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Abstract

Data Recovery from Magnetic Media Using Magnetic Force Microscopy

by

Terry R. Ferrett
Master of Science in Electrical Engineering

West Virginia University

Matthew C. Valenti, Ph.D., Chair

Magnetic tapes are widely used to store voice and other data. Due to the effect of hystere-
sis, modification of the magnetization pattern written to a tape by overwriting, erasing, or
physical damage leaves remanent information about the previous magnetization state that
can not be discerned by standard audio playback devices. Recently, a high resolution mi-
croscopy technique known as magnetoresistive microscopy was used by Pappas et. al. in
an attempt to recover data from audio tapes which were physically damaged. However, the
device, while having a higher resolution than tape playback heads, still averages over entire
audio track widths when collecting data. The purpose of this thesis is to propose and inves-
tigate a methodology for the recovery of erased data using a microscopy technique known as
magnetic force microscopy (MFM). This is a novel approach because MFM can achieve much
higher resolution than previous techniques, on the order of nanometers. The primary analysis
technique utilized is the fast Fourier transform, which is applied to MFM images of strongly
written, weakly written, and erased sinusoidal tones recorded by a standard audio tape deck.
To verify our data collection and pre-processing techniques, a numerical simulation of tape
media and MFM response is presented and compared with measurement. Several processing
techniques, such as windowing to reduce FFT spectral leakage, thresholding to remove the
effects of destructive magnetic interference, and tip response deconvolution to remove instru-
ment dependent features from the data, are applied. It was found that at certain frequencies
recovery of tones after erasure is possible, suggesting that erasure is frequency dependent.
By investigating and altering audio tape samples in situ, the same physical section of tape
was imaged several times, and it was found that the erasure process varies with position,
even down to the order of microns.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Audio cassette tapes are used to store a wide variety of data. The use of these tapes

for dictation, music storage, etc, has led to a great volume of data stored in magnetic

form. The use of audio cassettes has declined in recent years with the advent of compact

disks and digital voice recorders, but audio cassettes remain a niche market for applications

such as voice recording for taking notes, and recording police interviews, which for police

interrogations in the UK is mandatory [3]. In many ways magnetically stored data is more

volatile than data stored in other common formats, such as compact discs and flash memory

drives [2]. Magnetically stored data is subject to degradation over time and corruption

from exposure to unwanted magnetic fields, such as the Earth’s magnetic field, or deliberate

erasure by recording devices. Perhaps the most high profile example of deliberate erasure

is the fifteen minute gap on a tape-recorded conversation between former President Richard

M. Nixon and his chief of staff, H. R. Haldeman on June 20th, 1972. This gap was allegedly

deliberately created by Nixon’s secretary, Rose Mary Woods, and has yet to be recovered by

any known forensic technology [4].

Retrieval of corrupted magnetic data has thus far been performed primarily by low res-

olution methods, such as the actual audio playback heads in the cassette decks themselves

[5]. Recovering data from tape using the tape deck itself is not optimal because the playback

head averages over large sections of media, approximately 2 µm2. The retrieval technique



Chapter 1 Introduction 2

utilized in this thesis, magnetic force microscopy (MFM), exhibits resolving power on the or-

der of tens to hundreds of nanometers [6]. This provides a unique opportunity to investigate

erased media for useful information previously inaccessible by other techniques. Also, this

high resolution allows experimental verification of theoretical predictions of magnetic behav-

ior, such as media noise at the particle level, which are not observable using low resolution

techniques.

This thesis proposes and investigates an approach to recovering data from erased audio

cassette tapes using MFM. To our knowledge, no previous attempts to recover erased data

using MFM have been published. Pappas et. al. [7] were able to recover data from physically

damaged audio tapes using magnetoresistive microscopy, but the data in this case was not

erased, as this work was primarily aimed at forensic investigation. Remanent data from

misregistration of write heads in digital media has been investigated by Gomez et. al. [8], and

imaging of overwritten data was performed by Mayergoyz et. al. [9], but no explicit attempts

have been made to recover erased data using MFM. The primary numerical tool used to

investigate the data is the fast Fourier transform (FFT). This decision was made because

the studied data consists of single and multiple sinusoidal tones recorded to and erased from

audio tapes, and the FFT provides a convenient representation of the sinusoidal spectrum

of the data. Several processing techniques are applied to the data in an attempt to increase

the signal-to-noise ratio (SNR) in the computed FFT’s. These include the application of a

deconvolution function, referred to in this context as a tip response function, to remove the

MFM-specific imaging artifacts from the measured data [10]. Another processing technique

applied to the data is the identification and reversal of destructive magnetic interference at

the particle level, referred to as partial erasure [11].

Further investigations include fitting a statistical model of audio tape media noise to

observed data, and the creation of a simple numerical simulation of tape media and MFM

response for verification against experimental data. There are two main goals in studying

noise. The primary goal is to develop robust signal recovery methods which make use of all

available information in the presence of noise. The second is to understand what fundamen-

tal limitations exist in our ability to resolve weak signals from MFM data. Media noise can

roughly be considered additive, white and Gaussian (AWGN) in nature, and inhibits the
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recovery of a signal much as AWGN corrupts the signals transmitted in a wireless commu-

nication system. No known work has attempted to verify noise models using a device with

resolution as high as MFM. An overview of other studies performed on noise is also pre-

sented. It is hoped that this work motivates the development of an optimal signal detector

for magnetic recording channels in a similar vein as the matched filter, which is the optimum

linear detector for the AWGN channel.

1.2 Thesis Outline

The objective of this thesis is to investigate techniques for recovering erased data from

audio tape using MFM. To reach this objective, the thesis covers the following topics. Chap-

ter 2 introduces basic principles of magnetism, including terminology, magnetic recording

heads, and properties of tape media. Concepts are presented such as the quantification of

magnetization, magnetic fields and a basic discussion of ferromagnetic materials. Simplified

magnetization patterns observed in recording media are shown. The chapter concludes by

introducing a theory of noise which is compared with experimental data in a later chapter,

followed by a literature review discussing ways in which the noise theory could be extended

to form a more complete model.

Chapter 3 introduces the concepts underlying MFM, including a basic discussion of the

underlying physics, and a block diagram. A brief overview of scanning probe microscopy

(SPM), the technique from which MFM is derived, is presented, along with a mathemat-

ical model of the magnetic interactions present in the MFM measurements. From this a

simple one-dimensional simulation of MFM response is developed to illustrate key oper-

ating concepts and motivate the extension into three dimensions. A discussion of the tip

response function, its application to data, and its implementation in Fourier space is pre-

sented. Finally, simulated MFM images from the three-dimensional tape model are shown

and compared to actual MFM data.

Chapter 4 presents the results of analysis, including FFT data of an assortment of MFM

images both erased an unerased, and comparison of the noise model discussed in chapter 2

with experiment. The phenomenon of partial erasure is discussed and analyzed. Single-tone
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recorded data and multi-tone recorded data are investigated after erasure. Additionally,

samples which are erased while in the MFM sample tray (in situ) are investigated. These

samples are interesting because they allow the exact same physical area to be imaged multiple

times, which is difficult if not impossible when moving samples into and out of the MFM.

Chapter 5 summarizes the results, presents conclusions, and makes suggestions for future

work.
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Chapter 2

Magnetic Recording Overview

This chapter provides an introduction to the concepts behind magnetic recording. First,

a discussion of the recording channel is presented, including magnetic principles, read/write

heads and media properties. Next, reproduction of the recorded signal is considered. Finally,

the origin of noise and interference is discussed.

2.1 The Magnetic Recording Channel

This section introduces terminology and concepts that are used throughout the thesis.

Basic magnetic concepts are covered, such as the source of magnetic fields, field strength,

dipole moments, and the quantification of magnetization. A discussion of the nonlinear

properties of magnetization and a technique for linearization is presented. Also, recording

heads and their magnetic properties are presented, followed by a treatment of common

recording media.

2.1.1 Basic Principles of Magnetism

Magnetic fields arise from the flow of electric current. This can either be a macroscopic

current in a length of wire, or the current arising from an intrinsic property of electrons

called spin. In most materials, these electron spins occur in pairs which cancel each other’s

magnetic fields. However, in materials with unpaired electron spins, net magnetic fields which

are detectable outside the material arise. The product of current and the area enclosed by
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the loop in which it flows is called the magnetic dipole moment and is expressed as [12]:

~µ = Iπr2 (2.1)

where I is the current and πr2 represents the area enclosed by the loop. Current is typically

measured in amperes (A), while distance is measured in meters (m).

Magnetic dipole moments can be visualized by imagining a permanent bar magnet, as

shown in Fig. 2.1. The field lines around the magnet represent the magnetic induction,

denoted by ~B, and having units newtons per ampere-meter [N/(Am)], or teslas. Magnetic

induction at a particular point is a measure of the force experienced by an electric current-

carrying conductor at that point. The spacing of the field lines (their density) is used to

represent relative values of ~B in space, which are a function of the material in which the field

is propagating and the distance from the magnetic source. The magnitude of the magnetic

flux density drops in proportion to the inverse square of the distance from the source. An

unambiguous description of the external field, irrespective of the medium of propagation,

is given by the magnetic field strength, ~H, which is related to magnetic flux density by the

relationship:

~B = µ ~H (2.2)

where ~H has units of amperes/meter and µ is the permeability of the medium. Since flux

density ~B is linearly related to permeability, the two quantities are analogous to electrical

current and conductivity. The permeability can be expressed as: µ = µoµr, where µ0 is

the permeability of free space with units tesla-meters per ampere (Tm/A), and µr is the

relative permeability, a dimensionless ratio. For example, iron has a relative permeability of

µr = 200. So, a magnetic field with strength ~H propagating in iron would generate flux with

density:

~B = 200µ0
~H. (2.3)

The magnetic materials used for recording are classified as ferromagnetic. Ferromagnetic

materials retain a magnetization proportional to the applied ~B field, even after the field is
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N

S

Figure 2.1: Bar magnet.

removed. Magnetization is expressed in terms of net magnetic moment per unit volume of the

material, ~M = ~µ/m3. ~M has units amperes per meter (A/m). Examples of ferromagnetic

materials are iron, cobalt, and nickel. Ferromagnetic materials contain multiple large regions,

called domains, within which the moments are aligned with each other. This alignment allows

ferromagnetic materials to exhibit net magnetizations, even when no external ~B fields are

present.

The relationship between the net magnetization of a material and the externally applied

field is illustrated in Fig. 2.2. Observing this graph reveals that the relationship is nonlinear

and has memory, so that the response to an arbitrary field is a function of the material’s

previous magnetization state. The loop in this figure is known as the major hysteresis loop.

