 1400

We now return to Equation (1.54) to discover that

—guN = —dyn—A

A
= —dun |:1 + —] — —dypN as N — oo
dm N

29

(1.60)



1.6 A combinatorial interpretation for PPE2

The purpose of this section is to discus a combinatorial interpretation for Equation
(1.7) involving integer partitions. We begin with a refinement of Definition 1.2.3.

Definition 1.6.1. Ler A x A C Ny x Ng. A partition of (m,n) € Ng x Ng in A x A
k

is a collection {(p1,p}), ..., (Pk, )} C A XA such that Y. (pi,p;) = (m,n). The
i=1

summands or parts (p;, p:) need not be distinct, and the order of the summands
is immaterial. Let p***((m,n)) denote the number of all partition of (m,n) in

AXxA, and p AXA ((m,n)) denote the number of partitions of (m,n) in A x A with
distinct parts

Example 1.6.1. Let A x A = {(0, O) (1,2),(1,1),(2,3)}. Evidently,
g4 ((0,0)) = “A2) =1, pr) =1,
5)

p‘;?*“(<2,3>)—2 3XA(<, )=1 Py ((3,4) =1,
Py ((4,6)) =1,

and otherwise p'y**((m,n)) = 0. Then we have

Z AXA ()" = 14yl +xy? 1+ 26253 4+ o%y5 1yt oS
m+n=0
= (1+x'yh) (1+x'y) (1 4+2%7).

From this example we deduce that the generating function for the partition of all
(m,n) € Ny x Ny into distinct parts is given below.

Theorem 1.6.1. ( Chapter 12 [1] ) The generating function for the sequence
pa((m,n)), as defined in Definition 1.2.3, is

Y pallmm)ey' = T (14277, (L6

m-+n=p m+n

Proof. If we rewrite the right hand side

[

[TA+x"y") = (1420 A+ (1+22°) 1+ yH) (14+2%) (1+250) ...

g=1
m+n=q
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as a power series of the form ), a; jxiyj , then our aim is to show that p, ((z , ])) =
=0
ifj:p
a; j. If multiply the term x'y? from the first parentheses with the term x%y! from
the second parentheses and continue this process until we reach the term x%yP

from the L — 1 parenthesis, we discover that

iyl = x1y0x0y 1. @B

which implies that

i=140+-+a,
j=0+1+4---+p.

But the last two lines are exactly the definition partition of (i, j) with distinct parts.
O

The reader might wonder if a similar result holds for arbitrary partitions. In-
deed, this is the case as seen by the next theorem.

Theorem 1.6.2. ( Chapter 12 [1] ) The generating function for the sequence
p(m,n), as defined in Definition 1.2.3, is

i) p((m,n))x"y" = f[ (1=x"y")~ . (1.62)

m+n=p m+

Proof. We expand each factor in the right hand side of Equation (1.62) as a power
series to find that

[Ta=x"y) =1 +x+2 4 ) 1+y+72 4 I+ +xt 40 )
1

q=
m+n=q

(1.63)

The coefficient of the term x™y" is exactly the number of ways to obtain x"y" as
a product one term from each infinite sum; i.e. the number of solutions of the
equation

Xy = (xy?) %00 (Oy! )0 (2y0) %00 (xfy) %, where ) € No,
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which implies that

(m,n) =0y 0)(1,0) + 040,1)(0,1) + - + 0 (4, )

01 0)—times 0(o,1)—times
=((1,0)+ (1,0) -+ (1,0) + (0, 1) + (0, 1) -+ +(0, 1)) -+
oy j—times

A\

Ve

+((i7j)+<i7.j)+"'+(i7.j))'

Thus, the right hand side of the previous equation is a partition of (m,n) into
positive summands.O

Remark 1.6.1. 1. Observe that the coefficients on the right hand side of (1.63)
are non-negative. This is typical to numerous cases in combinatorial inter-
pretations, see e.g. George E. Andrews [1]. It is then important to find out
what is the domain of convergence of the right side of (1.63) and compare
to the domain of convergence of the left side of (1.63).

2. It is noteworthy that one encounters expansion of a Taylor series

1+Y." | apx" that is absolutely convergent in a disk |x| < R, but the domain
of convergence of corresponding PPE is R, which could be smaller than
R. For example, the Taylor series of e * is absolutely convergent for |x| =
R = oo while the corresponding PPE is absolutely convergent for |x| = R} =
1 < oo =R, see e.g. O. Kolberg, [32]. However, it happens that if the
coefficients of the PPE g in [];_;(1+ ggxg) are non-negative then Ry = R,
see H. Gingold, A. Knopfmacher, [19] and H. Gingold and J. Quaintance,
[22].

We extend results in [19] and [22] to expansions in two independent variables.

The theory of infinite products is elaborated upon in J.B. Conway [[5], p. 164]
and R. Silverman [[42], p. 291]. For the theory of double series see S. Ghorpade,
B. Limaye [[28], p. 369]. We will assume that each individual function gy(x,y)

given in [T (14 ge(x,y)) is a shorthand notation for
=1

gx,y)="Y g X" (€N,
m+n={
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and therefore Y gy(x,y) is a shorthand notation for
(=1

Y Y .M (1.64)
(=1 m+n=(
where the inner sum of (1.64) is actually the double series
Y oY =Y Yen MY
m-+n=/ m+n=¢ M

where 1] is the sum over all partitions of (m,n) with ordering among the partitions
provided by Definition 1.2.1.

If (1.64) is an absolutely convergent double series, we may choose for partial
sums any order of summands. Therefore, we choose

o oo +
Y )Y ge,,,,lx Y= lim Z man/mnx Y
{=1{l=m+ “mtn=1 =

— \&lip 1o, 120 I, 10,22 22A,02 21 20722
(8110 + 810.1Y) + (81207 + 81,1 XY + 810, + 8250 + 82, , Xy + 820,0°) +

Furthermore, by adapting the argument of J.B. Conway, [[5], p. 166], we adopt
the following definition for the absolute convergence of [T (14 g¢(x,y)), namely
/=1

Definition 1.6.2. The infinite product H (1 + gu(x, y)) is absolutely convergent
in a domain D if and only if (1.64) is absolutely convergent in D .

With all of these conventions in place, we are ready to prove the following theo-
rem:

Theorem 1.6.3. Let g/(x,y) = Y. gu,,X™Y" be an infinite sequence of formal
m-+n= '

power series with gy,,, > 0 for each £ € N ,(m,n) € No x No \ {(0,0)}. Suppose
that the formal product expansion

fay) =1+ Y amax™y"=[](1+ge(x,3)), (1.65)
p=1 /=1
m-+n=p
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holds in the sense that
amvn = Zgélml.n]gZZmz.nz o 'ggrmr,nr7 (166)

where the summation is over all ((my,ny),(my,n2),...,(my,n.)) with
(mlvnl) + (mZ;nZ) +-+ (mrvnr> = (m,n), (1;()) = (ml7nl) = (mZanZ) ==
(mp,ny)and 1 <l <lp <--- </l Then f(x,y) =1+ Y amx"y" is absolutely
p=1
m+n=p

convergent in a domain D if and only if H (1+g¢(x,y)) is absolutely convergent

in D. In particular, if D = Dyp x Dy, Where Dyp :={x:|x| < p}and Dy, =
{y |yl <p}, then f(x,y) is analytic in the polydiscs Dyp x Dy, if and only if
[17-, (1 +ge(x,y)) is analytic in the same Dyp X Dy,.

Proof. Assume that f(x,y) is an analytic function whose power series on the
left side of (1.65) is absolutely convergent. Note that a,,, in (1.66) is a finite
combination of gy, s, since g, , = 0 for £ > m+ n. Furthermore, (1.66) implies

m,n

that
m-+n
Am,n > Z 8l
/=1
Therefore,
o m+n
Z amax"y" > Y de,,,,,x '
m+n=1 {=

m+n p

The absolute convergence of the left hand side for (x,y) € D implies that the right
hand side is absolutely convergent. We can now simply interchange the order of
summation to get

o > Z amnxnyn>z Z ggmnxmy _dexy

=1{=m+n
m+n 4

Hence, [] (14 g¢(x,y)) is absolutely convergent for (x,y) € D.
(=1

Conversely, if the product expansion on the right hand side of (1.65) is abso-
lutely convergent, then it defines an analytic function in a domain ). The Taylor
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series expansion of this analytic function coincides with that of f(x,y) and the
result follows immediately. O

Here are two examples which demonstrate the usefulness of Theorem 1.6.3. First,
consider the elementary factors (1+x'y/) for all (i, j) € N%. Then gy(x,y) = x"y",

where m+n = £. Evidently, Y77 ; g¢(x,y) = Y x™y" is absolutely convergent
(=1

m+n={

for |x| < 1 and |y| < 1, see Example A.3.1 (i). Definition 1.6.2 and Theorem 1.6.3
imply that the domain of convergence of 1 + ¥ pg(i, j)xiy/ is D = {(x,y) € C?:
k=1

it+j=k
|x] <1 and |y] < 1}. For second example, consider the elementary factors

[e)

(1—xy/)~! forall (i, j) € Nj. Then ge(x,y) = L 2™y and X7, ge(x,y) =
St

Y x"y*" is absolutely convergent inside the domain D = {(x,y) € C?: |x| <

1 s=1
=/

18

J4
m-+

3

1 and |y| < 1}. Again, Theorem 1.6.3 implies that 1 + ¥ p(i,j)x'y/ con-
k=1
i+j=k

verges inside the domain D = {(x,y) € C®: |x| <1 and |y| < 1}.
Corollary 1.6.1. If

(o]

Fey) =1+ Y, anax™y" = [] (14 8max™y"),
p=1

g=1
m+n=p m-+n=q
where g, > 0 for (m,n) € Ng x Ny, then the series and the product have the
same domain of absolute convergence.

Proof. Although this result follows immediately from Theorem 1.6.3, we feel it is

instructive to provide a direct proof. Assume that [](1+ gy »x"y") is absolutely
g=1

m+n=q
convergent in domain [D; and defines an analytic function f. The Taylor series

expansion 1+ Y ay,x™y" of this function is absolutely convergent in (x,y) €

p=1
m+n=p

D, C D). On the other hand, from Equation (1.10), we have Y, g .|x|"|y|" <
p=1

m+n=p

[

amn|x|™|y|" which implies that D C D,. O
1

p=
m+n=p
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Remark 1.6.2. The preceding theorem provides convergence information for mul-
tidimensional partitions as the coefficients g, of the corresponding generating
function is usually non-negative.
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Chapter 2

Factorization of Bivariate Taylor
Series via Inverse Power Products

2.1 Introduction

Given f(x,y) =14+ Y amx"y" with complex coefficients, where either the

p=1
m-+n=p

defining expression for f(x,y) is treated as a formal power series expansion or
f(x,y) is an analytic function with f(0,0) = 1, the right side of

| | (1=l nx™y"™) (2.1
p=1
m-+n=p

is defined to be inverse power product expansion in two independent variables,
(denoted IPPE2).

This chapter studies expansions of f(x,y) =14+ ¥ apx™y" into its IPPE2

q=1
m+n=q
[1(1— hm’nx'”y”)_l and contains algebraic, number theoretic, analytic, asymp-
=1
mg—n:p

totic, and combinatorial results. The three main results are as follows:

1. An algebraic structure property for (A4, ,) in terms of recursive “mixed ex-
pansions”; see Theorem 2.3.2.
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2. A domain of convergence criteria for the IPPE2 in terms of a “majorizing”
infinite product; see Theorem 2.4.2.

3. An asymptotic approximation for the “majorizing infinite product”; see
Theorem 2.5.1.

Theorem 2.3.2 involves expansions of the schematic finite product-series form
N

flx,y) = H(l _hm,nxmyn)il [1 +2Am.,nxmyn} )

p=1
m+n=p

where h;, , < 0and A, , < 0 whenever a,, , < 0. Ultimately, these finite product-
series expansions allow us to write 4, , as a polynomial in the a,, , which preserve
the negative sign property; see Equation (2.26). These algebraic properties are
crucial for determining a lower bound domain of convergence for the IPPE2. In

particular, Theorem 2.4.2 provides a domain of convergence for f(x,y)= [[(1—

q=1
m+n=q

hmﬁx’"y”)_l, in terms of the “majorizing infinite product”

[}

Z sm+n m n Z 1+Fm,nxmy")_1,

—1
m+n =p +n=p

where s := sup ]amjn\m%n. The method of majorizing series is well established
p=1
m+n=p
in the analytic theory of complex variables; see J.B. Conway [5] and S. Ghorpade
and B. Limaye [28]. However, the same did not hold true for product expansions
until the publication of [22]. The proof of Theorem 2.4.2 uses the fact that ]hmn\ <
Fiun; see Theorem 2.4.1. The proof of this key inequality heavily relies on the

algebraic representation provided by Theorem 3.2 and Equation (2.26).

The logarithm of the majorizing inverse power product plays a very important
role throughout this work. Not only does it provide information regarding the
domain of convergence for the IPPE2, the coefficients of the logarithmic series
becomes the asymptotically dominating term. To explain the meaning of this last
phrase, observe that the majorizing power product of Theorem 2.4.2 has the closed
form

> 1—2s(x+y)+2s%xy
1— s — . (2.2)
,;1 (1 —sx)(1 —sy)
m-+n=p
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By setting y = 0, Equation (2.2) provides the majorizing function for the one

variable case, namely 11__—2;’“ In [19], Gingold and Knopfmacher showed that the

asymptotic value of log 11__—2;; =Y d.x" coincides with the asymptotic value of
its power product expansion [T, (1 + gnx"), i.e. lim,_ye fi_z = 1. In [7], the au-
thors extended this result and showed that for fixed M, lim,,_ % = 1 whenever
1-25(x+y)+2s%xy _

log (I—sx)(1—sy)

Y. duyx"y". The third main result of this chapter, Theo-
=1
min:p
rem 2.5.1, shows that for fixed M,

limy, e % = 1. The proof of Theorem 2.5.1 is subtle since it requires showing
that ;M

M ,N
a bound was not needed to prove the corresponding asymptotic result associated
with the PPE2s.

is bounded by a constant independent of N; see Lemma 2.5.1. Such

This chapter is organized as follows. In Section 2, we study the expansion
of a power series into an [IPPE2 and provide two algebraic representations for

the coefficients /,,, as a multivariate polynomials in () a—o - The number-
theoretic representation reveals an intimate connection betwnggrilztlhe (&mon) m.n=0
of the PPE2 and the (h,) 7 =0 Of the IPPE2; see Theorem 2.2.1. In th’gt;:sé
of one independent Variabl(cnjr ﬁ;ls property reveals that h,, = g,, for m odd. In

the case of two independent variables, this property reveals A, , = gu,, unless
both m and n are even. Note that this equality is inherently implied by asymp-
totic results of the previous paragraph. Since hy,,, = gn, for m odd regardless
of the parity n, we deduce that as the number of independent variables increases,
so does the percentage of equality between the /'s and the g’s. In Section 3, we
provide another way to express recursively the coefficients 4, , as a multivariate
polynomial of the variables a,, ,. The algebraic result of Section 3 reveals an in-
triguing property of these expansions. If a,, , < 0, then the coefficients 4, , in the
IPPE2 are non-positive. In Section 4, we exploit the non-positivity result of Sec-
tion 3 to determine convergence conditions of the IPPE2 in terms of a majorizing
power product. In Section 5, we provide an asymptotic formula for the £, , as-

o)

sociated with 1 — Y s"™"x™y" where s:= sup |au |7, while in Section 6
p=1 p=1
m-+n=p m-+n=p

we provide combinatorial interpretations for IPPE2 in term of partitions of (m,n).
Section 6 also provides a factorization for the bivariate generating function asso-
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ciated with compositions of (m,n), which obey a “zero exclusivity” condition; see
Proposition 2.6.1.

2.2 Two Algebraic Formulas for the Coefficients of
Inverse Power Product Expansion

In this section and the next we study the expansion of a two variable power series
into an IPPE2 and provide three algebraic representations for the coefficients £, ,
as polynomials of the (am,n)7, ,—0 -
m-+n=1

[ee]

Definition 2.2.1. Given a formal power series 1+ Y, ap ,x"'y" or analytic func-

p=1
m+n=p

tion f with £(0,0) = 1 and a Taylor power series representation

fy) =14 Y amax"y", (2.3)
p=1

m+n=p

we define the power product expansion of f(x,y) in two independent variables,
denoted by PPE2, as

s

flx,y) = (1+gmax"y") (2.4)

q

1
m+n=

=

q

=(1+g1,0x"y") (1 + 012"y ) (1 + £2,00°) (1 + g1 1x'y') ...,

and the inverse power product expansion in two independent variables, or IPPE2,

of f(x,y) as

f(x7y> = H (1 - hm,nxmyn)i1 (2.5)

m+n=q

=(1- h170x1y0)_1 (1 —hojlxoyl)_l(l — hz,oxzyo)_l (1 —hljlxlyl)_l el

where the right side of Equations (2.4) and (2.5) follow the conventions of Defini-
tion 1.2.1.
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Definition 2.3 provides a first means of obtaining an algebraic representation
of Iy, in terms of (ay, ). Using Definition 1.2.3 help us describe this algebraic
result.

Let

[

f(x,y) =1+ Z am,nxmyn = H (1 _hm,nxmyn)_l- (2.6)
p=1

q=1
m+n=p m+n=q

By expanding the IPPE2 of (2.6) into a formal power series, coefficient compari-
son shows that

Am.n = )y hiy jihis.jo - - iy 2.7)
i1+ip+-+i,=m
jirtejr=n
(I,O)j(ll 7jl )jj(lhjl)j(man)

and that

hm7n = am,n - < Z hi17j1 hi27j2 oo hir7jr) . (28)
i Fig+--+iy=m
it it j=n,
(10)j(l1>]1)jﬁ(lrvfr)_<(m7n)
r>2
To obtain the second algebraic formula which writes £, , in terms of (a, ),

start with Equation (2.6) and take the logarithm of both sides to obtain

log(f(x,y)) =log(1+ Y amex™y")= Y dunx"y",
p=1

p=1
m+n=p m+n=p
and obtain
log(f(x,y)) =log H (1— hm,,,x’"y”)*1 = Z log(1 — hpy nx™y")
mijl:q mjlrj]:q
© = (n myn\l
= Z Z M (2.9)
g=1 [=1 [
m-+n=q

Compare the coefficient of xMyN on both sides of Equation (2.9) to obtain the
formulas

dyn=— Y m(hun)m, MO0, (2.10)
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==

S

1
dun=~ Y, nlhna)7,  N#O0. (2.11)

|N
Mn
N

Take Equation (2.10) and set m = M to obtain

1 M
hyn = dyn — i Y m(hm,%n) . (2.12)
m|M
m#M
Similarly, take Equation (2.11) and set n = N to obtain
1 N
hyn =dun—— Y, n(hu )" (2.13)
N n|N N
n#N
If ged(M,N) = 1, then we readily deduce that
hyN =dun- (2.14)
A similar derivation to the one above shows that
1 M
guN =dun+or Y m(=g, xu)n. (2.15)
m|M
m#M
and that
gunN =dun, Wwhere gcd(M,N)=1. (2.16)

Equations (2.12) and (2.15) enable us to prove a theorem which indicates the
relationship between the coefficients of PPE2 and its associated IPPE2.

Theorem 2.2.1. Let f(x,y) =14+ ¥ anx"y". Suppose f(x,y) has a PPE2 of
p=1

m+n=p
the form f(x,y) = [1 (14 gmnx™y") and an IPPE2 of the form
miilzq
fe,y)= TI (1= hwux™y")"L. Then gmp = hmp if m=20+10rn=20+1 for

q
m-+n=q

¢eN.
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Proof. We prove the statement that if m is odd, then g, , = h;, , by induction on
¢. The other statement involving »n is similar. If / =0 and n € Ny, Equation (2.14)
implies that hy , = d; ,, while Equation (2.16) implies that g; , = d; ,. Hence,
810 = h1,. Now assume g2/ 1, = hppt1, forall 0 </ < Land 0 <n < N. Take
Equation (2.15) and with £ = L+ 1 and note that

2L+3
Y, m(—gma) ™

m|2L+3

1

=d S
82L+3 N 20+3.N T 2L+3

1 2L+3

[ Z m(gmn) m
2L+3 m|2L+3
m#2L+3
__ _Nm
=21+3

=do 13N —

1 2043
5= Y, mlhwa)
2L+3 m|2L+3

m#2L+3
_ Nm
n=3r+3

=da 3N —

=hor 43N,

where the second to last equality used the induction hypothesis and the last equal-
ity used Equation (2.12). O

2.3 Structure Property of the Coefficients of an In-
verse Power Product Expansion

There is still another way to express recursively the coefficients 4, , as a multi-
variate polynomial of the variables a,, ,,. Start by rewriting Equation (2.6) as

p=1
m+n=p

f(x,y) =1+ Z B(I,O),(m,n)xmyn = H (1 _hmmxmyn)—l?
where B(j o) (m,n) = amn for all (m,n) € No X No \ {(0,0)}. Using the well order-

ing 1.2.1 to factor [] (1 — hyux™y") "1, we get the following recursive system

q=1
m+n=q
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of equations. First,

m+n=p
=(1—hy ox) H (1= Ry ™y !
(m,n)=(0,1)
=(1=hio) ' |1+ Y By, max™" |,
mﬁ—;:p
(m,n)>=(0,1)
secondly,
I+ Y Boi)mm¥"Y =1 —hoy)~ (1= T x™y") ™!
mgjip m—i—j:q
(m,n)=(0,1) (m,n)=(2,0)
=(I—=hoy) ' |1+ Y Bao)maX™"|,
m—q;iq
(m,n)=(2,0)
and thirdly,
I+ Y Booy ™' =0—hox)™" T (1=hwax™")™!
g g,
(m,n)>=(2,0) (m,n)>=(1,1)
= (1 —h270X2>_1 1+ Z B(171)7(m7n)xmyn .
nfp,

(m,n)=(1,1)
Continue this process to inductively define

oo oo

I+ Y Bijo.mnx™ = A=k X0 T (1= huax™y") ™!

p={ q=V
m-+n=p m+n=q
(m,n)>=(ix, jx) (m,n) = (ks 15Jks1)
= (1= hy, j,x"y7%) 1+ZZB(,-M e XY - (2.17)
nlf-;:p

(myn) = (ks 15Jks1)
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Expanding the final equality of Equation (2.17) implies that

1+ Z B(iy.ji),(m n)xmy = (1 —hy, jkxlkylk) {1 + ZZB(ikH,J'kH),(mvn)xmyn}
f

m—li—; p m—|—;:p
(m,n) = (ix, Jjx) (m,n) = (ig15Jk+1)
= |1+ Zth e (@5%) HHZB M)(mn)x’”y} (2.18)
mfr; p

(m,n) = (g 15 Jk41)

By comparing the coefficient of xy" in both sides of Equation (2.18), we dis-
cover that

LM+NJ
lk+jk

B(ik+l:jk+1)7(MaN) Blkv]k Z hlk,Jk (g 1ok 1)s(M—Qigy 1, N— gy 1)+

When (M, N) = (i, ji), since By = 0, the above implies that

it 157k+1)5 (i i)

h:

ek — B(ik:jk)v(ik:jk)' (2.19)

Equation (2.19) shows the relationship between A;

ixJx and B (
this relationship to rewrite Equation (2.17) as

it i), ik, i)+ WWE USE

1 +ZB(ik+17jk+1)7(m7n)xmyn =(1- hikyjkxikyik) [1 +ZB(ik7jk),(m,")xmyn]

p={ p={
nn=p m-+n=p,
(m.n) = (i1, Jk+1) (m,n)=(ix,jx)
= 1= B ju). (i JkVC’ky”‘} {1 +ZB(ik7jk>7<m7n>xmy”] : (2.20)
p=C
m+n p,

(mn) = (ixji)

Equating the coefficient of x*y’ on both sides of Equation (2.20), we get

anpa
Bligsrjic) (s.) = Z (=1) By jo) (i) Blisi) (s~ aiga—ajy)- (2.21)
ae{0,1}
Aip+m=s
o ji+n=t

Equation (2.21) will be the main tool for proving the following result.
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Theorem 2.3.1. Let (i, jk) € No x No \ {(0,0)}. Define B(;, ) 00 =1 a d
B i) (mm) = 0 for (1,0) = (m,n) =< (ix—1,jk—1). Assume that B, Jk) (mn) <

for all (i, jx) = (m,n). Then B, .. ) (s2) < 0 whenever (ixy1, jir1) = (s,1).
Proof. Equation (2.21) is equivalent to

B = Bigji),(s.1) — B(zk i) (i) B i) (=it —ji) - (2.22)

= B + 7, where

ik 1odks1)5(5:)

Rewrite Equation (2.22) as B;

(Gk15Jk+1)5
= B(ikvm,(m)a
V= =B ) (i) Blioji) (s—iva —jn)-

By the hypothesis, since B
positive.

iv.je),(s,r) 18 €ither zero or negative, then f3 is non-

It remains to show that 7y is also non-positive. By the hypothesis, it is a product
of two non-positive numbers. Thus —B, B( is either zero or
negative. O

it Jk) (i i) 2 (i i) (s =ik t— k)

Before stating the main theorem of this section, we introduce some further nota-
tion.

Definition 2.3.1. The symbol ¢ = ((i, j1), (i2,J2),---s (in, jn)) Stands for a vector
with n components, wheren € Nand iy,ip,...,in, 1, J2,---, Ju € No. Let T=1(9) be

n n
the length of ¢ , i.e. T=n. Let |¢| denote the ordered pair |§| := ( Y iy, ¥ jd>.
d=1 d=1

We de‘ﬁne B(ik7jk)7¢ = B(ik7jk)7(i17j1)B(ik7jk)7(i2>j2)'“B(ik7jk)>(in7jn).
Theorem 2.3.2. (Structure Property) Let (iy, ji) € No x No\ {(0,0)}. Then

1
B(ik+17jk+l)7(s>t) - Z(_l) (#{)= B(lwk) o(n)
1
- Z ) B(’kv/k) o(n)> (2.23)

where the sum is over all $(1) = ((i1, j1), (i2, j2), --., (iz, jz)) such that |p(n)| =
(s,1) and at most one component (lg,ly) # (ix, jx), with 1 < 0 < 7, and
Biji).o(m) = Bl (v Blicii) (izi2) - Blix,jo) lie o)- Note that 11 represents the
enumeration of the vectors that obey the two properties described in the preced-
ing sentence. If B(; ;) (s5) < O for all (ix, ji) = (s,t), then Equation (2.23) is
equivalent to

B(lk+1,]k+1 Z’ (ix,Jk)s(i1,41) |B(ik,jk),(injr)" (2.24)
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Proof. We obtain the desired result by representing ng7jk)7(ik7jk)B(ik’ i), (mn)

Equation (2.21 ) as B(;, j,) ¢(n)- Note that (—1)* = (—1)*¢m)-1 0

Let us see what will happen when we recursively apply Equation (2.24). In
order to efficiently record the results, let ¢ = ((i1, j1), (i2, j2), ..., (in, jn)) denote
a vector with n components, each of them an ordered pair, where n € N, and
11,02y eylny j15 J25 -5 Jn € No. Then Ay (n) denotes the expression a;, j, @i, j, -y, j,-
< 0, whenever (ig, jr) < (s,1), we

in

i Jk

Afte.r L iterations, and assuming By ;) (s)
obtain
Bligy 1 jein)(s0) = Z(_I)T(¢(n))_la¢(ﬂ) - _Z @iy jy @iy, o] - @iy je |, (2.25)
n n

where the sum is over all ¢(1) = ((i1,j1), (i2, j2), .., (iz, jz)) such that [p(n)| =
(s,2).

If (s,¢) = (ix+1, jkr1), Equation (2.25) becomes

= hi, 1 jesy = Z(_l)r(mn))_laﬂn)’
n

= _Z|ail7jl||ai27j2|"'|al'r,jf|7 (2.26)
n

B(ik+1 1) 15 Jk1)

where the sum is over all ¢(n) = ((il,jl), (i2, j2), ,(if,jr)) such that |¢(n)| =
(Tt 15 k1)
The following example illustrates applications of the structure property:

h2.1 =B.1),21 By using Equation(2.19)

By using Equation 2.21)

—B0,1),0,1)B(0,1),(2,0)
= B(10).10)B(1.0).01.1) = B(1.0).(0.1) [B(1.0),2.0)~
B(10),(10)

2
=ap| —ai,0d1,1 —ap,142,0 +ai pdo,1-

Below we explicitly list A, , for 1 <m+n < 4.
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1)%2ay gag 1a1.1 + (—1) a1 par 2+

(=1)
hoy =(—1)"ag,
hoo =(=1)%az 0+ (=1)'ai g
hiy =(—1)%ay 1+ (=1)'a; pao
ho2 =(—1)%ap2 + (—1)'ag
h30=(—1)az o+ (—1)'az0a1 0
hyy =(—1)%;s1 + (—1)'ag 1a20 + (= 1) ay par 1 +(—1)%at yao,;
hia=(—1)°a1 2+ (—1) a1 pa02 + (—1)'ag 1a1.1 + (—1)%a} ya10
hos =(—1)%a03+ (—1)"ao 2a0,1
hao =(=1)%as0+ (=1)'ar a3 0+ (=1)' a3 o+ (—1)*2a2 a7 o + (—1)°ai
h3.1 =(—1)0a371 +(=1)%q] 00,1+ (— 1)%a? 0411+ (= 1)1a071a370+
(—D'aya20+ (—1)'ay paz.1 + (—1)*2a0,1a1 pa20
o =(—1)%az2+ (- 1)lazoa02+( 1)°2af gag 1+ (—1)'ag 1a2,1+
(—1)%ag (—
(=1)
(—1)

+ (—1)]610,1611,2 + (—1)*2a0,1a1 pa0 2
hoa =(=1)%a0.a + (=1)'a0 1003+ (=1) a5 + (—1)*2a0,2a ; + (—1)°a ;.

2.4 Convergence Criteria For Inverse Power Prod-
uct

The major results of this section concerning the convergence domain of the IPPE2
in Equation (2.1).

Theorem 2.4.1. Let f(x,y) =14+ Y amx"y". Then f(x,y) is represented by
=1

m+n=p

the IPPE?

(o)

fl,y) =1+ Z A"y = [T (1= hpax™y")~". (2.27)

gq=1
m+n=p m+n=q
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Consider the following auxiliary functions

Cey)=1—"Y lama™y" = T] (A +Hpuuxy")"", (2.28)
mijip m:‘l»jlzq
Dixy)=1—Y Aua™' = [] (1+Fuuxy")~". (2.29)
p=1 q=1
m-+n=p m+n=q

Assume |ap | < App forall (m,n) € NgxNo\{(0,0)}. Then |hy | < I:Im,n < Fnn
for all (m,n) € No x N\ {(0,0)}.

Proof. By Equation (2.26) we have

hmn= Y, (=D)TOMgy =Y (=)0 ay g ai ..

n n
[¢(1)[=(m,n) ¢ (1)[=(m.n)
(2.30)
Equation (2.30) implies that
|| = ‘ Y 0D Gan gai g <Y lai i, Jai g -
\¢(n)\1(m1ﬂ) \¢(Tl-n)n|:(m7n)
(2.31)
Similarly, when we apply Equation (2.26) to Equation (2.28), we obtain
\tP(n)\l(mvn)
2
= Z (_1)1( o(m) iy ji ||ain, j,---|aic, .|
\¢(n)\1(mﬂ)
= Z ‘ailvjl ||ai27j2""’air7jr" (2.32)
\¢(n)\n:(m,n)

Equations (2.31) and (2.32) imply that |, | < Hy, . Also, due to the inequality
’am,n’ S Am7n, we haVe

() S Flman = Z ‘aihjl||ai27j2""|ai‘ﬁj‘t| S Z Ail7lei27j2'“AiT7jT :Fmvn' O
\¢<n>\1(m,n) \¢(n>\n:
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We now consider the special case for D(x,y), namely

D(x,y)=1-Y 5"y = [ (1+Fuax™") ", (2.33)
m+ :i mijlzq
where s := sup |am7n|n%+n. Our objective is to find a domain of definition such
p=1
m-+n=p

that the IPPE2 of Equation (2.33) is absolutely convergent. Define

= Fm x™M
10g(1 + Fpnx™y") 1 i= —log(1 + FpaxX™") Z "y")’ :
(=1
Next, define (via Definition 1.2.1)
- m.n - c (_I)Z(anxmyn)f
— Y log(1+Fpux™") =Y Y 7 . (2.34)
fl - (=1
m+n=p m+n=p

Definition (2.34) tells us that absolute convergence of the double series implies

that both Z log(1+ F,, ,x™y") and log(1+ F;, ,x™'y") are absolutely convergent.

p=1
m+n=p

Moreover, since

= r=
= [T 0+ By,

g=1
m+n=q

the absolute convergence of the double series of Equation (2.34) implies the abso-

1

lute convergence of H (1+F,,x"y")~" as well. Therefore, in order to determine

g=1
m-+n=q

where T[] (1 +Fm,nx’”y”)_1 will be absolutely convergent, it suffices to consider
=1

m-+n=q

the absolutely convergence of Y log(1 +Fm,nxmy")’1. Observe that this argu-

p=1
m+n=p

ment is a two variable extension of Proposition 5.2 and Definition 5.5 of [5].
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Taking the logarithm of both sides of Equation (2.33) gives

IOg(l . Z Sm+nxmyn) — 10g H(l _‘_Fmﬂxmyn)—l
p= g=1
+n=

m+n=p m+n=q

=— Y log(1+Fuux™y"). (2.35)

q=1
m-+n=q

Observe that

[} [}

= Y oy = 1= Y (s0)(s) =2 Y (50" ¥ ()"

p=1 = m=0 n=0

() () - e

1 —2s(x+y)+2s%xy
()
log (1 —[2s(x+y) — 2s2xy]) —log(1 —sx) —log(1 —sy)

Y N ) —25%xy]"
y (sag) LYy (sz) -y [ S(X+Y)€ 573y , (2.36)
(=1 (=1 =1

Hence,

The three series in (2.36) are absolutely convergent for [x| < 1, |y| < 1, and for
‘2s(x +y)— 2s2xy| < 1, respectively. By the triangle inequality, we have

|25(x+y) — 25%xy| < 2s(|x| + [y]) + 257 |x]]y]. (2.37)

If we require 2s(|x|+[y|) +2s%|x|[y| < 1, since 2s|x| < 2s(|x| 4 [y]) +2s%|x||[y| < 1,
we find that |x| < 5-. Similarly, |y| < 5-.

Therefore, the estimate of a convergence domain of (2.36) is given by

D= {(x,y) eC?: 2s(|x] +[y]) + 257 |x||y| < 1}.

See Figure 2.1.
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><

2s(|x|+lyD+2s?|x||ly|=1

> |x|

Figure 2.1: A domain of absolute convergence of Equations (2.34) and (2.36).

Relation (2.37) makes it possible to also obtain a domain of absolute conver-
gence in terms of polydiscs. Let [x| < p and |y| < p. Inequality (2.37) implies
that the IPPE2 will be absolutely convergent if

25(2p) +2s*p? =2[(sp+ 1) —1] < 1,

or equivalently if p < 57! \/g —1|. The inequalities for p obtained from the

defining quadratic equation of I, namely

3] 3
! — ! —
x| <'s \/7 1, Iy <s [\/7 1],

are sharp in the sense that if

3] 3
— ! . — 1 —
i [\@ 1]’
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then ‘2s(x +y)— 2s2xy| = 1 and the sum of the absolute values of the terms in the
logarithmic power series of (2.36) diverge.

In summary, we have shown that — Y. log(1+ F, ,x™y") will be absolutely

g=1
m-+n=q

convergent whenever (x,y) € D or whenever (x,y) € Dxp X Dy with p < s~ {\/g - 11 ,

where
Dy :={x:|x|<p},  Dy:={y:l<p}

oo

Hence, [] (1+ F,M)c’"y’l)’1 will also be absolutely convergent for the same re-

g=1
m-+n=q

gions.

We claim this information provides a lower bound on the range of absolute
convergence for IPPE2 of Equation (2.27). To determine the domain of conver-
gence of the IPPE2 of Equation (2.27), we must determine the domain of con-

vergence of log fo[ (1 = By px™y") 1= — f log(1 — Ay px™y"), where the right
mijlzq qurjl:q
hand side is defined via the convergence of the double series — E‘, E‘, W
m?‘;l:q =1
Howeyver,

log [T (1=hmax"y")~!
gq=1

= ‘ — Y log(1 = hyux™y")
q=1

m+n=q m+n=q
< Z | Tog (1 — hyux™y")|
m?;l:q
_ i B ) (hmmxmyn)f
g=1 /=1 ¢
m+n=q

(1™ 1)

|
s
s

=1 (=1 ¢

m+n=q

SRR (an\XI’”\yl")g
< —_— 2.38
<Y ) 7 ; (2.38)

/=

<
I

=

—

3
T
=
<
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where the last inequality follows from Theorem 2.4.1. These calculatlons imply

that if Z log(1+ Fp, ,x™y") is absolutely convergent, then so are Z log(1 —
=1
m+n q m+n=q

hm,nxmy )and H ( mnx y) 1-
m+n q

We can therefore summarize what we have shown so far in the following the-
orem.

Theorem 2.4.2. (i.) Let f(x,y) =1+ Z am pX™y". Define s := sup |amn]m+n.

p=1
m+n 4 m-+n=p

Then both f(x,y) and its IPPE2,

(o]

fy) =1+ Y anux™y = T (1= hma™") ",
p=1 g=1
m-+n=p m-+n=q

and the auxiliary function, along with its IPPE2

[ee]

Dixy)=1-"Y """y = [T (4 Fuu™y") ",
m+;ip m[j—jlzq

will be absolutely convergent whenever (x,y) € D, where

D= {(x,y) eC?: 2s(|x| +[y]) +25%|x||y| < 1}.
See Figure 2.1.

(ii.) With the same conventions as in Part (i.), both f(x,y) and its IPPE2, along
with D(x,y) and its IPPE2, will be absolutely convergent whenever (x,y) €

Dyp X Dyp with p < s~ [\/g— 1], where

Dip:={x:|x<p}, Dy :={y:ly|<p}.

2.5 Asymptotic Approximation for the Majorizing
Inverse Power Product Expansion

We now derive an asymptotlc representation for the majorizing inverse product ex-
pansion associated with 1 — Z s where  s:= sup |dp | i . Since

— p=1
m+n=p m+n=p
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our asymptotic approximation will depend on Equation (2.10), we first need to de-

rive an asymptotic formula for the Taylor series coefficients of log | 1 —Y  s™1"x"y"
p=1

m+n=p
This calculation will utilize the asymptotic formula (1.53).