Point 1 denotes the beginning of the initial magnetization curve, where the magnetization of

the material and the external field are both zero. If we begin at 1 and slowly apply an increas-

ing external field, the material’s magnetization will traverse along this initial magnetization

curve to point 2, known as the saturation magnetization, ~Ms. This is the magnetization at

which all the domains in the material are aligned in the same direction, and magnetization is
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Figure 2.2: Hysteresis loop.

maximized. No matter how much more the external field is increased, the magnetization of

the material will not exceed saturation. If we then begin decreasing the magnetic field back

towards zero, the material’s magnetization will follow the curve from 2 to 3. The point 3 on

the graph shows the remanent magnetization, ~Mr. This is the magnetization which remains

after the externally applied field falls to zero. ~Mr is smaller than the saturation magnetiza-

tion since some of the domains fall out of alignment after the external field is removed. It is

this remanent behavior that causes ferromagnetic materials to exhibit memory.

Let us now reverse the polarity of the applied field and begin increasing it in the opposite

direction. This will take us from point 3 to point 4, the coercivity ~Hc of the material. ~Hc is the

applied field necessary to bring the magnetization of the material down to zero after having

been driven to saturation. We can then proceed around the curve from 4 to 5 and eventually

back to 2 again, by applying an oscillating external field. However, we can never return to

point 1 by traversing the major hysteresis loop. Returning to the initial magnetization point

is achieved by a technique called biasing, which is discussed in Section 2.2.1.
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Fringing
FieldsTape

Surface

Figure 2.3: Inductive ring head.

2.1.2 Recording Heads

The conversion of signal voltages and currents to magnetic fields is achieved in the record-

ing head. Heads are therefore the primary transducers in a magnetic recording circuit. De-

pending on the application, distinct heads can be used for recording, playback, and erasure,

or the same head can be used for all functions. In the case of audio recording, high quality

tape recorders utilize separate heads for all functions, while average quality devices combine

the record and playback functions into one head. Some lower quality devices combine all

three functionalities into the same head. These different configurations of heads have an

effect on the overwrite characteristics of audio recordings.

The most common type of recording head is the inductive ring head, shown in Fig.

2.3. This head consists of a toroid with small section removed, allowing magnetic flux to

fringe outward and into the recording media. This type of head creates a magnetizing field

primarily in the longitudinal (along the track) direction.

Physical distinctions exist between record, playback, and erase heads. The gap in the

recording head is designed so that sufficient induction is generated to magnetize the recording

medium, while decreasing quickly along the direction of the track so that short wavelength

signals are not distorted. Typical record head gap lengths range from 2.5 to 12 microns.

Playback heads are similar in construction to record heads, but typically have more windings

and cores with higher permeability to increase flux density. Playback heads have the smallest

gap lengths, on the order of 1.5-6 microns. Erase heads do not have as strict requirements

for spatial resolution, and use high field amplitudes, so their design is the least critical [2].
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Permanent magnets and DC excited heads can be used for erasing, but these produce higher

noise in the media than an AC-excited head. These typically have gap length between 25-125

microns.

A summary of the magnetic characteristics of inductive heads is given below [2]:

1. Permeability µ = µrµ0, the ratio of magnetic induction B to field H, is a key

parameter for read and write performance. It defines the range of magnetization over

which a given range of signal values is mapped, and so describes the resolution of

recording.

2. Saturation magnetic induction ~Bs dictates the maximum flux density which can

be obtained in the head. This is limited by the maximum write current in the head

and the saturation magnetization of the core.

3. Coercivity ~Hc is the field necessary to reverse the magnetization and decrease the

magnetic induction of the head (not the medium) to zero. It is a measure of the ease

of switching the magnetization of the head.

4. Remanent magnetic induction ~Br is the magnetic induction remaining around the

head with zero applied field. Its value is closely related to coercivity and permeability

and controls the residual field in and around the head, after magnetization during

writing has ceased. After head current has been reduced to zero, some magnetization

is always left over in the head material, leading to finite magnetic induction.

2.1.3 Media

The basis of magnetic recording is in the magnetization of ferromagnetic materials which

form a history of the input signal. Analog audio recording is dominated by a form of media

known as particulate media. Particulate media is formed by depositing small magnetic

particles onto a nonmagnetic substrate. This design allows for independent optimization

of the substrate layer and the magnetic layer [2]. As a result of this property, a strict

international standard for the manufacture of audio recording tapes has been established.
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Recording characteristics of particulate media are determined by the type of magnetic

layer used, its physical configuration, and the shape of the particles. The most common

material used for the creation of magnetic particles is gamma ferric oxide. A summary of

the magnetic properties of this and other materials used in the magnetic recording layer is

given in Table 2.1. The signal-to-noise ratio (SNR) is primarily determined by the saturation

remanance ~Mr, defined as the remanent magnetization after the media is driven to satura-

tion, and the coercivity ~Hc. As these values increase, so does the SNR. High quality home

recording decks exhibit SNR’s on the order of 70 dB. The wavelength of the recorded signal

determines the depth to which it is recorded [2]. Higher frequencies are recorded primarily in

the first 1 to 2 µm of tape depth, and the coercivity of this depth is typically 1.5 times that

of the regions below it, from 2-5 µm. The particles in audio tapes are needle-shaped and

are oriented predominantly in the down-track direction. This physical configuration favors

magnetization in the longitudinal direction, which helps reduce cross-track interference. The

size of each individual particle is on the order of 0.1 - 1.5 µm. A scanning electron microscope

image of magnetic tape particles is shown in Fig. 2.4. From specifications of the dimensions

and operating characteristics of audio tape, we can calculate the number of particles affected

by different wavelengths. At the upper end of audio cassette frequency response, 20 kHz,

the wavelength of one period is given by:

47.5 mm/s

20 kHz
= 18 µm (2.4)

where 47.5 mm/s is the speed of the tape [13]. Using the statistics for Audio tape IEC II in

Table 2.1 with particle density per unit volume N = 1.4× 103/µm3, the average number of

particles magnetized per unit wavelength at this frequency is:

600 µm× 5 µm× 18 µm×N = 54× 103 particles (2.5)

where 600 µm is the width of a stereo track, 5 µm is the depth of the magnetic material and

18 µm is the length of tape recorded.



Chapter 2 Magnetic Recording Principles 12

Figure 2.4: Scanning electron microscope image of audio tape surface.

Mr, Hc,
kA/m, kA/m, N ,

Application Material (emu/cm3) (4πOe) 103/µm3

Reel-to-reel audio tape γ − Fe2O3 100-120 23-28 0.3
Audio tape IEC I γ − Fe2O3 120-140 27-32 0.6
Audio tape IEC II CrO2 120-140 38-42 1.4

γ − Fe2O3 + Co 120-140 45-52 0.6
Audio tape IEC IV Fe 230-260 80-95 3
Professional video tape Fe 240 110-125 4

CrO2 110 42 1.5
γ − Fe2O3 + Co 90 52 1

Home video tape CrO2 110 44-58 2
γ − Fe2O3 + Co 105 52-74 2
Fe 220 110-125 4

Table 2.1: Magnetic material used in media [2], saturation remanence Mr, coercivity Hc,
and average number of particles per unit volume, N, of various types of particulate magnetic
recording media. The unit “emu” is an abbreviation for “electromagnetic unit” and is defined
as 4 π micro-oersteds. The oersted is the CGS unit of magnetic field strength.



Chapter 2 Magnetic Recording Principles 13

Figure 2.5: Field distribution near gap.

2.2 Recording and Reproduction

This section gives an example of a recorded section of media, and shows how the magne-

tized regions correspond to the different regions of flux from the write head. This provides

physical insight into the magnetization of media by the write head. A technique for lineariz-

ing magnetic hysteresis behavior is presented. Magnetic ring head reproduction is discussed

briefly, and an ideal relationship for ring head reproduction is given.

2.2.1 Magnetization Patterns

An illustration of ideal magnetization patterns provides insight into interpreting data pre-

sented in later sections. In this section, we will observe effects of magnetization on a small

segment of tape, and discuss the different regions of magnetization within the tape thick-

ness. Anhysteretic magnetization is contrasted with the hysteretic phenomenon discussed in

section 2.1.1.

A field is generated in the gap of a write head when the write head coil is energized.

This field fringes out from the gap and into the media, as shown in Fig. 2.5 [14]. The

maximum magnetizing field occurs in region A and the region marked “Recording Zone

Maximum Drive”. The field in the maximum drive region contributes the most to the

remanent magnetization in the media. Region A and the maximum drive region are separated
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from one another by the large region B and the region denoted as “Recording Zone Low

Drive”. These are transition regions whose magnetic field strengths are not high enough to

appreciably affect the media. Fig. 2.6 [14] shows two transitions (one north-north and one

south-south) recorded at low frequency. The magnetized regions are bordered by transition

zones (denoted by TZ) with ambiguous magnetizations. Fig. 2.7 shows higher frequency

transitions.

In the hysteretic magnetization process discussed in Section 2.1.1, it was shown that the

response of a magnet to an applied field was a function of the magnet’s previous magne-

tization state. This results in a highly nonlinear transfer curve, which is unacceptable for

applications such as audio recording. To linearize the response of the magnet, analog audio

recording signals are added to a high frequency sinusoid, on the order of 50-150 kHz. This

technique is known as AC bias, and is similar in principle to the process of anhysteretic

magnetization. In the description of hysteretic magnetization, it was shown that applying a

strong cyclic field to a magnet with no net magnetization resulted in a transfer curve with

no path returning to the unmagnetized state. However, if we gradually reduce the maxi-

mum amplitude of the applied field after each cycle, we can bring the magnetization back to

zero [14]. Now, suppose we repeat this cyclic reduction process, but with a small constant

field added to the larger cyclic field. The remanent magnetization left over after the cyclic

field reduces to zero is proportional to the constant field. Fig. 2.8 [14] shows the transfer

magnetization curve for anhysteretic magnetization, where the x-axis in this case represents

Figure 2.6: Write head near gap - two transitions. N denotes magnetic north and S denotes
magnetic south. TZ denotes transition zone.
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Figure 2.7: Write head near gap - several transitions. N denotes magnetic north and S
denotes magnetic south. TZ denotes transition zone.

Figure 2.8: Anhysteretic magnetization curve. The y axis represents the remanent magnet-
zation, while the x axis represents a constant magnetizing field added to a decaying cyclic
field.

the constant applied field discussed above. Comparing this with hysteretic magnetization,

the anhysteretic curve contains a linear region. AC bias captures this effect and provides a

similar linear operating region.

2.2.2 Ring Head Reproduction

Ring heads are the most common type of head used for reproduction, also know as

playback, in analog audio recording. Recording is accomplished by moving the magnetic

media past an electrically excited head. Reproduction is similar, but instead of exciting the
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head electrically with an input signal, the stray magnetic fields from the magnetized media

excite the head and induce the electrical signal. The reproduction process is somewhat

simpler than the recording process in that it is linear, and so lends itself to analysis by

superposition.

Consider the reproduction process shown in Fig. 2.9. The arrow points in the direction

of motion of the tape. The magnetization of the media is simplified by assuming a series of

bar magnets producing fringing lines of magnetic flux. Assuming an ideal ring head such as

the one in Fig. 2.3 which collects all the available flux, the voltage induced in the head is

given by [2]:

V = −Nturns
dφ

dt
= −Nturnsνtape

dφ

dx
(2.6)

where φ denotes flux density, Nturns denotes the number of turns in the ring head coil,

νtape denotes the tape speed, t denotes time, and x denotes displacement in the longitudinal

direction. Considering a sinusoidal flux given by φmaxcos(2πx/λ), the maximum voltage is

[2]:

Vmax = −2πNturnsνtapeφmax
λ

= −2πNturnsφmaxf (2.7)

where E is the maximum voltage, φmax is the maximum flux, and f is the frequency of the

sinusoid induced in the reproduce head, in hertz. From these expressions, it can be seen

Figure 2.9: Ring head reproduction.
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that the induced voltage is frequency dependent. If the induced voltage is used in this form,

the reproduction is severely distorted, as higher frequencies induce higher voltage than lower

frequencies. This effect is removed through a process known as equalization, which amplifies

low frequencies relative to high.

2.3 Noise

This section presents an overview of the audio tape noise theory considered in the anal-

ysis of MFM data. The theory is primarily based on work performed by Mallinson [1] in

considering noise as arising from two sources: the random distribution of magnetic particles

in tape media and the random chance of magnetization of particles when exposed to an ex-

ternal magnetic field. The section then finishes with an overview of other theories pertaining

to tape noise which suggest avenues for future analysis.

2.3.1 Noise Theory

Noise in particulate media can be considered as the result of two mechanisms: writing

noise and packing noise [1]. The first arises as a result of randomness of magnetic moment

orientation in unmagnetized media. The second is a result of the non-uniform distribution

of magnetic particles in the media. In this section, we will examine these mechanisms and

discuss their application to audio recording.

Writing noise occurs due to the statistical nature of the magnetization of particles. Un-

magnetized media consists of particles whose dipole moments are randomly oriented such

that the net magnetization of the media is zero. However, localized regions of the media

may have some net magnetization, and this manifests itself in the reproduction process as

noise. If a magnetizing field is applied, the particles have a chance of becoming magnetized

as a result. The probability of this magnetization increases as a function of the applied field

strength. This non-deterministic magnetization of individual particles is the core principal

behind writing noise [1].

Consider a section of recording media with dimensions length L, width W , and thickness

δy, as shown in Fig. 2.10 [1]. Assume that the medium has some average amount of magnetic
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Figure 2.10: Row of magnetized particles. [1]

material per unit volume, denoted by P . If the average volume of a single magnetic particle

is v, then the average number of particles in a section of media is given by [1]:

N =
PWLδy

v
. (2.8)

Assume that the particles are identical, have the same physical orientation, and exhibit

magnetization only in one of two directions (denoted by up and down), as in Fig. 2.10. Thus

the particles can only assume one of two possible magnetization states. Further assume that

each particle assumes the up state with probability p. Then, the magnetic dipole moment

of this section of media can be written as [1]:

µtotal = (+µparticle)pN + (−µparticle)(1− p)N = µparticle(2p− 1)N (2.9)

where µparticle denotes the magnetic dipole moment of each particle. Normalizing this term

by N yields [1]:

m =
µtotal

µparticleN
= (2p− 1) (2.10)

where the relationship between magnetization and p is evident. Assuming that N is large,

the variance of ~µtotal can be written as 1 [1]:

σ2 = µ2N(1−m2) (2.11)

1A full derivation of this result is given in Appendix I
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Since the power of the noise is proportional to this variance, we can see that the writing

noise power is maximized at a when the medium is unmagnetized, and is minimized when the

medium is saturated [1]. This means that signals recorded with low write current amplitude

will exhibit more noise than those written with high write current amplitude.

Packing noise arises due to the stochastic nature of the distribution of particles within

a particular volume of the media. Suppose that all particles in the media are magnetized

to saturation in the up direction. If the media is divided into equally spaced volumes,

each individual volume will contain a different number of magnetic particles, which will be

reflected in the amount of stray field generated by each of these volumes. This is the source

of packing noise.

Consider the same scenario as in Fig. 2.10. Define the maximum number of particles

capable of fitting into the volume of the row as [1]:

Nmax =
WLδy

v
(2.12)

where v denotes the volume of a particle. Also consider an experiment in which particles are

distributed on the row in Fig. 2.10 according to a binomial distribution with n = Nmax and

p = P . It can be shown that the variance of the magnetic moment of the row is given by [1]:

σ2
P = (mµ)2N(1− P ) (2.13)

From this result it can be seen that the packing noise is highest at low values of P and

disappears when P equals zero.

In media with relatively low packing densities, such as audio tape, writing noise and

packing noise may be considered statistically independent of one another. So, the final

expression for noise power becomes [1]:

σ2
total = σ2

writing + σ2
packing = µ2

particleN(1−m2P ) (2.14)

In AC biased recording, maximum signal levels are approximately 20 − 30P for a typical

audio tape being 0.4, the range for maximum noise power becomes 0.984 N and 0.964 N [1].
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From this it can be seen that noise power varies very little over with respect to magnetization,

suggesting that noise power can be considered constant in audio tapes.

2.3.2 Noise Overview

In this section, we survey several pieces of literature regarding noise in magnetic recording

media. The previous section introduced a particular model of media noise which is tested in

Section 4.1.3 using experimental MFM data. Suggestions for bringing the model predictions

into better agreement with experiment included refining data collection techniques and re-

evaluating the model itself. The goal of this section is to facilitate further refinement to the

model by discussing literature related to media noise.

Silva and Bertram [15] studied magnetization fluctuations in uniformly magnetized thin-

film recording media. The noise was quantified by power spectral density, which was found

to fit a Lorentzian pulse shape. From experimental measurements it was determined that

noise power is concentrated in the center of magnetic transitions, which was also suggested

in the model in Section 2.3.1. At magnetization states far from zero, the data suggested that

the noise process was driven by medium inhomogeneities, such as surface roughness. It was

shown that this noise is proportional to the squared derivative of the hysteretic remanance

loop, (d ~M/d ~H)2, where ~M is the sample magnetization and ~H is the field applied to the

sample [16]. This factor was not taken into account in the model we considered.

The physical properties of the magnetic particles themselves were considered Denteneer

and Cramer [17] and Luo and Bertram [18]. Common assumptions about particle size were

presented, including independently distributed particle length, radius, and magnetic moment

direction. It was shown that introducing a correlation between particle volume and length

improves noise predictions yielded by several media models. Also shown is that noise spectra

is generally dependent on the wavelength of the recorded sinusoid. A similar relationship was

shown by Giljer et. al. [19], where recording density was found to be inversely proportional to

signal-to-noise ratio. In Luo and Bertram [18] showed that assuming statistically independent

spacing for particles leads to inaccurate noise predictions. Realistic physical effects such as

particle clustering and chaining were considered. Further spatial distributions for noise were
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discussed by Alex et. al. [20].

Yuan and Bertram [21] and Roesler et. al. [22] use a technique known as the Karhunen-

Loéve (K-L) expansion to characterize media noise. This technique empirically re-expresses

noise data as an orthonormal expansion of orthogonal eigenfunctions. Dominant noise fea-

tures can be inferred from the data in this way. Yuan and Bertram [21] identified noises

induced by transition center shifting (jitter), transition width fluctuation, amplitude mod-

ulation, and combined effects by the most principal eigenfunctions. This makes the K-L

expansion useful for identifying dominant noise sources from several different physical phe-

nomena. The K-L expansion was applied to experimental data and it was determined that

80% of noise power is caused by jitter, amplitude modulation, and pulse width modulation

of the recorded pulse waveforms.

This section presented several potential physical mechanisms of magnetic media noise

and methods for quantifying that noise. Physical factors include medium inhomogeneity,

variations in the squared derivative of the remanence loop, physical orientation, spacing, and

dimensions of magnetic particles, particle clustering and chaining and others all contribute to

noise power. Noise quantification techniques such as power spectral density and Karhunen-

Loéve expansions were discussed. All of these factors provide motivation for improvements

to the model in Section 2.3.1.
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Chapter 3

Magnetic Force Microscopy Principles

of Operation

Chapter 3 presents an introduction to the microscopy technique known as magnetic force

microscopy (MFM). MFM provides high resolution imaging of magnetic fields emanating

from a sample. The overview section first presents a general overview of scanning probe

microscopy (SPM), the technique from which MFM is derived. A block diagram of the

magnetic force microscope is then presented, followed by a simple model of the interaction

of the microscope with the sample.

The last section considers modeling in more detail. A Fourier-domain approach to re-

covering the magnetization distribution of a sample using MFM is presented. The results of

simulation of MFM are given and compared with actual data collected using the instrument.

3.1 An Overview of MFM

This section presents a block diagram of magnetic force microscopy and its fundamental

operating principles. A model of the MFM is given as is a description of a simple one-

dimensional simulation of the MFM’s response to longitudinal recording media.
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3.1.1 Scanning Probe Microscopy

Scanning probe microscopy (SPM) is a technique for collecting data from the surface of

materials at very high resolutions, typically on the order of nanometers. This high resolution

is achieved by measuring interaction forces between a very small probe and the sample

surface. The probe consists of a sharp tip (radius of curvature: 3−50 nm [23]) at the end of

a flexible cantilever, which is flown over the sample surface and interacts with it in a fashion

determined by the mode of operation. SPM is not limited in resolution by diffraction, as

is optical microscopy, nor does SPM require extensive sample preparation, as does electron

microscopy. An example application of SPM is observing the effect of medications on AIDS

viruses by imaging the viruses themselves [24].

There are many different modes of SPM. The most common are atomic force microscopy

(AFM) and scanning tunneling microscopy (STM). AFM measures the physical interactions

between the tip and the sample. For example, the tip can literally be dragged across the

surface, and the force of interaction measured. STM measures the electric current flowing

between the sample and the electrified probe. Magnetic force microscopy, which is similar in

operation to AFM, is the technique we are concerned with in this research. MFM measures

the magnetic interactions between the magnetized tip and sample.