2NSM+NNM71
M!
which was driven in Section 1.5, where M € N is fixed and A(M,N) — 0 as N — oo,

dun =— [1+AM,N)], (2.39)

Let (M,N) € NxN. Arrange (/) in an infinite array as shown in Table 2.1.
Then for fixed M € N, the limit Al,im hu v is along the M-th row of Table 2.1.
—»00

hip hip his
hyy hap hoj
h31 h3p h3s

hay hap haj

Table 2.1: The row asymptotics are calculated in Theorem 2.5.1

For fixed M € N, Equation (2.39) implies that given € > 0, there exists a positive
integer Ny such that for N > Ny, |A(M,N)| < €. For fixed M and arbitrary € > 0,
define
ge(M) = max{e, [A(M, 1)],|A(M. 2)],...., |A(M,No — 1)] .

Equation (1.51) shows that for each €, g¢(M) is a finite positive number.
Next define

Qe (M) :=max{qe (i)}, 1<i<M. (2.40)
Since ¢ is arbitrary, Equation (2.40) proves the following corollary:

Corollary 2.5.1. Let f(x,y) andlog(f(x,y)) be as defined in Theorem 1.5.1. Then
N (MAN \TM 1
M!
where AIM,N) — 0 as N — oo. Furthermore, for fixed M € N, there exists a

positive real number Q(M) such that forall 1 <m <M

|A(m,N)| < Q(M). (2.42)

dyn=— [1+AM,N)], (2.41)
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Corollary (2.5.1) is crucial to proving that the modulus of the coefficients of
the majorizing IPPE2 are less than or equal to a constant times the modulus of the
corresponding coefficient in the logarithmic expansion.

Lemma 2.5.1. Let s > 0,

oo [e5S)

fley)=1=3 sy = T (1= ™)

= p=1
m+n=p M+N=p

and -
log(f(x,y) =Y, dunx"y".
M{;[:Vl:p

For fixed M € N, there exists a positive integer No(M ) such that for all N > No(M),
there exists a positive real number C(M) > 1, independent of N, such that

\hmn| < C(M)|dy |- (2.43)
Proof. Fix M. Equation (2.10) implies that
M
M h Nm "
_ m m ( mvﬁ)
dun=huxt ), 4 (4 ) i
1<m<|7] (dm M)
M
or equivalently that
M
h (d M) M h, Nm
MN _ Z mA™w) T N ¥ Nm 1= oM (2.44)
dmN 1<m<| 4| M dyN "M My,
Claim 1: For all m|M
M
()’
M
-—— =0, as N — oo, (2.45)
dy N

Proof of Claim 1: By Equation (2.41) we have

Nm m—1 Nm
2w (Nm " N.
d Nm =— — (M) u |:1+A(m7_m):|7

m M m! M
N M —1 M+N

i [14+A(M,N)],

dyn = —
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where A(M,N) — 0 as N — oo. Furthermore, there exists Q(M) > 0 such that

IR N R | EV T e

see Corollary (2.5.1) and Equation (2.42). Then

M

m m— I e
(ue)” | N= |ealn )% | ()5 (2.47)
duw |~ N AN | @

We must analyze the behavior of the three factors on the right side (2.47). We
begin with the right factor. Since 1 <m < L%J , we have 1 < m! and

<My ocLtom 1 M(m=1) _
~m = M~ M~ 2 ’ m '
and we deduce that
M(m—1)
()"
0< ————F—<M!. (2.48)
(m!)m

We next look at the middle factor of (2.47). Note that
M
[1+A(m 7]

M
M by (2.46).

Since |A(M,N)| — 0, there exists a positive integer Ny such that for all N > Ny, we
have |A(M,N)| < 1, which in turn implies < 1 — |A(M,N)|. Thus, for N > Ny

T aGi | S 1o aor ) S 20 et @49
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Finally, we look at the left factor of (2.47). Since 2 < % < M, we have
N |

1
NM-T — AM-1-(1= D) -

1
= <5

(2.50)

By placing (2.48) through (2.50) into (2.47), we see that for large N > Ny,

M
(o) 20
| < S (o),
du N Nm—!
and since 2,3/”1(1—1—Q(M))M—>0asN—>oo, we have proven Claim 1.
N~

Claim 2: For fixed M and N > Ny(M), there exist a positive C(M) > 1, a constant
independent of N such that

[rmN| = Faa v
’ dun

<C(M). 2.51)

The proof of Claim 2 will also prove Equation (2.43).

Proof of Claim 2: To prove Claim 2, we use Claim 1, Equation (2.10), and induc-
tion on M. For M = 1, Equation (2.10) shows that C(1) = 1 since h; y = d; y. For
M = 2, Equation (2.10) shows that

h27N_1 1
do N 2 doy
h ? d ? d ?
() (@) 1)
=]—-" A ([ N VAR 2.52
2 2 dyy 2 doyn e
(ay)”
By Claim 1, we know that
2
(4
2L 50, as N — oo,
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This implies that there exists a positive integer No(2) such that for all N > Ny(2),
there exists C(2) > 0 such that

Then we define C(2) = 1+ 3C(2) since

o (@) e

1
2 d27N - 2

|~

Now we assume that (2.51) is true for all m < M. Equation (2.44) implies that

M

M
thm

m,r

g

d m>”
<1+ Y ﬁ<m’NM

hy N
M dM,N

a'MN

1<m<| 4|

M
m M

M
m

m
iy

o
M

<1+
dy N

1<m<| %)

By Claim 1, there exists a positive integer No(M) such that for all N > Ny(M),

M
m
(40

Tin < C(M). Hence, the preceding line becomes

M
h h Nm | ™
’dMN <1+ ) () d;M (2.53)
M,N 1<m=<|¥| m, N

By the induction hypothesis, there exists No(M) = max{Ny(1),...,No(m)} such

<C(m). For1<m< 4],

m, —r

that for each 1 <m < %] and N > No(M), ‘d o
~ m
define ¢’ (M) := max{C(m)}. Then (2.53) becomes

<1+ Y CM )(%(M))%SHMC(M)(%(M))M. (2.54)

1<m< |4 |

dMN
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If we set C(M) = 1+MC(M) (¢ (M ))M we have verified Claim 2, and hence
Equation (2.43), which completes the proof. O

By using Equation (2.39) and Lemma (2.5.1) we are in a position to state and
prove the main theorem of this section.

N 2
Theorem 2.5.1. Let f(x,y) =1 _,,; sy — % where s > 0. For

m-+n=p

this special function f(x,y) and its associated IPPE2 ] (1 —hynxMyN)~1 we

p=1
M+N=p

have

N+M 2q(q_1)!<_l)M—0—N—q

—hyN ~ —dyy ~ "N , (2.55)
q;’v (g—M)!(qg—N){(M+N —q)!
as N — oo, where M is a fixed element of N and (M,N) € N x N.
Proof. Equation (2.10) implies that
1
—hyn = —dy o ,,,ZM; m(h, wn). (2.56)
1n<| ¥ |
=A
We ultimately want to show
A
— 0, as N — oo, (2.57)
—du N

By Equation (2.39) and Lemma (2.5.1), we observe that

1 | 1 o
A=l L mwy)® <5 T omlhg
1<m< L%J 1<m< L%J
1 m

ns 4
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m M M
1 w [ s™(2s) 5 (M ym=17] ™ Nm\ |
- m (C(M)) 7 s LA (mr
M ,;; m! M
nc| )
M (m—1)4 M
:sM+N2N Z m(C(M))m (%) N(m l)m 1+A(m’N_m> "
M b (m!)m M
nc| )
Hence, as N — oo, since
M\ (m=1) (m—1)M Nm\]'m
‘ |y m(CBO)E ()" N DR |1 )
—dun| W (m)n M NM=L o 14+ A(M,N)]
l<m<L%J

m(C(M))w ()5 ppy 1)

Loy T by (2.49)

since C(M) > 1

since m < %’1

9 b

M
and M![HQ(MI)\; (con” — 0 as N — oo. Thus, Equation (2.57) is true.

We return to Equation (2.56), apply (2.57), and discover that

—hy Ny =—dyn+A

= —dun [1 -

] —>_dM7N as N — oo, a
—dun
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2.6 Combinatorial Interpretations for IPPE2

In this section we develop combinatorial interpretations for Equations (2.4) and
(2.5). Our first two interpretations involve generating functions for sequences of
vector partitions. Let p;((m,n)) be the number of partitions of (m,n) with distinct
parts; see Definition 1.2.3. The generating function is given by

[T a+x"") =Y pa((m,n))x"y". (2.58)

If hy, , = 1, Equation (2.5) becomes

[T =)=} pllmm)e"y" (2.59)
q mijgp
where p((m,n)) is the number of vector partitions of (m,n).

Equations (2.58) and (2.59) interpret the product side of Equations (2.4) and (2.5)
respectively. Next we give a combinatorial interpretation when we start with the
sum. Define

faey)=1="Y ¥V'= T] (0—gmax"y"), (2.60)
p=1 p=1
m+n=p m-+n=p

where g, , € N. Take Equation (2.60) and form the reciprocal.

1 1 =
_ = = [1 O=huax™y)", (261
J— M~y _ M+ =
: Pgl oY pl;ll (1 EmnX"Y ) minzp
m-+n=p m+n=p

where . = gmon.

Expand the left side of Equation (2.61) as
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p
m—+n=p
2 k
=1+ Z XMyt + Z Y4+ Z Xy o+
p=1 p=1 p=1
m+n=p m-+n=p m+n=p

1+ Z C(m,n,1)x™y" + Z C(m,n,2)x™y" + Z C(m,n,3)x™y" + ...

p=1 p=2 p=3
m-+n=p m+n=p m-+n=p
=1+ Z C(m,n)x"y", C(m,n) := Zé(m,n,l). (2.62)
mizip :

Because C(m,n,k) = 0 whenever m +n < k, we observe that C(m,n) is a finite
sum.

We want to determine a closed form C(m,n,k)x"y" whenever k > 1. Clearly
C(m,n,1) =1 whenever m,n # 0. If k =2, we find that

2
> > A > m+1\ /n+1
X'y = C(m,n,2)xX"y" = —2|x"",
L ooy| = g cmnawy =3 (")) -2
m+n=1 m+n={ s+r={

since a monomial of the form x™y" is obtained as a product of two terms of
xX"Mymx"mym - where my = m —mj and np = n—ny. Clearly, 0 < m; < m and
0 < n; < n. This would suggest that the answer is (m+ 1)(n+ 1). But there are
two possibilities that we can not have, namely x°y? and x”y". Thus, there are
(m+1)(n+ 1) — 2 ways to write X"y" as a product of two terms from the original
series.

Define an ordered pair composition of (m,n) with at most two non-negative
parts to be an ordered pair (c;, ;) such that ¢; = ¢;, +¢;, =mand ¢} = cgl + c§2 =n

-
! ,ci € Np). To obtain the monomial x'y", we chose x“1y“1 from

(with ¢;,, ¢y, Ciy 1 Ciy

one factor of Y°,_; x™y" and x“ Y from the other factor. Then (" (T -2

1
m+n=1
counts the number of ordered pair compositions of (m,n) with exactly two parts,
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which satisfy the extra condition that ¢;, and c;p are never simultaneously zero for
p = 1,2. For example, C(3,2,2) = 10 since

= (340,0+2) =x>-y, (c2,c )=(3+O,1+1):x3y-y,
= (241,0+2) =x*-xy%, (c4,¢)) = 2+ 1,14+1) =x*y-xy

(e1,1) = ( )
(3,¢3) = ( )
(c5,¢5) = (2+1,240) =x?y*-y, (c6,¢5) = (14+2,042) = x-x*y?,
(e7,¢7) = ( )
(co,c9) = ( )=

c3,C

=(1+2,1+1 :xy xy, (cg,cg) = (142,240) =xy* - x*
=(0+3,2+0

c7,C

c9,C , (clo,clo)=(0—|—3,1+1):y-x3y.

Note that we can not obtain (3 +0,2+0) (corresponding to x>y?- 1) or (0+3,0+
2) (corresponding to 1-x>y?).

We use this result to determine C(m,n,3) as follows:

3 - 2 1
Z xmyn — Z xmyn Z xmyn
p=1 =1 p=1
m+n=p L m+n=p m+n=p
— Z ((m1+1)(n1+1) } { Z ) nz}
_mlﬁf’zl:k m2+n2 P

Since both of these series are indexed by pairs of integers, this is the same as the
previous situation except that not all the coefficients are 1. For (m,n) # (0,0), our
preceding coefficient was obtained by:

Z l=(m+1)(n+1)-2.

1<mi+ni<m+n

0<m;<m
0<n<n
This time we have:
C(m,n,3) = Z [(mp+1)(n+1)—2]
2<my+n <m+n
0<m;<m
0<n1<n
m n
Z mi+1) ) (n+1)— Z Zz [(m+1)(n+1) —2] - [-1],
1=0 n1=0 m1=0n;=0
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where [(m+ 1)(n+ 1) — 2| reflects the fact that x™y" # x"y" and —1 reflects the
fact that x™1y™ £ x%y0. By applying Identity (1.49) of [25], namely

Ig)(x:k) :kg(x;rk) _ (x+’11+n> _ (x—;i—;n)’

we see that the preceding sum becomes

Clmn,3) = (m;Q) (n;rz) _3(m;r1) (njltl) 13,

where C(m,n,3) counts the number of ordered pair compositions of (m,n) with
at most three non-negative parts such that corresponding parts are never simul-
taneously zero. In other words, C(m,n,3) counts ordered pairs (c;,c}), where
¢i = ci, +ci iy =m, c;=cj +cj, +cj, =n, and for p € {1,2,3}, ¢;, and ¢; are
never both zero.

The preceding analysis suggests the following proposition:

Proposition 2.6.1. Let k be a positive integer. For fixed (m,n) € Ng x Ny, let
C(m,n,k) count the number of ordered pair compositions of (m,n) with at most
k non-negative parts such that the corresponding parts are never simultaneously
zero. In other words, C(m,n,k) counts the number of ordered pairs (ci,ch), such
that c; = Z];‘:I ci; =m, c;= Z’;Zl cgj =n, and for 1 <p <k, c;, and cﬁp are never
both zero. Then,

k
Z XY = Z C(m,n, k)x"™y". (2.63)
p=1 p=k
m+n=p m+n=p
Furthermore,
k—1 : :
N Ak (m+k—1—i\ (n+k—1—1i
C k) = —1) ) 2.64

Proof. The validity of Equation (2.63) follows by analyzing how to create a mono-

mial X"'y" from the expansion of the product | Y. x™y"| . Since such a product
p=1

m+;: p
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o /
has k factors of the form ¥ x™y", we select a monomial of the form x“iry“ir
=1
minzp
from each factor where

/ k . koA
xmyn — xcil ycgl -xCiZyCEZ .. -xcikycik — xzj:l ClijJZI C’j .
.
If, for1 < p <k, ci, = 0= cﬁp, then we would have selected x“» yC’P =1 from the

p'" factor. But since ¥ x"y* =x—+y+x*>+xy+y*+..., this is impossible.
=1
mg—n:p
It remains to verify Equation (2.64) through induction on k. We have already
shown the validity of (2.64) for k = 1,2,3. Now assume that we have proven
(2.64) for all positive integers less than or equal to some fixed positive integer k.
By construction

- k+1 k
A mn __ m.n m.n m.n
Z C(m,n,k+ 1)xX"y" = Z X"y = Z XMy Z XMy
q=k+1 p=l1 p=l1
m+n=q L m+n=1 m+n=1 m+n=1

= Z (m,n, k)x™y" i x"y"

Lm-+n=q m+tn=q

Coefficient comparison on the preceding line implies that

Cim,n,k+1) = Z C(m,n,k)

k<mi+n;<m+n
0<m;<m
0<ni<n

f_ v () ()
(Y (O
z- )6

where the last equality follows by the induction hypothesis and the subtracted
terms respectively reflect the fact that the first factor can not contribute x™y" or

»N
»—‘o
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xOyO. To simplify the first sum of (2.65) observe that
i iki( 1)"(k)<m1+k‘1—i)(n1+k—1—i>
m1=0n;=0i=0 i k—1—i k—1—1i
k—1 m « n .
[k my+k—1—i n+k—1—i
=Z<—1>l(.) 2( e >Z( e )
i=0 Y/ m=0 L) =0 i
k—1 . :
Ak (m+k—i\ (n+k—i
=2l 2.66
g0 () () 26

where the last equality follows from Identity (1.49) of [25]. To simplify the second
sum of (2.65) observe that

N (purn [ sy
L ()OI e

To simplify the third sum of (2.65), we apply Identity (1.5) of [25], namely

()0

]g(—l)i(ID = (=1)*! (i: 1) = (-1, (2.68)

to show that
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By subtracting (2.67) and (2.68) from (2.66), we find that
Cim,n,k+1) = (ml—:k) (nzk)-i—
ki’l(—l)i k i k m+k—i\ (n+k—i .
= i i—1 k—i k—i
k
1) —1)
#( )+

(O E )

—~

(—D*(k+1)
_i k1) (mtk—i\ (ntk—i
= k—i k—i )’
which completes the induction step. O

Returning to Equation (2.62), we deduce that C(m,n) counts the number of
ordered pair compositions of (m,n) such that identically indexed parts of the indi-
vidual compositions associated with m and n are never simultaneously zero. Fur-
thermore, Equation (2.62) provides a way of factoring the bivariate Taylor series

associated with (C(m,n));, .
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Chapter 3

Factorization of Bivariate Matrix
Power Series Via Power Product
Expansion

3.1 Introduction

Matrix functions occur number theory, combinatorics, linear algebra, and anal-
ysis. Typically these matrix functions are represented as power series. But for
certain problems, valuable insight is gained by analyzing the power product ex-
pansion of the given matrix function. As a case in point, let A, B € M,;(C), and let
|| - || be some matrix norm such that ||A|| < p < 1 and ||B|| < p < 1. Furthermore,
assume that AB = BA. Suppose we want an approximation to (1 —A)~!(I—B)~!

Consider the identities

(o)

(I-A)'1-B) =1+ Y A"B'= H T+A% T +B*)
p=1 k=1 k=1
m-+n=p

- ﬁ (I+A% +(AB)* +BY), (3.1)

The right side of Equation (3.1) is an example of an matrix power product

expansion in two independent variables. Given F (x,y) =1+ Z Ap px™y" with
=1
m+n P

matrix coefficients, where either the defining expression for F(x,y) is treated as a
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formal power series expansion or F(x,y) is an analytic function with F(0,0) = I,
the right side of

[e]

Fxy)= [] U+ Guax™"), (3.2)
=1
mz—n:q
is defined to be matrix power product expansion in two independent variables,
(denoted MPPE2).

The purpose of this chapter is to obtain both algebraic and analytic theorems

for the MPPE2 expansion of F(x,y) =1+ Y. Ap,x"y". The three main results
1

p:
m—+n=p

are as follows:

1. An algebraic structure property for (G, ,) in terms of recursive “mixed ex-
pansions”’; see Theorem 3.17.

2. A domain of convergence criteria for the MPPE2 in terms of a “majorizing”
infinite product; see Theorem 3.5.1.

3. A domain of convergence criteria for the MPPE2’s by norm criteria; see
Theorem 3.5.3.

The outline of this chapter is as follows. In Section 2 we introduce and il-
lustrate the main concepts that are needed throughout this work. In Section 3 we
study the expansion of a power series into a MPPE2 and provide an algebraic rep-

resentation for the coefficients G, , as a multivariate polynomials in (A, ) =0 -
m+n=1
In Section 4 we provide another way to recursively express the coefficients G, ,

as a multivariate polynomial of the variables A,, ,. The algebraic result of Section
4 reveals an intriguing property of these expansions. If A,, , <0, then the coeffi-
cients G, , in the MPPE2 are non-positive. Section 5 exploits the non-positivity
result of Section 4 to determine convergence conditions of the MPPE2 in terms of
a majorizing power product by focusing on spectral criteria. Moreover, at the end
of Section 5, we employ norm criteria to analyze the convergence of MPPE2. Sec-
tion 6 is devoted to the study of the matrix MPPE2 induced by scalar functions.
Finally, in Section 7 six examples are presented to illustrate the applicability of
the section 6 theorems.
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3.2 Matrix Power Product Expansions

The goal of this section is twofold: first to define matrix power product expan-
sions and secondly to introduce notational conventions that will be useful for
stating the algebraic and analytic results which appear in the following sections.
We begin by addressing our first goal of defining a matrix power product ex-
pansion. Since such expressions are product expansions of the matrix function

F(x,y) =1+ Zl Apnx™y", where either the defining expression for F(x,y) is

p:
m-—+n=p

treated as a formal power series expansion or an analytic function with F(0,0) =1,
it behoves us to first discuss our conventions regarding double summation. Un-
like the convergence of the series ) ~_,A,, the convergence of the double series
Yn.n—0 Bm,n requires additional considerations. In order to justify the particular or-
der of summation that we utilize throughout this work, we briefly recall some theo-
retical results. Following J. Morrow [38], we define }.,,, , By » as a double indexed
infinite series of complex matrices. (In our particular case, By, , = Ay ,X"'y".) We
define the associated sequence of partial sums (S, ,) via the finite sum

m n
Sma=Y_ Y Bjk
j=lk=1

We say Y, ,Bm converges if and only if limy, ;e Smn converges. We say
YnnBmn converges absolutely if and only if Y, ,[|Bmn||. The crucial result,
[[38], Theorem 2], states that if }., , By » 18 absolutely convergent, then }.,,, , By
converges and that the sum of },, , By, » can be computed by any rearrangement
of terms. Since we will be working with either doubly indexed formal power se-
ries or doubly indexed absolutely convergent series, without loss of generality, we
define

ZBmﬂ =B+ Z By =Boo+Bi1o+Bo1+Byo+Bi1+Boo+...
) =1
m,n min:p

(3.3)

where the partial ordering uses Definition 1.2.1.
Now that we have a clearly defined protocol regarding the double summation
of F(x,y) =1+ E‘, Amnx™y", we next discuss some notational conventions

p=1
m-+n=p

regarding the matrix coefficients (A1), ,,-
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Definition 3.2.1. Let M, (F) denote the set of d x d matrices over the field F
where F = C or F =R. Given A € My(IF), we denote A = (ay), where ay,, € F
foru,v=1,2,....d. Letl; = (8,,) denote the identity matrix. We may omit the
subscript d and denote by I the d x d identity matrix. Let O denote the matrix with
all of its entries 0. Given A € My(F), the matrix |A| € My(R) is |A| = (|auy]),
whereu,v=1,2,....d. Given A,B € My(R), we say A < B if and only if a,, < by,
foru,v=1,2,....d.

Definition 3.2.2. Let A € My (R). We say that A is a positive matrix if and only
if ayy >0 foru,v=1,2,....d and write A > O. We say that A is a non-negative
matrix if and only if a,, > 0 for u,v =1,2,...,d and write A > O. We say that A is
a non-positive matrix if and only if a,, <0 for u,v =1,2,....d and write A < O.
We say that A is a negative matrix if and only if a,, <0 for u,v =1,2,....d and
write A < O. If A is either a non-positive or negative matrix, it is equivalent to
write A = —|A|.

We are now in a position to define what we mean by the matrix power product

expansion of F(x,y) =1+ Y Ap.x"y"
=1
mg—n:p

Definition 3.2.3. Given F (x,y) =1+ Y, A xX"y", a formal power series with
=1
min:p
matrix coefficients or an analytic function of two independent complex variables
with F(0,0) = I, we say F(x,y) has a left to right (canonically ordered) matrix

power product expansion in two independent variables if

F(x,y) = LTRﬁ (14 Gmpx™y") (3.4)

g=1
m-+n=q

= (I + G 7())Clyo) (I + G()’]xoyl)(l + G270x2y0)(1 + G171x1y1)(1 + G()72x0y2) ceey
where the ordering of the right side follows the conventions of Definition 1.2.1. We

say F(x,y) has a right to left (reversed canonically ordered) matrix power product
expansion in two independent variables if

F(x,y)=RTL ﬁ (14 Gppx™y") (3.5)

q=1
m—+n=q

=... (I+ le,kzxklykz) ... <I+ 6270)(2)10)(14- Go71x0y])(1+ GL()X]yO),
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where the ordering of the right side follows the conventions of Definition 1.2.1
when read from right to left. We refer to the right side of either Equation (3.4)
or (3.5) as an MPPE2. The expression (I + Gy, nx™y"), where (m,n) € Ny x Ny,
is an elementary factor of degree m+n. If Gy, , # O, the elementary factor is
nontrivial. We make the convention of setting Go o = I.

We now define the notational conventions necessary for stating the formulas
which algebraically represent the coefficients of the matrix power product expan-
sion in terms of the power series coefficients. First off is a collection of vector
indexed notations necessary for the statement of the structure property

Notation 3.2.1. The symbol ¢ = ((i1, j1),(i2, J2),---s (in, Ju)) Stands for a vector
with n components, where n € N and i1,1a,...,in, 1, J2,---, jn € No. Let T=1(9)
be the length of ¢, i.e. T=n. Let |Q| denote the sum of the components, i.e. |¢| =

( Y ig, Y jd>. We denote A;, ;) ¢ as A(
d=1 d=1

i) i) 171 YA i) (i) = A i) (i)

Example 3.2.1. Let ¢ = ((2,2),(1,3),(3,1),(2,2),(0,4),(4,0)), then t=1(¢) =
6, |0 =(12,12), and

A(ik7jk)7¢ = A(lk7jk)7(272)A(lk7jk)7(l73)A(lk>jk)7(3/1)A(lk7jk)7(2>2)A(”(7]1()7(074)14(lk7.]k)>(470) :
Next, we define the notion of a suitable norm, a concept necessary for discussing

the convergence of matrix power product expansions.

Definition 3.2.4. A norm || - || defined on the linear space of d x d matrices over
C will be called absolute if
Al = [I(JADII-

It will be called monotonicity preserving if
|A| < |B] implies that Al < ||B]|-
The norm will be called algebraic if
|IAB|[ < [|A][ [|B]|-

Finally, a norm || - || will be called suitable if it is absolute, monotonicity preserv-
ing, and algebraic.
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3.3 Algebraic Formula for the Coefficients of a Ma-
trix Power Product Expansion

In this section and the next we study the expansion of a two variable power se-
ries into a MPPE2 and derive two algebraic representations for the coefficients
G, as polynomials of the (A, »)m,. The first formula is almost an immediate
consequence of Equation (3.4). Let

Fx,y)=I1+ Y ApnX™y"=LTR [] (I+Guax™"). (3.6)
=1 =1
min:p min:q

By expanding the MPPE2 of Equation (3.6) into a formal power series, coefficient
comparison shows that

Amn = ) Gi,.\Girjy - Giy jps (3.7)
i1+ir+...+i=m
Ji+j+..+j=n
(170)j(ll 7j1)'<(i27j2)'<""<(ir7jr)f(m:n)

or equivalently that

Gm7n = Am7n - ( Z Gilvjl Gi27j2 e Gihjr) ? (3'8)

i1 +ig+...+ip=m
e
(170)j(ll 7]1)_<(12712);'"_<(lr>./r)_<(m7n):
r>

where the summation runs over all partitions of (m,n) into distinct parts.

3.4 Structure Property of the Coefficients of a Ma-
trix Power Product Expansion

There is another way to recursively express the coefficients G, , as a multivariate
polynomial of the variables A,, ,. The ultimate result of this methodology is the
structure property, Theorem 3.4.2, a crucial result for determining convergence
domains of power product expansions via a majorizing MPPE2. We begin with
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setting Ay n = A(1,0),(m,n) @nd rewrite Equation (3.6) as

F(x,y) =1+ Z A(170)7(m7n)xmyn = (1—|— G170x) |:LTR H (I—I— Gm,nxmy")]

p=1 q=1
m+n=p m+n=q
(m,n)=(0,1)
= (I4+Grox) 1+ Z_:l A(o,l),(m,n)xmy"}
mi;:p
(m,n)>=(0,1)

where the summation conventions follow Definition 1.2.1.

Next we apply the same procedure to /+ Y. A(q 1) (n,»)*"y" and find that
mljjip
(m,n)=(0,1)

I+ Y A1) maX™" =T+A01).0.0)Y +A0.0).20%5 +Ax10),0.1%+ -
mﬁjip
(m,n)=(0,1)

= (I+ GO,ly) LTR H (I+ Gm.,nxmyn)]
m?;iq
(m,n)>=(2,0)

= (I+Go,1y) |1+ ZZA(z,O),(m,n)xm y"}-
i mi;:p
(m,n)>=(2,0)

By continuing this procedure inductively we define

I + ZA(ihjk)v(mrn)x’nyn :(I + Gikv.jkxikyjk) |:I + Z A(ik+1 ,jk+] ),(mm)xmyn] ) (39)

p={ p={
m+n=p m—+n=p
(myn)=(ig,jx) (mn)= (i1, Ji+1)
where A;, j).0,0) = I for all (i, j) € No x No, and A(;, ;) mn) = O if (ix, ji) = (m,n) #

(0,0). By comparing the coefficients of x™y" in Equation (3.9), we find that

A(ik+17jk+1)7(170) = :A(ik+lzjk+l)a(ik7jk) =0, (3.10)

75



A = A -G (3.11)

ikt 1k1),(mon) ik, i), (m,n) Uk (i1, ks 1), (m—ign—ji )«

If (m,n) = (i, jk), the final recurrence implies that

Gijo = A( (3.12)

it i) (i i) *

Next use Equation (3.12) and the geometric series to rewrite Equation (3.9) as

I+ Z A(ik+17jk+1)~,(m,n)xmyn = (I+Gik\,jkxikyjk)il |:I+ Z A(ik>jk)a(m=")xmyn:|
=/ =(

mf":R mﬁn:p
(myn) = (i1, Jk+1) (m,n) = (ik, ji)
=1+Y (—U“(Gik,jkxiky”)“} [1 + ) A(ik,m,(mm)xmy"]

L a=1 p={

m—+n=p

(m,n)>= (i ji)

oo

= |1+ Z (_1)aAngk)a(ik»jk)(xikyjk)a] [1+ Z A(ik,jk)y(mvﬂ)xmyn} : (3.13)

p=t

m+n=p
(m,n) = (i, i)

By equating the coefficient of x*y’ on both sides of Equation (3.13), we get

Al 60 = 2 (CDAL o iAo, (ma)- (3.14)

Qig+m=s
ajk+n:t

Equation (3.14) is the key to proving the following theorem which is the precursor of
the structure property.

Theorem 3.4.1. Let (ik,jk) € Ny x Ny \ {(0,0)}. Define A(ik7jk),(0~,0) =1 andA(
O for (1,0) X (m,n) = (ix—1, jk—1)- Assume that A
Then A

ik,jk),(’71,n)

i) (mn) < O for all (i, jx) = (m,n).

e ) (s) < O whenever (g1 Jir1) = (s,1).

Proof. Equation (3.14) is equivalent to

A(ik+17jk+l)-,(s-f) = ' Z (_1)aAgk,jk),(ik,jk)A(ik-,jk)»(m»")
ou/_(er:s
Qji+n=t
(mvn)#(070)7(ikajk)
i Y
- (_A)(I;k-,jk)v(ik»jk) +(=1)% (A)(];ka)a(ikvjk)’ (.15
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where the second term on the right side corresponds to (m,n) = (0,0), while the third

term corresponds to (m,n) = (i, jr). Rewrite Equation (3.15) as A, i, \).(sx) = B+ 7>
where
Bi= X DG ioA i )
Qi+m=s
o ji+n=t

(m,n)#(0,0), ik, jk)

and
s E

L i =1 i
V= (7A)(]z{'k,-jk)-,(ik7jk) +(=1)% (A)(];kvjk)v(ikvjk).

By the hypothesis, A(lwk) (lk,jk)A(ikvjk)a(mvn)
and is either a zero matrix or has a sign of (—1)**!. Thus, (—I)O‘A(

is the product of ¢ 4 1 non-positive matrices

o) i) ) ()
is either a zero or a negative matrix, and each summand in 3 is a non-positive matrix.

It remains to show that 7y is also a non-positive matrix. Note that y only exists if o0 = i
is a positive integer, say i = a > 1, in which case y becomes
_ a a—1/4\a _
1= Ao+ D AN i = O (3.16)

Therefore, the representation of y provided by Equation (3.16) shows that ¥ is a non-
positive matrix. O

Theorem 3.4.2. (Structure Property) Let (ix, jx) € No X No \ {(0,0)}. Then

Al oo = L=DTOD 4G o = YDA oy, BT
n n

where the sum is over all 9(n) = ((i1, j1), (i2, j2), .-, (iz, jc)) such that |¢(n)| = (s,1)
and (ip, jp) = (ix, jx) whenever 1 < p < 7 —1. (Recall that we defined A, ) ¢(n) =
Al i1,1) -+ Al lie, o)) F Al s0) < O and all (ix, ji) 2 (s,1), then Equation (3.17)
is equivalent to

A(‘A+17/k+1 Z’ (i), (in,d1) |A(ika.1'k)v(ir:jr)” (3.18)

where the range of summation is identical to the range of summation used in Equation

(3.17).

Proof. We obtain the desired result by representing A(
(3.14) as A;, j,).¢(n) and then applying Theorem 3.4.1.

o) G ) ) 10 EqQuation
(i O

ks ]k
In order to obtain a formulation of the structure property that is useful for determin-

ing the domain of convergence for an MPPE2, we need to iterate Equation (3.18). Let
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o= ((il,jl), (i2,J2)5 - (in,j,,)) denote a vector with n components, where n € N, and
015825 s 0ns J15 J25 -y Jn € No, and let Ay ;) denote the expression A;, j A, j,..-Aj, j,- After

L iterations, and assuming A(; ;) (s;) < O, whenever (ix, jx) = (s,1), we obtain

Aligy 1 i) (s) = Z(_l)r(mn))_]A‘P(n) - _Z |Ai1,j1 | |Ai2,jz| e ‘Airajr|’ (3.19)
n n

where the sum is over () = ((i1, /1), (i2, j2); - - -, (iz, jz)) such that [¢(1)] = (s,1).
If (s,¢) = (ix+1,jx+1), then Equation (3.19) becomes

= Gik+17jk+l = Z(_l)r(¢(n))—1A¢(n)
n

= - Z |Ai1=j1 | |Ai27jz| e ‘Airajr|7 (3.20)
n

A(

ikt 1oJk 1) (kg 15Jk1)

where the sum is over ¢ (1) = ((il,jl), (2, J2)5 e (if,jf)) such that | (N)| = (ixs1, Jkt1)-

To illustrate application the structure property, we furnish the following example:

G21 =An1),2.1) By using Equation (3.12)
=A(3,0),2.1) By using Equation (3.14)
=A(0.2),(2.1)

The explicit coefficients G, , with 1 <m+n < 4, as polynomials of Ay ,...,A,, », are
given below.
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(—1)'A01A20 + (—1)'A1 0A11 + (—1)%AT pAg,
(—1)'A10402+ (—1)'A01A 11+ (—1)%A0,1A1,040,1
0Ao 3+ (—1)' A 1402
, (—1)'A10430 4 (—1)*AT A2
G311 =(—1 OAz 1+ (= l)le 1A30+( 1)2A0 1A1 0420+ (— 1)1A170A2.,1+
(—1)°A vo 1+ (=1)'A0A1 1 + (—1)*A2041 0401
~1)° Az,z + (—1) Az pAop+ (—1) A1 0A12 + (—1)*A1 0Ao, 1AL 1+
AT pAo2 + (—1)' Ao 1Az + (—1)%Af 1420 + (—1) A0,1A7 pAo,

G =(—1)A13+ (—1)"A1 0403 + (—1)' A0, 1Az, 1 + (—1)%AG 1 A1+
(—1)*A0,1A10402 + (—1)°AG 1 A1 0A01 + (—1)' A1 1 A0+
(—1)*A1,040,1402
(=1)°Aga+(—1) Ao,1A0,3+(—1)2A(2)71A0,2-

An examination of G3 1 brings to the fore the pronounced difference between the scalar
(commutative) case treated in chapter one and the current non-commutative case since two
terms Ao 1A1,042,0 and Ay 0A10Ap,1 can’t combine together. This lack of commutativity

implies that in the non-commutative case G, , possess a finer decomposition of structured
terms than what was found in the scalar case.

3.5 Convergence Criteria for MPPE2’s

The purpose of this section is to present results concerning the domain of convergence of
the MPPE2 in Equation (3.4). Since we are dealing with doubly indexed infinite products,

we must carefully define what is meant by the convergence of LTRT](I + G, ,x"y").

m-+n=q

Definition 3.5.1. An MPPE2 LTRTI(I + Gy ,x"y") converges if and only if
=1
m-+n=q

P
limp_o LTR TI(I+ Gpunx™y") converges to a nonzero complex number. Note that the
=1
min:q

P
order of the elementary factors within LTR = [[(I + G, nx™y") follows the conventions of

q=1
m+n=q

Definition 1.2.1.
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We are primarily interested in the absolute convergence of LTRT](I + G x"y").
=1
m?&-n:q
Therefore, following the lead of J. Thunder [43], we make the following definition.
Definition 3.5.2. For a suitable norm the MPPE2LT RT[(I 4 Gy »x"y") is absolutely con-
m?;l:q
vergent if and only if  TI(1+||Gmn|||x"y"|) converges, that is if and only if
=1
min:q o

limy, oo [T72 ) TT721 (1 4+ (|G j11X'y7[) converges to a nonzero real number.

Since ¢* > x+ 1 whenever x > 0, we observe that

Y Y lIGil[xy r<HH L+ (1G] [y

=1 j=1 i=1j=

HGFJH‘X}]‘— Zml): 1\\G;_j||\x[y-/\
<[] = .

i=1j=

Thus Lemma 2 of [43] is applicable and we have the following proposition:

Proposition 3.5.1. Given a suitable matrix norm, an MPPE2 LTRT[(I + G, ,x™y") is
g=1

m-+n=q
absolutely convergent if and only if Y. ||G|||X™y"| is an absolutely convergent series
=1
m?&-n:q

of real numbers.

As it the case of a double series, if an MPPE2 LTRT](I + G, ,x™y") is absolutely

q=1
m+n=q

convergent, then order of multiplication is immaterial and thus we choose to apply the
ordering of Definition 1.2.1. We implicitly made use of this fact in Proposition 3.5.1.