3.1.2 MFM Subsystems

A magnetic force microscope is composed of several subsystems, as shown in Fig. 3.1(a)

[25]. The most critical component of the microscope is the magnetic tip, which is the sensing

portion of the microscope [26]. If the tip is attached to the end of a flexible cantilever,

oscillated, and flown over the sample, its magnetic properties cause it to interact with the

stray magnetic fields from the sample. The phase of the tip is measured by a non-perturbing

detection scheme, such as the diode laser and photo diode shown in the block diagram. The

position of the tip is controlled by the scanner, the most common being a piezo-electric

tube scanner which moves the sample under the tip [25]. The controller sends movement

instructions to the scanner. A computer collects data from the photo diode and sends

instructions to the controller.
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(a) MFM Block Diagram [25] (b) Diagram of coordinate system

Figure 3.1: (a) Block diagram of magnetic force microscope and (b) diagram of coordinate
system in the vicinity of the MFM tip.

The fundamental operating principle of the MFM is the detection of a gradient magnetic

force by a resonance frequency shift of the oscillating cantilever. The cantilever is driven at

its resonance frequency, ω0. If an external magnetic force is present in the vicinity of the tip

of the cantilever, it exerts a force on the magnetic tip. It will be shown that the derivative

of this force is proportional to the output of the microscope. The net effect of this force is

to modify the spring constant of the cantilever and shift its resonant frequency[6]. This shift

manifests as a phase shift between the cantilever’s driving oscillator and the oscillation of

the cantilever itself. Since the magnetic force felt by the tip from the sample is not constant

in space, it is referred to as a magnetic force gradient or simply force gradient :

F ′tip =
dFtip
dz

. (3.1)

From this point on, without further qualification, it should be assumed that F ′tip is taken

in the z direction, and that the tip oscillates only in the direction of the z-axis. The tip’s

actual path of deflection is of course more complicated than this, but for the purposes of

illustrating the resonance frequency shift, this assumption is helpful. If a force gradient is

present in the vicinity of the oscillating tip, the resonance frequency will be approximately

reduced by [6]:
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∆ω =
ω0F

′
tip

2k
(3.2)

where k is the cantilever spring constant. A shift in the resonant frequency of the cantilever

will cause a corresponding shift in oscillation phase, given approximately by [27]:

∆φ =
Q

k
F ′tip (3.3)

where ∆φ represents the shift in oscillation phase and Q is the quality factor1 of the reso-

nance. Of course, ∆φ varies as the tip moves over the sample. This phase shift is taken as

the output of the microscope.

3.1.3 A Mathematical Model of MFM

To better understand the relationship between medium magnetization and microscope

output, a model of the interactions between magnetic tip and medium is presented. An ideal

point dipole is used to model the tip, along with a two-dimensional model of longitudinal

recording media. These are combined to produce a simulation of the MFM response.

The force on the magnetic tip results from the interaction energy between the tip and

the sample, as given by the following relation [29]:

Ftip = ∇Etip−sample (3.5)

where Ftip denotes the force on the tip and Etip−sample is the interaction energy between the

tip and sample. The interaction energy in the most general case is given by [29]:

1The quality factor of an oscillating system is a measure of the sharpness of the resonance curve of the
system. The resonance curve is a graph of oscillation amplitude versus driving frequency. A higher quality
factor indicates that the oscillation amplitude of the system drops off very quickly as the driving frequency
diverges from the system’s natural frequency. The expression for the quality factor is [28]:

Q =
ωd

2γ
(3.4)

where Q is the quality factor, ωd is the frequency of the oscillator while freely running, and 2γ is the frequency
range bounded by the points on the resonance curve at which oscillation amplitude has dropped by a factor
of 1/

√
2 of the maximum amplitude.
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Etip−sample =

∫∫∫
Gtip

~Mtip · ~Hsample dx dy dz (3.6)

where ~Mtip is the magnetization of the tip and ~Hsample is the stray field from the sample.

Of course, both ~Mtip and ~Hsample are functions of x,y,and z. The term Gtip on the integral

denotes that this is a volume integral over the entire volume of the magnetic tip. Since

measuring the exact magnetization of the tip itself is difficult, an approximation is typically

made that considers the tip as a point magnetic dipole. Using this assumption and combining

(3.5) with (3.6) [29]:

Ftip = (~m · ∇) ~Hsample (3.7)

where ~m = ~MeffGeff , ~Meff is the effective dipole moment and Geff is the effective volume

of the tip. Geff varies from Gtip above in that Geff denotes the total volume of the tip,

while Gtip denotes the limits of integration corresponding to the tip dimensions in (3.6). A

further assumption is made that tip-sample interaction is primarily in the z-direction [29].

This causes (3.7) to take the form:

Ftip = mx
∂Hx

∂z
+my

∂Hy

∂z
+mz

∂Hz

∂z
(3.8)

where mx, my, and mz are the spatial components of m and Hx,Hy, and Hz are the spatial

components of ~Hsample. As discussed in the previous section, the output from MFM is

proportional to the derivative of the force on the tip. Differentiating (3.8),

F ′tip = mx
∂2Hx

∂z2
+my

∂2Hy

∂z2
+mz

∂2Hz

∂z2
(3.9)

After establishing the tip model, an appropriate model for the stray fields from the

recording media must be presented. Since the MFM tip senses fields primarily in the z

direction, and our model assumes a tip only sensitive to fields in that direction, the x and
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y components of field are excluded in the medium model. The z component of the field

reaches a maximum magnitude at a north-to-north or south-to-south magnetic transition.

A common model in recording physics of the magnetic transition is the Williams-Comstock

model, which leads to a field expression for a single bar magnet of the form [6]:

Hz(x, z) = 2Mrlog

(
x2 + (δ + z + a)2

x2 + (z + a)2

)
(3.10)

where Mr is the remanent magnetization of the medium, a is the transition width, δ is the

media thickness, x is the displacement in the longitudinal direction, and z is the displacement

in the direction normal to the sample. Here, the transition is assumed to be infinitely long

in the cross-track direction. The transition width parameter is calculated from [30]:

a = 2δMr(3.3− 2.3S∗)/Hc (3.11)

where Hc is the coercivity, and S∗ is the coercivity squareness, which describes the pos-

sible deviation in the media coercivity. A series of transitions (magnets) is modeled as a

superposition of individual transitions [6]:

Htotal(x, z) =
∑
n

(−1)nHz(x− nd, z) (3.12)

where n is an integer and d is the distance between transitions.

It is now possible to simulate the output of the MFM for a typical measurement scenario.

The simulation parameters are taken from the properties of common analog audio tapes, and

are summarized below.

Fig. 3.2(a) shows three simulated magnetic transitions and the MFM response. The

positive peaks correspond to north-to-north transitions, and the negative peaks correspond

to south-to-south transitions. Fig. 3.2(b) shows a single magnetic transition in finer detail.

These modeling results will be useful in Section 3.2 when comparing actual MFM data to

theoretical results.
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Parameter Symbol Value
Material N/A γ − Fe2O3 + Co
Remanent Magnetization Mr 140 kA/m
Magnetic Layer Thickness δ 5 µm
Distance Between Transitions d 19 µm
Tip Scanning Height z 200 nm
Transition Width a 0.51 µm
Coercivity Hc 52 kA/m
Coercivity Squareness S∗ 0.598

Table 3.1: Parameters for MFM response simulation.
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Figure 3.2: Simulated MFM response to audio recording media showing magnetic transitions.
Normalization constants are 723 Oe(H) and 3.28 ∗ 1015N/µm(F/m).

3.2 Magnetization Estimation using MFM Images

This section outlines the procedure for recovering the magnetization patterns of the tape

sample using MFM data. The MFM is treated as a linear space-invariant system, which is

completely described by its response to a “point” magnetic charge. The MFM’s response is

simulated, and the results of simulation are given in Section 3.2.2.

3.2.1 Magnetization Estimation through Tip Response Function

Magnetic force microscope images yield information about the stray magnetic fields emit-

ted by a sample. However, as was shown Section 3.1.3, the data given by the MFM depends

not only on the stray fields themselves, but also the magnetic properties of the tip. Imaging



Chapter 3 Magnetic Force Microscopy Principles of Operation 29

the same sample using different tips will yield different results. To remove the information

about the tip, a recovery technique is needed which takes into account the specific magnetic

properties of the particular tip being used. When the coercivity of the tip is more than the

magnetic field strength of the stray sample fields, and the coercivity of the medium is more

than the strength of the fields emitted by the tip, the MFM can be classified as a linear

space-invariant system (LSI) [31]. In other words, the properties of the MFM tip do not

change as the tip moves over the sample. This makes the analysis of MFM data amenable

to Fourier techniques. In this section, a method for obtaining the impulse response function

of the MFM tip under the LSI condition is discussed, and simulations are used to show the

results of using this function for obtaining magnetization estimates.

A system which is linear and invariant in the independent variable over which it is

measured can be completely characterized by its impulse response. In many cases the inde-

pendent variable is time, but in the case of the magnetic force microscope, the independent

variable is space, which denotes the position of the MFM tip relative to the sample. The

input-output relationship for a general two-dimensional LSI system in the spatial domain is

given by:

y(s1, s2) =

∫∫
x(s1, s2)h(s1 − s′1, s2 − s′2) ds′1 ds′2 (3.13)

where y is the output, x is the input, h is the impulse response function, s1 and s2 are

coordinates denoting the position in space to be evaluated, and s′1 and s′2 are variables of

integration which range over the entire space under analysis.

The crucial component in the input-output relationship is h(s1, s2), the impulse response

function, or simply impulse response. Finding this function for the MFM involves deter-

mining the microscope’s response to an isolated “point” magnetic charge. When referring

specifically to the impulse response of the MFM, the term dipole response function or dipole

response is used. Strictly speaking, a point magnetic charge is not physically realizable.

However, a reasonable approximation can be obtained by imaging the end of a nanoscale

single-domain nickel strip [10]. Typical lengths for these strips are on the order of 70 nm. A

simulated dipole response function is shown in Fig. 3.3. Once the dipole response is known,
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Figure 3.3: Simulated dipole response function.

the input-output relationship of the MFM becomes [10]:

G(x, y) =

∫∫
M(x′, y′)D(x− x′, y − y′) dx′ dy′ (3.14)

where G(x, y) is the MFM image, M is a quantity representing the magnetic charge distri-

bution of the media, D is the dipole response function, x and z are the coordinates denoting

the position of the MFM tip over the sample, and x′ and y′ are variables of integration. A

comment must be made on the nature of M(x, y) and D(x, y). In general, the magnetiza-

tion of the media is a function of three spatial variables, and can be considered as yielding

a scalar value at each point representing the magnetic charge distribution. However, the

MFM is only capable of recovering information about the magnetization in the plane of the

media, and gives no information about the distribution of magnetization depth-wise (along

the z-axis) within the media [32]. The MFM essentially sees the sample magnetization as

a flat, two-dimensional distribution of magnetic charges. For this reason, M(x, y) becomes

a two-dimensional function of two variables, as does D(x, y). Furthermore, the MFM alone
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cannot given any information about the solenoidal 2 component of magnetization, since this

component is not field producing [33].