If the coefficients (G, ) of the MPPE2 are commutative more can be said in terms
of the power series expansion of log(! + G, ,x"y"). For any two commutative matrices
A,B € My(C), it can be shown that eA*? = AP [[14], Proposition 2.5, P. 35]. Thus, if
(Gm,n) is a sequence of commutative matrices matrices, we define

log | LTR [+ Guax™y") | := ). log(I+ Gunx™y"), (3.21)
m(-]‘rTllzq m:[»?]:q
where

log(I + G nX™") Z 1)fHT I byt (3.22)
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Equation (3.21) implies that

exp ( Y log(I+ Gm7nxmy”)) = LTRTT (I + Gpn®™"), (3.23)
mi:nlzq mii]:q

and implies that for a sequence of commutative coefficients (G, ,), the MPPE2

[1(1 + G nx™y") converges to a nonzero value if and only if the double series

g=1
m+n=q

oo

(] (e} é

Z 10g(1+Gm7nme Z Z €+1 mn mlyné
=1
n=q

m-+n=q m

is convergent.

By adapting the Taylor series argument found on Page 165 of [5] we have
1/2[|A]] < [[log(I+A)[| < 3/2[|All,  [IAll < 1/2. (3.24)

(In our case A = G, ,x™y".) Equation (3.24) implies that Z log(I + G pxy") is ab-

solutely convergent if and only if Z GinnX™My" is absolutely convergent. We summarize
g

the previous discussion in the follow proposition:

Proposition 3.5.2. Let (G, ) be a sequence of commutative matrices associated with the

matrix function F (x,y) = LTR H(I + Gy X™y"). Define
=
m+n=q

(o] é

logF(x,y) := Z log(I+ G nx™y") Z Z £+1 mn Kyt
=1
n=q

gq=1 =1
m+n=q m

The MPEE2 of F(x,y), LTR H(I + G uxMy"), converges to a nonzero value if and only
=1

m-+n=q
logF(x,y) = Y log(I+ Gux"y") converges. The MPEE2 of F(x,y), LTRH(I—I—
=1 =
m?&-n:q mz—n q
Gpmux™y"), is absolutely convergent if and only if Y. log(I + Gpx"y") is absolutely
g=1
m+n=q

(-1 )/;1 anﬁ xmfyné

convergent if and only if Y, ‘ ‘ Yoo ‘ < oo,
g=1

m-+n=q
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The first main result of this section provides a lower bound for the domain of conver-
gence an MPPE2 of in terms a majorizing log series.

Theorem 3.5.1. (1.) Given a matrix function F(x,y)

F(xay) =1+ Z Am,nxmyn =LTR H(I+ Gm,nxmyn)a (325)
m‘ijip m?lr:nlzq

where Ay, Gy € My(C), define the following auxiliary matrices functions with
coefficients over My(R):

Clx,y)=I— Y |Analx™y" =LTR]](I = Cunx"y") (3.26)
mhnmp g

M(x,y) =1— Y Myux"y" = LTR] (I = Ennx"y"). (3.27)
m{)i-jlp mf‘lrjl:q

If |Ampn| < My, for all (m,n) € Ng x No\ {(0,0)}, then

O <|Gun| <Cppn<Ep, forall (m,n)eNyxNy\{(0,0)}.

(2.) Define W € My(C) as
W =(wy,), where w,,=1, vu=1,...,d.

Furthermore, given A, ,, € My(C) where A, ,, = (a%w(m,n)) fory,w=1,....d,
define
1

a(m,n) :=max|ay.o(m,n)|, and s:= sup [a(m,n)]"".
v,0 m+n>1

Consider a special case for M(x,y), namely

M(x,y)=1—"Y, §""Wx"y" =LTR[ ]I —Enax"y"), (3.28)
m‘izip mijlzq

where My, = s"T"W. Since (s"7"W) is a sequence of commutative matrices,
(Emp) is also a sequence of commutative matrices. By using the Taylor series
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of expansion log(I — E,, ,x™y"), we define

logM(x,y) =log | LTR[](I — Epux"y")

g=1
m-+n=q

= g=1 /(=1 ¢
m-+n=q m+n=q
>° Emn ¢
= Y PuuX™y',  Puni=— ), (1) . (3.29)
p=1 ld
m+n=p d=gcd(m,n)
Let H -|| be a suitable norm and let p(|| - ||) be the radius of convergence of
): Py xx™y" as defined via Equation (3.29). Then
m+n =p
0 < |Gm,n‘ < Cm,n < Em,n < _Pm,na (m7n) € NO X I\IO- (330)

The inequalities of (3.30), when combined with Proposition 3.5.1, imply that
LTR H (I4 Gupx™y") converges absolutely for p(|| - ).
m+n =q

Proof. (1) Equation (3.20) implies that

Gm,n = Z (_1) w0 +1A¢P ; JrlA(ll-,]'l) i 'A(ir:jr)’

1
19 (n)|=(m,n) |9 (n)|=(m,n)

which in turn implies that

Gual =| Y, (DT AL <Y Al ALl 33D

n n

¢ (1) |=(m.n) lo(n)|=

Similarly, when we apply Equation (3.20) to Equation (3.26), we obtain

0< Cm7n = Z (_1)‘:((1)(11)) ( - |Ai1,j1 |) (_ ‘Aiﬁjr‘)
n

(m.n)

|¢(1)|=(m,n)

= Y 0T ) (A

\‘1’(71)\17:(”!7")

= Y (Aul) (A gl)- (3.32)
\‘P(ﬂ)\r]:(ma")
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Combining Equation (3.31) and (3.32), we deduce that |G, ;| < Gy, ,. Also due to the
inequality |A,, ,| < M, ,, we have

O<Cun= Y, Al JAijl< Y M .. .Mij =En,
n n
|¢(n)|=(m,n) |¢(1)|=(m,n)
and hence 0 < |G| < Cpp < Epyp.

(2) By the definition of P, , provided via Equation (3.29), we see that

(Enn)f (Enz)"
_Pm,n = Z (é — = m,n + Z ég : )
ld l)d, (#1
d=gcd(m,n) d=gcd(m,n)

and since Part (1) implies that for an arbitrary pair of subscripts (&, ) Eqp > O, the
preceding equation implies that

(@ S Em,n S _Pm,n-

which completes the proof of (3.30). O

Let us take a moment to reestimate the power series expansion of log M (x,y) = P pX™y".
=1
mljrn:p
Since W" = d"~'W, we find that

—logM(x,y) = —log |I-W Z sy

p=1
L m-+n=p
=—log [I-W [Z (sx)™ Y (sy)" — 1”
L m=0 n=0
1

= —log :I—W [1_sx' 1—1sy_1”
r s(x —s%x
e
(1 —sx)(1—sy)
[ds(xﬂ) - dszxy} ’
(1 —sx)(1—sY)

VAN
gk
S
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i {ds x+y)— ds2xyr

a=o L (1=sx)(1—sy)

1
1— ds(x+y)—ds?xy ’
(1—sx)(1—sy)
(-1 —s)
T d1- (d+1)s(x+y)+(d+1)s>xy

ds(x+y)—ds>xy

where =)=

<1

% &= M%

The preceding calculation implies that an estimate for the domain of convergence is re-
lated to the domain of convergence of scalar function ¢ ! (x,y) = = @ +5;;()Sﬁ)(v)l;8)+1)s2xy'
By applying an appropriate similarity transformation, ¢ (x,y) appears in the expansion of

M(x,y)=1-W E‘, syt Since W1 = = A4"1(X —d), the eigen-

=1
min:p
values of W are A} =d, A, = A3 = --- = Ay = 0, and there exists an orthogonal matrix Q

such that 97 = Q! [[15], Theorem 16.19, P. 571] with

d 0 0
0O 0 O
W=0 . o'
0 - 0
0 0 0

ol 0 0
0 0 0
d O 0
:Q I— Z 0 O 0 sm-‘rnxmyn QT
mizlp -0
0 0
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[ d i Sernxmyn 0o --- 0 i
p:
m+n=p
=0 |- 0 0 0 o'
0o 0
i 0 0 0/ |
¢(x,y) 0 0
| © 'Y e (333)
0 0 1

where

o(x,y)=1—d i ST =1 —d (i (sx)™ i(sy)" - 1>

p:l m=0 n=0

m-+n=p
NN 1 . L=s(d+1)(x+y)+s*(d+1)xy
N I—sx 1—sy N (1—sx)(1—sY) )

Since we are ultimately computing log(¢(x,y)), we set the domain of definition for ¢ (x,y)
to be C*(C?\ S), where

1 1
S= {x: SY= and s(d +1)(x+y) +s°(d + 1)xy = 1}-

Next we check for which values (x,y) the series log(M(x,y)) = Y B, x™y" as defined
1

p:
m+n=p

in Equation (3.29) will be absolutely convergent. By taking the logarithm of Equation
(3.33), we have

log(M(x,y)) =log [I— Y s"""Wx™y"
mg—jip
o(xy) 0 - 0
o 1 0 :
=log |Q _ o'
0o .
i 0 0 1
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loglo(x,y)] 0O - 0
0 logl O

: o 0
0 0 - logl

or, (3.34)

where the last equality made use of the fact that eVAU" = UeAU~! whenever A,U €
M,(C) [[14], Prop. 2.2, Page 33]. Therefore, it suffices to consider where the function
log[¢(x,y)] will be absolutely convergent. Observe that

log[¢(x,y)] =log[l —d Y s"""x"y]
=

1—s(d+1)(x+y)+s*(d+1)xy
(1 —sx)(1 —sy)
=log (1 —[s(d+1)(x+y)—s 2(d+ 1)xy]) —log(1 — sx) —log(1 — sy)

e ) ) D) 2+ D
Ltk ; '

=log

(3.35)
(=1

The three series in (3.35) are absolutely convergent for |x| < %, ly| < 1, and for
}s(d +1)(x+y) —s*(d+ l)xy‘ < 1, respectively. By the triangle inequality, we have
[s(d+1)(x+y) = (d+ Dy| <s(@+ (k] + D) +5*(@+ Dbl (3.36)
If we require s(d + 1)(|x| + [y|) +s(d +1)|x||y| < 1, since
s(d+ 1)l < s(d+ 1) ([ +y]) +5*(d + Dlxlly| < 1,

we find that |x| < ReE] +1) Similarly, |y| < d @i Therefore, an estimate of a convergence
domain of (3.35) is given by

D= {(x,y) € (CQ:s(d—I—l)(|x‘+‘y}) —I-sz(d—l-l)’x‘y} < 1}.

See Figure 3.1.

Inequality (3.30) shows that the series ), E,, ,x"y" will be absolutely convergent when-
mﬁjl p
ever (x,y)€D, which implies that the infinite product LTR H(I + Gy X™y") is at least

9=
m+n q

absolutely convergent in the region D.
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Relation (3.36) makes it possible to obtain a domain of absolute convergence in terms
of polydiscs. Let |x| < p and |y| < p. Inequality (3.36) implies that the MPPE2 will be
absolutely convergent if

s(d+1)2p)+s*(d+1)p>=(@d+1)[(sp+1)*—1] <1,

or equivalently, if p < s~! [1 / Z—ﬁ — 1} . The inequalities for p obtained from the defining
quadratic equation of D, namely

|x|<s_1 ‘/ﬂ_ -
d+1

1

[

[ <s™

are sharp in the sense that if

d 2 ]

1| e+t -1
= 1 —

X A 1 N y S

)

[d+2
d+1
then |s(d +1)(x+y) —s*(d + 1)xy| = 1 and the sum of the absolute values of the terms
in the logarithmic power series of (3.35) diverge.

In summary, we have shown that

Z log(I — E, nx™y") =log | I — Z sS"TWAY |
qg=1 p=1
m+n=q m—+n=p
will be absolutely convergent whenever (x,y) € I or whenever (x,y) € Dy, X Dy, with

p<s_1[ %—1},where

Dypi={x:ll <p}.  Dypi={y:hl<p}.
Hence, LTR [[(I — E, »x™y") will also be absolutely convergent for the same regions.

q=1
m-+n=q

We can summarize what we have shown so far regarding the absolute convergence
of MPPE2 in both Equations (3.25), (3.28) in term of spectral conditions and obtain the
second major result of this section.

Theorem 3.5.2. (1.) Let F(x,y) =1+ )oi ApnX™y". Let W and s be as defined in

p=1
m+n=p

Part (2.) of Theorem 3.5.1. Both F(x,y) and its MPPE2,

F(x,y)=I+ Y ApnxX"y" =LTR] [+ Guux"y"), (3.37)
mijip mzjlzq

88



and the auxiliary function, along with its MPPE?2,

M(x,y)=1— Y s""Wx"y" = LTR][(I — Emnx"y") (3.38)

will be absolutely convergent whenever (x,y) € D, where
D— {(x,y) e (d+ Vs(|x| + y]) + @+ D|x|y| < 1}.

(2.) With the same conventions as in Part (1), both F (x,y) and its MPPE2, along with
M(x,y) and its MPPE2, will be absolutely convergent whenever (x,y) € Dyy X Dy,

with p < 51 [ Z—ﬁ — 1}, where

Dyp:={x:|x|<p},  Dy:={y:p[<p}
See Figure 3.1.

vl

1 s (d +1)(Ix]+ly)+(d + Dlx|lyl=1

> |x|

(d+1)s

Figure 3.1: A domain of absolute convergence of Equations (3.25) and (3.28).

We should mention that for F (x,y) =1+ E A nx™y", the results of Theorem 3.5.1(2)

p=1
m-+n=p

and Theorem 3.5.2 and can be stated and analogously proven with s replaced by

Si= sup [|Apnl", (3.39)

p=1
m-+n=p
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Furthermore, the definition of S in Equation (3.39) provides a connection between the
domain of convergence for the majorizing MPPE2 of Theorem 3.5.1(2) and a scalar coun-
terpart for the MPPE2 of F(x,y) as seen in the following theorem:

Theorem 3.5.3. Given the matrix function F(x,y)

Flo,y) =1+ Y ApnX"y" =LTR][(I+Gpax™y"),
—1 =1
m{)i-n:p m?i-n:q
with Apn,Gmpn € My(C), define the following auxiliary matrices functions with coeffi-
cients over My(R):

C(x,y) =1- Z ’Am,n|xmyn =LTR H(I_Cm,nxmyn)

p=1 g=1
m-+n=p m-+n=q

M(x,y) =1- Z A/Im,nxmyn = LTRH(I_Em,nxmyn)~

p=1 g=1
m+n=p m-+n=q
Let || - || be a suitable matrix norm and assume that |A,, »| < My, for all (m,n) € Ny X
No\{(0,0)}. If ¥ ||Emnll|x™y"| converges absolutely in a domain D, then the scalar
p=1
m+n=p

function  T] (14 ||Gpn||x™y") also converges absolutely within D.
g=1

m+;:q

Proof. Since |A,,,| <M, , for all (m,n) € Ny x Ny\ {(0,0)}, Theorem 3.5.1(1) implies
that
0< |Gm’n| < Eun. (3.40)

Since the norm is suitable, the monotonicity of the matrix inequalities of (3.40) is pre-
served and implies following string of scalar inequalities

0 < |G|l < ||Emnll,

from which the result follows. O

3.6 Matrix MPPE2’s Induced by Scalar Functions

In the next theorem we study the expansion of the matrix function F(Ax,Ay), where
F(x,y) is a scalar analytic function.
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Theorem 3.6.1. Let (a,,,) € C, where (m,n) € Ng x Ny \ {(0,0)}. Let

Flxy)=1+ Y awexX™y' = [] (1+gmax™y"), (3.41)
mijip mf[&-jlzq

where g, € C,(m,n) € Ng x No\ {(0,0)} are scalar coefficients.
Let A € My(C). Consider the power series F(Ax,Ay) together with its MPPE?2 expansion

F(Ax,Ay) =I+ Y ansA""x"Y' = LTR[[(I+ gmad™"x"Y"). (3.42)
mijlzp m?ijzlzq

Let (A;)?_, be the distinct eigenvalues of A. For 1 < i< p, let n; be the algebraic multi-
plicity of A;, let nf be the geometric multiplicity of A;, and let m; be multiplicity of A; as a
linear factor within the minimal polynomial m(1). In other words,

:m

det(Al —A) H m(A) =

(A —=2)™.

Il
—

Define
p(A):=max|A| i=1,2,...,p, §:= sup |am7n|ﬁ. (3.43)
4

m+n>1
The MPPE?2 of Equation (3.42) converges absolutely in the region
2
D= {(x,y) € C?: 25p(A) K[| (x| +[¥]) +2[sp (A) | K[|]"|xlly] < 1}, (3.44)
with K € M;(C),

K=KiPK.P---PkK,, (3.45)
K=K, PK,P- Pk e (3.46)

with K,-j an m,-j X m;; matrix as described below, m;; < mj; = m, and Z;lf | mi; = n;. Note
if m;; = [1], otherwise Ki, = Iy, + N, y where Im is the mi; X mj; identity matrix,
whlle Nm g is the m;; X m;; the lower triangular nilpotent matrix assoczated with the Jordan
block decomposition, i.e.

where for 1 <i<p,

1 0 - 0 O
1 0 0 O
0o 1 1 0
Kn,n = Imi. +N, S (347)
J J J 0 0 O
0 0o o0 1 1
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Proof. It is known that given a matrix A € M;(C) and an arbitrary small fixed € < p(A),
there exists an invertible matrix 7, such that

J =T AT, (3.48)

where

I=11PrEH B,
Ji=0 DD D (3.49)

with J;; the m;; X m;; matrix as described below, mi; < m; = m;, and Z Lymi; = n. If
m;, = 1 Ji; = [l] otherw1se Ji; =i Imlj + &Ny, where Im is the m;; X m;; 1dent1ty matrix,
Whlle N, i is the m;; x m;; the lower triangular mlpotent matrlx assocmted with the Jordan
block decomposmon ie

such that for 1 <i < p,

Ai 0 - 0 O
e A O 0 O
0 0
0 0 O ! !
o R -0
0o ... 0 0 £ )Li

By using the similarity transformation of Equation (3.48), we have

F(]x7jy) — ]_|_Z amﬁjm-i-nxmyn =]+ Zamﬂ(T—lAT)m-‘rnxmyn
p=1 p=1

m+n=p m+n=p
=7! [I+Z am7nAm+"x”’y"} T =LTR H (I+ gmaJ" X"y
- =1
min:p min—q

= LTR[ [ (I + gma(T~'AT)"™"x"y") = LTRH T I+ gna, A" X"y T
mzjlzq m?i-nlzq
—7! [LTR (I+ gmynAer"xmy”)] T—7"" [F(Ax,Ay)} T
1

(1:
m-+n=q

Consequently, the power series and the MPPE2 in Equation (3.42) converge absolutely if
and only if the power series and its associated MPPE2 in

F(Jx,Jy) = I—|—Z A" XY = LTR H (I 4 g™ X", (3.50)
mi;ip m?i-jlzq
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converge respectively. Consider two cases: in the first case assume that p(A) = 0. As a
result, A is a nilpotent matrix and for some integer P the equation A"+ = O holds. For
Fx,y)=1+ Y amx"y", Anilpotent implies that

p=1
m+n=p

P
F(Ax,Ay) =I —1—2 A p A" XY = LTR H I+ gmaA"T"X"™Y),
-1 =1
min:p m+n:q

is a finite polynomial in C.

Now consider the case that p(A) > 0. Assuming € < p(A),

Il < p(AK, (3.51)

where K is defined in Equations (3.45) and (3.46). For s = sup |am,n|n%+n and consider
m+n>1
the scalar power series M(x,y) together with its PPE2 expansion

(=)

Mxy)=1— Y """ = [T —emaxy"),
=1 g=1

m-‘r;:]) m+n=q
where (e, ,) is a sequence of non-negative real numbers determined by certain polynomi-

als in s; see Theorem 1.4.1. By using (3.51), and assuming that ||sp (A)Kx|| < 1 and that
l|sp(A)Ky|| < 1, we find that

M(p( K, p(A ) i Kny

- [(1—sp<A>Kx>1<I—sp<A>Ky>1 -1

= (1= spA)K)(1=sp (K 1= (1~ sp WK 1 - sp (A)K)|
1= (1 =sp (4K 1= sp (k) [sp(AK(s-+3) ~bp (41K

— (1 3p(A)K) " (I~ sp(A)Ky) !

—<2SP(A)K(X+y) —2[sp (A)K]ZXY>]

=LTR[ (I —emalp(A)K]""x"y"). (3.52)
q=1
m+n=q
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Since M (p(A)Kx,p(A)Ky) is a matrix function with commutative coefficients, the factors
in the second to last line of (3.52) commute, and we may use the fact that log(AB) =
logA +logB and logA” = rlogA to write

oo

log (M (p(4)Kx,p(A)Ky)) =1log [[- Y [sp(A)K]" """

~ log [<z—sp (A)Kx) " (1= sp(A)Ky) " (1— (25p (A)K (x+3) —2[sp <A>K]2xy))]

= —tog (1-sptarice) —1og (1-sp(ay
+log (1— (25p(A)K (x+y) —2[sp (A)K]2xy)>

b ¢ e AR ()~ 2o 4K )
LR f |

(3.53)

The three series in (3.53) are absolutely convergent for |x| |y| < m, and for ||2sp (A)K (x+
y) —2[sp(A)K]*xy|| < 1, respectively. By triangle inequality and the fact ||K?|| < || K>,
we have

25P(A)K (x+) — 2[sp (A)K 2y <
25p (A)[IK| (1] + 1) + 220> (A)[IK ] ]y

If we require
25p (A)[|K | (|x] + [¥1) +2[sp (A) 1K 1) |x]]y] < 1.
Since

25p (A)[|K | x| < 2sp(A) K (x| + [y]) +2[sp (A) 1K1 |l ly| < 1,

we have |x| < 5 o H 7 <5 which is a condition for the validity of the calculations

A )X
in (3.52). Similarly, |y| < 25p(A l)HKH < sp(Al)HKH‘ Therefore, an estimate of a convergence
domain of (3.53) is given by

D = {(x,y) € C*: sp(A) | K| (|| + [y]) +2[sp (A) |K][]*|x][y] < 1}.
To determine the domain of convergence for the MPPE2’s of Equation (3.50) we
apply Theorem 3.5.1. In particular, take Equation (3.25) and set A,, , = am,nlm*'" and
Gmn = gmaJ™™; then take Equation (3.27) and set My, , = [sp(A)K]™™™ and E,,, =
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emnlp(A)K]™*". Next recall that s = sup \ammlﬁ. This definition, when combined
m+n>1
with Inequality (3.51), shows that

0< ‘Amm’ = ’am,n| M”H_n < g ‘p(A)K‘m-m =My .
Thus the conditions for Theorem 3.5.1 are satisfied and we deduce that
O < |gmaud™""| < empn [P(A)K]"™ < =Py, (3.54)

where P, , is the coefficient of xy" in the power series of log(M(p(A)Kx,p(A)Ky)); see
(3.53). Since our norm is suitable, we use (3.54) to deduce that

0 < |l ||| < emaup (A)™ " || K" || < ||Pall- (3.55)
The inequalities of (3.55), when combined with Proposition 3.5.1, imply that a domain of
absolute convergence of log(M(p(A)Kx,p(A)Ky)), namely the region D, is also a domain
of absolute convergence for LTRTT(I 4 g nJ™ " x™y"). O

q=1
m+n=q

oo

In the next theorem we study the expansion of the matrix function F (Bx, Cy) , where
F(x,y) is a scalar analytic function and B,C € M,(C) are both diagonalizable and BC =
CB+# 0.

Theorem 3.6.2. Let a,,,, be a sequence of complex numbers, where (m,n) € Ng x Ng \

{(0,0)}. Let
Flxy)=1+ Y awxX"y" = [] (1+gmax™y"), (3.56)
whimp i

where g, € C,(m,n) € Nog x No\ {(0,0)} are scalar coefficients.

Let B and C be two commuting d by d diagonalizable matrices. Consider the power series
F (Bx,Cy) together with its MPPE?2 expansion

F(Bx,Cy) =I+ Y an,B"C"x"y" = LTR] [ (I + gmaB"C"X"y"). (3.57)
mg—jlzp m?;]:q

Let (4)Y_ 1, (A)Y_| be the distinct eigenvalues of B,C respectively. Define

p(B):=max|A| i=12,....p (3.58)

p(C):=max|A/| i=1,2,....p (3.59)

§:= sup \am’nlﬁ. (3.60)
m+n>1
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The MPPE?2 in (3.57) converges absolutely in the region
D ={(x,»)€C: 2s[p(B) x| +p (O] 1] +-25°p (B)p (O) [ Ix[ly| <1}, (3.61)
where I is a d by d the identity matrix.

Proof. Let B,C be two commute diagonalizable matrices. By using [[40], Proposition
6.2.6, Page 253] there is a single invertible matrix S € M;(C) such that

D;=S"'BS (3.62)
D, =S7'CS, (3.63)
are both diagonal, where
A0 0 O Al O - 0 0
0 A& O 0 0 0 A 0 0 O
0 0 0 . 0
Dl - 7D2 - . .
0 0 O 0 0 0
: : . . .0 : : . - .
0O ... 0 0 0 2, O ... 0 0 O k[’j

By using the similarity transformations (3.62) and (3.63), we have

F(D1x,D2y) =1+ Y anuDPD5xX"y" =1+ Y. ama(S~'BS)"(S7'CS)"X"y"
mgjip mijip
—5! [1 +y amﬁBmC”x’"y"} S = LTR ] (I+ gn Dy D3x"Y")
mijip mz-?lzq
=LTR[J(I+gma(S™'BS)"(S7'CS)"x"y") = LTRT| S~ (I + gmuB"C"x"y")S
m?;z]:q m(-l&jllzq
_ 5! [LTR [T+ ng,BmC”xmy")} S—51 [F(Bx, Cy)] S.

g=1
m+n=q

Consequently, the power series and the MPPE2 in (3.57) converge absolutely if and only
if the power series and its associated MPPE2 in

F(D1x,Dyy) =1+ Y an D' D5x"y" = LTR [ [ (I 4 gmaD} D5x"y") (3.64)
=1 =1
min:p min:q
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converge absolutely respectively. Consider two cases: in the first case, assume that p(B) =
0or p(C)=0. As aresult, B or C is a nilpotent matrix and for some integer P the equation

B+t = 0 or CP*D) = O holds. For F(x,y) =1+ Z AppxX™y", B or C nilpotent

m+n P
implies that

P P
F(Bx,Cy) =I+Y annB"C"x"Y" = LTR[[(I+ gnaB"C"x"y"),
—1 =1
mg—n:p mZ—n:q
is a finite polynomial in C.

Now consider the case that p(B)p(C) > 0. Then we have

D1 < p(B)I (3.65)
|D2| < p(O), (3.66)
where [ is a d by d the identity matrix. For s := sup ]am7n|ﬁ and consider the scalar

m+n>1
power series M (x,y) together with its PPE2 expansion

oo

M(x,y)=1— Z sy —H(l —emax"y").
m+jip m+;1:q
where (e, ») is a sequence of non-negative real numbers determined by certain polynomi-
als in s; see Theorem 1.4.1. By using (3.65) and (3.66), and assuming that ||sp (B)Ix|| < 1
and ||sp(C)Iy|| < 1, we find that

M(p(B)Ix,p(C)ly) =1-Y. s™"p™(B)p"(C)I"I""y"

p=1
m+n=p
—1-| L ip(epa” ¥ ot -1
m=0 n=0

— 1 |=sp(®yt) 1 -sp(n) -1
— 1 (1= sp(B)D) (1= sp(Chy1) |1 (1~ sp(B)an) 1 ~sp (1)

sp(B
— 1 1= sp(B)) 1 =sp (1) |5 p(B)x+ p(Cly )1~ o (BIPCv]
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— (I-sp(B)xt) (I sp (C)y1)~" | I=(2slp (B)x+ p(C)y] 125> (B)p (C)xy1)

= LTRT] (1~ enalp B[ (C)I""y"). (367
mz;l:q
Since M (p (B)Ix,p(C )Iy) is a matrix with commutative coefficients, the factors in second
to last line of (3.67) commute, and we may use the fact that log(AB) = logA + log B and
logA” = rlogA to write

log [M(p(B)1x,p(C)1y)] = log [I—il S (B)p" ()" "Xy
p=
m-+n=

~ log [(1 ~sp(B)) (1= sp(C)1y)" (1 {2slp(B)x+p(Chyli -

p

2s2p<B>p<c>1xy})]

i sp i sp( Iy i B)x+p(C)y)I —25°p(B)p(C)Ixy]"

(=1 ¢

(3.68)

The three series in (3.68) are absolutely convergent for |x| < m, ly| < m, and

for ||2s[p (B)x+p(C)y|l —2s*p(B)p(C)xyl|| < 1, respectively. By triangle inequality, we
have

25lp(B)x+p(C)y} —25%p (B)p (C)wol]| <
25lp(B)x| +p (€)1 +22p Bl (3.69)

If we require

25[p(B) x|+ p (C) ]Il +25°p (B)p (C) I ][x][y] < 1.

Since

25p (B)|x/|l1]] < 2s[p(B) x|+ p (O[] IZ1|+25*p (B)p (C)I][|x]|y] < 1,

which is a condition for the validity of the calculations

1 1
we have |x| < 3BT < 5p(B)]
in (3.67). Similarly, |y| < 0
domain of (3.68) is given by

D= {(x,y) € C*: 2s[p(B)Ix| + p(C) Y] 11| +25*p (B)p (C) |1 Ixlly| < 1} (3.70)

|1H’
1 .
)H < 5O Therefore, an estimate of a convergence
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To determine the domain of convergence for the MPPE2’s of Equation (3.64) we ap-
ply Theorem 3.5.1. In particular, take Equation (3.25) and set A,,, = a,,,D'D5 and
Gmpn = gmaD]'Dj; then take Equation (3.27) and set M, , = [sp(B)I|"[sp(C)I]" and
Enn = emn[p(B)I|"[p(C)I]". Next recall that s = sup |a,,,7n\m%n. This definition, when
m+n>1
combined with Inequalities (3.65) , (3.66), shows that
O < |Amal = lama| ID1[" [Da|" < 5™ [p(B)|" [p(C)I" = Mynn.
Thus the conditions for Theorem 3.5.1 are satisfied and we deduce that

O < |gmaD'D5| < emn[p(B))" [p(C))" < =Py p, (3.71)

where P, , is the coefficient of x'y" in the power series of log(M(p(B)Ix,p(C)Iy)); see
(3.68). Since our norm is suitable, we use (3.71) to deduce that

0 < [gmal [[DTDA| < emnp (B)"p(C)" [I]] < ||Pnnll- (3.72)

The inequalities of (3.72), when combined with Proposition 3.5.1, imply that a domain of
absolute convergence of log(M(p(B)Ix,p(C)Iy)), namely the region D, which is defined
in (3.70), is also a domain of absolute convergence for LT R[(I + gm D' D5x"y"). O

g=1
m+n=q

3.7 Illustrative Examples

In this section various examples are given to illustrate the main theorems of the previous
sections. Our first example is an extension of Theorem 3.5.1.

Example 3.7.1. Fix a,B € Ny. Consider the following matrix function F(x,y) with its
majorant matrix series:

F(X,y) =1+ Z Aua-‘rﬁ,va-‘rﬁxuaJrﬁyvaJrﬁ =LTR H(I‘i‘Gm,nmen),

p=1 g=1
u+v=p m-+n=q
C(x,y) =I— Z |AuatBvatp |x”“+ﬁym+ﬁ =LTR H (I = CppX™y")
= =1
u{«)—v:p m?kn:q
M(x,y)=I-Y st 2By uotbyath — prR T — Enax™y"), (3.73)
=1 =1
ll-[:-\/:p m?‘,—n:q

where Aua+ﬁ,va+[37W €My ((C)’ Au(x+ﬁ,va+ﬁ = (av/.,w(ua + ﬁvva + ﬁ)) v,0=1,.d"

W= (wyy), with w,,=1, vu=1,....d,
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and

1
§:= sup [a(ua +B,va+ ﬁ)] @t T2p
O!,ﬁGN()

u+v>1
with
a(ua+B,vo+B) = max|ay o(uc+p,va+p)|.
Since
d 0 0
0O 0 O
W=0 o,
0 . 0
0 0 0

The left hand side of Equation (3.73) becomes

M(x,y) —]— Z Sa(u+v)+2/3qutx+/3yva+ﬁ

p=1
u+v=p
d 0 0
g Z 0 0 0O 0 QTSa(u+v)+2Btha+ﬁyva+ﬁ
p:ﬁ . 0 0
7\ o 0 0
[ d 0 0
=0 |I—- Z 0 0 .0 : Sa(u+v)+2ﬁxua+ﬁyva+ﬁ QT
u—l‘,)-jzlp 0 .0
i 0 --- 00
- J i Sa(u+v)+2/3xua+[3yva+[} 0 ... 0 -
Wi
=0 |I- 0 0 0 o’
: 0 . 0
i 0 0o - 0/ ]
¢(x,y) 0 0
0 1 0 :
=0 . o', (3.74)
: 0O . 0
0 0 1




where

sa(u+v)+2ﬁxua+ﬁyva+[3

=1

d)(x,y) =1-d i
uﬁv =p

_ d|:zo(sx ua+ﬁ Z sy va+[3 (SZXy)ﬁ:|

_ (sx)P Y)ﬁ

- 1-d| 2 T~

d(s%xy)P [(s20)% + (sy)* — (s%xy)%]
[1— (s)*][1 = (sv)%]

1 [+l [ 3% - (2]
N [1= ()1 — (sy)°]

=1-

(3.75)

Next we check for which values (x,y) the series log[M(x,y)] = Z P, x"y" as defined

p_
m+n=p

in Equation (3.29) will be absolutely convergent. By taking the logarithm of Equation
(3.74), we have

log[M(x,y)]zlog J— Z sa(u+v)+2[3qua+[3yva+ﬁ
uﬁt:’:lp
¢(x,y) 0 -+ 0 ]
0 1 0 :
=log|Q| ‘ o'
: 0 0
i 0 0 1 |
log[¢(x,y)] 0 0
0 logl O
—0 g . o’. (3.76)
: 0 " 0
0 0 - logl

Therefore, it suffices to consider where the function log[@ (x,y)] will be absolutely
convergent. Observe that
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log [¢(x,y)] _ log[l —d Z Sa(u+v)+2ﬁxua+l3yva+ﬁ}

p=1
u+v=p

{1 [1 —|—d(s2xy ﬁ] [Sa(xa-i-ya) - (Szxy)a]}
|

)
[1— (sx) [T = (sy)¥]
=log|1— [1 +d(s%xy) B} [sa (x*+y%) (SZXY)(XH
—log [1 — (sx)%] —log[1 — (sy)“]

a9 @ )Y
(;1 ; U_Zl v

1
- {[1 +d(s%xy)P] [s*(x* +y%) — (szxy)oﬂ
_ LZ’I 7 . (3.77)

The three series in Equation (3.77) are absolutely convergent for |x| < %,
and for } [14d (szxy)ﬁ} [s% (x* + y*) — (szxy)o‘} ‘ < 1, respectively. By triangle
inequality we have

’ [1 +d(s2xy)ﬁ] [sa(xa +y%) — (szxy)a} ‘ <
[1-+d(sxl[y)P] [s% (1l + [¥1%) + (7 ¢l [¥1) ] (3.78)
If we require
[1+d(s ¥l [y)P] [s* (1l + [¥1%) + (P ¥l V)] < 1,
|x| < p, and |y| < p, then we have
[1+d(sp)*P] [2(sp)* + (sp)**] < 1, (3.79)
Setting w = sp in Equation (3.79) implies that
(1+aw?) (w* +11* = 1) < 1, (3.80)
or equivalently,

W2 L2 4 gt 4 gy t2B (3.81)
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Consider the moduli of all solutions p of Equation (3.81). The smallest p that
solves this inequality equals the domain of convergence of the power series of
log[M(x,y)]. The solution to (3.81) is obtained in the following cases:

Case 1: Let o = 1 and B = 0. Inequality (3.80) becomes

d+1D[w+1)?*-1] <1,

which ultimately implies that

—1-= ﬂ<w<_1+ w
Vd+1 Vd+1

Consequently, the matrix function F(x,y) and its associated MPPE2 converge

absolutely whenever (x,y) € Dyp X Dyp with p < 57! [ % — }, where

Dy :={x:|x| <p}, Dy :={y:|y|<p}.
Note that this special case is Theorem 3.5.1.

Case2: Let oo =2, where a # 0 and consider the special situation of d =2.
Inequality (3.81) becomes

2w + 5w 42w < 1. (3.82)
By setting t = w® in Equation (3.82), we have
2345242t —1 <0,

or equivalently,

(t+1) (22 +3t—1) <O0. (3.83)
Then we have
—/17-3 V17-3
1< T or —1<t< 4

which ultimately implies that

we [PATZ3E o L] cwe Y223
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Consequently, the matrix function F(x,y) and its associated MPPE2 converge

1
absolutely whenever (x,y) € Dyp X Dyp with p < 57! [@] *, where
Dy :={x:|x[<p}, Dy:={y:ly[<p}
We turn to concrete examples where F (x,y) is a scalar function.

Example 3.7.2. Let a > 0 and 6, ,, be a sequence of real numbers, where (m,n) € Ny X
No\ {(0,0)} . Let

F(x,y)=1+ Z exp (iOp,n) (m+n)*x"y" = H(l + gmaxX™y"), (3.84)
m{;jip mijlzq

where gy, € C. For any A € My(C), consider the power series F(Ax,Ay) together with
its MPPE?2 expansion

F(Ax,Ay) =14Y " exp (i6pn)(m+n)*A" "y = LTR[ [ (I 4 gmaA™"x"y"). (3.85)
mhmmp ity

To determine a domain of convergence for the MPPE2 of Equation (3.85), we apply

Theorem 3.6.1. This means we must determine the supremum of the sequence ay, =
(m+n) W, where (m,n) € Ng x No\ {(0,0)}; this is equivalent to determining the supre-
mum of the sequence a, = n», where n € N. Since logx is increasing when x € R™, and
since a, > 0 for all n € N, we have

logn

logsup a,, = suploga, = sup
neN neN neN I

Consider the function g(x) = logx

= === on the interval [1,0). Observe that

1 —logx
-T2

/
X
gx)=—
which is positive on [1,e) and negative on (e,o) This means g(x) is increasing on [1,e)
and decreasing on (e,o), in particular its maximum occurs at x = e. But e ¢ N so the
supremum will be attained at either n =2 or n = 3. In fact
log2 log3

- < N <= 3log2 < 2log3 <= log8 < log9,
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Thus
logn  log3

sup—— = ——.
neN I 3

1
and sup a, = 33
neN

Theorem 3.6.1 then implies that

)P(A)IKII(x]+Iyl) +2[(3

is the estimate for the domain of convergence.

a
3

D = {(x,y) € C*:2(3>

a
3

PA)K[Pxllyl <1} (3:86)

Now let B,C € M;y(C) be two commuting diagonalizable matrices and consider the power
series F(Bx,Cy) together with its associated MPPE?2 expansion

F(Bv.Cy) =T+ Y. exp (i) (m—+n)®[Bx]"[Cy]"

p=1
m+n=p

=LTR [] (I+gmalBx]"[Cy]"). (3.87)
mijiq
To determine the domain of convergence for the MPPE2 of Equation (3.87), we apply
Theorem 3.6.2 with s = 35 to obtain

)l +p(C)Iy]]

D —{(x.y) € C*:2%)1|[p(B
+23%)p(B)p(©)1lllxllyl < 1. (3.89)

Example 3.7.3. Let p € N and consider the scalar bivariate exponential function together
with its PPE2 expansion

oo 5]

F(x,y) =exp(xy) = 1+ Z (14 g4(xy)? (3.89)
: q:l

where g, € C. By the Jordan-Chevalley decomposition [ [30], page 17 |, every matrix
A € My(C) can be uniquely decomposed into the sum of a diagonalizable and a nilpotent
matrix

A=V+0Q

The matrices V,Q € M;(C) satisfy the following properties:
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1) V is diagonalizable and Q nilpotent, i.e.

uy 0 -+ 0
ryr=p=| 0 " 0 0l =
0 .0
0 0 - uy
where uj, j=1,2,...,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. VQ =V Q,
3) V and Q are polynomials in A, i.e. 3 p(x) st V= p(A) and Q =A — p(A).
We will use this Jordan-Chevalley decomposition to rewrite exp(A?) as
exp(A?) = H (I+g4 A%)
q=

= exp[(V +Q)(V + Q)] = exp[V>+20V + Q%] = exp(V?) exp(20V ) exp(Q?)

ﬁ (I+g,V*)

d
H I+g,(20V )1
g=1

d
H (I+840%) ] (3.90)

To determine the domain of convergence for exp(A?) = = (1 + g,A%), it suffices to

1
determine a domain of convergence for [];_, (I+ ngZq). Since sup (#) " =1, Theorem

3.6.1 implies an estimate for the domain of convergence of [, I+ ngZq) is
D= {(x.y) € C*:4p(V)| K| +2[p(V)|K|]> < 1}.

We may use this information to obtain an upper bound on the spectrum of V. Since
2[p(V)||K]|]* < 1, we deduce that
1

V2IIKII

p(V) <

A similar calculation shows that

1
V2[K||

Now let B,C € My(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its MPPE?2 expansion

= (BC)?P
F(Bx,Cy) = exp(BCxy) =1+ Y ( p') (xy)? LTRH I+ g4(BCxy)?).
p=1 ' q=1

p(A) <
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To determine the domain of convergence for exp(BC) = [17_, (I + g,(BC)?), we use The-

1

orem 3.6.2, along with sup (#) " =1, to obtain the following estimate.

D= {(x,y) € C*:2[p(B) +p(C)]|I1]| +2|lZllp(B)p(C) < 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2|||p(B)p(C) < 1, we deduce that

1

p(B), p(C) < 20

Example 3.7.4. Let A,B,C, € M;(C), where B and C are diagonalizable with BC = CB #
O. The techniques of Example 3.7.3 may also be applied to other matrix function such as

I+log(I—A?), A %log(I—A?), cosA?, I+sinA%, A%sinA?,
coshA?, I+sinhA?, A %tanA?, arccosA?, [+ arcsinA?,
I+1log(I—BC), BClog(I—BC), cosBC, I[+sinBC, BCsinBC,
coshBC, [+sinhBC, BCtanBC, arccosBC, [+ arcsinBC.

We will demonstrate these techniques for cosA%, cosBC, A=2sinA?, and [BC]~'sinBC,

leaving the rest to the reader. Let g, and g, be the scalar coefficients in the PPE2 expan-
sions of the even scalar functions

—1)Px?Py?P o

p=1 (2p)! g=1
o (= 1)PaPy?P = 2¢.2
smxy—xy[l—i— | =xy | | (1 + gx"y")
p; (2p+1)! ql;ll
First,
2 pA4p = 4
cosA® =1+ Z = [T +g,A%) (3.91)
p=1 g=1

oL

Since s := sup > ’% P = % Theorem 3.6.1 implies an estimate for domain of conver-

gence of T1 (I +g,A%) is
g=1

D= {(x3) € 2p K|+ S PWIKIP <1}
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We may use this information to obtain an upper bound on the spectrum of A. Since
SP(A)|IK|]? < 1, we deduce that

V2
P(A) < —.
[IK]
For
> (—1)PB¥>C?» 2=
cosBC=1+Y ()7‘ =[]+ g,B*C*). (3.92)

Theorem 3.6.2 implies an estimate for the domain of convergence of T] (1+ gqx2qy2‘1 ) is
q=1

D ={(x.y) €C*: [p(B)+p(O)] ]| + %HIHP(B)P(C) <1}

We may use this information to obtain an upper bound on the spectrum of B and C. Since
11lp(B)p(C) < 1, we deduce that

2
P(B),P(C)<m-
Next
inAz = A2%|1 =A2TT+g,A%). 3.93
sind? =2 14 ; e 10 +2e%) (3.93)

1
—1)P |»

2p+1)!

Since s := sup,,> = %, Theorem 3.6.1 implies an estimate for domain of con-

vergence of TI (I +8,A%) is
qg=1

D= { (1) €€ SpWIKI+ g IKIF <1}

We may use this information to obtain an upper bound on the spectrum of A. Since
E[P(A)|IK|]* < 1, we deduce that

3v2

p(A) < 1K

Finally it can be shown that an estimate for the domain of convergence of

PR2PC2P oo
-1 =BC[](1+8,B*"C), (3.94)

s1nBC BC I+ Z T—Fl)
. g=1
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D= {(x.3) € C: 5 [p(B)+p(C)] 1] + o Il (BIP(C) < 1},

and that
18

P(B)7P(C)<m-

Example 3.7.5. Consider the scalar bivariate exponential function together with its PPE2
expansion

oo

F(x,y) =exp(x+y) =1+ Z = [T (1+gmax™"), (3.95)
gq=1
m+n p m+n=q

where g, € C. By the Jordan-Chevalley decomposition, every matrix A € My(C) can be
uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A=V+Q0
The matrices V,Q € M;(C) satisfy the following properties:

1) V is diagonalizable and Q nilpotent, i.e.

uy 0 -+ 0
rvr=p=| 0 " 0 ,0'=0,
0 .0
0 0 - uy
where uj, j=1,2,...,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. VQ =VQ,
3) V and Q are polynomials in A, i.e. 3 p(x) st V= p(A) and Q =A — p(A).
We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as
exp(24 H I+ g A" ")
=1

m n=q

=exp(2V +20) = exp(2V)exp(20)

d
[ T+8maV" ™) | TT U+2mn Q’"”’)] : (3.96)
1

g=1
m n m-+n=q
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oo

To determine the domain of convergence for exp(2A) = [ (14 gmaA™™), it suffices to

g=1
m-+n=q
o 1
determine a domain of convergence for ] (I+ gm,V™™"). Since sup [m,ln,] min —
g=1 mtn>1 "
m+n=q
Theorem 3.6.1 implies an estimate for the domain of convergence of I (I+ gmaV"™™)
g=1
m+n=q

is

D= {(x.y) € C*:4p(V) K| +2[p(V)|K[]> < 1}.
We may use this information to obtain an upper bound on the spectrum of V. Since
2[p(V)||K||]*> < 1, we deduce that

1

p(V)<m.

A similar calculation shows that
1

p(A)<m.

Now let B,C € M;(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its MPPE?2 expansion

=LTR H (T4 gmaB"C"xX™y").
=1
mfli-n:q
To determine the domain of convergence for exp(B+C) = [] (I+gma.B"C"), we use

q=1
m-+n=q
1
Theorem 3.6.2, along with sup [ﬁ] mtn =1, to obtain the following estimate:

m+n>1
D= {(x,y) € C*:2[p(B) +p(C)]|I1]| +2|lZllp(B)p(C) < 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2|Il|p(B)p(C) < 1, we deduce that

p<B>,p<c><2|1,H.
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Example 3.7.6. Let A,B,C,€ M;(C), where B and C are diagonalizable with BC = CB #
O. The techniques of Example 3.7.5 may also be applied to other matrix function such as

I+log(I—2A), (24)7'log(I—2A), cos2A, I+sin2A, 2Asin2A,
cosh2A, [I+sinh2A, (24) 'tan2A, arccos2A, [+ arcsin2A,
I+log(I—[B+C]), [B+Cllog(I—[B+C]), cosB+C, I+sin(B+C),
[B+C]sin(B+C), cosh(B+C), I+sinh[B+C], [B+C]tan(B+C),
arccos (B+C), I+ arcsin(B+C).

We will demonstrate these techniques for cos2A, cos(B+C), (24)~!sin24, and [B +
C]~!sin (B +C), leaving the rest to the reader. Let gy , and §,,., be the scalar coefficients
in the PPE2 expansions of the even scalar functions

cos(x+y)=1+ ]; o X"y = qI;Il(lﬂLgm,nxmy"),
m+n=2p m+n=2q

B

oo (_1)n 2n (27’[) o
I+) |y
n; (2n—|—1)!j§6 Jj
> (=)™ [m+n
= 1 N 7 m,.n
@+yﬂ + L mrar i\ m X"y
m+n=2p

sin(x+y) = (x+y)

= (x+y)

oo

=(x+y) H(l + 8 ax"y").
=1
m-‘f—ln:Zq

First,

Cos2A =1+ Z ( m')n' AT — H(l—|—gm7nA’"+”). (3.97)
p=1 e q=1

m+n=2p m+n=2q

To determine a domain of convergence for the MPPE?2 of Equation (3.97), we apply The-
orem 3.6.1. This means we must determine the supremum of the sequence

Amp = {[1 Jmin! |V where m+n is a positive even number}.

1 1/(m+n) 1 1/(m+n) 1 1/2
o =\7) =1
<mhﬂ) <1zu> <1> ’
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and this sequence attains the value of 1 when p =1 and m = 1 = n, we conclude that
‘ m+n

m+n

(1"

§:= sup T = 1. Therefore, Theorem 3.6.1 implies an estimate for domain of
m-fnz:]2p
convergence of ﬁ (I+ gmpA™™) is
mEIT:IZq

D= {(x,y) € C*: 4p(A)[|K]|+2[p(A)|[K[]* < 1}.

We may use this information to obtain an upper bound on the spectrum of A. Since
2[p(A)||K||]? < 1, we deduce that

1

p(A) < .
V2|IK]|
For
cos(B+C) =1+ i ﬂB’"C”— ﬁ (I+ gmaB™"C") (3.98)
N = m!n! o Bm.n ’ ’
mJj:n_:Zp mJZn:2q

Theorem 3.6.2 implies an estimate for the domain of convergence of [] (I+gmaB"C")
g=1

m+n=2q
is

D= {(x.y) € C*: 2[p(B) +p(O)] 1]+ 2|1 p (B)p(C) < 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2p(B)p(O) ||| < 1, we deduce that

p(B) . p(C) < 5777

Next

_ > (=) (m+n> = .
sin2A = 24 [1+ —_— A" =2ATT (T4 gmaA™™).  (3.99)
172::1 (m+n+1!I\ m }31 e

m—+n=2p m+n=2q

To determine a domain of convergence for the MPPE? of Equation (3.99), we apply The-
orem 3.6.1. This means we must determine the supremum of the sequence

m-+n (mtn)
Amp = { [( )/(m +n+1) !] , where m-+n is a positive even number}.
m
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Since

1

1
(ml;:n) (m+n) 1 ﬁ < 1 (m+n)
(m+n+1)! ~ \(m+n+1)mn! “\m+n+l

1 3 1\ 2
<|l—) <(=),
< (wmer1) =(3)

1
and the sequence obtains the value of (%) >when p=1andm=n=1, we deduce that s :=

m+n 1

g (7 l) m+n mn
UP | Tnnrit (")
p=1

Hence Theorem 3.6.1 implies an estimate for domain of

m+n=2p
convergence of T[] (I+8n,A™™) is
q=1
m+n=2q

D= {(x3) € pWIKI+3PWIKIP <1}.

We may use this information to obtain an upper bound on the spectrum of A. Since
2[P(A)|IK|]* < 1, we deduce that

V3
P < i

Finally it can be shown that an estimate for the domain of convergence of

. > (=) [m+n
B+C)=[B+C||I B SE——— B"C"
sin(B+C) =[B+C] |1+ p;l mtnt DI\ m
m+n=2p

oo

=[B+CI[ [+ gmaB"C"), (3.100)
m—grf:qu
D = {(03) € €< —[p(®)+p(O)] 1]+ 5 WP (B)P(C) < 1}

and that

p(B). p(C) < 2||31||
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Chapter 4

Factorization of Bivariate Matrix
Power Series via Power Inverse
Product Expansion

4.1 Introduction

Given F(x,y) =1+ Y Aux™y" with matrix coefficients, where either the defining

p=1
m-+n=p

expression for F(x,y) is treated as a formal power series expansion or F (x,y) is an analytic
function with F(0,0) = I, the right side of

oo

F(x,y)= []U—Huax"y") ", (4.1)

g=1
m-+n=q

is defined to be inverse matrix power product expansion in two independent variables,
(denoted IMPPE2).

Next, we define what we mean by the inverse matrix power product expansion of F (x,y) =
I+ Y A,,x"y". First we must interpret the inverse of an elementary factor as
=1
min:p

(I—i—G,Mxmy”)*1 =1+ Z (=1)%Gp x*"y ™",

o=1

where the right hand side is a formal geometric series.
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Definition 4.1.1. Given F(x,y) =1+ Y A, x"y", a formal power series with matrix
m+;ip

coefficients or an analytic function of two independent complex variables with F(0,0) =1,

we say F(x,y) has a left to right (canonically ordered) inverse matrix power product

expansion in two independent variables if

F(x,y)=LTR ﬁ (I — Hpppx™y™) ™! 4.2)

g=1
m+n=q

= (I=Hiox'y?) ™' (1 = Hoxy") ™ (1 = Hpox®y") M (T = Hiux'y') 7'

where the ordering of the right side follows the conventions of Definition 1.2.1. We say
F(x,y) has a right to left (reversed canonically ordered) inverse matrix power product
expansion in two independent variables if

F(x,y) =RTL ﬁ (I — Hypp™y") ™! (4.3)

g=1
m-+n=q

=...(I = Hyy 1o, y2) V(T = Hygx®y0) ™ (1 — Ho 1 2%y =1 (1 — Hy ox'y0) 7!,

where the ordering of the right side follows the conventions of Definition 1.2.1 when read
from right to left. We refer to the right hand side of either Equation (4.2) or (4.3) as an
IMPPE?2.

The purpose of this chapter is to obtain both algebraic and analytic theorems for the

IMPPE2 expansion of F(x,y) =1+ Y A, ,x"y". The three main results are as follows:
=1
m{)i-n:p
1. An algebraic structure property for (H,y,) in terms of recursive “mixed expan-
sions”’; see Theorem 4.3.2.

2. A domain of convergence criteria for the IMPPE2 in terms of a “majorizing” infi-
nite product; see Theorem 4.4.1.

3. A domain of convergence criteria for the IMPPE2’s by norm criteria; see Theorem
44.3.

The outline of this chapter is as follows. In Section 2 we study the expansion of a
power series into a MPPE2 and provide an algebraic representation for the coefficients

G » as a multivariate polynomials in (Am,n>°;l7n:0 . In Section 3 we provide another way
m—+n=1
to recursively express the coefficients H,, , as a multivariate polynomial of the variables
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Ann. The algebraic result of Section 3 reveals an intriguing property of these expansions.
If A, <0, then the coefficients G, , in the IMPPE2 are non-positive. Section 4 exploits
the non-positivity result of Section 4 to determine convergence conditions of the IMPPE2
in terms of a majorizing power product by focusing on spectral criteria. Moreover, at
the end of Section 4, we employ norm criteria to analyze the convergence of IMPPE2.
Section 5 is devoted to the study of the matrix IMPPE2 induced by scalar functions.
Finally, in Section 7 six examples are presented to illustrate the applicability of the section
5 theorems.

4.2 Algebraic Formulas for the Coefficients of In-
verse Matrix Power Product Expansion

In this section and the next we study the expansion of a two variable power series into an
IMPPE2 and provide two algebraic representations for the coefficients H,, , as polynomi-
als of the (A, ,)mn. The first formula is almost an immediate consequence of Equation
(4.2). Let

Fx,y)=1+ Y ApaX"y"=LTR [] (I—Huux"y")"". (4.4)
mg-iip m?ijilzq

By expanding the IMPPE2 of Equation (4.4) into a formal power series coefficient com-
parison shows that

Amp = Z H; j Hi, j, .- Hi, j,, (4.5)
i1 i+ tip=m
Jitjpt et jr=n
(L0)=(i1,j1) 2 (i2,72) =+ =2 (ir, jir) X (m,n)
or equivalently that

Hypp = Amn — ( Z Hi jHy .. Hi, ]> (4.6)

111+i.2+-~~+ir.:ln
Jitjttj=n
(1,0)2(i1,j1) 2 (i2,j2) 2+ X iy, Jir) = (m,m)

where the summation runs over all partitions of (m,n) into unrestricted parts.

4.3 Structure Property of the Coefficients of an In-
verse Power Product Expansion

Just as we did in Section 2, we can recursively express the coefficients H,,, as a mul-
tivariate polynomial of the variables A,, ,. The ultimate result of this methodology is
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the structure property, Theorem 4.3.2, a crucial result for using proving convergence
domains of power product expansions via majorizing IMPPE2. We begin with setting
Amn = B(1,0),(m,n) and rewriting Equation (4.4) as

F(x,y)=I+ Y Buo)mnX"y"

p=1
m-+n=p
— (I—Hj ox)~"! [LTR 1 - Hm,nx’"y")*l]
mi]i-;:q
(m.n)=(0,1)
= (I—Hl’ox)_1 [I+ ; B(O,l),(m,n)xmyn]a
mﬁgzp
(m,n)=(0,1)

where the summation conventions follow Definition 1.2.1.

By continuing this procedure inductively we find that

(e} . . 71 (]
I+ Z B(ikajk%(mm)xmyn = (I - Hikvjkxlkyjk) |:1+ Z B(ik+|7jk+1)7(m7")xmyn:|

p=L p=L{
m+n=p m—+n=p
(mn) = (i, jx ) (mn)= (i1, Jk+1)
I+ Z i (%) } [1 + X Bl o) ma X" y"} “.7)
=/
m—lr—n:p

(m,n) = (ks 15Jk+1)

where By;, i) 0,0) = I for all (i, j) € No x No, and By;, ) (mn) = O if (ix, ji) = (m,n) #
(0,0). By comparing the coefficient of xy" in both sides of Equation (4.7), we discover
that

By je),1,0) = = Bl i) (i) = O (4.8)
4]
Utk o
Byt jis) (mm) =B i) (mm) — Zl Hik»jkB(ikJrl7jk+l>»(m_aikv”_ajk)' 4.9)
o=

If (m,n) = (i, ji), since By O, the above implies that

Gt i) (i di) =

Hi ji = Blig.jo) i) (4.10)
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Equation (4.10) shows the relationship between H;, ;, and B(;, ;) i j,)- We use this
relationship to rewrite Equation (4.7) as
I+ Z B(ik+17jk+1)~,(m7”)x = (I —H,, kall‘yll‘ [1+ Z By jo), mn)x Y
=/ 4
min:p mﬁn =D,
(mn) = (k4 1,Jk+1) (m,n)= (i, jk)
= I_B(ika) (ikJk) xlkylk] [ Z (i), yn} : 4.11)
mimep,
(m,n)= (lwk)

By equating the coefficient of x*y" on both sides of Equation (4.11), we find

B( B(ikyjk)v(&f) - B(ikvjk)7(ikvjk)B(ikaJ'k)‘,(S*ik’t*jk)’ (4.12)

i tsdir)s(s:8) =

an equation we use to prove the MIPPE2 analog of Theorem 3.4.1.

Theorem 4.3.1. Let (iy, jx) € No x No\ {(0,0)}. Define B(ikvfk) (0,0) = I and B(lk i) (m.n)
=Ofor (1,0) = (m,n) < (ix—1, jx—1)- Assume that B, ) (mn) < O for all (ix, jx) = (m,n).

Then B, . ) (s0) < O whenever (ixy 1, jir1) = (s,1).

Proof. Rewrite Equation (4.12) as By;,,, j..,),s;) = B + 7. where B := By, ;) (s,) and
Y= =Bi.j). (i) Bli.ji) (s—in.i—ji)- BY the hypothes1s since B, ;) (s, 18 either a zero or
a negative matrix, 3 is a non-positive matrix. It remains to show that 7 is also a non-
positive matrix. By the hypothesis, it is a product of two non-positive matrices. Thus,

—B B( is either a zero or a negative matrix. O

it J1) s (i k) 2 (i i) s (S =ikt — i)

Theorem 4.3.2. (Structure Property) Let (ix, jk) € No x No\ {(0,0)}. Then
-1
Blico g o0 = D=1 B o)
n

= Z(_1)T((P(n))HB(ikvjk),(l’(ﬂ)’ (4.13)
n

where the sum is over all 9(n) = ((i1, j1), (i2, j2)) such that |¢(n)| = (s,1) and (i1, j1) =

(i, Ji)- (Recall that B, ) o(n) = Bic,jo) (i jn) Bl o). io, o) -+ Blis i) o)) I
t

B, jo).(s.r) < O for all (lk,]k) = (s,t), then Equation (4.13) is equivalent to

B(lk+l Jkt1)s Z |B (i) (in,d1) |B(ik;jk)a(ir7jr) , (4.14)

where the range of summation is identical to the range of summation used in Equation
(4.13).
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Proof. Rewrite Equation (4.12) as

o po
Bl e o) = 2o (DB ) 00y Blicin) (- aip.i—atji): (4.15)
oec{0,1}
Qi+m=s
o ji+n=t

o

We obtain the desired result by representing B(lk e jk)B(ik, i) (mn)

Biijo.om- O

Let us see what will happen when we iterate Equation (4.14). In order to efficiently
record the results, recall that ¢ = ((i1, j1), (i2,j2), .., (in, ju)) denotes a vector with n
components, (where n € N, and iy, 12, ..., i, j1, j2, -, Jn € No), and Ay ) denotes the ex-
pression A;, jAj, j,---Ai, j,- After L iterations, and assuming B < O, whenever
(ix, jx) =< (s,1), we obtain

B(ik+l7jk+l)v(57t) = Z(_I)T((P(n))_lAq)(n) = _Z |Ai17j1 | |Ai2.,j2| T ‘Air:jr|7 (4.16)
n n

in Equation (4.15) as

ikvjk)v(svt)

where the sum is over all ¢(1) = ((i1, j1), (i2, j2), -, (iz, jz)) such that |¢(1)] = (s,1).
If (s,¢) = (ix+1, jk+1), Equation (4.16) becomes

=Hi,, j, = Z(_l)r((p(n))_]A(l’(n)
n

= _Z ‘Ailsjl HAinz‘ e |Air~,j‘r‘7 (4.17)
n

By

it 1ok 1) (e 15kt 1)

where the sumis overall ¢ (n) = ((i1, j1), (i2, j2),- - -, (iz, jz)) such that [¢(0)| = (iks1, jis1)-

We now furnish an example to illustrate the structure property

Example 4.3.1.
Hy 0 = B(2,0),2,0) By using Equation (4.10)
=Bon.co ~BonenBon.e- By using Equation (4.15)
—
=0

= B(1,0),2,0) — B(1,0),(1,0)B(1,0),(1,0)
(—1)%A20+ (—1)'A7.

The explicit coefficients H,, , with 1 < m+n < 4, as polynomials of Aj,...,A,, ,, are

given below.

Hio=(—1)%,
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Hyo=(—1)°A20+ (—1)'AT
Hip=(—1)°A1 1+ (—=1)'A1 040,
Hoz =(—1)°Ag2+ (—1)'A,
Hyo=(—1)430+(—1)'A1 0420
Hy =(—1)°A01 4+ (=1)'Ag 1420+ (— 1)1A10A11+( 1)°A7 0Ao.1
(=1 :
(=1)
—1)’

2401410420+ (—1)'A1 0A2 1+
1)!A20A11 + (—1)%A20A1 0401

2420451 + (—1)%A1141 0401+
1)*A0,1A1 0A11+

-1)

(— ) oA01+
Hy», =(—1 0A2’2—|—( 1)2A20A02+(

—1)?

-1)

(—

1)

(—
—1)%A;1 141 0401 + (— )3A1,0A071A1,0A0,1
D%A13+(=1)'A10Aos + (—1)' A0 1421 + (—1)°A7 A1

+ (—1)3A(2) 1A1 0401+ (—1)A0.141 0402 + (—1)' A1 1Ag 2+

(—1)%A1,040,140,2

Hoa =(=1)Aoa+ (=1)°A5 ;1 + (=1)'A5 2+ (—1)*A0245 1 + (—1)*AF 1 A0+

(—1)'A0,1403.

4.4 Convergence criteria for IMPPE2’s

The primary objective of this section is to present results concerning the convergence
domain of the IMPPE?2 in Equation (4.2). The convergence of an IMPPE2 is a subtle con-
cept. In this chapter we define two notions of convergence. Both notions of convergence
require converting the IMPPE2 into an MPPE2. The difference between these notions
involves how this conversion takes place. For what we call “inverse” convergence, we use
the domain of convergence of the inverse function which is an MPPE2. For what we call
“primary” type of convergence, we first expand each elementary factor of the IMPPE2
via a geometric series expansion and then look at the ensuing MPPE2. In the case of
one variable, the second author showed that both types of convergence provide the same
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estimate regarding a domain of absolute convergence; see Theorem 5.1 of [17]. However,
for the case of two variables, as we shall soon discover, the estimate for the domain of
absolute convergence provided by the notion of “inverse” convergence is larger than the
estimate provided by the “primary” type of convergence; see Theorem 4.4.1. We begin
with the definition of inverse convergence of an IMPPE2.

oo

Definition 4.4.1. Given an IMPPE2 LTR] (I — Hmmx’"y”)*l, we say the IMPPE?2 con-

g=1
m+n=q
vergence in the inverse sense if and only if F (x,y) ™! = RTLI](I — Hyy nX™y") converges,
q=1
m-+n=q

P
which means limp_,o RTL T](I — Hy nX™y") converges to a nonzero matrix. The order
q=1

m+n=q
P
of the elementary factors within RTL [[(I — Hy, ,x™y") follows the conventions of Defi-
g=1
m-+n=q

nition 1.2.1.

Definition 4.4.2. Given a suitable norm, an IMPPE2 LTRT] (I — Hy, ,x"y") ™! converges

g=1
m-+n=q

absolutely in the inverse sense if and only if [[(1+||Hpn
q=1

m+;:q
real number, that is if and only if limy, e [ 11—}
nonzero real number.

| |X"™y"|) converges to a nonzero

m

" (1 + |[Hijl|[x'y/]) converges to a

Since ¢* < x+ 1, the proof of Proposition 4.4.1 is directly transferrable and proves the
following proposition:

Proposition 4.4.1. Given a suitable matrix norm, an IMPPE2 LTRT](I — H, ,x"y") "' is
g=1
m+n=q

oo

absolutely convergent in the inverse sense if and only if Y. ||Hp »|||X™y"| is an absolutely
1

q:
m-+n=q

convergent series of real numbers.

Next we will define the notion of primary convergence.

Definition 4.4.3. We say the IMPPE2 LTRT] (I — Hy, ,x"y") " converges (in the primary
=1

m-+n=q
sense) if the following two conditions hold:
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(1.) Each matrix function (I — Hy ,x"™y")~1, where (m,n) € Ny x Ny \ {(0,0)}, is in-
vertible, and

(2.)
LTRH (I = Hyux™y") ™' =L H<I+ Z X" "‘">

q=1
m+n q m+n=q

converges in some suitable norm.

Condition (2 ) of Definition 4.4.3 is equivalent to saying that
limp_,oo LTR H <I + Z x‘x’"y‘x"> converges to a nonzero matrix.

oa=1
m+n =q

Definition 4.4.4. Given a suitable matrix norm, we say the IMPPE2 LTR H (I—HpypyxX"y")~ 1

q=
m+n q

converges absolutely (in the primary sense) if the following two conditions hold:

(1.) Each matrix function (I — Hy,,x™y") ™Y, where (m,n) € Ny x Ng \ {(0,0)}, is in-
vertible, and

(2) ﬁ<l+ E"H(Z xamyan
g=1 a=1

m+n=q

> converges to a nonzero real number.

Proposition 4.4.1, along with the monotonicity of the norm, shows that Condition (2.)
of Definition 4.4.4 is equivalent to

2°) L X ||Hual|® |x*™y%"| being convergent.
=1 a=l1
min:qa
If the coefficients (H,y,,) of the IMPPE2 are commutative, (primary) convergence can
be described in terms of the power series expansion of log(/ — Hy, ,x™y"). For any two
commutative matrices A, B € My(C), it can be shown that e4+8 = 4¢P [[14], Proposition
2.5, P. 35]. Thus, if the coefficients (H,,,) of the IMPPE2 are commutative, we define

log | LTR Ioi(I—H,W,x’"y")*1 = i log(I — HynX™y"), (4.18)
g=1 g=1
m-+n=q m+n=q
where
log(I — Hy n¥"y") := i ’“”x'"f . (4.19)
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Equation (4.18) shows that

exp (— Z log(I—Hm,nxmy”)) ‘= exp llog <LTR H(IHmJ,xmy”)_l)]
mhmeg wlnty
=LTR[[(I—Hpuax"y") ", (4.20)
mijl:q

and implies that for a sequence of commutative coefficients (Hy, ),

LTR H (I — Hy yX™y") ! converges to a nonzero matrix if and only if the double series
qi
m-+n=q

oo

Z log(I—Hmﬂxmy Z mn ml/ nZ
=1
:‘1

g=1
m-+n=q m

is convergent.
By adapting the Taylor series argument found on Page 165 of [5] we have

1/2[|Al] < [[log(I+A)[[| < 3/2[|All, [l < 1/2. (4.21)

(In our case A = —H,, ,x"'y".)

Equation (4.21) implies that Y. log(/ — Hp, ,x™y") is absolutely convergent if and
m?kjl:q
only if ) H,,,x"y" is absolutely convergent. We summarize the previous discussion in

g=1
m+n=q

the follow proposition.

Proposition 4.4.2. Let (H,,,) be a sequence of commutative matrices associated with the

matrix function F (x,y) = LTRH(I Hyy nX"y") ™. Define
q_

m+n=q
logF(x,y) := Z log(I — Hy nx™y") Z Z mn Kt
1 =1 (=
min:q m n=q
The IMPEE2 of F(x,y), LTRII(I — Hy,X™y") "1, converges to a nonzero value if and
=1
min:q
onlylogF(x,y)= Y. log(I—Hyx"y") converges. The IMPEE2 of F (x,y), LTR H(I —
=1 =
mfls-n:q m(-I‘rn q
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Hyy o X™y") 1, is absolutely convergent if and only if Y, log(I — Hy, ,x™y") is absolutely
q=1
m-+n=q

3 ; had s Hlﬁl n
convergent, namely if and only if Y, ‘ ‘ Yo, 2 xmzyné
q=1 i

<o
m+n=q

The following remark emphasizes the connection inverse convergence, primary con-
vergence, and the domain of convergence determined by the logarithm of a two variable
matrix function.

Remark 4.4.1. Let
Dy ={(x,y) €C*: |x| < p1 and |y| < p1}
D, = {(x,y) € C*: x| < p2 and |y| < p2}

be the domains of convergence of the matrices functions M(x,y) and M(x,y)~", respec-
tively. Then D the domain of convergence of logM (x,y), satisfies

D= {(x,y) € C*: x| <p and |y| < p},
where p = min{py,p2}.

The first major result of this section provides a lower bound for the domain of conver-
gence an IMPPE2 in terms a majorizing log series.

Theorem 4.4.1. (1.) Given a power series of a matrix function F(x,y)

F(x,y) =1+ Y ApaX"y' =LTR]](I—Hpnx"y")™". (4.22)
—1 =1
min:p min:q

where Ay, Hpn € My(C), define the following auxiliary matrices functions with
coefficients over My(R):

Clx,y)=I— Y |AwalX"y" =LTR]](I+ Spux"y")™" (4.23)
mgjip mZ;lzq

M(x,y) =T— Y Myux"y" = LTR[J(I+ Ruux"y")~". (4.24)
mﬁjip mzjlzq

If|Amn| < My for all (m,n) € Ng x Ny \ {(0,0)}, then

O <|Hun| <Smn <Rm, forall (m,n)eNyxNp\{(0,0)}. (4.25)
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(2.) Define W € M;(C) as
W = (wyy), where w,,=1, uyv=1,....4d.
Furthermore, given A, , € My(C) where A, ,, = (awvw(m,n)) fory,o=1,....d,
define
1

a(m7n) ‘= max ’al[/,ﬂ)(m7n)’; and S .= Sup [a(m7n)] m-+n i
V.0 m+n>1

Consider a special case for M(x,y), namely

M(x,y) =I— i S"HWXTY =1 —-W [ y (sx)™ i (sy)"— 1]

p=1 =0 n=0
m+n=p
—I— | wo o [ s ],
(l—sx 1 —sy) (1—sx)(1—sy)
I—s(WHD)(x+y)+5*(W+1)xy
- (T—sx)(1—s)
=LTR[J(I+Rpux"y")"", (4.26)
mf]kilzq

where My, = s"T"W. Since (s"7"W) is a sequence of commutative matrices,
(Rm.n) is also a sequence of commutative matrices, and Equation (4.18) is applica-
ble. Thus, by using the Taylor series of expansion 10g(I + Ry, ,x"'y"), we define

log (M(x,y)) =log | LTR H (I+Rppx"y") ™!

g=1
m+n=q
= — Z log(I4 Ry nxX"y") = Z Z mgn

-1 g=1 (=1
m+n=q mn=q

3 —1)YRmn )"
Z Pm7nxmyn, where Pm7n = Z ( ) ( 7 v/)

n I ¢

m+n=p d=ged(mn)
4.27)
Let || -|| be a suitable norm and p(||-||) be the radius of convergence of
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(3.)

Y. PunxX"y" as defined via Equation (4.27). Then
=1

m+;: P

Run=Enn<—Pun, if m=20+1 or n=20+1 for (€N,
where E,, , is given in Theorem 3.5.1. (4.28)

The IMPPE2 LTR H (I — Hynx™y") =1 converges absolutely for p(||-||) in the

q_
m+n=q

sense of inverse convergence (see Definition 4.4.2) over the domain
D, = {(x,y) €C?: (d+ D)s(|x|+]y]) + (d+1)s*|x]y| < 1} (4.29)

Furthermore, the matrices F(x,y),C(x,y),M(x,y) are invertible in Dy, and their
inverses

F(x,y) ' =RTL ]’I (I = HupX™y"), C(x,y) " = RTLT ] (I + Smax™y")
=1
m+n q mfli-n:q
M(x,y) "' =RTLT](I+ Rynx™y"), (4.30)
mijl:q

are absolutely convergent in D).

Define M(x,y), a majorant of M(x,y), as follows:

oo
A

M(x Z sx+sy)?= T[] I+Ruax"y")". (4.31)
: mi]jlzq

The IMPPE2’s LTRH (I — Hypp™y") ! LTRI] (I 4 Spax™y™) 1,
m?&;t q m-&-n1 q
LTRH (I + Ry, ,,xmy”)_1 possess absolutely convergent infinite product represen-
mi; q
tations (in the sense of Definition 4.4.4) in the polydiscs

D, = {(x,y)2 eC: x| < and |y| <

1 1
2s5(d+1) 2s(d+1)}'
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Proof.(1.) Equation (4.17) implies that

Hyp = Z <_1)T(¢>(n))+1A¢(n): Z (—1)7(“’(”))“1‘\1‘.,]‘.---Air,j,,
n
[9(1)|=(m.n) (1) |=(m.n)

which in turn implies that

‘Hmm

=Y UG AL < Y Al AL @3)
n n
[¢(n)|=(m.n) ¢ (1) |=(m,n)

Similarly, when we apply Equation (4.17) to Equation (4.23), we obtain

0 S Sm,n = Z (_1)7(‘1’(”)) ( - ’Al‘lm/.l |) U (_ |Ai1-,j¢|)

\‘P(ﬂ)\n:(ms")

= Y 0T D) (A

\‘P(ﬂ)\n:(ms")

= Y (Anil) (Al (4.33)
\‘P(U)\TI:(’"W)

Combining Equations (4.32) and (4.33), we deduce that |H,,,| < Sy, ,. Also, due to the
inequality |A,, »| < My, then we have

O<Sun= Y, Al |Ail
|¢(n)|1(mn)
< Y My ..M =Rup,
|¢(11)|n:(man)

where the last equality follows from Equation (4.17). Hence, O < [Hy,| < Spn < Run
and (4.25) is proven.

(2.) By the definition of B, , provided via (4.27), we see that

~1)‘R (1) (Ru »)"
Pun = Z ()ﬁml:_Rm’"—{_ Z g/z ’
td 0|d, (#1
d=gcd(m,n) d=gcd(m,n)

and since Part (1.) implies that R, , > O, the preceding equation implies that
O<Ryu,<—P,, ifmornisanoddinteger.

Moreover, by Theorem 2.2.1, we know that the coefficients E,, , = R, if m or n is an
odd integer, which completes the proof of (4.28).
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To obtain the domain of inverse convergence as provided by (4.29), we first calculate the
characteristic polynomial of the matrix W as

det(x] —W) = (x—d)x?!