Equation (3.14) can be represented in the Fourier domain by:

G(x, y) = F−1[M(kx, ky)D(kx, ky)] (3.15)

where kx and ky are the spatial frequency variables in the in-track and cross-track directions,

M(kx, ky) is the Fourier Transform of the magnetization distribution components M(x, y),

D(kx, ky) is the Fourier transforms of the dipole response distribution components D(x, y),

and the operator F−1 denotes the inverse Fourier transform. (3.14) represents the output of

the MFM as a function of the magnetization distribution of the sample. This expression can

be rearranged to yield the magnetization distribution as a function of MFM output [10]:

M(x, y) = F−1

[
G(kx, ky)

D∗(kx, ky)

]
(3.16)

where x̂ and ŷ are the in-track and cross-track directions, and G(x, y) is the Fourier Trans-

form of the MFM image, G(x, y), and the asterisk in D∗(kx, ky) denotes complex conjugation.

This expression shows the transformation from an MFM image φ(x, y) into a magnetization

distribution M(x, y). The next section discusses implementing these algorithms numerically

and applying them to MFM image simulation.

3.2.2 Simulated MFM Images

In the previous section, a method for characterizing MFM as a linear space-invariant sys-

tem was presented. It was shown that MFM is completely characterized by a two-dimensional

impulse response function. Given this function, an MFM image can be generated using sim-

ulated magnetization patterns, and the magnetization patterns themselves can be recovered

from images. However, all of the analysis was presented in continuous space. To implement

these algorithms numerically, two-dimensional Fast Fourier Transforms are utilized. In this

section, several images are presented to demonstrate the procedure. Example code which

2A solenoidal vector field is a vector field with divergence zero.



Chapter 3 Magnetic Force Microscopy Principles of Operation 32

Figure 3.4: Particle model used to generate magnetization patterns.

illustrates this process is available from the WVU ETD site where this thesis was obtained,

in the file “codelisting.pdf”.

To simulate the response of the MFM, simulated magnetization patterns are generated.

These patterns represent common recording conditions in analog audio tape. As discussed

in Subsection 2.3.1, audio tapes consist of randomly oriented magnetized particles deposited

in a nonmagnetic substrate. A section of randomly magnetized particles is simulated under

the following conditions. The particles are assumed to be pairs of magnetic point monopoles

with spacing 1 µm embedded in a three dimensional lattice of width and length 20 µm, and

depth 5 µm. The particle locations are generated by first placing the particles at points

1.5 µm apart in the x, y, and z directions, and then adding a Gaussian random variable

to each of these dimensions for each particle. This results in an average particle density of

about 4 particles/µm3, and is illustrated in Fig. 3.4. This particle density is considerably

less than average particle densities for audio tape given in Table 2.1, resulting in a less precise

model but faster simulation. However, as will be shown in the simulated MFM image, the

overall magnetic field structure is still comparable and serves the purpose of demonstrating

the analysis techniques presented above.

Equations (3.14) and (3.16) are implemented numerically, in modified vector form, by

two-dimensional Fast Fourier Transforms (FFTs). Since magnetic charge distribution is a

scalar quantity, and magnetization is a vector quantity, this modification into vector form

is necessary. However, both forms yield a scalar MFM image so that the distinction is not

major in this case. The tip response function is applied in the form of Equation 3.16 to actual

data, not in vector form. Example code which illustrates the application of the tip response
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function to data is available from the WVU ETD site where this thesis was obtained, in

the file “codelisting.pdf”. The MFM images are windowed by a Kaiser-Bessel window with

parameter α = 2 such that they fall to 0 at their edges. This is done to minimize spectral

leakage in the resulting FFTs. The tip response function used in the simulation is described

by a two-dimensional Gaussian function:

D(x, z) = Ae−([ x
σx

]2+[ z
σz

]2) (3.17)

with A = 1 and σx = σz = 1√
40

. It should be noted that since the FFT is applied to data

with finite length, there will be a lower limit on the frequencies which can be represented,

which is a function of MFM image size. For an MFM image 90 × 90 µm in size, the lower

frequency limit is:

flow =
νtape
wt

(3.18)

where νtape is the tape speed and wt is the width of the image in the longitudinal direction.

For typical values of tape speed and image width, flow is on the order of 500 Hz.

(a) Single magnetic dipole. (b) Simulated MFM image of seven dipoles.

Figure 3.5: Single magnetic dipole (a) shown with a simulated MFM image of seven dipoles
(b).

The field lines for a single magnetic dipole are shown in Fig. 3.5(a). The large black arrow

denotes the south-to-north transition. Several of these dipoles having different rotations and
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offsets within the media are summed to form the simulated media magnetization. Some

comments must be made about the general characteristics of this dipole. The arrows in the

image represent point magnetic moments. The regions of radially pointing areas represent the

center points of the magnetic monopoles. Points with arrows converging on them represent

magnetic south poles, while points with arrows diverging from them represent magnetic

north. A simulated MFM image of seven of these magnetic dipoles oriented head-to-head

and tail-to-tail is shown in Fig. 3.5(b). Again, the black arrows denote the south-to-north

transition.

A pair of field maps is shown in Fig. 3.6. The first image, Fig. 3.6(a), is the original

field map generated by simulation. Fig. 3.6(b) is the field map recovered by the relationship

given in (3.16). Clearly, the recovered map closely resembles the original field map. However,

because a windowing function is applied to the data prior to computing the two-dimensional

FFT, the magnitudes of the vectors in the recovered image fall to zero near the edge of the

image. While this windowing process removes edge data, it reduces spectral leakage, and

improves the fidelity of the remaining data.
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Figure 3.6: Simulated magnetization map of a cross-section of the particle model. Image (a)
is the original and image (b) is the recovered image.

The simulated MFM image is shown in Fig. 3.7 next to an actual MFM image. As noted

above, the particle densities used in the simulation are smaller than those in actual audio

tape, resulting in more roughness as compared to the actual MFM image. However, the
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images possess similar characteristics, such as obvious north-to-south magnetic transitions

(areas of transition from black to white) and random transition orientations. This is a useful

proof of concept for the recovery techniques in Chapter 4.
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(b) Simulated MFM image

Figure 3.7: MFM image of a noisy audio recording vs a simulated MFM image of a noisy
magnetic field map.

3.2.3 Data Comparison

The previous section presented several simulated MFM images and field maps. This data

was shown to illustrate the recovery of magnetization patterns from MFM images. However,

the magnetization patterns were chosen to be random. In this section, several more simulated

MFM images and field maps are shown, this time with basic structure. The magnetization

patterns are chosen to simulate a recording of a sinusoidal signal.

Figure 3.8(a) shows an MFM image of a sinusoid recorded on a standard analog audio

tape. The dark and light areas vary sinusoidally over a grayscale intensity level across the

image width, and represent the magnitude of the magnetization. The noise in the image

is approximately white, while the image beside it, Figure 3.8(b) appears noiseless. This

is because the noiseless image is an ideal simulation of a sinusoidal magnetization pattern.

However, even in the absence of noise, a resemblance is apparent between the images. A

similar situation is shown in Figure 3.9. Instead of only a single sinusoid, the recording
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(b) Simulated MFM image of a sinusoidal magne-

tization pattern, f = 12 kHz

Figure 3.8: Comparison of MFM images to simulation - single tone.

is a sum of two sinusoids at different frequencies. Generating and analyzing these simple

magnetization patterns will provide the basis for data analysis in Chapter 4.
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(a) Sample MFM image showing a recorded sum

of sinusoids, f1 = 1.5 kHz, f2 = 12 kHz
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(b) Simulated MFM image of a sinusoidal magne-

tization pattern at two different frequencies f1 =

4.8 kHz, f2 = 12 kHz

Figure 3.9: Comparison of MFM images to simulation - multiple tones.
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Chapter 4

Analysis of Noise and Erasure

In this chapter, analysis of signal erasure, media noise, and overwrite are investigated

using several MFM images. First, physical mechanisms of tape erasure are presented, such

as bulk and head erasure. A discussion of the frequency dependency of erasure is given.

Next, the phenomenon of partial erasure, defined as arising when magnetic fields interact

destructively, is discussed. Then, an analysis of noise is given and comparison with the

theoretical model given in Subsection 2.3.1 is presented. Finally, an analysis of signal recovery

after erasure is presented. Single tone data, multi-tone data, and in situ erased data are

investigated. Fast Fourier transforms and estimated SNR’s (signal to noise ratios) are given,

along with a discussion of the feasibility of signal recovery by this method.

4.1 Erasibility and Overwrite of Media

This section first discusses the different methods of erasure, such as bulk erasure and head

erasure, and their relative merits. The re-recording phenomenon is discussed as a motivation

for attempting to recover erased signals. Efficiency of erasure techniques is discussed and

quantified. Evidence is presented to suggest that the erasure process is frequency depen-

dent. The phenomenon of partial erasure is discussed, in which magnetic fields destructively

interfere with each other and lower the measured SNR. A processing technique is presented

which attempts to remove the effects of partial erasure. Finally, the noise theory discussed

in previous sections is compared with experimental data by computing the variance of the
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magnetic dipole moment measured in the images.

4.1.1 Erasure Techniques and Overwrite

This section investigates the erasibility of audio tape recordings and criteria which can

be used to quantify erasure. Erasure techniques used in audio tape can be divided into bulk

erasure and head erasure. Bulk erasure involves applying a strong alternating, decreasing

magnetic field to the entire medium at the same time. The initial amplitudes for this field are

typically at least five times the coercivity of the medium [2]. This technique yields a more

complete erasure than the alternative, erasure by head. In audio tape recording, erasure

through the use of a head is far more common.

As discussed in Subsection 2.1.2, there are two types of erase heads, permanent magnet

(DC) erase heads, and inductive heads which are excited by AC current, producing alter-

nating magnetic fields. While AC erase heads typically produce a better erasure than DC,

they also give rise to a potential “re-recording” effect, in which the section of the media

under erasure is re-recorded by the stray fields from the adjacent media which have not been

erased. In this case the AC erase field acts as a bias field, which was discussed in Subsection

2.2.1. Efficient head design can minimize this effect [34]. Efficiency of erasure is defined by

the erase ratio, which is defined as the ratio of the signal energy before and after erasure

[34]:

Re = 20log

(
Eae
Ebe

)
(4.1)

where Re is the erase ratio in dB, Eae is the remaining signal energy after erasure, and Ebe

is the signal energy before erasure. The goal of a well-designed erase head is to achieve an

erase ratio greater than −70dB [34].

As studied in [35], longer wavelength signals tend to record more deeply than shorter

wavelength signals, providing evidence that shorter wavelength signals may be detectable

after overwrite. As a measure of MFM’s ability to recover erased data, the FFT is used to

compute energy after erasure of a written sinusoid, and compared with the FFT magnitude

of the sinusoid prior to erasure. The signal-to-noise ratio (SNR) is then computed, which
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is essentially the inverse of the erase ratio as defined above. Another analysis which will be

presented is modeled after the experiment performed in [36], in which erasure is performed

by an electromagnet placed directly under the MFM sample in situ in the microscope. This

will allow a specific area of tape to be measured several times in different magnetization

states. The results of these analyses are presented in the next chapter.

4.1.2 Partial Erasure

This section considers the magnetic phenomenon known as partial erasure. Partial erasure

is defined as the erasure that occurs when physically adjacent magnetic grains (or their stray

fields) in recording media interact destructively, forcing the magnetization in that area below

some threshold [11]. Yen et. al. [37] suggest that above a certain critical density of magnetic

flux transitions in magnetic media, the transitions effectively annihilate each other, which

has implications for the interpretation of signals erased by a high frequency AC bias. Partial

erasure can be further subdivided into linear and nonlinear partial erasure. Linear partial

erasure is defined as the destructive interaction of stray fields from adjacent magnetic grains.

Nonlinear partial erasure however occurs when the magnetic grains themselves interact and

change their magnetization states. Taguchi et. al. [11] investigate the phenomenon in a

digital recording system with high density of magnetic material. Since our recording media

is analog audio tape, which is relatively low density, we will restrict our investigation to

linear partial erasure, ignoring inter-particle interactions.

To confirm or deny the presence of partial erasure in our data, the following experiment

is performed:

1. A set of MFM images is chosen for investigation. The set consists of three images:

one showing a strong signal, one showing an erased signal, and one showing a partially

erased signal. These were chosen to observe the effect of signal strength on partial

erasure.

2. For each image in the set, partial erasure is computed using the following criterion

used by Taguchi et. al. [11]:
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• Compute the arithmetic mean for the field strength in each column of the MFM

image, where each column runs across the track.

• Compute a threshold using the following formula:

T = 0.3|m| (4.2)

where m is the arithmetic mean for a particular column and T is the threshold.

• For each pixel in the column, compare the pixel’s magnitude with the threshold.

If the pixel magnitude is less than the threshold, consider that pixel an area of

partial erasure.

3. The above procedure will result in a boolean image where black values represent partial

erasure and white values represent no partial erasure. At the top of each image, a

percentage value representing the percentage of the image flagged as partial erasure is

given.

4. A line profile of the column having the highest amount of partial erasure is plotted.

5. To investigate the effect of partial erasure on the spectrum of the data, the pixels

marked as partial erasures are replaced by the arithmetic mean of the pixels surround-

ing them. The FFT is then computed for this new MFM image.

Once the experiment is performed, a discussion is presented regarding how the results affect

potential data recovery.

The three figures, Fig. 4.1, Fig. 4.2, and Fig. 4.3, show the partial erasure data for

the erased signal, partially erased signal, and strong signal respectively. An immediately

interesting result is that the partial erasure ratio is highest in the image in which the signal

has been partially erased, taking a value of 7.79%. In the erased image and partially erased

images, partial erasure appears to be roughly uniformly distributed. However, as the sig-

nal strength increases, it appears that regions of partial erasure begin to exhibit a certain

periodicity related to the regions of smallest field magnitude (gray regions in the MFM im-

ages). While these results are not absolutely conclusive evidence of the presence of partial
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(a) MFM image - erased area

Partial Erasure Ratio: 3.289 percent
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(d) FFT of the image after partially erased pixels are

replaced by the mean of the surrounding pixels.

Figure 4.1: Partial erasure images - erased area.
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(a) MFM image - partially erased area

Partial Erasure Ratio: 7.791 percent
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(d) FFT of the image after partially erased pixels are

replaced by the mean of the surrounding pixels.

Figure 4.2: Partial erasure images - partially erased area.
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(a) MFM image - strong signal area

Partial Erasure Ratio: 4.668 percent
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(d) FFT of the image after partially erased pixels are

replaced by the mean of the surrounding pixels.

Figure 4.3: Partial erasure images - strong signal area.
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erasure, they provide a motivation for a more careful micromagnetic analysis to confirm or

deny the results. In terms of signal recovery, partial erasure may be a significant factor when

designing any sort of channel model for the purposes of recovering an erased or distorted

signal. The FFT data for Fig. 4.1(d) shows no strong evidence of the written signals, but

does show a feature that arises frequently in the multi-tone erased MFM data, a prominent

peak at approximately 10 kHz. The FFT data in 4.2(d) shows strong peaks at the written

frequencies, as does the MFM image in Fig. 4.3(d). This FFT data is discussed further in

Subsection 4.2.2, where it is compared to raw MFM FFT data.

4.1.3 Noise Analysis

In this section, the theory of noise presented in the previous section is compared with

empirical MFM measurements. First, the experimental setup including data collection and

transformation techniques is presented. Then, several MFM images and their computed

noise statistics are presented with an interpretative discussion of the results.

The noise theory in the previous section yielded a model for the variance of the magnetic

dipole moment measured in particulate recording media. There it was determined analyt-

ically that the noise power in AC biased audio recording could effectively be considered

constant. MFM has such a high resolution that it presents a unique opportunity to test this

model against measurements. The steps in this experiment are as follows:

1. The set of images used consists of two images showing the sum of a 2 kHz sinusoid

and a 15 kHz sinusoid on one stereo track of audio tape, and two images of that track

after stereo erasure.

2. The images are each read, and the grayscale levels are converted to normalized magne-

tizations, as in 2.10. This is done by assuming that the mean-centered MFM grayscale

output maps linearly to the sample magnetization. The actual relationship is un-

doubtably more complicated than this, and provides an area for future improvements

to the model.

3. Column-wise means and variances are computed for each image. It is assumed that
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Figure 4.4: Comparison of theoretical and measured noise statistics - strong signal 1.
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(a) MFM image - strong signal image 2
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6.27 ∗ 10−32(Am)2 and 6.02 ∗ 10−33(Am)2 re-

spectively. Solid red line: means of the data.

Figure 4.5: Comparison of theoretical and measured noise statistics - strong signal 2.
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the mean magnetization is constant over each image column.

4. Theoretical values of magnetic moment variance are calculated for comparison against

experiment. The computed values of normalized mean are substituted into 2.14, along

with the parameters ~µparticle, N , and P . The latter parameters are either taken or

computed from Table 2.1. The calculated experimental parameters are summarized in

the list following this one.

5. The computed and theoretical values of magnetic moment variance are plotted against

the normalized mean magnetization. These plots are used to determine the strength

of the relationship between the data and the theoretical model.

A summary of the values used for the model parameters is:

• ~µparticle = 5.2 ∗ 10−17Am2, the estimated magnetic moment for a single particle.

• N = 23.2 particles per MFM image pixel

• P = 0.40, the volumetric packing factor for audio tape.

As seen in Fig. 4.4 through Fig. 4.7, the observed variances seemingly do not follow the

theoretical variance curve very closely. However if the strong signal plots are compared to

the weak signal plots, to a linear factor, the strong signal plots seem to follow the theoretical

curve more strongly. Notice that curvature is discernible in the theoretical plot for the strong

figures. This means that the theoretical and experimental variances vary on approximately

the same order. Also, a distinct looping structure is apparent in which the variance appears

to follow the mean in almost inverse proportion, as predicted by the theoretical model. The

experimental variance is much more widely distributed in the cases of the weak signals, as

the theoretical variance appears comparatively constant on those scales. This suggests that

the model may be somewhat accurate at high values of magnetization, but breaks down at

very low levels of magnetization. It is clear from all of the plots that either some sort of

unwanted transformation or noise exists in the data or that the model requires additional

refining. Possible sources of this transformation are noise in the measurements, some non-

trivial transfer function in the MFM collection technique, or some additional term that the
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(a) MFM image - weak signal image 1 (b) Theoretical and measured variance ver-

sus normalized mean. Normalization terms:

6.27 ∗ 10−32(Am)2 and 3.95 ∗ 10−36(Am)2 re-

spectively. Solid red line: means of the data.

Figure 4.6: Comparison of theoretical and measured noise statistics - weak signal 1.
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(a) MFM image - weak signal image 1 (b) Theoretical and measured variance ver-

sus normalized mean. Normalization terms:

6.27 ∗ 10−32(Am)2 and 4.39 ∗ 10−36(Am)2 re-

spectively. Solid red line: means of the data.

Figure 4.7: Comparison of theoretical and measured noise statistics - weak signal 2.

model is missing that becomes significant at this level of resolution. Again, future work for

improving this experiment includes improving the mapping of MFM signal to sample magne-
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tization as described above, and ultimately refining the model and measurement techniques

until they are in agreement.
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4.2 Data Recovery

This section combines the techniques described in the thesis to analyze several sets of

data taken under a variety of erasure conditions. The tip response function, as described

in Section 3.2.1, is applied to the raw image data and its effect on recovery is investigated.

Image derotation is applied in this analysis, yielding a more accurate estimation of the

frequency spectrum of the recorded signals. The erase ratio discussed in Section 4.1.1 is

presented in the form of an SNR calculation. Finally, the spatial distribution of noise is

investigated by correlating pairs of erased and unerased MFM images.

The signal-to-noise ratio calculation is performed for each data set by picking the strongest

unerased signal from the set, computing its FFT, and using the FFT coefficients as estimates

of Fourier series coefficients. The signal power is computed by summing the squared mag-

nitude spectrum of this strong signal, according to Parseval’s Theorem. This estimate of

the signal spectral coefficients is then subtracted from the spectral coefficients in the erased

images, and the remaining squared magnitude spectrum is summed to form an estimate of

noise power. The signal-to-noise ratio is then calculated according to:

SNRdB = 10log

(
Ps
Pn

)
(4.3)

where Ps denotes the signal power and Pn denotes the noise power.

4.2.1 Single Tone Data

In this section, several MFM images of a single 2 khz sinusoid are presented, along with

calculated signal-to-noise ratios. Fig. 4.8 shows the physical areas of tape from which the

tone was taken. Each image contains either an erased or unerased signal. The top mono-

recording track contains the unerased data, and consists of image areas A and B. The bottom

mono-recording track was subjected to erasure by the tape recorder, and consists of areas

C and D. A total of seven images were taken, and their SNR information is summarized in

Table 4.1. A selection of three of the images and their spectrums is presented next.

Images Fig. 4.9 and Fig. 4.10 show a strong signal from area A and its spectrum. The



Chapter 4 Analysis of Erasure and Overwrite 50

spectral peak is obviously well-defined at approximately 2 kHz. It is interesting to note

that the signal-to-noise ratio of the image processed using the tip response function is higher

than the image which has not been processed by over 2 dB. Images Fig. 4.11 and Fig.