Then a straightforward computation in Equation (4.26) shows that eigenvalues of M (x,y)
1—s(d+1)(x+y)+s*(d+1)xy

are 1 and T . As a result, the eigenvalues of M(x,y)~! are 1 and
)
(L=sx)(1=y) Note that (L=sx)(1=) = 0 or o if and only if sx = 1

1—s(d+1) (x+y)+s2(d+1)xy" 1—s(d+1)(x+y)+s2(d+1)xy
or sy=1, or 1 —s(d+1)(x+y)+s*(d+ 1)xy = 0. Thus the nearest singularities of
M (x, ) "to (x,y) = (0,0) are the the points (x,y) satisfy the equation 1 —s(d + 1)(x +

y) +5%(d + 1)xy = 0, and the conclusion of (4.29) follows. What this argument shows is

that M (x,y) ! RTLH(I + Ry, ,xMy") is absolutely convergent (in the inverse sense) in

q_
m+n=q

;. Since O < |Hp 5| < Spn < Ry n, Proposition 4.4.1 implies that F(x,y)~'and C(x,y)~!
are also well defined and absolutely convergent over domain ID;. See Figure 4.1.

(3.) In order to investigate the convergence of LTR [](I — Hm,nx"’y”)*1 in the sense of

q=1
m-+n=q

Definition 4.4.4), we define a majorant of M(x,y), namely

oo

M(x,y) = —W 'Y (sx+sy)?

q=1
o g
=I— WZZ<>squsy) Set m=gqg—k and n =k,
q=1k=0
=1-W Z (’"”) S =1 Y WXy, (4.34)
=1
m+n p m-{n:p
where M, ,, = W (") ™t
Since M,,, , < van, by the structure property we have
O < |Hup| < Rn < R (4.35)

>

Next we invert M(x,y) since this inversion will provide an upper bound for Iémﬂn. In
particular, we have

[M(x,y)} 1oy + Z My, ,x"y" = RTL H (I+I§m7nxmy”).
mijip mﬂ)rjip
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Since (Iém ) =0 18 a sequence of positive matrices, both the MPPE2

RTL H (1 +R,, 2X™y") and its associated power series  + Z M, 2x"y" have the same
m{)‘r; p mg-; P
domain of convergence [see Corollary 6.1, [7] ]. Furthermore, coefficient comparison

shows that
O < Ry < My . (4.36)

Combining Equations (4.25), (4.35), and (4.36) together implies that

Z Z mnxy) < Z Z|H, g |mk|y|nk
=1 k=1 p=1 k=1
m n=p m-+n=p
< Y Y Ron) Xy
p=1 k=1
m+n=p
< Y Y (W) ™ (4.37)
p=1 k=1
m—+n=p

Equation (4.37) shows that we need to determine an upper bound for Mmyn. To find the
desired upper bound, recall from (4.34) that

. > W (sx+sy)
M(x,y) =I-W Y (sx+sy)d =1— ——— ")
(x,y) ;( y) T (sr i 5)
—1— Y Myp,x"y', where My, =W <m+”> S, (4.38)
=1 n

p
m+n=p
To make the calculations easier set z = x+y and get

ST

w.
1—sz

M(z)=1—

d|sz|
1—|sz|

M_](z):[l— 52 W]I:H—i[ 57 TWH

We will now assume that |sz| < 1 and < p < 1. Then we find that

1—sz = ll—sz
d
=]+ — Z [1 —stz] Since W"=d""'w
szW 1 szW
=1 =1
+1—sz[1_(dsz)} +1—(d—|—1)sz
1—sz



(d+ 1)Lk, (4.39)

 ngK

=I+szW ) [(d+ Dszgf =1+W

k=0 k=1

In Equation (4.39), we set z = x4y to obtain

M(x,y)] ' =1 Zd—l—lklkx-i-y)
z(dmwz( o
k=1 p
— 14 W Y (d+ 1)1 [ykJr y <k>xpykl7:|
k=1 =1 \P

s

(d+1)k 1 kyk—i-W

l
_|_
Mz

k
(d+ 1)k_1sk Z <£)x”yk_”

bl
Il
—
~
Il
—
T
_

(d+ 1D 4w

Il
~
_|_
=
M
M
yg
QU
_|_
=
-
N————
A
=
=
~
>
1

ki
—_
=~
Il
=

l
+
=
M =

(d + 1)m+n—1s111+n

3
s
N
N——
=
3
<
\.:
7]
¢
<
3
oo
=
(oW
bl
3
_I._
S

=
I
I =

3
+
3

—I4+W Y M2y, (4.40)

where M,,, = (d + 1)+ Lgmtn ("),

n

So, we have
Mm,n — (d—|— 1)m+n—lsm+n <m+n>W S (d+ 1)m+n—1 (2S)m+nW, (441)
n

where for the last inequality we made use of the fact that the sum of all the entries in the
m + n-th row of Pascal’s triangle is equal to 2",

Plugging the desired upper bound of (4.41) into (4.37), we find that

)y ZHmnX’"y
==

Z Z mn ’x’mk’y‘nk
p=1 k=1
n:

2(d + 1)s]k<m+">
(

T W

1

n=p

o) oo [
< )Y X

p=1 k=1
m-+n=p

A

130



= & [2(d+ 1)s]kmn) " | )
< Z Z (d+])k [dk IW] ’x’ k’y‘ k7 since WK = 1w
=1 k=1

<& [2(d+ 1)s]k0ntn) ik
<w ¥ F PO ey

k
(25)™ " (d + 1) " y["

gk
M

—~
U
p—
~—
=
I
=
=~
I
—

3
T
S
=

(25)™ " (d + 1)" " x| [y["
— [2s(d + 1) |x[J"[2s(d + 1) [y[]"’

s

(4.42)

S
Il
I =

3
T
=
=

where in the penultimate line we assumed |(2s)"™ 1" (d + 1)™"x™y"| < 1. This assumption
provides a further refinement on the polydiscs used in the computation of (4.39) where we
assumed that s(d 4+ 1)[x| < p < 1 and s(d + 1)|y| < p < 1. Now we have to shrink these
polydiscs and require that 2s(d 4+ 1)|x| < p; < p < 1 and that 2s(d +1)|y| < p2 <p < 1.
When working over these refined polydiscs, the previous inequity becomes

o e > [2s(@+1)|x]]" [2s(a@+ 1) |y)]"
p; ; (Hnpy")* d+1 p§ 1—p?
m-+n=p m+n=p
SL i 2s(d+1 |x|] [2s(d+1)|y!]n Since p? < p <1
d+1D)(1-p) =
m-+n=p
W o0
< pm+n
@i L
m+n=p

T d+D)(1-
_ [2p—p7]
S (d+1)(1—p)*

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally

2w
(4.43)

131



showed

Y Y HuwY) <Y Y (M) x| |y

s, o, !
__Lp-p’W (4.44)
(d+1)(1—p)*’ '

whenever 2s(d+1)|x| <p < 1and 2s(d+1)[y| <p < 1.
Therefore, an estimate for domain of absolute convergence of LT R ﬁ (1 +Iém,nx’"y") -1
| g
is
D, = {(x,y) eC?: x| < 1 and |y| < L}
2s(d+1) 2s(d+1)
Since O < [Hpp| < Spn <Ry < Iémyn, Definition 4.4.4 implies that ID; is also an estimate
for the domain of absolute convergence of LTRﬁ (I — HyppX™y") ! and of
mz—jlzq
LTRIT (I + Spax™y")"". O
mijl:q
The inequality defining D1 makes it possible to obtain a domain of absolute conver-
gence (in the inverse sense) in terms of polydiscs. Let |x| < p’ and |y| < p’. Then the
inequality defining ID; implies that the IMPPE2 will be absolutely convergent if

s(d+1)(2p) +s2d+1)(p") = (d+1) [(sp' +1)2—1] <1,

or equivalently, if p/ < s~! [ d£2 _ 1} The inequalities for p’ obtained from the defining

d+1
quadratic equation of Dy, namely
fd+2 !
d+1
x——s_]— d+2_1' | far2
- Va+1— 7|0 77 Vd+i

d12 |
-1 -1
< —1 <
s -1 bl<s
then |s(d +1)(x+y) —s*(d + 1)xy| = 1 and the sum of the absolute values of the terms
in the power series of M(x,y)~! as defined in (4.30) diverge.

are sharp in the sense that if

We can summarize what we have shown so far regrading the absolute convergence
of IMPPE2 in both Equations (4.22), (4.26) in term of spectral conditions and obtain the
second major result of this section.
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Theorem 4.4.2. (1.) Let F(x,y) =1+ Y. A, x"y". Let W and s be as defined in Part
=1

m+n=p
(2.) of Theorem 4.4.1. Both F(x,y) and its IMPPE2,

F(x,y) =1+ Y ApnxX"y" =LTR]](I—Hyax™y")", (4.45)
= =1
minip min:q

and the auxiliary function, along with its IMPPE?2,

M(x,y) =]— Z s;n+anmyﬂ =LTR H([—|—Rm7nxmyn)—1 (4.46)
mijip mz—jlzq

will be absolutely convergent in the sense of an inverse convergence whenever
(x,y) € Dy, where

Dy = {(x,y) eC?: (a’+1)s(‘x‘ —i—‘yD +(d+1)s2‘x‘|y‘ < ]},

See Figure 4.1, and in the sense of Definition 4.4.4 in the polydisc

D, = {(x,y) eC?: x| < 7

I
—_ und
@< 4 bl<3

g

(2.) With the same conventions as in Part (1.), both F(x,y) and its IMPPE2, along with
M(x,y) and its IMPPE2, will be absolutely convergent whenever (x,y) € Dyp X

Dy with p' < 5! [ g—ﬁ — 1], where

Dy :={x:x|<p'}, Dy :={y:IyI<p’}.
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vl

1 s (d +1)(|x|+ly)+(d + Dx||y|=1
(d+1)s <

> |x|

(d+1)s

Figure 4.1: A domain of absolute convergence of Equations (4.22) and (4.24).

We should mention that for F (x,y) =1+ Y. A, ,x™y", the results of Theorem 4.4.1(2)

p=1
m+n=p

and Theorem 4.4.2 and can be stated and analogously proven with s replaced by

1
S:= sup |[Apnlm. (4.47)
whinmp
Furthermore, the definition of S in Equation (4.47) provides a connection between the do-
main of convergence for the majorizing IMPPE2 of Theorem 4.4.1(2) and a scalar coun-
terpart for the IMPPE2 of F(x,y) as seen in the following theorem:

Theorem 4.4.3. Given the matrix function F(x,y)

F(x,y) =1+ Y ApaxX"y' =LTR]](I—Hyax"y") ™",
—1 =1
mg—n:p m?&-n:q
with Apn,Gmn € My(C), define the following auxiliary matrices functions with coeffi-
cients over My (R):

Clx,y)=1— Z |Apn|x™y" = LTR H(I—i—SmJ,xmy")*l

p=1 g=1
m-+n=p m—+n=q
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M(x,y) =I— Y Myux"y" = LTR[J(I+Rpuux"y")~".
p=1 q=1

m-+n=p m+n=q
Let || - || be a suitable matrix norm and assume that |A,, »| < My, for all (m,n) € Ny x
No\{(0,0)}. If ¥ ||[Rmall|x™y"| converges absolutely in a domain D, then the scalar
p=1
m+n=p

function T (1 — ||[Hp.n||x"y")~" also converges absolutely within .
g=1
m-+n=q

Proof. Since |A,,,| <M, , for all (m,n) € Ny x Ny\ {(0,0)}, Theorem 4.4.1(1) implies
that
O < |Hun| <Rup. (4.48)

Since the norm is suitable, the monotonicity of the matrix inequalities of (4.48) is pre-
served as the following string of scalar inequalities

0 < |[Hun|| < [|Rmnll,

and the result follows. O

4.5 Matrix IMPPE2’s induced by scalar functions

In the next theorem we study the expansion of the matrix function F(Ax,Ay), where
F(x,y) is a scalar analytic function.

Theorem 4.5.1. Let (a,,,) € C, where (m,n) € Ng x Ny \ {(0,0)}. Let

Flr,y)=1+ Y anux™y" = J] (1= hpax"y")"", (4.49)
mf-j]:p m(-l&-jlzq

where hy,, € C,(m,n) € Ng x Ng\ {(0,0)} are scalar coefficients.
Let A € My(C). Consider the power series F (Ax,Ay) together with its IMPPE2 expansion

F(Ax,Ay) =I+ Y apaA""X"Y" = LTR]] (I = hypA™x"y") 7" (4.50)
=1 =1
mern:p m?i-n:q

Let (A;)?_, be the distinct eigenvalues of A. For 1 < i< p, let n; be the algebraic multi-
plicity of A;, let nf be the geometric multiplicity of A;, and let m; be multiplicity of A; as a
linear factor within the minimal polynomial m(1). In other words,

S ]

det(Al—A) = ﬁ(x )" mA) =T - 2™,
i=1 j

Il
_
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Define
p(A):=max|A| i=12....p,  s:= SUp |dyn|7. 4.51)
L

m+n>1

(1.) Consider the scalar power series M(x,y) together with its IPPE2 expansion

M(x,y)=1—"Y """y = [J(1+rmax™y") ", (4.52)
mf-jip m-qijzlzq

where (i) is a sequence of non-negative real numbers determined by certain
polynomials in s; see Theorem 2.4.1. Let || - || be a suitable norm and

[=5)

M(p(A)Kx,p(A)Ky) =I— Y [sp(A)K]""x"y"

= [+ rmalp (WK™ xyh) (4.53)
m(—l&jtlzq
The IMPPE? of Equation (4.53) converges absolutely in the sense of inverse con-
vergence over the domain

D1 = {(x,y) € C?: 25p(A) (}x] + |y]) + 2 [sp (4)]* x|ly] < 1}. (4.54)

Furthermore, the matrix F(Ax,Ay) is invertible in Dy and its inverse F(x,y) ! =
RTLTI(I — by A™'X™My") is absolutely convergent D).

g=1
m-+n=q

(2.) Define M(p(A)Kx,p(A)KY), a majorant of M(p(A)Kx,p(A)Ky) as follows:
M(p(A)Kx,p(A)Ky) =I— Y (sp(A)Kx+sp(A)Ky)
g=1

:LTRH (I 4 Fmnlsp (A)K]’"Jr”x'"y”)_1 .
=1
min:q
The IMPPE2 LTRI] (I — h,,MA’”Jr”x’”y”)_1 possess an absolutely convergent infi-

q=1
m-+n=q

nite product representation in the sense of Definition 4.4.4 in the polydiscs

D, = {(x,y) eC?: x| < and |y| < (4.55)

- ;}
4sp(A) K| 4sp(A)||K] S
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with K € Md(C),

K=KIPK.P---Pk,, (4.56)
Ki=K,PK,P-- Pk, 4.57)

with Ki, an m;, x m;; matrix as described below, m;; < m;; = m, and Z?il m;; = n;. Note
ifm;; = 1, K, = [1], otherwise K;, = Imij "‘Nmij where Imij is the m;, X m;, identity matrix,
while Ny, is the m;; X m; the lower triangular nilpotent matrix associated with the Jordan
block decomposition, i.e.

where for 1 <i<p,

1 0 0 O
0 1 1 0
[<m,~. :Im;. +Nm, - (458)
J J J 0 0 O
o ... 0 0 1 1

Proof. It is known that given a matrix A € M,;(C) and an arbitrary small fixed € < p(A),
there exists an invertible matrix 7" such that

J =T AT, (4.59)

where

I=hDrD D
=i DI D D (4.60)

with Ji; the mg; X m; matrix as described below, m;; < my = m;, and Z?ilmij =n;. If
m;, = 1, J;; = [A;], otherwise J;, = Aily, —i—eNm,.j where Im,.j is the m;; x m;; identity matrix,
while Nm,-/ is the mi; X m;; the lower triangular nilpotent matrix associated with the Jordan
block decomposition, i.e.

such that for 1 <i < p,

A 0 - 0 0
e A O 0 O
0 0
J,'j = = }Lilmi. + &Ny, .
0 0 O ! !
. 0
0 0 0 & A
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By using the similarity transformation of Equation (4.59), we have

F(Jx,Jy) =1 —|—Zam_’,,Jm+"x’”y" =1 —|—Zam,n(T71AT)m+"xmy”
m‘izip mijip
=T 1+ @A™ | T = LTR T = by y") !
p=1 g=1
m-+n=p m-+n=q
=LTR[ (I = hinn(T~AT)™ 2"y 7!

q=1
m-+n=q

oo

= LTRH (I+ Z [hm7n(T*1AT)m+nxmyn]a)
g=1 a=1
m+n=q
=LTR[[T7 '+ Y [hnad™ 5"y )T
q=1 a=1
m-+n=q
=LTR[]T7'(I— hpuA™"X"y")'T
mijl:q
_ 7! [LTR [Tu- h,1,7nA'"+”xmy")*l} T—71"1 [F(Ax,Ay)} T.
mijl:q
Consequently, the power series and the IMPPE2 in Equation (4.50) converge absolutely
if and only if the power series and its associated IMPPE2 in

F(Jx,Jy) =1+Y amnd™"x"y" = LTR [ ] (I — hipn ™ "x™y") ™! (4.61)
mﬁjip mi:nlzq

converge respectively.

To determine the domain of inverse convergence, we consider two cases. First assume
that p(A) = 0. As a result, A is a nilpotent matrix and for some integer P the equation
AP+ = O holds. For F(x,y) =1+ Y an,x"y", A nilpotent implies that

p=1
m-+n=p

P (e}
F(Ax,Ay) =I + Z A gAY = LTR H(I — hyy AT XMy )71,
= =1
mljrnip mflkn:q

is a finite polynomial in C.
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Now assume that p(A) > 0 ande < p(A). Thus
] < p(AK, (4.62)

where K is defined in Equations (4.56) and (4.58). By using (4.52) and (4.62) and requir-

. 1 1
ing that |x| < AR and that ly| < wpeayy We find that

oo

M(p(A)Kx,p(A)Ky) =] — Z [sp(A)K]ernxmyn

p=1
m-+n=p
== [ X tsp ko L (sp(4)K)" 1]
_ [( — sp(A)Kx) ‘(1—sp(A)Ky)“—1}
:I—(I—sp(A)K) (1= sp(A)Ky) " [1= (1= sp(A)K) (I = sp (A)Ky) |

)
I—sp(A)Kx) ' (I—sp(A)Ky) " [2(1— sp(A)Kx) (I —sp(A)Ky) —1}
)

=LTR []U+ rmalp(A)K]™ "y, (4.63)

To obtain the domain of inverse convergence as provided by (4.54), since K is a lower
triangular matrix with ones in all the diagonal entries, all of the eigenvalues of K are 1.

Equation (4.63) shows that eigenvalues of M (p(A)Kx,p(A)Ky) are

1_(21S P (Y p>(x)+)} E);r ZY[IS)‘E A ])ny . As aresult, the eigenvalues of M (p(A)Kx, p(A)Ky) “are

@
(1-5p (A (1-sp(A)y) (1—sp(A))(1-sp(4)y)
oA 2l ()T YOt that 1 e T A%

1, sp(A)y =1, or 1 —2sp(A)(x+y) +2[sp(A)]>xy = 0. Thus the nearest singularities
of M(p(A)Kx, p(A)Ky)_1 to (x,y) = (0,0) are the the points (x,y) satisfy the equation
1—2sp(A)(x+y) +2[sp(A)]>xy = 0, and the conclusion of (4.54) follows. Since O <
A ™ < P[P (A)K]™7, then F(Jx,Jy)~! and F(Ax,Ay)~! are also well defined
and absolutely convergent over domain ;.

=0 oreoifand only if sp(A)x =

In order to investigate the convergence of LTR [](I — by ,J™"x™y")~! in the sense
=1
mfji-n:q

of Definition 4.4.4, we define a majorant of M (p(A)Kx, p(A)Ky), namely

oo

M(p(A)Kx,p(A)Ky) =1— Y (sp(A)Kx+sp(A)Ky)"

q=1
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=1- i ) (Z)[ p(A)Kx]7 *[sp(A)Ky]* Set m=g—k and n=k

q=1k=0

=1- ) <m+n>[SP(A)K]m+”X’"y”=I— Y, My

p=1 n p=1
m-+n=p m-+n=p
= LTRH (I+ Fn[sp (A) K™y~ (4.64)
=1

m+n=g

where M, ,, = (") [sp(A)K]™ .

Since [sp (A)K]™" < My, the structure property applied to (4.53) and (4.61) shows that
B ™ < T [P (A)K]™ " < B[ (A)K]™ (4.65)

Next we invert M (p (A)Kx, p(A)Ky) since this inversion will provide an upper bound for
Punlp(A)K]™*". In particular, we have

ek p K] =1 F W'y

p=1
m+n=p

=RTLTT(I+Pmalsp(A)K]""x"y"). (4.66)
q=1
m+n=q

Since 7 [sp (A)K]™" > O for each (m, n) € No x No\ {(0,0)}, both the MPPE2 RTLT] (I +

q=1
m-+n=q
Pnlsp (A)K]™"xMy") and its power series [+ Y, My, ,x™y" have the same domain of
=1
min:p
convergence. Moreover, coefficients comparison shows that
O < Fun[sp (A)K]" " < My . (4.67)

Combing Equations (4.65) and (4.67) together implies that

‘1’
m+

iih Jm+nmn

Z Z ||hm7n]m+nHk’x’mk‘y‘nk

p:
n= p m+n=p
< XY Pmalp (AR [y
p=1 k=1
m+n=p



< Y X M x| (4.68)
p=1 k=1

Equation (4.68) shows that we need to determine an upper bound for M,, ,. To find the
desired upper bound, recall from (4.64) that

M(p(A)Kx,p(A)Ky) =1— Y (sp(A)Kx+sp(A)Ky)"
g=1

) -1
— (sp(A)Kx+sp(A)Ky) |1 — (sp(A)Kx+sp(A)Ky) | . (4.69)

To make the calculations easier set B = sp(A)K(x+y) and assume that ||B|| < p < 1 to
obtain

M(p(A)Kx,p(A)Ky) =1—B[I—B]"". (4.70)
Since ||B|| < 1, we further require that ||B|| [ —B|~! <|I—-B|| "' < 1.

Then we have

[M(p(A)Kx,p(A)Ky)] ' = [I-B(I—B)~ } —I+Z[ )"
—I1+B(I-B)'[I-B )‘]“
—I1+B(I-B)"'[I-B) ' (I-B)-B)] "'
=I+B(I-2B)"!
:I+BZ (2B)* =1+ i 20-1pe, 4.71)
a=0 a=1

where for the second to last equality we assumed ||B|| < 1/2. In Equation (4.71) we set
B =sp(A)K(x+y) to obtain

oWk p )| =1+ T 2 o k) (e )”
_I+22alsp ai)(
+

P
_I+22°‘1sp [



_I—i-ZZa Hsp(A)K]%y +Z ZZ“ 1( > [sp(A)K] xPyeP

p=la=p

=7+ i 2m+nl[sp(A)K}ern(m‘Fn)xmyn, p=m,0—p=n

_ n
p=1
m+n=1

(=

=1+ My, pX"Y" 4.72)
1

p:
m+n=1

where My, , = 2"~ [sp(A)K] mn (™). So we have

My = 2" sp(A)K]™ ™" <m : ”> < 22mEm=7gp (A)K]" ", (4.73)

where for the last inequality we made use of the fact that the sum of all the entries in the
m + n-th row of Pascal’s triangle is equal to 2",

Plugging the desired upper bound of (4.73) into (4.68), we find that

< Y Y Ml

p k=1 p=1 k=1
m—+n=p m+n=p
< Z ZH22(m+n) l[sp(A)K}er" |x|mk|y’nk

p=1 k=1

m+n=p

Il & & !
<3 ¥ X |[soax] ey

mii:kaI

= 2 ¥ [Jasp )| yl] [1 = [lasp K] [lasp KL @74
m-+n=p

where in the penultimate line we assumed H [4sp(A)K] " emynll < 1. This assumption
provides a further refinement on the polydiscs used in the computation of (4.71) where
we assumed that sp(A)||K|||x| < p1 < p <1 and sp(A)||K|||y] < p2 <p < 1. Now we
have to shrink these polydiscs and require that 4sp(A)||K|| |x| < p1 < p < 1 and that
4sp(A)||K]|| [y] < p2 < p < 1. When working over these refined polydiscs, the previous
inequity becomes

i i (hm’njm+nxmyn)k

1:1

< som Ll @K+ [4sp ) K1)

p=1
m—+n=p
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m+n m n
=57 P p— 1]
1* ); 2(1-p) m;o ;)
m-+n=
_ 2p —p*
2(1-p)*

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed

(4.75)

oo (=)

Y Z ¥ e 1

p=

i i (hmﬂJernxmyn)k

1 k=1

m+n=p
2p —p?
=307 (4.76)

whenever 4sp (A)||K]|| |x| < p < 1and 4sp(A)| K] |y] < p < 1.
Therefore, an estimate for domain of absolute convergence of
LTR [T (I+ #malsp(A)K]"Fxmym) ~ s

=1

m+;:q

B 2. 1 1
Dz = {(03) € €1 b < gy and b < gooray |

Since |y J™ " < P[P (A)K]" " < P u[p (A)K]™ 1", Definition 4.4.4 implies that D, is
also an estimate for the domain of absolute convergence of

LTR H (I — hm?n]m-',-nxmyn)—l and of LTR H (I — hm’nAm-s-nxmyn)—l ) o.

In the next theorem we study the expansion of the matrix function F (Bx,Cy), where
F(x,y) is a scalar analytic function and B,C € M;(C) are both diagonalizable with BC =
CB.

Theorem 4.5.2. Let (ay,,) be a sequence of complex numbers, where (m,n) € Ny x Ny \
{(0,0)}. Let

Flx,y)=14 Y anaX"y' = [] (1=huax"y") ™", 4.77)
=1 =1
m-{n:p mf]&-n:q

where hy, , € C,(m,n) € Nog xNo\ {(0,0)} are scalar coefficients.

Let B and C be d x d commutative diagonalizable matrices. Consider the power series
F (Bx,Cy) together with its IMPPE?2 expansion

F(Bx,Cy) =I+ Y an,B"C'xX"y" = LTR[ [ (I - B nB™C"X™y") 71 (4.78)
mijip m?i-?lzq
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Let (A)Y_,,(A)Y_, be the distinct eigenvalues of B and C respectively. Define

p(B):=max|A| i=1,2,....p (4.79)
1
p(C):=max|A/| i=1,2,....p (4.80)
1
s:= sup \am’n]m%n. (4.81)
m+n>1

(1.) Consider the scalar power series M(x,y) together with its IPPE2 expansion

oo

M(x,y)=1—"Y """ = T+ rmax"y") ", (4.82)
—1 =1
-{n:p mfll—n:q
where (I'in,) is a sequence of non-negative real numbers determined by certain
polynomials in s; see Theorem 2.4.1. Let || - || be a suitable norm and

oo

MpBIp(©m) == ¥ ()"l
mij:p

(=

= T1U+rmalo®N"p@)12y) . (4.83)
g=1
m—+n=q

The IMPPE? of Equation (4.78) converges absolutely in the sense of inverse con-
vergence over the domain

Dy ={(x,)€C? : 25 [p(B) x| +p(C)¥] +2[sp(B)p(O)PIxlly| < 1} (4.84)

1

Furthermore, the matrix F (Bx,Cy) is invertible in D and its inverse F (Bx,Cy)~
RTLTI(I — hy nB"C"x™y") is absolutely convergent Dy.

g=1
m-+n=q

(2.) Define M(p(B)Ix,p(C)Iy), a majorant of M(p(B)Ix, p(C)Iy) as follows:

A

M(p(B)Ix,p(C)Iy) =I — il (sp(B)Ix+sp(C)Iy)?

—LTR[] I+ Falsp (B))"sp (C)I'"y") ™"

g=1
m-+n=q
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Proof. Let B and C be two commutative diagonalizable matrices. By Proposition 6.2.6 of
[40] there is a single invertible matrix S € M;(C) such that

D, =S"'BS (4.85)
=s7'cs, (4.86)
where
A0 0 0 A0 - 0 0
0 A O 0 O 0 A 0 0 0
0 0 0 0
Dy = ,Dy =
0 0 O 0 0 O
: : .. . .0 : : .. . .
0 ... 0 0 0 & O ... 0 0 O /Il’,

By using the similarity transformations of (4.85) and (4.86), we have

F(D1x,D2y) =14y amnD{D5x™y" =1+Y ann(S~'BS)"(S~'CS)"x"y"

p=1 p=1
m+n=p m+n=p

-1 [1 + ammBmC”xmy"} S = LTR[ [ — h nD D3x"y") ™!
1

p= q=1
m+n=p m+n=q

= LTR[ [(I=hn (S~ BS)"™(S~'CS)"x™y") !

g=1
m+n=q

- LR+ i 571BS)" (5 CS)wy 1wy ] %)
mineq  *
—LTR[[S " (14 Y [naB"Cx"] %)
1

q= o=1
m+n=q

= LTRHS (I=hm uB"C"X"y") ™!
minlzq
_ 5! [LTRH(I - hm,,,Bmc"xmy")—l} §—5! [F(Bx, Cy)] S.
=1

m+;:q
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Consequently, the power series and the IMPPE2 in (4.78) converge absolutely if and only
if the power series and its associated IMPPE2 in

F(D1x,D2y) =I+Y annD{'D3x™y" = LTR[ [I — hin nD D3x™y") ™! (4.87)
=1 =1
mIJ)rn:p min:q

converge absolutely respectively. We begin by discussing the domain of absolute conver-
gence in the inverse sense. Consider two cases: in the first case, assume that p(B) =0
or p(C) =0. As aresult, B or C is a nilpotent matrix and for some integer P the equa-

tion B+ = 0 or C"+1) = O holds. For F(x,y) = 1+ Z A px™y", B or C nilpotent

p_
m-+n=p

implies that

P oo
F(Bx,Cy) =I+Y an B"C"x"y" = LTR] [(I— hp,B"C"x"y")~",
— =1
mg-n:p mi]i-n:q
is a finite polynomial in C.

Now consider the case that p(B),p(C) > 0. Then we have

1| < p(B)I (4.88)

|D2| < p(C)1, (4.89)

where [ is the d x d the identity matrix By using (4.82), (4.88) and (4.89), and requiring
that |x| < W and that |y| < W we find that

oo

M(p(B)Ix.p(C)ly) == Y [sp(B))"[sp(C)1]"+"y"

p=1
m+n=p

1= X e Y lspe)nt 1]

=0 =
=1 [(1-sp(B)Ix)” 1<1—sp<c>zy>*—1}

1~ (1= sp(B)x) " (1 =sp(C)y) ' [1= (1= sp (B)Lx) (1 = sp (V1)
—(1=sp(B)x) " (1=sp(O)1y) " [2(1 = sp(B)Ix) (1 = sp(C)1y) ~1]
=( —sp(B)Ix )1( 1=sp(O)1y) " [1 = 2slp(B)lx+p(C)1y]+
o
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oo

=LTR [+ rmalpB)1"[p(C)1]"x"y")~". (4.90)
m?;lzq
To obtain the domain of inverse convergence as provided by (4.84), since [ is an identity
matrix then all of the eigenvalues of [ are 1 . Equation (4.90) shows that eigenvalues
2
of M(p(B)Ix,p(C Iy) are 12l BEpONF25p(B)P(Cxy - g g result, the eigenvalues of

) (1 sp(B)x)(1-sp(C)y)
M(p(B)Ix,p(C )Iy) (1 sp(B)x)(1-sp(C)y) _Note that
(1-sp( () x)

(e C)) © T2 Byx+p ()2 (B)p Oy
1-2s[(p(B)x+p(C)y)]+25p (B)p ( o 0 or oo if and only if sp(B)x=1orsp(C)y=1,0r 1 —
25[(p(B)x+p(C)y)] +2s? ( )p(C)xy 0. Thus the nearest singularities of
M(p(B)Ix,p(C)Iy 1 = (0,0) are the the points (x,y) satisfy the equation 1 —
2s[(p(B)x+p(C)y)] —|—2s p( )p( )xy = 0, and the conclusion of (4.84) follows. Since
O < |hyuDTDA| < o n[p (B)™[p(C)I]", then F(D1x,D2y)~! and F(Ax,Ay)™! are also
well defined and absolutely convergent over domain D).

S

In order to investigate the convergence of LTR [](I — hy D' D3x™y") ! in the sense
g=1
m+n=q

of Definition 4.4.4, we define a majorant of M (p(B)Ix,p(C)Iy), namely

oo

M(p(B)Ix,p(C)ly) =1— Z B)Ix+p(C)ly)*

q
Z()sp VX7 Fsp(C)Iy)* Set m=¢g—k and n=k

q: k=0
= +
- % (" sewrrspcoeny
m+ ::p
Z My pX"y"
P
m+n=
= LTRH (I+ Prunlsp (B))"[sp (C)I]"¥"y") 7!, (4.91)
g=1
m-+n=q

where M,,,, = (") [sp(B)I]"[sp (C)I)".
Since M, , < Mm,,,, the structure property applied to (4.78) and (4.87) shows that

hana DY D3 < 1P BY)" [P (ON)" < i nlp (BY]" [P (O] 4.92)

Next we invert M (p (B)Ix,p (C)Iy) since this inversion will provide an upper bound for
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Pmnlp (B)I™[p(C)I]". In particular, we have

M(pB)xp(O1)| =14 ¥ Hy iy

p=1

m-+n=p
=RTL[ T+ Fuulp (B[ (C)I]"x™y"). (4.93)
g=1
m-+n=q

oo

Since 7, ,[p (B)I]"[p (C)I]" > O for each (m,n) € Ng x N\ {(0,0)}, then both RTLT] (I+
q=1

m—+n=q
Fualp (B p(C))"x™y"), I+ Y. My, x™y" have the same domain of convergence.
p=1
m-+n=p

Moreover, coefficients comparison shows that
O < Funlp (B)]"[p(O)]" < My . (4.94)

Combing Equations (4.92) and (4.94) together implies that

|

oo

Z Z (hm,nDllanxmyn)k
=1 k=1

oo

< L )Y DD
=1 k=1

)4
m+n=p

P[P (BY)" [ (C)1)" || x| y|™

D
m+n=p
<Y X
p=1 k=
m+n=p

< Y Y M x| (4.95)
mﬁjipk:

I =
—_

A

Equation (4.95) shows that we need to determine an upper bound for va,,. To find the
desired upper bound, recall from (4.91) that

oo

M(p(B)Ix,p(C)ly) =1—Y" (sp(B)lx+sp(C)ly)*
g=1
-1
=1— (sp(B)Ix+sp(C)ly) |I— (sp(B)Ix+sp(C)Iy)| . (4.96)

To make the calculations easier set Z = p(B)Ix+ p(C)Iy, and assume that ||Z|| < p < 1
to obtain

A

M(Z)=1-2(1-2)"". 4.97)
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Since ||Z|| < 1, we further require that ||Z||||[I — Z||~! < || — Z||~" < 1. Then we have
~ —1 _171-1
wi(2) " =[1-z(1-2)""]
—1+ Y [2(-2)"| =1+42]1-2] |1-2z[1-7]""]
n=1

:H—Z{I—ZTI -7 [(I—Z)—Z]Tl

=14+2(1-22)"'=1+Z) (22)*

a=0

=1+ Y 2%7'z% (4.98)

a=1

where for the second to last equality we assumed ||Z|| < . In Equation (4.98) we set
Z = p(B)Ix+ p(C)Iy to obtain

[A(p(B),x,p@,y)]‘ 14 Y, 2% (p(B)x-+ p(C)Iy)"

a=1

S Z( ) Wlp(C)D]
o o o

ey ivccr ry (p)[p(B)Ix] plC )

1 Y 2% [sp(On]“+ Y 29 Y (“) (B[P (C)1y]
a=1 a=1 p=1 \P

14 Y 2 ep( O]+ Y Y 2“-1(“) (B[P (C)1y]
o=1 p=la=p P

=1+ i mn 1[sp(B)I] [sp(C)1] <m’:n>xm " p=m,0—p=n
miiil

1+ Y My, (4.99)
mf—jil

where M,,, = 2"~ [sp (B)I]" [sp(C)I]" ("™!"). So, we have

m

Wy =277 [sp(B)1) " [sp (C)1]" <’" * ”)

n

<2mm =1 o (B)I]" [sp(C)1]", (4.100)
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where for the last inequality we made use of the fact that the sum of all the entries in the
m + n-th row of Pascal’s triangle is equal to 2",

Plugging the desired upper bound of (4.100) into (4.95), we find that

‘ y Z (D DAX"y < Y Z ¥ | ™ |y
k=1 p=1 k=1

m n=p +n:

i in“H" sp(B)] " sp(©)1]" [ a1

IN

5. [Jsomilaspicririoe|

k:I

IN
N =
i MS

m

i [4sp (B)I||" |45 (C)I||" x| 3" ][1_\\4sp(3)1xHmuzxsp(c)zyu"}’

1

min=p
(4.101)

where in the penultimate line we assumed H [4sp(B)I]" [p(C)1] "x’"y"” < 1. This assump-
tion provides a further refinement on the polydiscs used in the computation of (4.98) where
we assumed that sp (B) ||| |x|] < p < 1 and sp(C)|/I]| |y] < p < 1. Now we have to shrink
these polydiscs and require that 4sp(B)||I|| |x| < p1 < p < 1 and that 4sp(C)||I|| |y| <
P2 < p < 1. When working over these refined polydiscs, the previous inequity becomes

Z Z (hm.,nDl Dgxmyn)
=1 k=1

< s X sp )l ] 45p(C)11] bl

p=1

+n=p m+n=p
1 = 1 = =
S - pm+n: |: pm pn_1:|
2(1-p) p; 2(1—-p) ,Z‘o gb
m+n=p
_ 2p-p?
=20 p) (4.102)

In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed

oo

Y Y Myl

p:l k=1

i f(hm,nD'f’DSx’"y”)"

= (4.103)



whenever 4sp (B)||1|| |x| < p < L and 4sp(C)||I|| |y| < p < 1.
Therefore, an estimate for domain of absolute convergence of
RTL [T (I+ fmulsp(B))"[sp(C)I])"x™y") is

g=1

m+71:q

Dzz{(x,y)e(cz:\x|<4 and |y| <

L
sp(B) ||

Since |, D'Ds| < rnlp (B [p(O1I]" < #imulp(B)I)"[p(C)I]", Definition 4.4.4 im-
plies that D is also an estimate for the domain of absolute convergence of

1
4sp(C)|I1]] }

LTRI] (I — hyn D D5x™y") 1 and of LTRT]T (I — hy yA™ x™y™) 71 0.
=1 =1
min:q mq+n:q

4.6 Illustrative examples

In this section various examples are given to illustrate the main theorems of the previous
sections. Our first example is an extension of Theorem 4.4.1.

Example 4.6.1. Consider the following special series F(x,y) with the special related
majorant matrix functions series:

Flxy)=I+}, Aua+B,va+ﬁxm+ﬁym+B =LTR H(I—Hm,nxmyn)il

p=1 q=1
u+v=p m+n=q
C(x,y) =1 — Z ’Aua+ﬁ7va+ﬁ ‘xua+ﬁyva+ﬁ =LTR H(1+Sm7nxmyn)71
=1 =1
u—l;—v:p min:q

M(x’y) =/ _Z s(X(u+V)+2ﬁWxtla+l3yv(x+ﬁ — LTRH(I_i_Rmmxmyn)fl’ (4.104)

p=1 g=1
u+v=p m+n=q

where o, € Nog, W € M;(C), and it is defined as
W= (wy,), where w,,=1, vu=1,...,d.

Furthermore, given A,q g va+p € Ma(C) where Ayg g voip = (awﬁw(ua +B,vo+ ﬁ))
fory,o=1,....d, define

a(uo+B,va+p) = rlnyeb))da.’,,,w(ua—&-ﬂ,va—i-ﬁ)],
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then s is defined as

1
s:= sup [a(ua +B,vo+ [3)] &) 2P
a¢ﬁ€N0
m—+n>1

Next by requiring |x| < 1; and that |y| < % we can derive the closed form of the left hand

side of Equation (4.104)

M(x,y)=1-W Z stx(u+v)+2ﬁxua+ﬁyva+ﬁ
p=1

u+v=p
S (s2xy)BW Z Sa(L¢+v)xu(xyvot
p=1
u+v=p
=1 — (s>xy)Pw [ Y (sx)"* Y (sy)"* - 1}
u=0 v=0
1 1

[
= [ ()W 5064 ) — (579)°]
[1— (sx)¥][1 — (sy)%]

=LTR[ (I 4 Runx"y") " (4.105)

q=1
m+n=q

To obtain the domain of inverse convergence as defined in Definition 4.4.1, the straight-
forward computation in Equation (4.105) shows that eigenvalues of M(x,y) are 1 and

]_[1+d(si)iy()f);)[fxa(fia;2_(szxy)a]. As a result, the eigenvalues of M(x,y)~" are 1 and
1= () ][1—(sy) (1= (s)*][1—(5y)“] — 0o}
T (s Py (g 0P Tl gy sy (] — 0 OF o i and
only if (sx)* =1 or (sy)* = 1, or 1 — [1 +d(s%xy)P][s*(x* +y*) — (s?xy)¥] = 0. Thus
the nearest singularities of M(x,y)~! to (x,y) = (0,0) are the the points (x,y) satisfy the
equation 1 — [1 +d(s’xy)P][s*(x* + y*) — (s>xy)%] = 0, which means that M(x,y)™" =
RTLTI(I+ Ry nx"y") is absolutely convergent (in the inverse sense) in

g=1
m-+n=q

Dy = {(x,y) € C*: [1+|d(s%xy)P [ls* (|| + [y1*) + [ (s%09)|*] < 1} (4.106)
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Since O < |Hyp| < Smn < R, Proposition 4.4.1 implies that F(x,y)~! and C(x,y)~!
are also well defined and absolutely convergent over domain D).

Note that if « = 1,3 = 0, then the domain Dy defining in Theorem 4.4.1 [(2.)] is a special
case of D defining in (4.106) .

In order to investigate the convergence of LTR [](I — H,, ,x™y") ™! in the sense of Defini-
=1
mz-n:q
tion 4.4.4, we define a majorant of M(x,y), namely

oo

M) =1=W B (30?6 + ()

(

(

au+B,av+px

q

8
<
@
HN
~<

I
T
S

™

ngl

)P <Z> [(sx)“} q_k{(sy)“}k Set u=q—k and v=k,

Q
Il
—_
>~
Il
(=)

=
= +
<

l

|

=
gk

) sa(u+v)+2ﬁxau+ﬁyav+ﬁ

=
+
Fl

=
=

ou+f yocv-l-ﬁ

l

|

=
gk

=
+
=l
I —
<

= LTR] [T+ Rpux"y") ", (4.107)

g=1
ut+v=q

where My .avep = (*) 5767325

Since

u+v

M(xu_i,_ﬁ?av_l,_ﬁ — SO((M‘FV)-FZﬁw S ( )

) sa(u+V)+2ﬁW = Mau+ﬁ7av+ﬁa
then again by the structure property we have

O < |Huu| < Rpun < Ry (4.108)

Next we invert M (x,y) since this inversion will provide upper bound for Rm,n- In particular,
we have

N 1 >
[M(xa)))] =+ Z Mm,nxnyn
=1
min:p
=RTL[J(I+Rnax"y").
=1
miii-n:q
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Since (Iém,n);v:o is a sequence of positive matrices, then both RTL T (I + Ry ,x"™y")
’ =1
m{)kn:p
and I+ Y. M, ,X"y" have the same domain of convergence. Furthermore, coefficients

p=1
m+n=p

compassion shows that
O < Ryp <My, (4.109)
Combining Equations (4.108), and (4.109) together implies that

i i(HmJlxmyn)k < i

Y [Ho ey

p=1 k=1

m-+n=p

< Z Zkgn|x|mk|y|nk

< Y Y My (4.110)

Equation (4.110) shows that we need to determine an upper bound for Mm,, To find the
desired upper bound, we consider special case for o, and f.

Case 1: Set a € N and B = 0 in Equation (4.107), then we have

(sx)% + (sy)*
11— [(s2)% + ()]

W(ey) =1 W ilusx)“ ()% =1 -

=I— ZMom,avxa”yav, where Mom,av =W <u + V) sut) (4.111)
- v
oy
We will assume that
‘ [(5)* + (5)°] \ < ((d+ D[(sx)*+ (sy)%] | < p < 1. 4.112)

Then

‘1—(?(6)“(%& < [+ ()7 ] .113)

)%+ ()] |~ 1= [0+ ()] [~ T-p

So if we further require |W| < 1 — p, we find that

[M(xay)]_l = I+Z Mua+ﬁ,va+ﬁxua+ﬁyva+ﬁ

r=1
u+v=r
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e 0% g

=1+ X [+ (o)

[ d[(sx)* + (sy)”] r

1—[(sx)* + (sy)%]

W((sx)* 4 (sy)¥] [1_ d[(sx)“+(sy)0¢] }1

= (07 ()4 || T (97 + ()7
[(52)% + (s)* W

1][(sx) % + (sy)¢]

(sy)a]W,; (a4 11[(s) + ()] )

k

[d+ 1)1 [(sx)* + (sy)o‘]k

gk
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~
Il
_

[d+ 17 [(sy) "+

s

=I+W
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Il
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S
s
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L
(ngle
Py
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o
=
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o
<
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IS
=
L

~
Il
_
<
|
—_

I
~
+
S

s
=
_l_
T
2
=
—l'_??‘

=
(aok
=
+
-
=
L
(ngle
Py
b
N——
o
=
S~—
Q
—
o
<
S~—
Q
=
L

~
Il
_
<
Il
—_

[d + 1] (sy) "+

gk

=I+W

=
Il
—_

S
s
gk

a1 (o

‘
I
—_
~
Il
4

=J+W i [d—i— 1]u+vflsa(u+v) (u+ v)xa"yav
= u
wioer

=W ) Meuar™y™ (4.114)

r=1
u+v=r

where Moy qy = [d + 1]H=15w) (407,

u
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Furthermore, we have
MOm,O{v — [d 4 I]I,H*Vflsa(lH»V) <u+ V> % < [d+ I]I/H*Vfl (2SOC)M+VW' (41 15)
u

Plugging the desired upper bound of (4.115) into (4.110), we find that

Z Z Mauav |x|auk‘y|(ka

p
m—+n=p u+v r

oo oo 2 d+1 soc k(u+v) y .
< Z Z[ ( (d_')_l)]k Wk|x|a k|y|ak

r=1 k=1
utv=r
S [2(d+ Ds* e ouik |, avk
< d u Vi
= Z Z (d+ l)k [ W] x|y

O o [2(d+1)s9]kE) k=11 |ouk) . |avk
<W (d+1)% x| y[*
£ RN

u+v=r

w - k
< 2ad+1 ut+v|,.|ou v
<@rn & L[]

=

[25%(d + 1)) || %y | *

T dt1) A T [2s%(d+ )@ 2s%(d + 1)[y[o]
u+v=r

(4.116)

where in the penultimate line we assumed assumed that 2s*(d + 1)|x|* < p; < p < 1

and that 2s*(d 4+ 1)|y|* < p2 < p < 1. When working over these refined polydiscs, the
previous inequity becomes

S(dﬂ;}‘(/lp i_ [25%(d + 1)) [25%(d + 1)[y|]"
S(d+l;v(1—p)u§rpu+v
e ]



sl
@d+1)(1-p) [ (1-p)?
_ [p-pW
d+1)(1-p)*>
In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed

4.117)

Z Mau av) ‘x‘aukb"a‘}k

=1
:r

Z Y (Hpn"y")!
1

k=1

qu

<
F=

m

_ [2p—pW
e ( kL (4.118)

whenever [25%(d+ 1)]|x|* < p < 1 and [2s*(d + 1)]|y|* < p < 1. Therefore, an estimate

for domain of absolute convergence of LTR [] (I —i—]’é,,,,,x’"y")*1 is

g=1
m—+n=q

Dy = {(y) € sl < — and |y| < (4.119)

- ;}
[2(d+1)]as 2(d+1)]as)

Since O < |Hpyn| < Spn < Rmn < R, ,,, Deﬁnition 4.4.4 implies that D, is also an estimate
for the domain of absolute convergence of LTRH (I— H,,mx’”y”)*l and of

q_
m+n=q

LTRH(H—S Xy L
mf]k; q

Note that if we assume o, = 1 and B = 0, then the domain D, defining in Theorem 4.4.1
[(3.)] is a special case of the domain D,, which is defining in (4.119).

Case2: For simplicity, we set &« = 0 and B € N in Equation (4.104), then we have

M(x,y) =I — W (s’xy)P = LTRT] (I + Runx™y") ™

g=1
m-+n=q

We will assume that |(s*xy)B| < p < 1, and further we require |W|||(s*xy)P| < |[W||p < L,
Le. |W| < %. Then we have

M (x,y) = [I-W(sPxy)P ! = i W (s%xy)P
:I-I—%i [d(szxy)ﬁ]k
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=

1
=1+— which means that |d(s*xy)P| < p; <p <1

d 1—d(s%xy)B’

8

:I+ZM[3kﬁka Bk
k=1

— RTLH (I+ Ry X"y") (4.120)

g=1
m-+n=q

where Mﬁk,ﬁk = gk 152kBw

Note that the penultimate line in Equation (4.120) shows that Bk = m and Bk = n, and
this will only the nonzero Mmﬂ.

Now we repeat inequality chain at (4.110). Since Ry, , < Mm,n, then we obtain

[Rown| el ™ [y < Z ZIan\ ™

m+n q
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=
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gk
s
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Il
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I
—

[ds?P]9]x] Pty Pk

Q
Il

>~
Il

—_

d**9|sx|P9¥|sy|Pe¥, since 1 <d < d?

s
gk

IN
=
[
L
-
[
-

IN

=T AIFE &[F &=
agk
agki

s
I agki

[d|sx|ﬁ] [d]sy|ﬁ]qk. (4.121)

B~
I
_
=
Il

Now we assume d|sx|? < p; < p < 1,d|sy|P < p < p < 1, then we have

.- e =
2 L Rl afbi <7 3 X o

1 k=

W p¥
d q;l p
- . (4.122)
1— ; d(1—p)(1-p?)



Therefore, an estimate for domain of absolute convergence of LTR [] (I 4 Ry, ,x™y") is
mZ—jl:q
2 1 1
D, = {(x,y) €C”:|x| < — and |y| < —; } (4.123)
sd B sd b

Since O < |Hpypn| < Spun < Ry, Definition 4.4.4 implies that I, is also an estimate

for the domain of absolute convergence of LTRI] (I — Hy,x™y") ! and of LTRT] (I +
=1 =1
mf]kn:q min:q
Smﬂx’”y”)*l.

Case3: Let o, B € N, then we have

(1) (0% + (s0)] =1 - WP o]

1 1= [(s9%+ (sv)]

M

M(x,y) =I-W

q

We will assume that

(s%x9)P [ (s)* + (5v)%]

< ’ [d(szxy)l3 + 1] [(sx)oC + (sy)a]

<p<l.

Then

|(s%00)P [(s2) + (s)%]] o1
=[G+ ]| ~T-p

‘ (s2x9)P [ (sx)* + (sy)]
1= [(sx)% + (sy)“]

So if we further require ||W|| < 1 — p, we find that

[M(x’y)]—l = I+Z MLta+[3,va+ﬁxua+Byva+ﬁ

p=1
u+v=p
= [ _ W(Szx)’)ﬁ[(sx)“+(sy)a]]1
e £ o]

= (0P [(5) + ()7
1|50+ ()]
W 2 [l (607 + ()7 "

d Z [ 1— [(Sx)a_|_(sy)a} ]

(s2xy)P [(52)% + (sy)*] [1_d(s2xy)/3 [(SX)“—i—(sy)“]]l
- [(SX)"‘ + (sy)“} 1— [(sx)o‘ + (sy)o‘}

n
[

=
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(s%x9)P [(sx)* + (sy)*]W
1 —[d(s%xy)B +1] [(sx)o‘ + (sy)o‘]

=TI+ (szxy)ﬁ [(sx)“ + (sy)a} W/i() ([d(szxy)ﬁ + 1] [(sx)a + (sy)a]>

=1+

k

oo

= I+ (s2x)P [ (s2) + (sy)* k 5x) % (sy) %
PP 60 e W E ()60 e

(dszﬁ—i-axﬁ—l—ayﬁ)p(ds2ﬁ+ocxﬁya+ﬁ)q

=1+ [x*TPyP 4 xPyoth]sa 2Py i sy < .k >s2ﬁ(1’+‘1) X
k=0 i+jiprq=k \'J P4
ar+ay®(i+p)+Bpta)yalj+a)+ppt+q)

=148+, (4.125)

where

9

S) =s*T2Pw i §Ok Z < .k >s2ﬁ(p+q)dp+qxa(i+p+1)+ﬁ(p+q+1)ya(1+q)+ﬁ(p+q+1)
k=0 i+j+ptq=k \lJ P4
and
5 =5 Bw Y g Y ( k )Szﬁwq) PP B 1) a1+ ()
k=0 i+j+prq=k \lLJ P4
From S| we set
u=i+p+1l,w=p+qg+1,v=j+gq, then we have u+v =k+1. Also,
i+j=u+v—w.
So,k=u+v—1.
Hence, the coefficient of x®“Bwyor+Bw i g, js
(@42 (1) < utv—1 )szﬁ(wl)dwlw

iju—i—1v—j

— g2Pwrauty) w1 < . M—i-.v— 1 )W
iju—i—1v—j
< (Ut v —w 1)s2Brralir) gr—lgurv=ly,
< PP aluty) gr=lp2(utv)—wy (4.126)

From S, we set

k=u+v—1,i+j=u+v—w; withu=i+p, w=p+qg+1,v=j+qg+1
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Hence, the coefficient of x®“tBwyor+Bw i g, js
—1
sOutv)+2Bw w1 < ) u+.v ) )W, subjecttoi+j=u+v—w
iju—iv—j—1
< SO((LH*V)#»Zﬁdefl22(LH*V)7WW. (4127)

Therefore, we have

[M (x,y + Y Y Mo g pux™ Py Py (4.128)

:1 w:l

and Inequalities (4.126), (4.127) show that
Mo prays o < SHUTITBw o tp2(utv) gy, (4.129)

Plugging the desired upper bound of (4.129) into (4.110), we find that
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(4.130)
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where in the penultimate line we assumed that |4dsx| < p; < p < 1 and that |[4dsy| < p2 <
p < 1. When working over these refined polydiscs, the previous inequity becomes
d W

ZZ mnxy g
m:ﬁ:

+ﬁw’4dsy|m+ﬁw

|4d sx|*
y oy

r=1 w=1 _p2
= u+v=r
< w i i ’4dsx‘au+ﬁw‘4dsy’av+ﬁw
d(l_p) r=1 w=1
u+v=r
w SERS o(u+v)+2pw
< p
d(1-p) /= wgl
utv=r
w S o(u+v) ~ 2Bw
p p
d(1—p) }; wgl
u+v=r
p*w [ C oy o ]
= P pe—1
d(1—p)(1—p2F) ugb vgb
- pw [ ! —1]
d(1—p)(1—p?F) [(1—p®)?

Pl1—(1—p*)H W
d(1-p)(1—p?F)(1—p)
In conclusion, by using a majorant of a majorant and clever use of inversion, we finally
showed

mnx y

Mz

}: }: ] |x| au+ﬁw)k‘y|(av+ﬁw)k
k 1 r=1 w=l1
P utv=r

HMS

Ocu+ﬁw ov+fw

-1
PP pw
d(1-p)(1—p2P)(1—p*)>’
whenever |4dsy| < p < 1 and |4dsy| < p < 1.

(4.132)

Therefore, an estimate for domain of absolute convergence of LTR [] (I +I§m7nx’"y”) is

q=1
m-+n=q
2. 1 1
Dy = {(v) € € < g and | < 1. (4.133)

Since O < [Hyp| < Smn <Ry < Iém s Deﬁmtlon 4.4.4 implies that D, is also an estimate

for the domain of absolute convergence of LTRH (I — Hyyx™y")~! and of LTRH (I+

q=1 g=1
m-+n=q m-+n=q

SmaX™y")~!. We turn to concrete examples where F (x,y) is a scalar function.
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Example 4.6.2. Let a > 0 and 6, , be a sequence of real numbers, where (m,n) € Ny X
No\{(0,0)}. Let

F(x,y)=1+ Z exp (iOmn) (m+n)*x"y" = H(l — Iy X™y") 71 (4.134)
miiip ran;l:q

where hy,, € C,(m,n) € Ng x Ng\ {(0,0)} are scalar coefficients.

Let A be a d by d matrix. Consider the power series F (Ax,Ay) together with its IMPPE2
expansion

F(Ax,Ay) =1+ Z exp (0, (m+n) A"y
mg—jlp
=LTR[] (I—hpnaA™ """ 7" (4.135)
mijl:q

Theorem 4.5.1 along with sup [m—}—n]ﬁ = 35 implies that the IMPPE2 of Equation
m+n>1
(4.135) converges absolutely in the sense of inverse convergence over the domain

)p(A)P[xlly| < 13,

4
3

Dy = {(x,y) € C*:23%)p(A) (|x + v]) +2((3

and in the sense of Definition 4.4.4 in the polydiscs

1 1
Dy ={(03) €€ | <~ —— and | < -
3 3

4(35)p(A) 4(35)p(A) }

Now let B,C € My(C) be two commuting diagonalizable matrices and consider the power
series F(Bx,Cy) together with its associated IMPPE?2 expansion

F(Bx,Cy) =I+ i exp (i0nn) (m + n)*[Bx]" [Cy]"

p=1
m+n=p

=LTR ﬁ (I = By [BX"[CY)") . (4.136)

g=1
m-+n=q

To determine the domain of convergence for the IMPPE? of Equation (4.136) in the sense
of inverse convergence, we apply Theorem 4.5.2 [(2.)] with s = 35 to obtain

D={(xy) e C:263%) [p(B)x|+p(C) ] +26F )p(BI(C)ally < 1}, @.137)
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and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

1 1
AN oy and |y‘<27
3 3

= X 2: X .
D: = { (o) € €l < g el

Example 4.6.3. Let p € N and consider the scalar bivariate exponential function together
with its IPPE2 expansion

oo

Fley) =exp(o) = 1+ X i) =TT0-h(o) !, @139

where h, € C

Let A be a d by d matrix. Consider the power series F (Ax,Ay) together with its IMPPE2
expansion

F(Ax,Ay) = exp(Azxy) =1+ Z —‘(xy)p =LTR H(I— hquq(xy)q)*l.
p=1 p: p=1

By the Jordan-Chevalley decomposition [see [30], page 17], every matrix A € My (C) can
be uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A=V+Q
The matrices V,Q € M;(C) satisfy the following properties:

1) V is diagonalizable and Q nilpotent, i.e.

ui 0 0
rvr=p=| 0 " 0 ,0'=0,
0 -0
0 0 - u
where uj, j=1,2,...,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. VQ =V Q,

3) V and Q are polynomials in A, i.e. 3 p(x) s.t V=p(A) and Q=A—p(A).
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We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as

exp(A?) :ﬁ I—h,A*)”
p=1
=exp[(V +Q)(V + Q)] = exp[V2 +20V + Q%] = [exp(V?)] [exp(20V)] [exp(0?)]

:[ﬁ(’—hquq)l [ﬁ(’ hg[2QV]*)~ ] [T1G-h,0)" ] (4.139)

q=1 q=1 q=1

To determine the domain of convergence for exp(A?) = [T (I~ h,A%)~1 it suffices

1
to determine a domain of convergence for H°q°:1(1 — thzq)*l. Since sup (ﬁ) =1,
Theorem 4.5.1[(2.)] implies an estimate for the domain of convergence in the sense of
inverse convergence of [15_ (I — h,V)~!

Dy = {(x,y) € C*:4p(V)+2[p(V)]* < 1}.

We may use this information to obtain an upper bound on the spectrum of V. Since
2[p(V)]? < 1, we deduce that

V) < =

p NG
A similar calculation shows that |

A) < —,

p(A) 7

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D, = {(x,y) €C?: x| < ——~ and |y| < ———

1 1 }
4p(A) 4p(A)

Now let B,C € My(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its IMPPE?2 expansion

BC)

xy)? = LTR ﬁ(l — hy(BCxy)?) ™!
q=1

F(Bx,Cy) = exp(BCxy) =1+ Z

To determine the domain of convergence for exp(BC) = [I7_(I — hy(BC)1)™!, we use

1

Theorem 4.5.2[(2.)], along with sup (%) " =1, to obtain the following estimate in the
sense of inverse convergence:

D} = {(x,y) € C:2[p(B) +p(C)] +20(B)p(C) < 1}.

165



We may use this information to obtain an upper bound on the spectrum of B and C. Since
2p(B)p(C) < 1, we deduce that

p(B), p(C) <5,
and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

Dy = {(x.y) € €1yl < d ly| <

1 an 1 }
4p(B) 4p(C) )

Example 4.6.4. Let A,B,C,€ M;(C), where B and C are diagonalizable with BC = CB #
O. The techniques of Example 4.6.3 may also be applied to other matrix function such as

I+log(I—A?%), A %log(I—A?), cosA?, I+sinA?, A%sinA?,
coshAz, I+ sinhAz, A~ tanAZ, arccosAz, 1+ arcsinAz,
I+log(I—BC), BClog(I—BC), cosBC, I+sinBC, BCsinBC,
coshBC, [+sinhBC, BCtanBC, arccosBC, I+ arcsinBC.

We will demonstrate these techniques for cosA?, cosBC, A>sinA~2, and [BC]_1 sin BC,
leaving the rest to the reader. Let hy and hy be the scalar coefficients in the IPPE2 expan-
sions of the even scalar functions

o _1 Px2Py2p o
cosxy:H-Z a y :H hxzqyzq -
p=1 9=
- 1)px2py2p - A 2g 2g\—1
sinxy =xy |1+ ) ————— | =xy| |(1—hgx™y=)"".
pz::1 (2p+1)! qI;Il
First,
= (—1)PA%P =
cosA? =T+ Z L) =[] —hea*)~". (4.140)
p= ! g=1

1
. L (=P |r
Since s 1= sup > ’W

= % Theorem 4.5.1[(2.)] implies an estimate for domain of

convergence of T] (I — hqA4q)_1 in the sense of inverse convergence is
q=1

D1 = { (1) €€ 2p() + 5l <1,
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We may use this information to obtain an upper bound on the spectrum of A. Since

$[P(A)]? < 1, we deduce that

p(A) < V72,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

Dgz{(x,y)e(C2:|x| < 2p1(A) and |y| <2P1(A)}

For
oo (_1)p32pc2p i

cosBC=I+ )" BT T [T —nBC>) 7" (4.141)
p=1 P)- q=1

Theorem 4.5.2[(2.)] implies an estimate for the domain of convergence of T] (1 — hqxzqyzq)_1
g=1

in the sense of inverse convergence is

D) = {(x) € [p(B)+p(C)] + 3p(BP(C) < 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
1p(B)p(C) < 1, we deduce that

p(B), p(C) <2,
and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we

apply Theorem 4.5.2 [(3.)] to get

;o 2. 1 1
D, = {(x,y) eC x| < 2p(B) and |y| < 2p(C)}'
Next

—A 1‘[1 h A%~ (4.142)

2p+1)!

Since s 1= sup > ‘ ((71)17 = % Theorem 4.5.1[(2.)] implies an estimate for domain of
N 1

convergence of T] (I — hqA4‘1 )~ in the sense of inverse convergence is
q=1

D1 = { (v) € € 3p)+ WP <1},
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We may use this information to obtain an upper bound on the spectrum of A. Since

[P(A)]? < 1, we deduce that

p(A) <3V2,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D, = {(x,y) eC?: x| < 2p3(A) and |y| < 2p3(A)}

Finally it can be shown that an estimate for the domain of convergence of
—1)PB>PC?P

) = (
sinBC = BC |1 +
{ L @

= BC[ ] —h,B>C?)", (4.143)
g=1

in the sense of inverse convergence is

D = {(x2) € C: £ [p(B) +p(C)] + 7 p(BIp(C) < 1},

and that
p(B), p(C) <18,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D, = {(x,y) eC?: x| < 2p3(B) and |y| < 2p3(C)}

Example 4.6.5. Consider the scalar bivariate exponential function together with its IPPE2
expansion

F(x,y) =exp(x+y) =1+ 2; XY = l}(lfhmﬂﬂﬂﬂ . (4149
m—+n=p m+n=q

where hy,, € C. By the Jordan-Chevalley decomposition, every matrix A € M;(C) can be
uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A=V+Q

The matrices V,Q € M;(C) satisfy the following properties:
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1) V is diagonalizable and Q nilpotent, i.e.

up 0 -+ 0
ryr=p=| 0 " 0 ,0'=0,
0 .0
0 0 - uy
where uj, j=1,2,...,d are the d eigenvalues of A counting multiplicities.

2) V and Q commute, i.e. VQ =VQ,
3) V and Q are polynomials in A, i.e. 3 p(x) s.t V= p(A) and Q=A—p(A).

We will use this Jordan-Chevalley decomposition to rewrite exp(2A) as

oo

exp(24) = [] (I — hyp A"

q=1
m-+n=q

=exp(2V +20) =exp(2V)exp(2Q)

o0 d
= I1 (I—hm,nV’””)“” [T (U =hwa@™™)7". (4.145)

g=1 g=1
m+n=q m-+n=q

(=

To determine the domain of convergence for exp(2A) = [1 (I —hm A™) L it suffices

g=1
m-+n=q
oo 1
. . o m+n\—1 . 1 m+n __
to determine a domain of convergence for ] (I—hy,,V"™)~". Since sup [m!n!} =
g=1 m+n>1
m+n=q

1, Theorem 4.5.1[(2.)] implies an estimate for the domain of convergence of [] (I —

q=1
m+n=q

hmyanJ””)_] in the sense of inverse convergence is
D; = {(x,y) € C*:4p(V) +2[p(V)]* < 1}.

We may use this information to obtain an upper bound on the spectrum of V. Since
2[p(V)]? < 1, we deduce that

A similar calculation shows that



and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D, = {(x,y) eC?: x| < 4pl(A) and |y| < 4pl(A)}

Now let B,C € My(C) be two commuting diagonalizable matrices. Consider the power
series F(Bx,Cy) together with its IMPPE?2 expansion

F(Bx,Cy) =exp(Bx+Cy) =1+ Z XMy
p=1

m+n=p

=LTR [] (I—huaB"C'x"y")~".

g=1
m-+n=q

oo

To determine the domain of convergence for exp(B+C) = [1 (I —hu,B"C")7", we

q=1
m+n=q
1

use Theorem 4.5.2, along with sup [L "™ — 1, to obtain the following estimate in

m!n!}
m+n>1
the sense ofinverse convergence.

D} = {(x,y) € C*:2[p(B) +p(C)] +2p(B)p(C) < 1}.

We may use this information to obtain an upper bound on the spectrum of B and C. Since
2p(B)p(C) < 1, we deduce that

p(B). p(C) < 5.

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

1
D) = {(x,y) €C?: x| < —+= and |y| <

#O)
w0 (5) w0

Example 4.6.6. Let A,B,C, € M;(C), where B and C are diagonalizable with BC = CB #
O. The techniques of Example 4.6.5 may also be applied to other matrix function such as
I+log(I—24A), (2A4) 'log(I—2A4), cos2A, I+sin2A4, 2Asin2A,
cosh2A, [-+sinh24, (24) 'tan24, arccos2A, I+ arcsin2A,
I[+log(I—[B+C]), [B+C]log(I—[B+C(]), cosB+C, I+sin(B+C),
[B+C]sin(B+C), cosh(B+C), I+sinh[B+C], [B+C|tan(B+C),
arccos (B+C), I+ arcsin(B+C).
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We will demonstrate these techniques for cos2A, cos(B+C), [2A]'sin24, and [B +
C]!'sin (B+C), leaving the rest to the reader. Let hy,, and fzm’n be the scalar coefficients
in the IPPE2 expansions of the even scalar functions

cos(x+y)=1+ Z (=) XMy = H(l—hm,,,xmy")*l,
= In! e
mi’n:Zp mﬁn:Zq
sin(x+y) = (x+y) |1+ (x+Yy) 12 —i—y)Z"“]
n:l
> (=D & 2n\ oo,
=(x+y) 1+Z Z(,)x’y"/
n:l +1 j=0 J
(x X
2 :1 m+n+1) m Y
m-+ n=2,
4+ [T =A™y ™!
=1
m—Zn 2q
First,
- (_l)m;n m+n = m—+n\—1
cos2A=1+ Y ~——A""= [JU—hn A" (4.146)
o m!n! ol ’
m-+n=2p m+n=2q
min | _1_
Since s:= sup ‘(Zz),n,z "™ =1, Theorem 4.5.1 implies an estimate for domain of con-
o !
mJj:n_:Zp

vergence of 1 (I —hy,A™™) " in the sense of inverse convergence is
g=1
m+n=2q

Dy = {(x,y) € C*:4p(A) +2[p(A)* < 1}.

We may use this information to obtain an upper bound on the spectrum of A. Since
2[p(A))? < 1, we deduce that

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D, = {(x,y) eC?: x| <

1
4 bl < 35

1
—Q an
4p(A)
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For

cos(B+C) =1+
q=1

oo M oo
Z ) B"C"= []U—hmaB"C"". (4.147)
1
m+n=2q

Theorem 4.5.2 [(2.)] implies an estimate for the domain of convergence of ] (I —
qg=1
m+n=2q

in the sense of inverse convergence is

hm’anCn)—l
[p(B)+p(C)] +2p(B)p(C) < 1}.

D} ={(x,y) €C*:2
We may use this information to obtain an upper bound on the spectrum of B and C. Since

2p(B)p(C) < 1, we deduce that

p(B). p(C) < 5.

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we

apply Theorem 4.5.2 [(3.)] to get

1 1
D, = 2. — .
2 {(x,y)e(c |x’<4p(B) and |y‘<4p(c)}

Next
Sin2A =24 |1+ Z % M g | ZDATT (1= b A™ ). (4.148)
(m+n+1)! m i m,n . .
m+n 2p m+n=2q
m+n _1
Since s:= sup ’% (m,:”) = % Theorem 4.5.1 implies an estimate for domain
p=1 '
m+n=2p

oo
of convergence of [1 (I —hmaA™™) "1 in the sense of inverse convergence is
g=1
m+n=2q

4 2
D = €C*: —p(A)+3[pA))<1y.
= {e e Zpw 3w <1f
We may use this information to obtain an upper bound on the spectrum of A. Since

2[P(A)]* < 1, we deduce that
V3



and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

and |y| < 4p\/(§A)}

Finally it can be shown that an estimate for the domain of convergence of

D, = {(x,y) eC?: x| < 4p(?4)

sin (B +C) =[B+C] [1+ y (_l)mzﬂ<m+">3’"c"}

= (m+n+1)!'\ m
m+n=2p
=B+C[]U - hnaB"C")", (4.149)
=1
m—zn:Zq
in the sense of inverse convergence is
, , 2 2
D} = {(x.) € € = [p(B)+p(C)] + 3p(B)p(C) <1},

and that

p(B). p(C) <3,

and to obtain the domain of absolute convergence in the sense of Definition 4.4.4, we
apply Theorem 4.5.2 [(3.)] to get

D) =4 (x,y) € C?: x| < and |y| <
p={len) €€ < o and bl < s
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Appendix A

Double Series

In order to study the factorization of complex bivariate analytic function, we will need to
know some things about double series. As in the case of single series ), a, we will define
convergence of a double series ., ,—odm, in terms of convergence of double sequence

(amﬂ):;,n:O'

A.1 Double sequence

This section on double sequences is meant to be used as a preparation for the upcoming
sections on double series.

A double sequence (in C) is a complex-valued function f whose domain of definition
is the set N3 = Ng x N := {(m,n) : m,n € Ny} and whose domain contained in C, where
No = NU{0} and a,, , = f(m,n) for all (m,n) € N3. We will denote double sequences by
(@mn) () enz- The double sequence may also be written schematically as follows:

apo aopl ... Aon

al_’() ai al‘n
(am,n) =

am0 Adm1 --- Amn

Most of the results about a double sequence are analogues to results about a single se-
quence.

Definition A.1.1. [28]. We say that a complex double sequence (ay ) is convergent
if there exists a € C satisfying the following condition: For every € > 0, there exists
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(mo,no) € N3 such that
lamn—al <€ Y (m,n)>= (mg,ng)

A double sequence that is not convergent is said to be divergent. In particular, if for
every a € R, there is (mg,no) € N3 such that |a,, .| > & for all (m,n) = (mo,no), then we
say that (a;,,) diverges to co and we write a,, , — co. Similarly, (a,,,) diverges to —oo if
for every B € R™, there is (mg,n9) € N3 such that a,, , < —f for all (m,n) = (mg,no). For
example, if (@) := 1/(m+n) if (m,n) € N3\ {(0,0)} and (@) := 0 if (m,n) = (0,0),
by :=m+n, and ¢, = (i)™ for (m,n) € N(z), then a,, , — 0 and (b, ») diverges to oo,
while the double sequence (¢, ,) is bounded, but divergent.

Theorem A.1.1. Suppose ay, = Xinn + iymn and a = x +1iy. Then,

Iim a,,=a (A.1)
(mn)—(e0,00)
if and only if
lim x,,=x and lim o = A2
() (omm) (m)r(ense) ™" (A2

Proof. First, we suppose the condition (A.1) holds. Then, for each positive number €
there is (mo,n9) € N3 such that

|(Xmon + Ymn) — (x+1iy)| < €, whenever (m,n) > (mg,ng).
Since,
X = X| < (= %) +iVmn = )| = [(Xonn + iymn) — (x+ 1Y),
and
Y =Y < |G = %) +iGmn — 3| = [Comgn + Ymn) — (x+¥)],
consequently, we have
|Xmpn—x| <€ and |y,,—y| <€, whenever (m,n) > (mg,np).

Evidently, conditions (A.2) are satisfied.

Conversely, assume that conditions (A.2) hold. Then, there exist for each positive €,
(my,n1), (ma,n2) € N3 such that

€
X — x| < 5 whenever (m,n) = (my,n;),
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and

€
[yma —y| < > whenever (m,n) = (my,ny).

Let (mg,ng) = max { (m;,n;), (mz,n2) }. Then, we have

X — x| < %, and |yma—y| < g, whenever  (m,n) = (mp,np).
Since,
| G+ Vman) = (e 19) | = [ (iman = %) + i = ¥)]
< ot — x|+ [ — |-
Hence,

E &£
‘am,n_a‘ < 54-5 =¢, whenever (m,n) = (mg,ngp).

Thus, the condition A.2 holds. O

The Limit Theorem for double sequences says that if a,,, — a and b,,,, — b, then
amp +bmn — a+b, ray, — ra for any r € C, ay by, — ab, and if a # 0, then there
is (mo,no) € N3 such that @y, , # 0 for all (m,n) = (mg,no) and 1/a,,, — 1/a; further,
if there is (my,n;) € N% such that a,, , < by, for all (m,n) > (my,n;), then a < b, and

if a;y,, > 0 for all (m,n) € N2, then a%,’i — a'/* for any k € N. Also, if a,,, — a, then

| | — |a|, but the converse does not hold unless a = 0.

Another useful result is the Sandwich Theorem for real double sequences: If (a,»),
(bm,yn), and (cp,,) are real double sequences such that @, , < ¢y < by p, and if ¢ € C is
such that a,, , — ¢ and b, , — ¢, then ¢,, , — ¢ as well.

A double sequence (a,,) is called a Cauchy double sequence if for every € > 0,
there exists (mg,np) € N% such that

lap.g —amn| < € forall (m,n),(p,q) > (mo,no).

The following result enables us to confirm that a double sequence converges without spec-
ifying its limit.

Theorem A.1.2. (Cauchy Criterion for Double Sequences)[28]. A double sequence is
convergent if and only if it is a Cauchy double sequence.

Proof. Let a,,, — a as (m,n) — (s0,0) and let € > 0. Then there exists (mq,n9) € N3
such that |a,, , —a| < € for all (m,n) = (mg,no). Hence,
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for all (p,q) = (m,n) = (mg,np), we have
|al’7‘1 - am7n| :|a17,q —a+a— am,n|
<lapq—al+|amn —al

<8+8—8
-2 2 7

Conversely, let () be a Cauchy double sequence and consider the subsequences (b,)
defined by b, := (ay,,) for all n € Ny. Therefore, by Cauchy’s Criterion for single se-

quences, the sequence (b,) converges. Let b, — b and let € > 0 be given. Then there is
n € N such that

by — b| < g forall 7> N. (A3)
Since (ay ) is a Cauchy sequence, there exists (N',N’) > (N,N) such that
lamn — ap gl < g forall (m,n),(p,q) = (N',N'). (A4)
Then by (A.3) and (A.4) we have

|am,n —Cl‘ < ’am,n _aN’,N’| + ‘b;\/ - b’

e €
<35 =€ forall (m,n) = (N',N). (A.5)

Hence, (an,,) converges to b. O

To each double sequence (a,,,,) there corresponds three important limits; namely:
(1) 1im( 1) s (o0,00) G-
(i) 1imy o (1imy—so0 dimp)-
(iif) 1imy oo (iMoo Gy )-

The important question that is usually considered in this regard is the question of when
can we interchange the order of the limit for a double sequence ay,,,; that is, when the
limit (ii) above equals the limit (iii) above. The following result gives a necessary and
sufficient condition for the existence of an iterated limit of a convergent double sequence:

Theorem A.1.3. [28] (Iterated Limits of Double Sequences). Suppose (ay,,) is a con-
vergent double sequence and let a,, , — a as m — oo and n — oo

(1) Iflim, ey exists for each m € Ny, then the iterated limit
lim ((lim ).
m—oo “p—yoo

exists and it is equal to a.
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(ii) Iflimy,—seo Gy » exists for each n € Ny, then the iterated limit
lim ( lim ay,).
n—oo “m—soo

exists and it is equal to a

(iii) If the hypotheses in (i) and (ii) above hold, then the double sequence (ay,,) is
bounded and

Jim (i an) == i (i ).