4.12 show the images from erased area C. Unlike the image from area A, area C is much

less well-defined and its spectrum is much noisier, with an SNR barely greater than zero for

both the processed and unprocessed images. Unlike the strong signal, the SNR of the erased

signal is greater in the unprocessed image than the processed one. This trend continues with

the images from area D, Fig. 4.13 and Fig. 4.14. Area D is interesting in that while the

signal is not apparent in the MFM image itself, the spectrum suggests the presence of the

signal, as does the calculated SNR. Comparing the spectrum of this image with the erased

signal image from area C, it is seen that the 2 kHz signal peak is much better defined and

almost as prominent as the peak in the spectrum from the strong signal, area A.

Figure 4.8: Image of audio tape layout showing the locations from which MFM data was
taken. The top track is written with a 2 kHz sine wave. The bottom track was written with
the same wave and then erased.

The information about all of the images in this set is summarized in Table 4.1. One

major result is that in general, processing by the tip response function decreased the SNR

of the detected signal. Also, there was a somewhat large variation in the SNR’s calculated

from the erased areas. However, these values for SNR in an erased region yield evidence that

erasure performed by common recording decks may not be complete.
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SNR(dB)
Image Area Erasure Level Raw Image Tip Response Image
A1 Unerased 13.5 15.7
B1 Unerased 23.4 21.6
B2 Unerased 23.7 19.7
C1 Erased 0.283 0.213
C2 Erased 0.268 0.212
D1 Erased 1.74 1.40
D2 Erased 1.71 1.35

Table 4.1: Summary of Signal-to-Noise ratios for the single-tone data set.
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(b) FFT of image.

Figure 4.9: Area A - Top of unerased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.10: Area A - Top of unerased track - Image 2.
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(a) Raw MFM image.
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Figure 4.11: Area C - Top of erased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.12: Area C - Top of erased track - Image 2.
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(a) Raw MFM image.
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Figure 4.13: Area D - Bottom of erased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.14: Area D - Bottom of erased track - Image 2.

4.2.2 Multi-tone Data

As in the last section, MFM images of sinusoidal data are presented. However, in this

case, the data consists of two sinusoids mixed together, a 5 khz wave and a 14 kHz wave.

The tape diagram is shown in Fig. 4.15. This data set consists of about twice as many

images as the last, and contains images taken between the audio tracks as well as on them.

The bottom mono-recorded track contains the unerased data, and the top mono-recorded

track contains the erased data. The unerased data is associated with area G, while the erased

data is associated with areas A, B, D, E. The middle track data is taken from areas C, H,

and F. Sixteen images were taken, but only four are shown: areas A, B, G, and H. The data

for the rest are summarized in Table 4.2. The images with their spectrums are presented

next.

Images Fig. 4.16 and Fig. 4.17 show a strong signal from area G and its spectrum. Strong

spectral peaks appear at 5 kHz and approximately 14 kHz. One notable difference between

the image processed with the tip response function and the image processed without is that

the 14 kHz peak appears noticeably higher in the processed image than in the unprocessed.

This suggests that the tip response function may be more effective at enhancing higher
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frequencies than lower. However this could obviously be a disadvantage if noise is distributed

more in the higher frequencies than lower. While the higher frequency was enhanced, the

overall SNR of the processed image is about 0.3 dB lower than the processed one. In addition

to the higher frequency enhancement, some small but noticeable enhancement is present in

the frequencies near zero. Comparing this spectrum with Fig. 4.3(d), we see that the two

are very similar, except that the spectrum of the partial erasure processed image shows

lower amplitudes for frequency components near zero. Area A, shown in Fig. 4.18 and Fig.

4.19 presents a fairly low SNR and a garbled spectrum. Comparing this spectrum with

Fig. 4.1(d), no appreciable difference is noticed. Another garbled spectrum is witnessed

in Area B, and again, the SNR level of the tip response processed images is lower. While

neither of these images show strong peaks at either of the written frequencies, both show a

peak at 10 kHz. This frequency is roughly in between the written frequencies, and could

imply that some sort of “smearing” of the spectrum is occurring, such as the two frequencies

heterodyning with one another. Interesting effects appear in Area H, Fig. 4.22 and Fig. 4.23,

as the SNR is somewhat higher and the spectrum and image show faint signs of the 14 kHz

signal. This suggests that the buffer area between tracks might contain useful information.

This is also the only image in which the partial erasure processed spectrum shows a stronger

signal than the raw image data. Comparing to the spectrum shown in Fig. 4.2(d), it is

seen that the partial erasure processed spectrum shows the written frequencies much more

clearly. Refining this partial erasure processing technique provides an interesting avenue for

future work in the detection of partially erased signals.

Table 4.2 provides a summary of this data set. Unlike the previous set, none of the erased

areas show a particularly high SNR. Probably the most interesting feature is the mid-track

data, which yields a higher SNR than all of the erased areas. The SNR distribution is much

more uniform in this data set than the last. The tip response processed images performed

uniformly worse than the unprocessed images, except in the case of the mid-track data. The

case in the previous set in which the strong signal yielded a higher SNR when processed

with the tip function was not repeated here. The implication is that the previous case was

an anomaly.



Chapter 4 Analysis of Erasure and Overwrite 56

Figure 4.15: Image of audio tape layout showing the locations from which MFM data was
taken. The bottom track is written with a 5 kHz and a 14 kHz sine wave. The top track
was written with the same waves and then erased.
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(b) FFT of image.

Figure 4.16: Area G - Bottom of unerased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.17: Area G - Bottom of unerased track - Image 2.
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(a) Raw MFM image.
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(b) FFT of image.

Figure 4.18: Area A - Top of erased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.19: Area A - Top of erased track - Image 2.

µm

µm

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

(a) Raw MFM image.
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(b) FFT of image.

Figure 4.20: Area B - Top of erased track - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.21: Area B - Top of erased track - Image 2.
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(a) Raw MFM image.
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(b) FFT of image.

Figure 4.22: Area H - Buffer area - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.23: Area H - Buffer area - Image 2.

SNR(dB)
Image Area Erasure Level Raw Image Tip Response Image
A1 Erased 0.287 0.139
A2 Erased 0.316 0.254
B1 Erased 0.246 0.206
B2 Erased 0.122 0.123
D1 Erased 0.235 0.146
D2 Erased 0.231 0.143
E1 Erased 0.111 0.082
E2 Erased 0.134 0.106
F1 Mid-track 0.133 0.087
F2 Mid-track 0.124 0.069
G1 Unerased 1.77 1.45
G2 Unerased 1.73 3.13
H1 Mid-track 0.538 0.379
H2 Mid-track 0.538 0.379
H3 Mid-track 0.538 0.379
H4 Mid-track 0.538 0.379

Table 4.2: Summary of Signal-to-Noise ratios for the multi-tone data set.

4.2.3 In situ Erased Data

This section differs slightly from the previous in that the samples are not erased by a

tape deck, but rather modified in situ by the application of an electromagnet. This gives
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another perspective on erasure since the exact same physical area of tape is inspected by

MFM before and after modification by a magnetic field. The data consists of five images: two

images of unaltered recorded tape for reference, and three images of recorded tape altered

by an electromagnet. The five images are divided into two “sets”. The first set consists of

three 25x25 µm scans. The first image of this set is of unaltered tape, the second image is

of the same imaging area altered by the electromagnet, and the third image is of the same

imaging area altered a second time by the electromagnet. The second set consists of two

90x90 µm scans. The first image of this set is of unaltered tape, and the second image is of

the same imaging area altered by the electromagnet. The electromagnet itself was created

by wrapping a wire around an iron core. The strength of the external fields created by the

magnet is on the order of the coercivity of the tape, which is necessary to alter the tape’s

magnetization.

SNR(dB)
Image Erasure Level Raw Image Tip Response Image
Set 1, Image 1 Unaltered 18.6 15.4
Set 1, Image 2 Exposed once 11.2 8.86
Set 1, Image 3 Exposed twice 8.28 5.11
Set 2, Image 1 Unaltered 23.9 13.9
Set 2, Image 2 Exposed once 13.7 10.6

Table 4.3: Summary of Signal-to-Noise ratios for the electromagnet-altered data set.

The images in Figures 4.24 through 4.29 show the progression of erasure of the first sample

set. The decrease in SNR’s is more gradual than in the other data sets, and the signal is

never forced into a completely erased state. The trend of lower SNR’s for the tip response

processed images continues uniformly in this set. The spectrums of the images do not vary

appreciably, which is expected at these relatively high values of SNR. The same trends are

observed in the second data set, Figures 4.30 through 4.32. The summary of SNR values

are given in Table 4.3. This fine control over the erasing process motivates the study of the

spatial distribution of erasure, which could be useful in defining test statistics and tests of

hypothesis for the estimation of the presence of a remanent signal. For example, intuitively,

if it’s shown that erasure occurs largely in “clumps”, it would suggest that discarding image

features with sizes on the orders of those clumps might enhance detection of an erased signal.
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More formally it could provide an estimation of the correlation length between regions of

the image.
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(a) Raw MFM image.
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(b) FFT of image.

Figure 4.24: 10 kHz wave 25x25 µm - Unaltered signal - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.25: 10 kHz wave 25x25 µm - Unaltered signal - Image 2.

Images Fig. 4.34 through 4.36 show the result of correlating segments of the unerased

reference images with the erased images. The segments are approximately 1 µm square, and
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(a) Raw MFM image.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

1646

3291.9

4937.9

6583.9

8229.8

9875.8

11521.7

13167.7

Frequency (Hz)

F
F

T
 m

ag
ni

tu
de

SNR (dB):   11.169

(b) FFT of image.

Figure 4.26: 10 kHz wave 25x25 µm - First altered signal - Image 1.
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(a) MFM image processed by tip response func-

tion.
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(b) FFT of image.

Figure 4.27: 10 kHz wave 25x25 µm - First altered signal - Image 2.

are computed after aligning two images by correlation. Alignment is necessary to compensate

for slight drifts in the MFM cantilever position between sample erasures. It is often seen

that areas of relatively low correlation are surrounded by areas of much higher correlation,

for example in the lower left corner. This implies that diversity combining techniques may

be used to detect erased signals.
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(a) Raw MFM image.
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(b) FFT of image.