Proof. Let a,, , — a as (m,n) — (e0,0) and let € > 0 be given, then there exists (g, ngp) €
N3 such that

&
lamn—al < X Y (m,n) = (mo,np).

Assume that lim,,_,c. @y, = by, exists for each m € No. We need to show that lim,, e b, =
a for each m € Ny. Let € > 0 be given, then for each m € Ny there is k,, € Ny such that

€
|am,n*bm| < 5 V' n>ky.
Let m > my, if we let nj := max{ng, k }, then

£ €
St5 =€

|bm —a| < |bm_am7n1|+|am,n1 —al < y T T

Hence, b,, — a as m — oo. This proves (i). The proof of (ii) is similar with an interchange
of the n and m symbols.

Suppose now that the hypotheses in (i) and (ii) hold. Since |a,, | — |a|, there exists
(my,ny) € N% such that

|amal <1+lal ¥ (m,n) = (my,n). O

We give examples to show that if any of the hypotheses in the above proposition is
not satisfied, then the conclusion(s) may not hold.

Example A.1.1. (i) Let

. .:{(—Umﬂ%;+;>.mr (m,n) € N3\ S
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where S = {(0,0)} U{(m,0)}U{(0,n)}, m,n € N. Since |ay,| <1/m+1/n for
(m,n) € N3\ {(0,0)}, we see that a,, — 0. However, limy_ccdy , does not exist
for any fixed m € N. Indeed,

mp = (—1)" [(—1)”/n+ (—1)’”/;4 forall (m,n) € N3\S.

and (—1)"/n — 0 as n — eo, while lim,_,.(—1)" /m does not exist.

(ii) Let
mn/(m?>+n*) for (m,n)€NZ\S
Amn i=
7 0 for (m,n) €S
where S = {(0,0)} U{(m,0)} U{(0,n)}, m,n € N. Then for each fixed m € N,
limy, o0 Ay exists and it is equal to 0, since |am,,| < m/n for all n € N. Similarly,

for each fixed n € N, limy,_,co Gy, exists and it is equal to 0. However, (ay, ) is not
convergent, since (apy,) = 1/2if m=nand ay,,, =2/5 if m =2n.

(iii) Let
mf(m-+n) for (mm)eN\S
Amp =
’ 0 for (m,n) €S
where S = {(0,0)}U{(m,0)} U{(0,n)}, m,n € N. . Then for each fixed m € N,
limy,—ye0 @y n = 0, and for each fixed m € N, 1imyy, 00 @y n = 1. Hence, limy, oo (limy, 00 . ) =

0, whereas 1imy,_,eo(limyy—sc0 ) = 1. Notice that (ay, ) is not convergent, since
ampn=1/2ifm=nand ay, =2/3 if m =2n.

A.2 Monotone Double Sequences

In this section, we define increasing and decreasing sequences of real numbers and we
demonstrate a monotone convergence theorem for such sequences that are parallel to their
counterparts for single sequences.

Definition A.2.1. [28]. Let (a ) be a double sequence of real numbers.

(i) If amp < ami1p and apmp < ampi1 for all (m,n) € N2, we that say the sequence is
monotonically increasing.

(ii) If Amp > amy1 0 and Gy > A py for all (m,n) € N3, we that say the sequence is

monotonically decreasing.
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Observe that a double sequence (a,, ) is monotonically increasing if and only if
ampn < ap, forall (m,n),(p,q) €N§ with (m,n)=(p,q).

Also, a double sequence (a,,,) is monotonically increasing if and only if for each fixed
m € Ny, the sequence given by n — a,, , is (monotonically) increasing and for each fixed
n € Ny, the sequence given by m — a,,, is (monotonically) increasing. Likewise for
monotonically decreasing double sequences. A double sequence is said to be monotonic
if it is monotonically increasing or monotonically decreasing.

Theorem A.2.1. [28]. (Monotone Convergence Theorem) A monotone double sequence
of real numbers is convergent if and only if it is bounded. Further:

(i) A monotonically increasing double sequence (ay, n) is convergent if and only if it is
bounded above. In this case,

) 2
Amp — Sup{am,n . (l’l’l,l’l) € NO}
If (am,n) is monotonically increasing, but not bounded above, then a,, , — oo.

(ii) A monotonically decreasing double sequence (an, ) is convergent if and only if it
is bounded below. In this case,

amp — inf{ay, , : (m,n) € N3}
If (am,n) is monotonically increasing, but not bounded below, then a, , — —oo.

Proof. Let (a,,,) be a monotonically increasing double sequence. Suppose it is bounded
above, and let a := sup{a,,, : (m,n) € Nj}. Given € > 0, there is (mg,n9) € N such
that a — € < ay, 5, ( then a — € is not an upper bound for the set sup{a, , : (m,n) € N%}).
Hence

a—€<amyn < amp <a<a+e forall (m,n) = (mg,no).
Thus a,,, — a

Conversely, suppose () is convergent and a,, , — a. Then there is (mo,n9) € N3
such that

amp < a+1 forall (m,n) > (mg,np).

Now given any (m,n) € N3, we have (m+mg,n+ng) = (m,n) as well as (m+mg,n +
no) = (mo,no), and so

Amn < Amtmgntng < A+ 1.

Therefore, (a,) is bounded above by a+ 1. If (a,, ) is not bounded above, then given
a € R, there is (mg,np) € N3 such that dy, », > . But then @y, > g n, > ¢ for all

(m,n) = (mg,no). Thus a,,,, — . This completes the proof of (i). A similar proof can be
given for (ii). O
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Corollary A.2.1. A monotonic double sequence (ay.,) is convergent if and only if the
sequence (a, ,) of its diagonal terms is convergent. In this case,
lim  apy,= lima,,.
(ma)—(eope) | pmee PP
Proof. Suppose (d,,,) is a monotonically decreasing sequence. For any (m,n) € N3
we let p := max{m,n}, then a,,, > a, , . Consequently, {@,, : (m,n) € N3} is bounded
below if and only if {a, , : p € Ny} is bounded below, and in this case, inf{a,, : (m,n) €

N(z)} =inf{a, , : p € Ng}. Hence Theorem A.2.1 yields the desired result. The case of
when (a,, ) is a monotonically increasing double sequence is proved similarly. O

A.3 Convergence of Double Series

Let (ay¢) be a double sequence of complex numbers, we define Y. Y (k,0) Gk, as a double
indexed infinite series of complex numbers. We define the associated sequence of partial
sums (sy,,,) via the finite sum

m n
Sman =3, ) ke =Y axe = (aoo+--+aos) ++ (@mo++dma),
k=0/¢=0 (())gl;gm
<t<n

forall (m,n) € N3. Moreover, we have

)
Qo = Skt — Skt—1 — Sk—1,0 +Sk—10-1 ¥V  (k,0) € Ng,

where s; 1 :=0forallk=0,1,2,... ands_;,:=0forall =0,1,2,...

We say that a double series ).} 4 ¢) ak ¢ is convergent to the sum s if
1imyy, 00 S, = 5. If no such limit exists, we say that the double series

Y Y (k.¢) k¢ is divergent.

By considering the real and imaginary parts, we see that the series }.}' ¢) ax¢ con-
verges if and only if both Y.} »)Re(ar ) and Y} 4 o Im(ax ) converge. If this is the
case, then

Y Y (ko) Akt = L (ko) Re(axe) +i <ZZ(k,e) Im(ak.[)) .

Indeed, for any (m,n) € N%, Smn = Resy , +ilms,, ,, and s,, ,, converges if and only
if both s,, , = Re s, and s, , = Ims,, , converge.

As with single series, a simple and useful way to demonstrate that a double series is
divergent is to use the following test, which gives a necessary condition for a double series
convergence:
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Theorem A.3.1. ((k,¢)th Term Test)[28]. If Y Y (k0) ak.¢ is convergent, then axy — 0 as
k, — oo. In other words, if ax ¢ + 0 as k, € — oo, then Y.} o) ax ¢ is divergent.

Proof. Let }.} ;¢ ar¢ be a convergent double series. If (sk,¢) is the double sequence of
its partial double sums, such that sy — a as (k,¢) — (e0,). So given € > 0, there exists
(ko, ¢o) € N2 such that

v (k) = (ko, bo),

B~ m

Iske—al <
then we have

lak.e| = ISk — Sko—1 — Sk—1.0 + Sk—1,0-1|
<|sko—al+|sce—1 —a| +|se—10—a| + |sk—10-1 —a

Therefore, ax; — 0 as (k,£) — (e0,00). O

The following result gives a sufficient condition for the convergence of certain “prod-
uct series,” and is often helpful:

Theorem A.3.2. [28]. Let Y, by and Y ,c; be series of real numbers and let ay; = bycy
for (k,) € N3. Then the following results hold:

(i) If Yu by and Y ycy are both convergent, then the double series
LY (k,0) A(k,e) Is convergent and moreover, 3.3 o) A(x.r) = Li bk Lo Co.

(ii) If Y by and Y, cy are both diverge to oo, then the double series
LY (k0) Gk ) diverges to o,

(iti) If'Yp by converges to B # 0, while Y ;¢ is divergent, then the double series Y.} 1) a(x,)
is divergent.

Proof. Let (B,,) and (C,) denote the sequences of partial sums of the series ) ; by and
Y., ce respectively. Also, let (s, ,) denote the double sequence of partial double sums of

ZZ(k,é) a(k’g). Then

m n

Smpn = (Z bk> <Z c£> =B,C, Y (m,n)e€ N(z).
k=0 (=0

Therefore, if B,, — b and C,, — ¢ for all b,c € C, then s,,, — bc. Also, if B,, — o and

Cin — oo, then s, , — oo. This proves (i) and (ii) Moreover, if B,, — b with b # 0 and if

the double sequence (s, ,) converges to s, then (C,) converges to s/b. This proves (iii).

O

182



Example A.3.1. [28].

(i) (Geometric Double Series) Let x,y € C. Define ay := Xy for k0 € Ng. The
double series ).} ) Ak, where the index (k,€) varies over pairs of non-negative
integers is called the geometric double series. Hence from part (i) of Theorem
A.3.2, we see that the geometric double series is convergent if |x| < 1 and |y| < 1;

moreover,
_ ¢
ZZ(k,E)aM = ZZ(k,é)z(0,0))d{ Y
1
=——— for |x|<1 and |y|<1.
(o M "

Further, if |x| > 1 and |y| > 1, then |x*y'| = |x[¥|y|* > 1 for all k,I € Ny. Hence
fromthe (k,1)th Term Test (Theorem A.3.1), we see that the geometric double series
is divergent. Finally, since l%z is nonzero whenever z € C with |z| < 1, it follows
from part (iii) of Theorem A.3.2 that if only one of |x| and |y| is less than 1, then
the geometric double series is divergent. Thus we see that geometric double series

YY)k ¢ is convergent if and only if [x| < 1 and [y| < 1.

(ii) (Exponential Double Series) Let x,y € C. Define ay, = }i—% for k,0 € Ny. The
double series ).} i ¢)ax ¢, is called the exponential double series. From part (i) of
Theorem A.3.2, we readily see that the exponential double series is always conver-
gent and

xkyt
ZZ(k,ﬁ)“kvf - ZZ(H)E(O:O) k! o!

— exp(x)exp(y) =exp(x+y) for xyeC.

(iii) (Harmonic Double Series and Their Variants) The double series

Z):(M)m can be regarded as analogues of the harmonic series

Yi—o ki—l, and either of the two double series may be referred to as a harmonic
double series. We know from the theory of (single) series that the harmonic series
diverges to o. Hence by part (ii) of Theorem A.3.2, we see that the double series
ZZ(M)W diverges to . More generally, for any p € R, we know that the
series Y j_o1/(k+1)? is convergent for p > 1 and it diverges to o for p < 1. Thus,
using parts (i), (ii), and (iii) of Theorem A.3.2, we see that for any p,q € R,

<~ p>1 and g>1.

1
2 LG i o
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As for the other version of the harmonic series, namely the double series .} ¢ 1(k+
L+2), we also find that it diverges to o, since

m n 1
ZOEZZ) k+£+2 sz forall (m,n) € N.

Next, we consider the series YY) 1/(k+£+2)*. For n € Ny, the terms of a
double sequences (ary) = 1/(k+€+2)? are given schematically as follows:

o111 11
4 9 16 25 36 49
i1 T T T
9 16 25 36 49 64
TS e (R W G
16 25 36 49 64 81

(@)=73 % © @ ' 0

a =

S R R G VS S i
36 49 64 81 100 121
O W W G o
49 64

0
—
—_
S
o
—
B )
it
—_
~
=

Summing the terms (ay ) = 1/(k+ £+ 2)?* diagonally shows that

Y Y1/ (k+e+2) =
(k.0)

n—1

n=2

Thus the double series .Y o 1/(k+ £+ 2)? diverges to o. This indicates that the
threshold for the convergence of YY) 1/ (k+£+4-2)P is not p = 1.

The following statements concerning the convergence of a double series are extracted
from the corresponding statements for the convergence of a double sequence given in
Section A.1:

(i) (Limit Theorem) Let ¥ ¥ ars = A and ¥.¥0bre = B. Then LY (ar +
ary) =A+B and Zz(kj)(rak’g) = rA for any r € C. Further, if a; ; < by, for all
(k,¢) € N?, then A < B.

(ii) (Sandwich Theorem) If (ay;), (by;), and (cx,;) are double sequences of real num-
bers such that ay; < cx; < by for each (k,¢) € N(z), and further if ¥ Y paxe = A
as well as ZZ(k’g)bkj =A, then X ¥k r)Ck 0 = A.

m n

(iii) (Cauchy Criterion) Consider the associated sequence s,,, = Y, Y, ai of partial
k=0£=0

sums of Y.} pak¢. the given series converges if and only if its sequences of

partial summs s,, , is convergent and that is convergent if and only if it is Cauchy
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(Theorem A.1.2). Thus }. ). s a ¢ is convergent if and only if for & > 0 there exists
(mo,no) € N3 such that

1Sp.g — Smn| < E forall (m,n) > (p,q) = (mo,nop).

But for (m,n) > (p,q), we have

|Sp.g — Smn| = Z Z ake+Z):au+ Z Zau

k=p+1l=g+1 k=p+1(=1

We will now relate the convergence of a double series 3} ¢)ax.¢ to the convergence
of the two series Yo (L7 aks) and Y5 (Lo ax.¢). For each fixed k € Ny, the (single)
series ) yay ¢ is called a row-series, and for each fixed ¢ € Ny, the (single) series } ; ay ¢ is
called a column-series (corresponding to the double series Zz(k74)ak74).

Theorem A.3.3. [28]. (Fubini’s Theorem for Double Series)
Assume that }.¥ i ¢)ak.¢ is a convergent double series and let s denote its double sum.

(i) If each row-series is convergent, then the corresponding iterated series Y . (Y7o ax.r)
is convergent and its sum is equal to s.

(ii) If each column-series is convergent, then the corresponding iterated series Y.;_ (Y ;- k)
is convergent and its sum is equal to s.

(iii) If each row-series as well as each column-series is convergent, then the double
sequence of partial double sums of Y.} )k is bounded, and

2 (Y ) = ZZ(k,é)akvé = Z Z ar)
k=0 i=0

(=0 k=

Proof. Let s, , be the double sequence of partial double sums of }.3 ; ¢jax . By our
assumption, Sy, , — .

Suppose each row-series is convergent. Then for each fixed m € N,
m n m n m oo
soi= im s = Jim 3 Yo=Y (fim Y ) = 3 (L)
" " k=0i=0 k=0 \""" =0 k=0 \ /=0

Hence by Theorem A.1.3, the iterated limit lim (lim s,, ,) exists and is equal to s, that is,
m—o0 n—ro0

m ')
HEILI;]{;O <({§)ak’£> = S.
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Thus the iterated series lim (lim s,,,) converges and its sum equals s. This proves (i).
M—yoo n—roo

The proof of (ii) is similar.

Finally, suppose each row-series as well as each column-series is convergent. Then
for each fixed m € Ny, the limit lim, . s, » exists, and for each fixed n € Ny, the limit
lim,;;—se0 $im » €Xists. Hence by part (iii) of Theorem A.1.3, s,, , is bounded. The last part
of (iii) follows from (i) and (ii). O

Example A.3.2. [28].

(i) Even if a double series }.} i ¢)ak,c converges, both the iterated series may diverge.
For instance, consider a double sequences (ay;), (Smna) given schematically as

follows:
1 1 1 1
1 -3 -1 -1
(ak,é)zl -1 0 O
1 -1 0 O
1 2 3 4 — o
2 000 - 0
3000 —- 0
(Smn)=4 0 0 0 — 0
R 1
VLl N0
o 0 00 — 0 O

Then s, = n for all n € Ng and s,,0 = m for all m € No,while s,,,, = 0 for all
m,n > 0. Hence LY (1), = My 1) (co00) Smn = 0. But Yj_gao ¢ = n for all
neNandYy yai,= —n forall n > 1, while Y ;' axo = m for all m € N and

Yitoar1 = —morallm> 1. Hence Y ;. ao, and Y i ao diverge to o, whereas
Y oaie and Y gax, diverge to —oo. Clearly, none of the iterated series is even
well defined.

(ii) Even if both iterated series Y ;. (Y7o axe) and Y5 o(Xr—o k) converge and have
the same sum, the double series may diverge. For example, consider a double
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sequences (ax ), (Smn) given schematically as follows:

2 0
o 2 0 -1 0 O
0

221 111 - 1
243222 = 2
1 34322 )
1 23 432 )
(Sma)=1 2 2 3 4 3 )
S )
LLLLLy N2
1 22222 = 2 4

Then Y gay is equal to 1 if k =0 or 1, and it is equal to 0 if k > 2. Simi-
larly, Y i oaky is equal to 1 if £ =0 or 1, and it is equal to 0 if £ > 2. Thus
Yoo(Xrioane) =2=Y7o(Xio k) But smn="4forallm=n>1and sy, =
3 for all m > 2, so that the double sequence (Sm,n) is divergent, that is, the double
series Y.} (k) Gk.¢ IS divergent.

(iii) Even if both iterated series Y i _o(X 7 oare) and Y ; o(Xr_oake) converge, their
sums may be unequal. For example, consider a double sequences (ay;), (Smn)
given schematically as follows:

o 1 0 0O

-1 I 00
()= 0 —1 010
' 0 0 -1 01
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0 1 1 1 — 1
-1 0 1 1 - 1
-1 -1 0 1 — 1
(Sm,n):_l -1 -1 0 - 1
: : : : A
4 N1
-1 -1 -1 -1 - -1 0

Then Y ;> axy is equal to 1 if k = 0 and it is equal to 0 if k > 1, whereas Y ;" axs
is equal to —1 if £ =0 and it is equal to 0 if ¢ > 1. Hence Y ;. o(Yi_oars) =1,
while Y5 o(Xr_oake) = —1. Since sy, =0 for all m € Ny, s, = 1 forallm <n
and sy, = —1 for all m > n, then }.} i p\ax.¢ is divergent.

A.4 Cauchy Product of Double Series

The Cauchy product of sequences (ay) and (by) with k € Ny, is defined to be the sequence
(ag * by), where ay by := Z?:o aiby_; for k € Ny and the Cauchy product of single series
Y i—oar and Y ;_o by is defined to be the double series ) ;_qay * by . Analogously, the
Cauchy product of double sequences (ay¢) and (b ) with (k,£) € N3, is defined to be the
sequence (ay ¢ * by ¢) defined as

k ¢
(ak’g *bk’g) = Z Z ai,jbkfi,lffj for all (k,f) € N%,
i=0 j=0
and the Cauchy product of double series };",_qgax s and Y ;°y_qbi ¢ is defined to be the
double series Z;’E:O age* by e. A classical result of Mertens states that if one of the given
single series is absolutely convergent and the other is convergent, then their Cauchy prod-
uct series is convergent. Another result due to Abel states that if both the given single
series and their Cauchy product series are convergent, then the sum of the Cauchy prod-
uct series is equal to the product of the sums of the given series. It has been known for long
that the exact analogue of Mertens’ result does not hold for double series. The example
below shows that the exact analogue of Abel’s result does not hold for double series.

Example A.4.1. Consider a double sequences (ax¢),(bk ¢)given schematically as follows:

1 1 1 1 1
1 -1 -1 -1 -1

(axe) = 0 0 0 0 0
0

188



(=N elNe o)
(=N ool e)
S O O O

Then, the double series Yy ¢— k¢, Yk 10 bi,¢ are convergent, and the sum of each is equal
to 0. Also, it is easy to see that

1 00 0O
0 00 0O
(ax.o % bre) _0 0 0 0 O
000 0O

50 that ¥y g—o k0 * by ¢ is convergent, and its sum is 1.

A.5 Double Series with Non-negative Terms

The following necessary and sufficient condition for the convergence of a double series
with non-negative terms is very useful:

Theorem A.5.1. [28]. Let (ax;) be a real double sequence such that ar; > 0 for all
(k,1) € N3 . Then Y Y (k.0)ak ¢ is convergent if and only if the double sequence (syn) of its
partial double sums is bounded above, and in this case

ZZ(k,z)aW = sup{su, : (m,n) € N(z)}.

If (Smn) is not bounded above, then Y. ¥ i p\ax ¢ diverges to oo.

Proof. Let Y.Y ( sax, be a double series with ax e >0 ¥V  (k,{) € N2, then we have
Smt-1n =Smapn +Am+1,1 -+ Amt1.0 > Sm,n and Smp+1 = Smpn T A1p+1 1+ Ampt1 > Sm,n
for all (m,n) € N3. Hence the double sequence (s,,,) is monotonically increasing. By part
(i) of Theorem (A.2.1), we see that (s, ,) is convergent if and only if it is bounded above,
and in this case

ZZ(u)ak’g = lim )sm’n = sup{sy, : (m,n) € N3}.

(m,n)—(co,00

Moreover, if (s,,,,) is not bounded above, then s, , — oo, that is, the double series ZZ(,(’ )kt
diverges to co. O
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The previous theorem shows that if a double series } ). s)ak with non-negative terms
is convergent and s is its double sum, then the double sequence (ay ;) of its terms as well
as the double sequence (s, ,) of its partial double sums is bounded. This follows by
observing that in this case, 0 < ai; < s; < s for all (k, /) € N(z).

Corollary A.5.1. [28]. A double series of non-negative terms }.} i o\ax,¢ either converges
to a finite number s or else it diverges properly to oo.

A result similar to Theorem A.5.1 holds for double series with non-positive terms.
More generally, when the terms ay ; have the same sign except possibly for a finite number
of them, then }.} s ax, is convergent if and only if (Sm,n) is bounded. However, if
infinitely many ay;’s are positive and infinitely many ay;’s are negative, then Y.} ) ax.¢
may diverge even though (s, ) is bounded, and (s,, ,) may be unbounded even though
2 Y (k,0)ax¢ 1s convergent. These two statements are illustrated respectively by the double
series given schematically as follows:

1 0 0 O 1 -1 0 0
-1 0 0 O 1 -1 0 0
(@e)=1 000 and  (b)=1 -1 00
100 0 YT 210 0

For double series with nonnegative terms, the following result is an improvement over
Fubini’s Theorem for double series (Theorem A.3.3):

Theorem A.5.2. (Tonelli’s Theorem for Double Series)[28]. Let (ay ;) be a double se-
quence such that ax; > 0 for all (k1) € N% . Then the following statements are equivalent.

(i) The double series ZZ(k,e)ak.ﬁ is convergent.
(ii) Each row-series is convergent and the iterated series Y ;o (Y7 ax.¢) is convergent.

(iii) Each column-series is convergent and the iterated series Y.; (Y r—oarr) is con-
vergent.

In this case,
Y (Y= E¥ o= Y (Y )
k=0 (=0 (=0 k=0

Proof. Suppose (i) holds. If ZZ(k,e)ak,é = s, then in view of Theorem A.5.1, Y/ ax ¢ <
sg.n < s for each fixed k € Ny and all n € N. Thus each row-series is a (single) series
with non-negative terms whose partial sums are bounded, and hence it is convergent. By
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Fubini’s Theorem (Theorem A.3.3), it follows that the iterated series } ;" (Z‘;:O ak_,g) is
convergent and its sum is equal to s.

Suppose (ii) holds. Then for

m n m o - -
Sman = Z Zak,f < Z <Zak.g> < Z <Zak.€> —a.
k=0(=0 k=0 \ /=0 k=0 \ /=0

Therefore, by Theorem A.5.1 the double series }.} ¢)ax ¢ is convergent.

This establishes the equivalence of the statements (i) and (ii). The proof of the equiv-
alence of the statements (i) and (iii) is similar. The equality of the double sum and the
sum of either of the two iterated series is also established in this process. O

Examples A.3.2 show that the non-negativity of the terms of the double series in
Tonelli’s Theorem cannot be omitted. The question of the convergence of a double series
Y. ) (x,0)ak,¢ With non-negative terms can be reduced to the question of the convergence of
each of the following two (single) series, which correspond to summing the double series
Y)Y (k,0)ak, “by squares” or “by diagonals” as illustrated in Figure 1.

1. The (single) series Z;f’:o b; where for each j € Ny, b; is the sum of all those terms
ay,¢ such that one of k and / is equal to j and the other is at most j, that is, b; :=
j i—1
Y oaij+Yi_yaj;. Thus bg=aog,by =ao; +ai+aig,br=apr+air+ay,+
a» o+ a1, and so on.

2. The (single) series }7 c; where for §ach J € No, ¢; is the sum of all those terms
ag such that k+( = j, thatis, ¢ := Y.y a;-i;. Thus co =a,c1 = aro+ao,1,c2 =
ap+ai,1 +app, and so on.

ap,o aop,1 ap2 <o 400 aop, 1 ap,2
ayo <— ayl aip .o 410 arl aip
ap <— az) <— az2 as o

Figure A.1: Summing a double series “by squares” and “by diagonals.” .
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The series Y7 c; is sometimes referred to as the diagonal series corresponding to the
double series }. ¥ ¢)ak¢-

Theorem A.5.3. [28]. Let }.Y (k ¢)ak.c be a double series with non-negative terms, and
bj,cj be as above. Then the following statements are equivalent.

(i) (Summing by Rectangles) ).} ;. ¢)ax . is convergent.
(it) (Summing by Squares) },7_b; is convergent.
(iti) (Summing by Diagonals) 7" c; is convergent.

In this case,

ZZ(k,é)aka = Z bj= Z Cj
j=0 j=0

Proof. Let s,,,, := Y[ L/_ @k be the double partial sum of the series LY (k) Q0> and
also let B, :=}j_b; be the partial sum of the series }%" ,b;. Then by the definition
of b;, we have B, = s,,, for all n € Ny.Thus, in view of Corollary A.2.1, (i) and (ii) are
equivalent, and in this case

ZZ(k,E?k’f = sup{su : (m,n) € N3} = sup{B, = Snpn:n €Np}t = Z b;.
j=0

Next, for n € Ny, let C,, := Z’}:O c;j be the partial sum series of the diagonal series
Yiocj, where k+¢=n. Then k <n and ¢ <n. This implies that C, < s, , for all n € Ny.
Also, for any (k,¢) € N3 with (k,¢) < (m,n) we have k+{ <m+n= (m+n—1)+1.
This implies that s, , < Cyy4,—1 for all (m,n) € N%. In view of these relations, we see that
(i) and (iii) are equivalent, and in this case

oo

ZZ(kﬁflk’Z = sup{smn: (m,n) € NG} =sup{C,:ncNo} = Z cj. O
, =

Example A.5.1. [28]
(i) Letp>0andfor (k,{) €N}, letay;:=1/(k+1+1)P. Thenc; :Z{:O 1/(j+1)P=
Jj/(G+1)? for j € Ny. Since
1 < j <
2+ 0Pt T G+ G+

forall jeNy.

The series .7 cj is convergent if and only if p > 2. So by Theorem A.5.3 , we see
that ¥ ¥ k.p) 1/ (k+ £+ 1)P is convergent if and only if p > 2.
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(ii) Since sy, — s as (m,n) — (co,00) implies that s, , — s as n — oo, we see that in
Theorem A.5.3 the statement (i) implies the statement (ii) irrespective of the sign
of the terms of the double series. However, the converse does not hold in general,
as Example A.3.2 (ii) shows. In this example, s, , = 4 for all m = n > 1, so that
Yobj = 4. However, the double series does not converge. This follows by noting
that sp 1 =3 forn > 1.

(iii) Let a double sequence (ay;) be schematically given as follows:

0 1 1 1 1

1 -2 -1 -1 -1
00 0 0 O
(au):l—lOOO
0 0 0 0 0
1 -1 0 0 0
0123 4 —
1 0000 —
1 0000 —
20000 —
(Sma)=2 0 0 0 0 —

O O+~ OO OO g

AN

o 0 00 0 — O
Here sy, = 0 for all m,n > 1 and so .} x ¢\t is convergent and its double sum
is equal to 0. However, since co =0,cy =2 and cj = (=1)/ for j > 2, we see that
Y ocjis divergent. On the other hand, Example A.3.2 (ii) shows that }.} ¢ ax.¢
may be divergent, while Y3 cj is convergent. In this example we note that co =2
and c; =0 Vj=>1, sothat }7_oc; = 2. It is also possible that both }.} i ¢ ax.¢
and )7 c; are convergent but the double sum is not equal to the “sum by diago-
nals.” To illustrate this, consider the double sequence (ay ) schematically given as

follows:
1 1 1 1 1
I -1 -1 -1 -1
1 -1 0 0 O
@ad=1 -1 0 0 o0
1 -1 0 0 O
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1 2 3 45 —
2 22 2 2 — 2
322 22 - 2
4 2 2 2 2 — 2
(mn)=5 2 2 2 2 -~ 2
O d
LebLy N 2
© 2 22 2 = 2 2

Here sy, =2 for m = n > 1, and so the double sum is equal to 2. But since
co=1lc1=2,c0=1,¢;=0 V j>3 wehave} c;=4

A.6 Absolute Convergence of Double Series

This section addresses the convergence and divergence of the double series

ZZ(M)\%A formed by considering the absolute values of the terms of a double series
Y)Y (k,0)ak,c- A double series Y.} s ak ¢ 1s said to be absolutely convergent if the double
series Y. Y.k ¢)|ax | is convergent.

Theorem A.6.1. [28]. An absolutely convergent double series is convergent.

Proof. Let }} 4 ¢)ax¢ be an absolutely convergent double series. For each (k,£) € N2,
define

b ake +ae ~ o ake] —are
k0 f and ak,f = f

Let (Smn)s (Sy)s (Sim,)» and ($,,) denote the double sequences of

LY (k,0) bt ZZ(M)aZ[, Y X (k,0)a o and LY k) lare| respectively. By Theorem A.5.1,
(Sm,n) is bounded. Also, 0 < af, < |ax | and 0 < a; , < |ax | for all (k,¢) € N3, and so

0<s{,<Smn and 0<s;,<3§n, forall (k,£)€Ng,

and therefore, the double sequences (s,), ,) and (s, ,) are bounded. Using Theorem A.5.1

once again, we see that the double series ZZ(M)aZ’_Z, Y)Y (k0)a; , are convergent. But
Ao = a,fé —ay , forall (k) € N(Z). Hence, the double series }. )" o) dk.¢ is convergent. O

The concepts of row-series and column-series presented earlier can be used to get the
following useful characterization of absolute convergence:

Theorem A.6.2. [28]. A double series }.} i ¢)ax ¢ is absolutely convergent if and only if
the following conditions hold:
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(i) There are (koy,ly) € N(z) and o > 0 such that

i Zn: larel <o YV (m,n) = (ko,lo).

k=ko {={y
(ii) Each row-series as well as each column-series is absolutely convergent.

Proof. Suppose Y.} ¢ ak ¢ is absolutely convergent. Since la¢| > 0 for all (k,¢) €
N(z). Theorem A.5.1 shows that condition (i) holds with (ko,lo) := (0,0), and Tonelli’s
Theorem for Double Series (Theorem A.5.2) shows that condition (ii) also holds.

Conversely, suppose conditions (i) and (ii) hold. Let (ko,¢y) € N(z) and o > 0, we see
that for each fixed k € Ny, there is B > 0 such Y, |ax (| < B, and for each fixed ¢ € N,
there is 7 > 0 such Y |ax¢| < 7. Let (5,,,) be the double sequence of partial double
sums of the double series Y. Y ¢ |ax¢| and let po := max{ko,£o}. Then

p D po—1 p po—1 p
Spp =3, Y lacel = Z Z |k o] + Z Z!au|+ Z Y laxdl
k=0i=0 k=ko (=, =0 k=po
po—1 po—1
<a+ ) B+ Y v ¥V peNy with p>po.
k=0 (=0

This implies that the diagonal sequence (§) ) is bounded, and therefore by Corollary
A.2.1, the monotonically increasing double sequence (5, ,) is bounded. Hence by Theo-
rem A.5.1, (5,,) is convergent, which implies that the double series Y Y (k,0)ak,¢ 18 abso-
lutely convergent. O

Remark A.6.1. Conditions (i) and (ii) in Theorem A.6.2 are both needed to character-
ize absolute convergence. For instance, consider a double sequences (ay;), (Smn) given
schematically as follows:

1 00O

1 00O

(ap)=1 000

1 00O
1 1 1 1 — 1
2 2 2 2 — 2
3 3 3 3 — 3
(mn) =4 4 4 4 — 4
o 1
Ll N oo
0O 0O 00 o0 — 00 00
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Then condition (i) is satisfied with ko := 0 and £y := 1, but ZZ(k,E)ak,Z is not (absolutely)
convergent, since sy, =m+ 1 for all (m,n) € N(Z) with m > 1. On the other hand, if we
letagy:=1/(k+0+ 2)? for (k,0) € N2, then condition (ii) is satisfied, but YY) Qe IS
not absolutely convergent.

We now show that several results for convergent double series with non- negative
terms remain valid for absolutely convergent double series.

Theorem A.6.3. [28]. Let ZZ(k,Z)ak.ﬁ be an absolutely convergent double series. Then
the following hold.

(i) The double sequence (s, ) of partial double sums is bounded.

(ii) Each row-series as well as each column-series is absolutely convergent, and

5 (£e) T £

k=0 \/¢ =0

(iti) The corresponding diagonal series Y7 c; is absolutely convergent, and
Z(,) €= ZZ(k,Z)“W'
j:

Proof. For (m,n) € Ng, let s,,, and §, , denote the (m,n)th partial double sums of
LY (k0)ake and Y.} i p) lak ¢| and let s and § denote their double sums, respectively.

Now (i) follows from Theorem A.5.1, since [s,,.,| < §., for all (m,n) € N2, while (ii)
follows from Theorem A.6.2 and Fubini’s Theorem (Theorem A.3.3).

To prove (iii), let )| := ):;-":0 cjand }, := 27:0 d; denote the diagonal series corre-
sponding to the double series Y.} 4 ¢yak,c and Y.} ¢ |ai¢| respectively, and for n € Ny, let
C, and D, denote the corresponding nth partial sums of the series }; and ), respectively.
By Theorem A.5.3, it follows that D, — §. But since |c;| < d; for all j € Ny and the se-
quence (D,,) is bounded, we see that the sequence (Z;":O c j) 1s bounded, and so the series
Y.7oc;j converges absolutely. Now it can be easily seen that |Snn — Cul| < [Sn.n — Dp| for
all n € Ny. Since §, , — § and also D,, — §, we see that the sequences (s, ,) and (C,) have
the same limit, that is, Y7o ¢ = Y. ¥k ¢ ax¢ as desired. O

Example A.3.2 (ii) shows that a double series may diverge even if the corresponding
diagonal series is absolutely convergent.
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A.7 Convergence Tests for Double Series

The following results provide techniques to test weather double series converge absolutely
or not.

Theorem A.7.1. (Comparison Test for Double Series)[28]. Let ay ¢ be complex numbers
and by ¢ real numbers such that |ay | < by for all (k.0) € N3. If
LY (k,0) birye) is convergent, then )Y ) a(x.¢) is absolutely convergent and

%;ﬂk’g D) ML

Proof. Suppose YY1 ¢)bx ¢ is convergent. For (m,n) € NZ, we have

m n m n m n
Y Y ae <Y Y lad <Y Y bre (A.6)
k=1i=1 k=1/=1 k=1(=1

Since by ¢ > 0 for all (m,n) € N2, the double sequence of the partial double partial sum of
ZZ(kl)bk’g is bounded above (Theorem A.5.1). By Inequalities (A.6) the same holds for
LY (ko) lare|- Also, since |a¢| > 0 for all (m,n) € N3, it follows from Theorem A.5.1 that
ZZ(k’g) |lak ¢| is convergent, that is ZZ(k’g)akj is absolutely convergent. Inequalities (A.6)
also imply that | ¥ Y ¢ ake| < XX k0 lakel < LY (ke bre- O

We will now consider analogues of the limit comparison test, the root test, and the
ratio test for double series. We first state some basic results in the case of a (single) series
for ease of reference.

Fact A.7.1. [28] Let (ay) be a sequence of real numbers.

(i) Assume that a; > 0 for all k € Ny. Let (by) be a sequence of positive real numbers
such that ay /by — r as k — o, where r € Ny with r # 0. Then the series Y ay is
convergent if and only if the series Y ; by is convergent.

(ii) If there is o € R with o < 1 such that|ay|''* < o for all large k, then the series
Y« ax is absolutely convergent. If |ak|1/ k>'1 for infinitely many k € Ny, then the
series Y ay is divergent.

(iii) If there is a € R with o0 < 1 such that |ay41| < o|ak| for all large k, then the series
Y wax is absolutely convergent. If |axi1| > |ax| > O for all large k € N, then the
series Y ay is divergent.

The result below leads to the limit comparison test for double series, which is often
easier to use than the comparison test.
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(i)

Theorem A.7.2. [28]. Let (ay ) and (by) be double sequences such that by ¢ # 0 for all
(k,0) € N(z). Suppose each row-series as well as each column-series corresponding to both
Y Y (ko)k.e and Y. ¥ k)b ¢ is absolutely convergent, and ay ¢ /biy — 1 as (k,£) — (o0,0),
where r € RU {=£eo}.

(i) If by > Oforall (k,0) € N(Z), LY (k,0)bk.¢ is convergent, and r € R, then ¥} pyax ¢
is absolutely convergent.

(i) If a, > 0 for all (k,¢) € N3, LY (k,0)ak¢ is convergent, and r # 0, then X ¥4 ¢)bi ¢
is absolutely convergent.

Proof.

(i) Suppose by, > 0 for all (k,¢) € N2, and the double series ZZ(M)bk,g is convergent.
Let 7 € R such that ay ¢ /ay ¢ — r as (k,£) — (o0,00), then there is (ko,¢o) € N3 such
that for all (k,¢) = (ko,4o)

(r—1Dbry <ary < (r+1)bg, andso |ags| < max{|r—1|,|[r+1|}byy.

Also, by Theorem A.5.1 there is § > O such that Y7 | Y/_, ax¢ < B for (m,n) € N3.
Hence for all (m,n) = (ko, %), we have

m n m n
Z Z lak | < max{|r—1|,|r+1[} Z Z bry < max{|r—1|,[r+1[}B.
k=ko (=Lo k=ko (=Lo
By Theorem A.6.2, the double series Y.} s ax ¢ is absolutely convergent.

Suppose ay ¢ > 0 for all (k,¢) € N3 and r # 0. Then the limit of by ¢/ay ¢ as (k,£) — (oo, 00)
is 1/r or 0 according as r € R or r = co. By interchanging a; and by ¢ in (i) above, the
desired result follows. O

Corollary A.7.1. (Limit Comparison Test for Double Series)[39]. Let (a ) and (by )
be double sequences of positive real numbers. Suppose each row-series as well as each
column-series corresponding to both Y.} ¢yaxc and Y.} ¢\ bk ¢ are convergent, and

. gy
Iim —=

=r where reR with r#0.
(k€)= (o0,00) A g

Then

Zz(kl[)ak_[ 1S convergent < ZZ(k,K)bk7€ 1§ convergent
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Remark A.7.1. [39]. In the Limit Comparison Test for Double Series, it is not possible to
drop the condition r € R and r # 0. To see that r = 0 will not work, let

1 1

Akl = 77977 1o and bk./[ = m

2
RS for (k,0) € N.

Then limy_sea /by = 1/(k+1)? for each k € Ny, and limy_eoar/bro = 1/(£ +1)?
for each ¢ € Nyg. Hence by Fact A.7.1 (i), we see that each row-series as well as each
column-series corresponding to both }.}  pare and Y.} ¢ bk is convergent. How-
ever, lim(kf)_,(ooﬁm) aye/biy =0, and as shown in Examples A.3.1 (iii), the double series
Y)Y (k.0 ak,c converges, while the double series 3.3 i ¢)bi.¢ diverges. By interchanging the
definitions of ay ¢ and by g, we see that r = oo will also not work.

Example A.7.1. [39].

(i) Let aj,:=sin (1/[(k+ 1)2(0+ 1)2]> for all (k,0) € N3. Consider byy:=1/[(k+

1)2(0+1)?] for all (k,£) € N3, and observe that (ay/ar) — 1 as (k,€) — (c0,00).
Since ¥} (x0)bk ¢ is convergent. Corollary A.7.1 shows that }.} i ¢)ak.¢ is conver-
gent.

(ii) Let apy :=sin(1/(k+€+2)?) for all (k,l) € N§. Consider by, :=1/(k+{+
2)? for all (k,t) € N2, and observe that (ay/ars) — 1 as (k,£) — (c0,). Since
Y Y (k,0)br¢ is divergent. Corollary A.7.1 now shows that Y.} o\ ax,¢ is divergent.

The following result will lead us to Cauchy’s root test, or simply the root test, which
is one of the most basic tests to determine the absolute convergence of a double series:

For the rest of this section, we will say that a statement holds whenever “both k and /¢
are large” to mean that there is (ko, ) € N3 such that the statement holds for all (k,¢) €
NG\ {(0,0)} with (k. ) = (ko bo)-

Theorem A.7.3. [39]. Let (a;) be a double sequence of complex numbers.

(i) Suppose each row-series as well as each column-series corresponding to 3.} i ¢)ai.¢
is absolutely convergent. If there is o0 € R with o < 1 such that |ak,g|1/ < o
whenever both k and | are large, then Y.} pax¢ is absolutely convergent.

(ii) Iffor each (ko, %) € N3\ {(0,0)}, there is (k,() € N3 such that (k,) = (ko,lo) and
|ag 0| > 1, then Y X (k.0)ak ¢ is divergent.

Proof.
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(i) Suppose there are o € R with o < 1 and (ko, £9) € NZ\ {(0,0)} such that |a; ¢|'/*+¢ <
o for all (k,¢) = (ko,€o). Then o > 0 and

i i |lak | < ( i Ock)( i OCE) = ;2 forall (m,n) = (ko,4p).
k=ko (=F k=ko (=1, (1-a)

Therefore, (i) follows from Theorem A.6.2.

(ii) Suppose for each (ko,4p) € N3\ {(0,0)}, there is (k,¢) € N3 such that (k,¢) = (ko, {) and
|ag o|'/*¥+ > 1, that is, |ay o] > 1. Hence ay; + 0 as (k,I) — (e0,00). By the (k,£)th Term
Test (Theorem A.3.1), it follows that }.}" s ax ¢ 1s divergent. O

Corollary A.7.2. (Root Test for Double Series)[39]. Let (ax;) be a double sequence
of complex numbers such that |ay ¢|'/*** — a as (k,{) — (o0,0), where a € RU {o0}. If
each row-series as well as each column-series corresponding to .Y r ax ¢ is absolutely
convergent and a <1, then Y.}  p\ak is absolutely convergent. On the other hand, if
a> 1, then Y.} are is divergent, and all but finitely many row-series and column-
series are also divergent.

Proof. The first assertion follows from part (i) of Theorem A.7.3 with o := (1 +a)/2.
Now suppose a > 1. Then there is (ko, %) € N2 such that |a; ,|'/*** > 1 for all (k,£) =
(ko,£o). Part (ii) of Theorem A.7.3 shows that ¥ ¥ ¢jax ¢ is divergent. Also, for each
fixed k > ko, we see that a; ¢ - 0 as £ — oo and hence the row-series } ya; ¢ is diverges.
Similarly, for each fixed ¢ > /, the column-series } ;ay ¢ diverges. O

The following result will lead us to D’ Alembert’s ratio test, or simply the ratio test,
which is another basic test to determine the absolute convergence of a double series:

Theorem A.7.4. [28]. Let ay ¢ be a double sequence of complex numbers.

(i) Suppose each row-series as well as each column-series corresponding to the double
series Y. ) (x.r)akc is absolutely convergent. If there is o € R with o0 <1 such
that either |a 11| < &|ay ;| whenever both k and { are large, or |ay41 | < o|ax,|
whenever both k and { are large, then Y.} i ¢)ax ¢ is absolutely convergent.

(ii) Ifmin{|ag ¢11],|axs1,01} > |axe| > O whenever both k and L are large, then Y. Y ¢y ax ¢
is divergent, and all but finitely many row-series and column-series is also diver-
gent.

Proof.

(i) Suppose there are & € R with @ < 1 and (ko, ) € N3 such that |ay ¢41| < o|ax.(|
for all (k,€) > (ko,%o). We may assume that o > 0. Now

’ak74| < (X|ak74_1| <... < (Xz_éo|ak750| for all (k,f) = (ko,ﬁo).
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Since 0 < @ < 1, we see that }j_, " < ﬁ for all n € Ny. Also, the series } ; ax ¢,
is absolutely convergent, there is 8 > 0 such that Y | |ax ¢,| < B, for all m € Ny.
Consequently,

m n a—ﬂoﬁ
Z Z \akﬂ < for all (m,n) > (ko,ﬁ()).

K=ko (=L l-a
Hence by Theorem A.6.2, 3.} ¢)ax ¢ is absolutely convergent. A similar argument
holds if there is & € R with & < 1 and (ko, £o) € N3 such that |ax;1 | < ot|ag | for

all (k,g) t (ko,fo).

(ii) Suppose there is (ko,4y) € N3 such that min{|ay ¢+1], |axs1.} > |axe| > O for all
(k,€) = (ko, o). Then,

lake| > lake—1| > - > |akg,| > lak—1.6,] = -+ > |ak,0,] >0

for all (k,¢) = (ko,lo). Since ay, g, 7# 0, we see that ai ¢ - 0 as (k,£) — (o0,0), and
further, and further, for each fixed k > ko, ax¢ - 0 as £ — oo and for each fixed ¢ > {y,
ay, - 0 as k — oo. The desired results now follow from the (k,¢)th Term Test for double
series (Theorem A.3.1) and the kth Term Test for (single) series. O

Corollary A.7.3. [28]. (Ratio Test for Double Series). Let (ax;) be a double sequence
of nonzero real numbers such that either |ay ¢+1|/|ar¢| — a or

laks1,4)/|axi| — @ as (k,€) — (o0,00), where a,d € RU{eo}. If each row-series as well
as each column-series corresponding to Y. Y. p ax.¢ is absolutely convergent and a <'1
or a <lI, then is }.} ¢ ax absolutely convergent. On the other hand, if a > 1, then
Y Y (k,0)ak,¢ is divergent and all but finitely many row-series are also divergent, while if
a>1, then .} i o\ is divergent and all but finitely many column-series are also diver-
gent.

Proof. The first result is a consequence of part (i) of Theorem A.7.4 with o := (14a)/2
or o :=(1+a)/2accordingasa<lora<1.

Now suppose a > 1. Then there is & € R with o > 1 and (ko, %) € N3 such that
|ak74+1 |/|ak’1\ > o for all (k,f) >~ (ko,f()). Then

|ak7g+1\/|ak,g\ > for all (k,f) = (ko,f()).

Given any (k;,/;) € N%, let k := max{ko,k;}. Since & > 1 and ay ¢, # 0, we can find
¢ > max{l, ¢ } such that = |ay 4| > 1. Then k > ki, ¢ > 1, and |y s| > 1. This shows
that ay ¢ # 0 as (k,£) — (co,0), and s0 ¥ ¥ ¢ ¢)a¢ is divergent by the (k,¢)th Term Test.
Also, for each fixed k > ko, we have |a¢| > "~ |ay 4| > |axs,| > 0 for all £ > £, and
so ay¢ - 0 as £ — oo, which implies that } yay ¢ is divergent. Similar arguments hold if
a>1.0
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Example A.7.2. [28]

(i)

(it)

(iii)

(iv)

(v)

If the limit a in the Root Test (Corollary A.7.2) is equal to 1, then the double series
Y. Y. (k,0) k¢ may converge absolutely or it may diverge. The same holds if the limits
a and a in the Ratio Test (Corollary A.7.3) are equal to 1. For example, let aj ¢ :=
1/(k+1)>(€+1)% and by : 1/(k+ £+ 2)? for all (k,0) € N3. Then it is easy
to see that each row-series as well as each column-series corresponding to both
LY (k,0) ke and LY.k p)br¢ is (absolutely) convergent and all the above-mentioned
limits are equal to 1 for both cases. However, as we have seen in Example A.3.1
(iii) ZZ(k,E)ak,Z is (absolutely) convergent, but ZZ(k,f)bk,Z is divergent.

Let p > 0 and for (k,0) € N}, let ar := (k—+ )P /2*3%. It easy to see (using Fact
A.7.1 (iii), for example) that each row-series as well as each column-series corre-
sponding to ¥} ¢)ak ¢ is (absolutely) convergent. Since,

|ak.e+1/|axe] — % as (k,€) — (c0,00), Corollary A.7.3 shows that

Y. Y (k,0)ak¢ s (absolutely) convergent. Alternatively, the same conclusion follows
by noting that |ax i 16|/ |are| — 5 as (k,£) = (e0,00).

For (k,£) € N3, let ayy := (k+£)!/2%3%. Since ay 411 /ary — = as (k,£) — (o0,00),
Corollary A.7.3 shows that Y.} ¢\akc is divergent. Alternatively, observe that
are > (k1/26)(01/3%) > 1 for (k,£) = (4,7), and so the (k,{)-th Term Test shows
that .Yk ¢ ak.¢ is divergent.

For (k,0) € N3, let ay ¢ := (k-+0+2)1/(k++2)*"+2 Since (14 (1/n))" — e as
n — oo, where e is the base of the natural logarithm, we see that a1 /are — 1/e
as (k,0) — (e0,00). Also, for each fixed k € No, we have lim_,coax o+1/axe = 1/e,
and for each fixed £ € Ny, we have limy_,. ag11,¢/ax e = 1/e. Since e > 1, Corollary
A.7.3 and Fact A.7.1 (iii) show that ZZ(k’g)ak_’g is (absolutely) convergent.

For (k,0) € N3, let

Zkfw if k+0 iseven
Ay =
b s i k4l isodd

Since |ag 1|/l ar| = lax+1.6l/|aki| = k2 33 < 4/27 if k+ { is even, and
lar 1|/ lars| = a1 el /|ar| = 352 /26443 > 27/16 is odd, the Ratio test for
Double Series (Corollary A.7.3) is not applicable to this example. For the same
reason, Theorem A.7.4 is also not applicable. Further, since the double sequence
(Jag.e|'/**+0) does not converge, the Root Test for Double Series (Corollary A.7.2)
is not applicable. However, since |a|'/* and |a|'/* are less than or equal to
1/2 for all (k,f) € N2, we see that each row-series as well as each column-series
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corresponding to Y.} ¢ a.¢ is (absolutely) convergent. Also, \ak?g|1/k+£ <1/2<1
for all (k,t) € N(z), and hence Theorem A.7.3 is applicable. Thus Y.} ¢\ak.c is
(absolutely) convergent.

A.8 Double Power Series

For k, ¢ € Ny, let ¢; , € R. The double series

Z aey' =Y Yy,

(k,0)=(0,0)
W= 0
is called a double power series (around (0,0)), and for (k,¢) > (0,0), the real number
ck¢ is called its (k, £)th coefficient. Henceforth when we consider a double power series

Yy ck’gxkyg , it will be tacitly assumed that the index (k,¢) varies over the set of all
(k£)=(0,0)
pairs of N3. For (m,n) = (0,0), the (m,n)th partial double sum of the double power series

Y Y (k0 crexy' s

Amn(x,y) :

uMs

n
Z Ck exkyg-

It is clear that if (x,y) = (0,0), then for any choice of the coefficients cy ¢, the double
power series Y.} o) cuxkyz is convergent and its double sum is equal to cpo. Also, if
x € R and y = 0, then the double power series is convergent if and only if the (single)
power series Y ;" ck70xk is convergent, and likewise, if x = 0 and y € R, then the double
power series is convergent if and only if the (single) power series } C()’gyé is convergent.
On the other hand, if there is (ko,ly) € N(z) such that ¢, o = 0 whenever either k > ko or
¢ > ly, then the double power series is convergent for any (x,y) € R?, and its double sum
is equal to

ko o

Z Z ck’gxkyﬁ.

k=0/(=0

More generally, if (xo, o) € R?, then the double series
Y'Y —x0)(y—y)",
(k,£)=(0,0)

is called a double power series around (xo,y). Its convergence can be discussed by
letting ¥ = x —xo and y = y — yo, and considering the double power series 3.} ¢) cx, P

Typical sets of points (x,y) in R? for which a double power series is convergent are
illustrated by the following examples:
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Example A.8.1. [28].

(i)

(it)

(iii)

(iv)

(v)

Letcp = (k-+1)® D04 1)ED for (k,£) = (0,0), and let (x,y) € R2. If e Xy’ | >
1 for all (k) € N3 satisfying k > 1/|x[**' —1 and £ > 1/|y|"*! — 1, and so by the
(k,€)th Term Test (Theorem A.3.1), the double power series is divergent. Similarly,
if x # 0 and y = 0, then the series Yo crox* is divergent, and if x = 0 and y # 0,
then the series Y ;. C(My(Z is divergent. Thus we see that the double power

Y ko) crxX*y! is convergent if and only if (x,y) = (0,0).

Let ¢y := 1/k\! for (k,) = (0,0). It follows from Example A.3.1 (ii) that the
double power series Y.} i o) ck,gxkyé is convergent for all (x,y) € R2.

Let a and b be nonzero real numbers, and let ¢y ¢ := a*b’ for (k,£) = (0,0) It follows
Jfrom Example A.3.1 (i) that the double power series }.} i 0 ck,gxkyZ is convergent
if and only if |ax| < 1 and |by| < 1, that is, |x| < 1/|a| and |y| < 1/|b|.

For (k,0) = (0,0), let
1 if k=1
Chl = .
0 if k#1

Then for (x,y) € R?, the partial double sums of the double power series LY (k,0) Ck, xkyt
are A »(x,y) := 0 forn >0, and

Am,n(xvy) :xiyé for (m,n) = (17())
=0

Consequently, the double power series converges absolutely if x =0 or |y| < 1,
while it diverges if x # 0 and |y| > 1. It follows that the set of (x,y) € R? for which
this double power series converges is the horizontal strip R x (—1,1) together with
the y-axis, as shown in Figure A.2. On this set, the convergence is absolute.

For (k,) = (0,0), let
1 if k=¢
Crt = X
0 if k#¢

Then for (x,y) € R, the partial double sums of the double power series Y, Y (k.0) Ck, xkyt
are

min{m,n}

Apn(x,y) = Z (xy)?  for (m,n) = (0,0).

p=0
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(0,1)

(—1,0) < D (1,0)

(0,-1)

Figure A.2: Illustration of sets of convergence: The horizontal strip and the y-axis,
the region bounded by rectangular hyperbolas, and the diamond-shaped region
on which the double power series in Examples A.8.1 (iv), (v), and converge,
respectively.

(vi)

Using the fact that the geometric series )., a’ converges absolutely if la| < 1, while
it diverges if |a| > 1, we see that the double power series converges absolutely if
|xy| < 1, while it diverges if |xy| > 1. Thus the subset of R? on which this double
power series converges is precisely the region {(x,y) € R? : —1 < xy < 1} bounded
by the rectangular hyperbolas xy = 1 and xy = —1, as shown in Figure A.2. On
this set, the convergence is absolute.

cre = (k+0) k0! for (k,£) = (0,0), and let (x,y) € R%. As in the proof of part
(iii) of Theorem A.5.3,

m n m+n

i K|yl :
ZDWMW<22’W' =% (sl+ b
—| J:

for (m,n) = (0,0), whereas

ZDWMW>ZZWW‘ Zwﬂm

j=0k=0 j=0

for n > 0. Thus, in view of Example A.3.1 (i), we see that the double power series
LY (k0) crxX*y' converges absolutely if and only if |x| + |y| < 1. The subset of R?
on which this double power series converges absolutely is the diamond-shaped
region {(x,y) € R?: |x|+|y| < 1} . It turns out that the set on which the double
series converges is this diamond-shaped region together with the open line segment
Jjoining (—1,0) and (0,—1), as shown in Figure A.2.

The above examples show that the set of all (x,y) € R? for which a double power
series 3.} (x.0) ck,gxkyé converges absolutely can be of a varied nature. This is in contrast
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to the convergence of a (single) power series for which the corresponding subset of R is
always an interval. In this connection, we recall following result for (single) power series.

Fact A.8.1. (Abel’s Lemma)[28]. Let xy € R and let c; € R for k > 0. If the set {ckxlé k>
0} is bounded, then the power series Y ;. cixk is absolutely convergent for every x € R
with |x| < |xo|.

This leads to the following fundamental result about the (absolute) convergence of a
(single) power series.

Fact A.8.2. [28]. Either a power series ¥ c;x* converges absolutely for all x € R, or
there is a non-negative real number r such that it converges absolutely for all x € R with
|x| < r and diverges for all x € R with |x| > r.

The radius of convergence of the power series is defined to be o in the former case,
and it is defined to be the unique non-negative real number r with the stated properties in
the latter case. We will now attempt to obtain analogues of the above results for double
power series.

Lemma A.8.1. (Abel’s Lemma for Double Power Series)[28]. Let (xo,yo) be in R? and
let ciy € R for (k,£) = (0,0). If the set {c; : xy§ : (k,€) = (0,0)} is bounded, then the
double power series .Y ¢ crxX*y" is absolutely convergent for every (x,y) € R? with
x| < |xo| and |y| <|yo-

Proof. If xo = 0 or yy = 0, then there is nothing to prove. Suppose xo # 0 and yy # 0.
Let & € R be such that |c; pxbyf| < o for all (k,¢) = (0,0). Given any (x,y) € R? with
x| < [xof and |y[ <'[yol, let B := |x|/|xo| and y:= |y|/|yo|- Then

|Ck,kay£| = ‘Ck,fxl(gyaﬁkyz < aﬁk’y{ for all (k,l) = (070)‘

Since B < 1and y < 1, the geometric double series }' Y ) cuﬁk}/ is convergent (See Ex-
ample A.3.1 (i).) By the Comparison Test for the Double Series it follows the }.} " 4 ¢) ck_,gxkyZ
is absolutely convergent. O

Theorem A.8.1. [28]. Either the double series }.Y. 1) ck’gxkyf converges absolutely for
all (x,y) € R?, or there are non-negative real numbers r and s such that it converges
absolutely for all (x,y) € R* with |x| < r and |y| < s, while the set {cy;x*y" : (k,£) = (0,0)}
is unbounded for all (x,y) € R* with |x| > r and |y| > s.

Proof. For (x,y) € R?, let Cyy = {cx*y" : (k,€) = (0,0)}. Consider E := {(x,y) €
R2:C,, isbounded}. For (x,y) € R?, note that (x,y) € E if and only if (|x|,|y|) € E. If
E = R2, then given any (x,y) € R?, we can find (xo,yo) € E such that |x| < |xo| and [y| <
[o|. Since the set Cy, y, is bounded, by Lemma A.8.1, the double series ¥} ) cuxky[ is
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absolutely convergent. Next, suppose E # R . The set E is nonempty since (0,0). Then
E has a boundary point (x*,y*) € R?> . Define r := |[x*| and s := |y*|. Let (x,y) € R?
with |x| < r and |y| < s. By the definition of a boundary point, there is a sequence in E
converging to (x*,y*), and so we can find (xo,y) € E such that |x| < |xp| and [y| < |yo|.
Hence by Lemma A.8.1, ¥} ¢ cijkyé is absolutely convergent. On the other hand,
let (x,y) € R? with |x| > r and |y| > 5. By the definition of a boundary point, there is
a sequence in R?\ E converging to (x*,y*), and so we may find (x1,y;) € R? such that
|x1| < |x| and |y;| < |y|. Now since the set Cy, y, is unbounded, it follows that the set Cy ,,
is also unbounded. This proves the existence of non-negative real numbers r and s with
the desired properties.

If a double power series }.}. ¢ ck_’gxkyé is absolutely convergent for all (x,y) € R?,
then we say that its biradius of convergence is (co,c); otherwise, a pair (r,s) of non-
negative real numbers is said to be a biradius of convergence of the double power series,
provided the double series converges absolutely for all (x,y) € R? with |x| < rand |y| < s,
while the set Cy., := {cr x*y" : (k,£) = (0,0)} is unbounded for all (x,y) € R? with |x| > r
and |y| > s. This phenomenon is illustrated in Figure A.3. Proposition A.8.1 says that
every double power series has a biradius of convergence.

Remark A.8.1. [28].

(i) It is interesting to observe that if r is the radius of convergence of a (single) power
series, then the power series diverges for all x € R with |x| > r, whereas if (r,s) is
a biradius of convergence of a double power series, then the set Cy, 1= {ckﬁxkyg :
(k,£) = (0,0)} is unbounded for all (x,y) € R? with |x| > r and |y| > s. The un-
boundedness of the set Cy, cannot be replaced by the divergence of the double
power series at (x,y), as the following example shows. Let co:=1, cxo=co¢:=1
forall k.t € N, c11:=—1, ¢ =cip:= —1/2 for all k.t > 2,and cre =0
for all (k,0) = (2,2). If Ann(x,y) denotes the (m,n)th partial double sum of
Y ko) cr XXy, then Ago(x,y) = 1 and for (m,n) € N2, we have

m n
Apmo(x,y) = Zxk, Agn(x,y) = ZJA
k=0 (=0
and
- Xy L
Apa(e,y) =1+ (1=2) Y +(1-3) Yy
k=0

(=0

It is easy to see that the double power series converges absolutely for all (x,y) € R?
with|x| < 1 and |y| < 1,and it diverges to o for all (x,y) withx > 1 and y > 1 except
for (x,y) = (2,2). At (2,2), a peculiar phenomenon occurs: Since cy2*2° = 2k
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I I
X 1 X
I I

Figure A.3: When (r,s) is a biradius of convergence of a double power series,
it converges absolutely in the shaded rectangle, while the set of its terms is un-
bounded in the four quadrangles marked by x.

and Co7g202€ =2l forall (k,0) € N2 | we see that the set C> 5 is unbounded, but since
Amn(2,2) =1 for all (m,n) € N?, we see that the double power series converges
to 1 at (2,2). It follows that there are no non-negative numbers r and s such that
the double power series converges absolutely for all (x,y) € R? with |x| < r and
ly| <'s, and it diverges for all (x,y) € R? with |x| > r and |y| > s.

(ii) The radius of convergence of a (single) power series is unique. However, a double
power series may have several biradii of convergence. For example, let ¢y ¢ :=1
if k=1 and cyp =0 if k # { for (k,£) = (0,0). Then the double power series
LY (ko) cijkyé = Z,‘f:()xkyk converges absolutely if |xy| < 1. On the other hand, if
lxy| > 1, then the set Cy, := {x*y* : k > 0} is unbounded. It follows that (t,1/t) is
a biradius of convergence for each positive real number t.

It is therefore important to find all biradii of convergence, or failing this, as many
biradii of convergence as possible, in order to obtain a fuller picture of the convergence
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behavior of a double power series.

If r is the radius of convergence of a (single) power series, then the set (—r,r) is
known as the interval of convergence of the power series. It is the largest open subset
of R in which the power series is absolutely convergent. Analogously, the domain of
convergence of a double power series is defined to be the set of all (x,y) € R? such that
the double power series converges absolutely at every point in some open square centered
at (x,y). Note that if D is the domain of convergence of a double power series, then D
is an open subset of R? and moreover, (x,y) € D if and only if (|x|,|y|) € D. It follows
from the Comparison Test and Lemma A.8.1 that (xo,yo) € R? belongs to the domain of
convergence of ¥ ¥ 4 ¢ ckx*y" if and only if the set Cy := {cx ix*y’ @ (k,0) = (0,0)} is
bounded for every (x,y) in some open square centered at (xo,yo). It also follows that the
domain of convergence of a double power series is empty if and only if (0,0) is a biradius
of convergence of that double power series.

In the following table we give the domains of convergence and biradii of convergence
of the double power series considered in Example A.8.1.

’Double Power Series Domain of Convergence Biradii of Convergence
(Zz)*’kkgéxkyé ¢ (0,0)
Kt
R ® ()
| (r,‘—l‘)for0<r§‘71|
%%akbkayf {(xy) eR* :xf < and |y <z} (gps)for0<s< g
x ¥y {(x.y) eR2:]y| <1} (r,1) for 0 < r < oo
(=0
Z(xy)k {(xvy)ERz:‘xy’<1} (l,%)f0r0§t<oo
k=0
%/Z)U;If?!xkyg {(x,y) eR?: x| +]y| < 1} (t,t—1)for0 <t <1

The above examples are typical and exhibit the variety of shapes that a domain of
convergence of a double power series can have. The example in the penultimate row of
the above table shows that such a domain ID need not be a convex subset of R . However,
according to a result of Fabry (1902), the domain of convergence of every double power
series is log-convex, that is, it is an open subset ID of R? such that {(In|x|,In|y|) : (x,y) €
D and xy# 0} isaconvex subset of R2,
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A.9 Taylor Double Series and Taylor Series

Let D C R?, (x0,yo) be an interior point of D and let f : D — R be such that all partial
derivatives of f of all orders exist and are continuous on a square neighborhood of (xp, o).
In analogy with the Taylor series of a function of one variable, the double power series

8k+ff (X—Xo)k (y—yo)"
ZZa k9l (x0,30) = o

is called the Taylor double series of f around (xo,yo). Note that the coefficients of this
double power series are
1 akJrf f

Ckt = mm()ﬂ),)’o) for (k) = (0,0).

We observe that forn =0, 1,2, ... , the nth partial sum of the diagonal series Y. ;_ c;(x, y)
corresponding to the above double series is

X — X — ¢
L et = SR ATRHESSIREER

j=0k=0=0

v v 9f (x —x0)* (y—yo)/*
=L X Gy r 00 T G
which is in fact nth bivariate Taylor polynomial P,(x,y) of f around (xo,Yo).

Y ci(x,y) where c;(x,y):=Y Y crplx—x0)(y—yo)" for j>0,
= k>00>0

kt+l=j
is called the Taylor series of f around (xo,yo). Thus the Taylor series of a function of
two variables is the diagonal series corresponding to its Taylor double series.

An important question one would like to consider is whether the Taylor double series
and/or the Taylor series of f around (xo,yo) converges (absolutely) at a given point (x,y) €
R?, and if so, then whether the corresponding double sum and/or the corresponding sum
is equal to f(x,y), provided (x,y) € D. If (x,y) := (x0,Y0), then each partial double sum of
the Taylor double series of f around (xg,yo) as well as each partial sum of the Taylor series
of f around (xo,yo) is obviously equal to f(xo,yo), and so our question has an affirmative
answer if (x,y) = (xo,y0). It is, however, possible that for each (x,y) € D\ {(x0,y0)}.
both the Taylor double series and the Taylor series of f around (xg,yp) converge but not
to f(x,y). For instance, let f : R — R be defined by

o T if (x,y) # (0,0)
fley): {0 if (x,y)=(0,0)
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By considering the function g : R — R given by g(0) := 0 and g(¢) := e~' /¢, and noting
that g¥) (0) = 0 for all k € N, it can be seen that

ak-i—f f

akaf(o 0)=0 forall (k¢) = (0,0).
X

Thus the Taylor double series of f around (0,0) as well as the Taylor series of f around
(0,0) is identically zero, and neither converges to f(x,y) at any (x,y) # (0,0).

If the Taylor double series of f around (xo,yo) converges absolutely at (x,y) € R?,
then by part (iii) of Theorem A.6.3, the Taylor series of f around (xo,yo) also converges
absolutely at (x,y). But the converse is not true, as we will see in Example A.9.1 (ii).
For (x,y) e Dandn=0,1,2,..., let R,(x,y) := f(x,y) — P,(x,y) and note that the Taylor
series of f around (xo,yp) converges to f(x,y) if and only if R,(x,y) — 0 as n — oo.
The following results give sufficient conditions for the absolute convergence on R? of the
Taylor double series of a function and for deciding whether it converges to the function
itself.

Theorem A.9.1. [28]. Let D be an open subset of R?, and let (xo,y0) € D. Suppose
f: D — R has continuous partial derivatives of all orders on D, and there are positive
real numbers My, o, and By such that

P Land
<Mook BE  forall (k,0) = (0,0).

axka Ykl (x0>y0)

Then the Taylor double series of f and the Taylor series of f around (xo,yo) converge
absolutely for all (x,y) € R? . Moreover, both of these converge to f(x,y), provided the
line L joining (xo,y0) and (x,y) lies in D and there are positive real numbers M, @, and 3
such that

ak+/f

kpt ~ &
8xk8y( 5LY)| <Ma*B° forall (%,5)€L andall (k)= (0,0).

Proof. Since the exponential double series

o (x—x0)* [By—yo)l"
ZZ o PO

converges absolutely for all (x,y) € R?, the Comparison Test for Double Series shows
that the Taylor double series of f around (xo,yo) converges absolutely for all (x,y) € R? .
Consequently, by part (iii) of Theorem A.6.3, the corresponding diagonal series, namely
the Taylor series of f around (xo, o), also converges absolutely for all (x,y) € R,
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Next, let (x,y) € D be such that the line L joining (xo,yo) and (x,y) lies in D and there
are positive real numbers M, a, and 8 such that
ak+1’f
dxkay!

7 (% y)' <Ma*B" forall (%,5)eL andall (k¢) > (0,0).

Then by the Classical Version of the Bivariate Taylor Theorem, there is (c,d) € L such
that

an-‘rl o k . ¢

Ru(x,y) = f(x,y) = Palx,y) = Y ) L (e, F=20) = 00)
>0/0> .

et

and consequently,

Ru(x,y) == f(x,y) — Pu(x,y) ZZM O"x xo)¥ (Bly —yo|)*

=000 ! e
k+0=n+1
M’f a]x XO! )% (Bly —yol )"+
(n+k—1)!
(Oﬂlx—)m\+l3!y—yo|)”+1

(n+1)!

This implies that R,(x,y) — 0 as n — oo. Hence the Taylor series of f about (x,yo)
converges to f(x,y) at (x,y). Finally, the absolute convergence of the Taylor double series
of f around (x,yo) at (x,y) implies that its double sum is also equal to f(x,y). O

Example A.9.1. [28].

(i) Let D := {(x,y) € R>:x <1 and y <1} and let f: D — R be defined by
fx,y):=1/(1—=x)(1—y). It is easy to see that

ak+£ f

akw(o 0)=k!0! forall (k,¢) = (0,0).
X

Hence the Taylor double series of f around (0,0) is the geometric double series
LY (ko)X x*yt . As we have seen in Example A.3.1 (i), it converges absolutely if
x| < 1 and ]y\ < 1, while it diverges otherwise; moreover, if |x| < 1 and |y| < 1,

then the double sum is 1/(1 —x)(1 —y) = f(x,y). The Taylor series of f around
(0,0) is

(<] j .
Z cj(x,y) where cj(x,y):= Zxky]_k for (x,y) € R%.
= k=0
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(it)

By part (iii) of Theorem A.6.3, it converges absolutely if |x| < 1 and |y| < 1, and
then its sum is equal to f(x,y). We show that it diverges if |x| > 1 or |y| > 1. Assume
that |x| > 1, and let u :== y/x. Then

R , ,
cj(x,y):xJZuJ*k:x](l+u+---+uJ) for j>0.

Ifu=1, then |c;(x,y)| = |x[/(j+1) > j+ 1, and if u #1, then

ol 1] [l 1]

u—1 - u-—1

lcj(xy)| = for j=>0.

It follows that cj(x,y) - 0 as j — oo. Hence the Taylor series of f around (0,0)
diverges if |x| > 1. Similarly, we see that it diverges if |y| > 1.

Let D :={(x,y) € R? : x+y < 1} and let f : D — R be defined by f(x,y) :=
1/(1 —x—y). It is easy to see that

ak+€f

Sxioyt 00V = (k01 for k(=012...

Hence the Taylor double series of f around (0,0) is

(k+2)!
ZZ .

As shown in Example A.8.1 (vi), this double series converges absolutely if and only
if |x|+|y| < 1. The Taylor series of f around (0,0) is

=L —k \- '

E (artot) B

sk —k j=0

Clearly, this geometric series converges if and only if |x+y| < 1, and in this case,
the convergence is absolute and the sum of the series at (x,y) is equal to 1/[1 — (x+
y)] = f(x,¥). Thus if (x,y) € R? satisfies
of f around (0,0) converges absolutely at (x,y), but the Taylor double series of f
around (0,0) does not. Since the Taylor series of f around (0,0) is the diagonal
series corresponding to the Taylor double series of f around (0,0), it follows from
Theorem A.5.3 that if (x,y) € R? and |x| + |y| < 1, then the double sum of the Taylor
double series of f around (0,0) at (x,y) is equal to f(x,y). It can be shown that this
Taylor double series converges conditionally at (x,y) € R? ifand only if x € (—1,0)
and x+y = 1, and then its double sum is equal to 1/2.
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(iii) LetD:=R? andlet f : D — R be defined by f(x,y) := sin(x+y). Letting g(u) :=
sinu for u € R, it is easy to see that for k, =0,1,2,...,

8k+£f o 0):gk+‘}’(0): 0 if k+/{0 iseven
oxkayt (=D)*H=D2 G k0 s odd.

Hence the Taylor double series of f around (0,0) is

Z ZCk,exkyZ, where ¢y = (()71)(1#471)/2 lf kit l:s even
(k,0) i  if k4L isodd.
The Taylor series of f around (0,0) is
) J ) xk yjfk gj (O) )
cj(x,y), where ci(x,y) =) g/(0)— = = (x4y),
jz:;) ! ! kz:;) k(=K !

that is, by ¥5_o(=1)/ (x+y)**1/(2j+1)! . It follows from Theorem A.9.1 that
both the Taylor double series and the Taylor series of f around (0,0) converge
absolutely to f(x,y) at all (x,y) € R?,

(iv) Let D :=R? and let f : D — R be defined by f(x,y) := exp(x +y). Proceeding as
(ii) above, we see that both the Taylor double series }.Y. 1) Xyt Jk\0! of f around
(0,0) and the Taylor series Y.7_o(x+y)’/ j! of f around (0,0) converge absolutely
to f(x,y) at all (x,y) € R,

Remark A.9.1. [28]. Let D be an open subset of R? and let f : D — R be such that all
partial derivatives of f of all orders exist and are continuous on D. If for every (xo,y0) €
D, there are r > 0 and s > 0 such that the Taylor double series of f around (xo,yo)
converges absolutely to f(x,y) for all (x,y) € D with |x —xo| < rand |y —yo| <s, then f is
said to be real analytic on D. In this case, by part (iii) of Theorem A.6.3, the Taylor series
of f around (xq,y0) also converges absolutely to f(x,y) for all (x,y) € D with |x —xo| < r
and |y — yo| < s. Clearly, polynomial functions in two variables are real analytic on
R? . Also, using Theorem A.9.1, it can be seen that the functions defined by fi(x,y) :=
sin(x+4y) and f>(x,y) := exp(x+y) for (xo,y0) € D are real analytic on R*. In fact, if D
is the domain of convergence of a double power series and if its double sum is denoted
by f(x,y) for (x,y) € D, then the function f is real analytic on D. On the other hand, a
function having continuous partial derivatives of all orders on an open subset of R* need
not be real analytic there. Indeed, as noted earlier, it suffices to consider f : R* — R
defined by f(0,0) := 0 and f(x,y) := e~ V) for (x,y) # (0,0).
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