Figure 4.28: 10 kHz wave 25x25 µm - Second altered signal - Image 1.
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Figure 4.29: 10 kHz wave 25x25 µm - Second altered signal - Image 2.
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Figure 4.30: 10 kHz wave 90x90 µm - Unaltered signal - Image 1.
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Figure 4.31: 10 kHz wave 90x90 µm - Unaltered signal - Image 2.
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Figure 4.32: 10 kHz wave 90x90 µm - Altered signal - Image 1.
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Figure 4.33: 10 kHz wave 90x90 µm - Altered signal - Image 2.
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Figure 4.34: Image showing the correlation between segments of Fig. 4.24(a) and Fig.
4.26(a).
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Figure 4.35: Image showing the correlation between segments of Fig. 4.24(a) and Fig.
4.28(a).
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Figure 4.36: Image showing the correlation between segments of Fig. 4.30(a) and Fig.
4.32(a).
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Chapter 5

Conclusion

5.1 Summary and Conclusions

The goal of this thesis was to propose and investigate a method for recovering erased

data from audio cassette tapes using MFM. To achieve this, the following procedure was

taken. First, a simulation of tape media and MFM response was presented to verify the

experimental data. A procedure for removing the instrument-specific features from data was

implemented in the Fourier domain using a tip response function. A theory of tape media

noise was presented to explain the sources of signal corruption encountered when analyzing

MFM data. Second, analysis was performed to compare the theoretical noise model with

experimental data. This was followed by an FFT-based analysis of several MFM images,

consisting of single tones and multiple tones, with and without the application of the tip

response function. A subset of the MFM data was also preprocessed to reverse destructive

magnetic interference. The in situ data images were also correlated with one another to

measure the spatial distribution of erasure.

It was found through SNR calculations that significant amounts of erased signal can be

present even in erased tape media. It was also found that lower frequency tones tend to

be much more resistant to erasure than higher frequency, as in the case of the simultaneous

writing and erasure of 2 kHz and 15 kHz tones. In this case, recovery of the 2 kHz tone was

deemed feasible in almost all observed erased samples, while the 15 kHz tone was considered

lost in all cases. To confirm that the recovery of the 2 kHz tone was legitimate and not just
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an artifact of the data collection process, virgin tape media was analyzed and investigated

for similar structures. It was confirmed that the 2 kHz was indeed a result of remanent

signal. In another case, significant amounts of remanent signal were found in the buffer

area between audio tracks. In the case of in situ data, evidence was found to suggest that

erasure may vary significantly as one moves along the tape surface distances on the order of

tens of microns, suggesting that different areas of the tape may contain different amounts

of information about the erased signal. It was also found that the current implementation

of the tip response function produces almost uniformly worse SNR performance compared

to raw MFM data. However, the data also suggests that the tip response function enhances

higher frequency data more than lower frequency, suggesting that there may be cases in

which using the tip response function is desirable. Also, the tip response function may be

improved by imaging a very small magnetic domain approximating an “impulse” of magnetic

charge. This would give a more accurate measurement of the actual shape and size of the

tip response.

The noise model presented in section 2.3.1 predicts that as the mean magnetization of

the tape media tends towards zero, the variance of the recorded magnetization, and thus

the measurement noise, should increase. It was found through experimental measurement

that the theoretical model followed the means of experimental measurements accurately to a

linear factor in the case of strongly recorded signals. The difference in observed magnetization

variances as a function of magnetization mean is similar in both the experimental data and

the theoretical prediction. However, the magnitude of variance predicted by the model is an

order of magnitude higher than that observed in the data. This suggests that refinement of

the model may be necessary, and that more data collection and comparison is necessary to

confirm or deny this refinement.

5.2 Future Work

Future work involves investigating diversity combining techniques and other signal pro-

cessing techniques such as principal component analysis for raising the signal-to-noise ratio

of detected signals, much as partial erasure processing was used in this thesis. These tech-
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niques, combined with the results of noise analysis, motivate the design of an optimal signal

recovery method for MFM. Further refinement of the noise model is necessary to bring the

results of experiment into agreement with theory. A more complete electromagnetic model,

incorporating nonlinear particle interaction effects, would provide insight into the writing

and erasure process, and allow more precise predictions to be made as to the nature of re-

manent information. A large amount of diverse MFM data of single tone sinusoids, multiple

tone sinusoids, and more complicated waveforms at various frequencies is necessary to inves-

tigate the nature of erasure more fully, as it was found that remanent information can vary

wildly across an erased audio track.
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A Analysis Techniques Applied to MFM Data

Periodic motion is ubiquitous in nature. A child swinging on a swingset, the rotation of

the hands of a clock, and the vibration of a plucked guitar string are all examples of commonly

observed periodic motion. It comes as no surprise then that specialized techniques have been

developed to analyze, quantify and reduce periodic data. In this section, a technique known

as the fast Fourier transform (FFT) is introduced which is useful in analyzing the audio

signals present in MFM data.

Figure .1: Child on a swing.
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(a) Several samples of the swing’s

position.
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(b) Swing’s position along the x-

axis.
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(c) FFT of the data in (b).

Figure .2: Swing time and frequency data.

To motivate the usage of the FFT for analyzing periodic data, an intuitive example of

periodic motion is presented. Consider a child swinging on a swingset as shown in Fig. .1.

Suppose we want to quantify the child’s position as a function of time. Let us define a two-

dimensional Cartesian coordinate system with the zero point at the swing’s rest position,

as shown in the figure. If we record the child’s position at several instants in time and plot
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them on the same graph, our graph might look like Fig. .2(a). Now, suppose that we only

consider the swing’s motion along the x-axis. A graph of the motion versus time might

resemble Fig. .2(b).

When discussing periodic phenomena, certain concepts arise frequently, such as ampli-

tude, frequency, and phase offset of the motion. In the case of the swingset, the amplitude

is one meter, the frequency of the motion is 1
4

hertz, and the phase offset is zero. The graph

in Fig. .2(b) appears approximately sinusoidal. If we restrict the discussion to finite-length,

discrete, periodic sinusoidal sequences, then a length-N sinusoidal sequence is given by:

y[n] = A cos

(
2πkn

N
+ φ

)
(A-1)

where A is the amplitude of the sinusoid, k is the (integer-valued) frequency of the sinusoid

in hertz which takes values between 0 and N − 1, and φ is the phase offset in radians. So, a

sinusoid is completely described by its amplitude, frequency, and phase offset.

Of course, not all periodic phenomena is sinusoidal. A natural question is then, can an

arbitrary periodic sequence be represented in terms of sinusoidal sequences? For a discrete

and finite sequence such as the swing’s movement in time shown in Fig. .2(b), the answer is

provided by the discrete Fourier transform (DFT) defined by the following expression: [38]

X[k] =
N−1∑
n=0

x[n]e−j
2πk
N
n (A-2)

where N is the length of the sequence, k is the frequency of the complex exponential function

in hertz, and j is the imaginary unit. While (A-2) can be used to calculate the DFT directly,

the calculation is relatively slow. In practice, the DFT is computed using a more efficient

algorithm, the fast Fourier transform. For the remainder of this paper, we will refer to the

discrete Fourier transform as the fast Fourier transform.

Equation (A-2) can be thought of as a re-expression of the sequence x[n] in terms of

a sum of sinusoidal sequences. As mentioned before, these sinusoidal sequences are each

completely described by their amplitude, frequency, and phase offset. To get a feel for the

form of the FFT, Fig. .2(c) gives the magnitude spectrum of the swingset data given in Fig.
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.2(b). This figure shows that the swingset data consists of one frequency at 1
4

hertz, with the

height of the data proportional to the amplitude of the swingset oscillation. While we have

information about the frequency and amplitude of our data, the magnitude spectrum alone

gives no information about the phase of the oscillation. For the purposes of this paper, the

phase offset can be safely ignored.

Since the FFT is a decomposition of an arbitrary finite-length, discrete sequence into

the sum of a set of finite, discrete sinusoidal sequences, one might ask, how many of these

sinusoidal sequences are necessary to represent an arbitrary sequence? Also, how do the

frequencies vary from one sinusoidal sequence to the next? The answer is that for an arbitrary

sequence of length N , at most N sinusoidal sequences are required to represent the arbitrary

sequence [38]. The frequency of each sinusoid is an integer multiple of the fundamental

frequency 2π
N

:

fk =
2πk

N
, k = 0, 1, ..., N − 1 (A-3)

so the different frequencies are harmonically related. Obviously these frequency values vary

between 0 and 2π.

A question that often arises is, how do the values in (A-3) map to the continuous frequency

range of the signal that we have sampled? The answer is a consequence of the Nyquist

Sampling Theorem, which states that to represent an arbitrary band-limited signal with

maximum (sinusoidal) frequency component x hertz, the signal must be sampled at a rate of

at least fs = 2x [38]. So, the expression mapping the continuous frequencies to the sampled

frequencies in (A-3) is:

fc[k] = fk
fs
2π
, k ≤ N

2
(A-4)

where fs is the sampling frequency and for k > N
2

, the mapping is mirrored and negative.

Notice that in Fig. .2(b), the data captures a single period of sinusoidal motion. In this

case, when the data consists an exact integer number of periods of the sinusoid, the FFT data

yields an exact representation of the frequency spectrum. The FFT magnitude in Fig. .2(c)
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(a) Several samples of the swing’s

position.
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(b) FFT of the data in (b).

Figure .3: Swing data truncated after a non-integer number of periods.

is nonzero only at the frequency of oscillation of the swing. However, in practice, capturing

data which consists only of integer number of cycles happens very rarely. In some cases it

might even be impossible, such as when the data consists of a superposition of sinusoids

whose frequencies are not harmonically related. What is the effect on the spectrum when

the data does not contain an integer number of periods?

To investigate the effects of arbitrary truncation lengths on periodic data, we refer back

to our swing example. Fig. .3(a) shows swing position data taken in the x-dimension over

a non-integer number of periods and its corresponding FFT. Notice how the sinusoid is

“clipped” at the end of the data on a non-zero value. Again, this is a very realistic data

collection scenario since in general, we won’t be able to truncate the data as precisely as

shown in Fig. .2(b). The effect of this clipping is that the spectrum is now non-zero at

several points around the true frequency, as shown in Fig. .3(b). The maximum magnitude

does not even occur at the true frequency! This “smearing” of the frequency spectrum is

termed leakage, and is an unavoidable consequence of working with sampled, truncated data.

A technique known as windowing exists to mitigate the effect of leakage. Windowing

involves multiplying the original signal by a function which tapers to zero at its edges, and

possesses some nontrivial shape in between. In general, a window attempts to re-shape the

frequency spectrum to more accurately represent the true frequency values at the expense

of decreasing the frequency resolution [38]. To demonstrate the effects of windowing, two
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(b) Position data multiplied by the

window in (a).
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(c) FFT of the data in (b).

Figure .4: Kaiser-Bessel window applied to swing data in Fig. .3

windows will now be applied to our data and their effects discussed.
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(a) Flat top window.
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(b) Position data multiplied by the

window in (a).
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(c) FFT of the data in (b).

Figure .5: Flat top window applied to swing data in Fig. .3

The two windows applied to our data are the Kaiser-Bessel window and the Flat top

window, as shown in Fig. .4(a) and Fig. .5(a) respectively. First, notice the effects of the

windows on the original data sample, shown in Fig. .4(b) and Fig. .5(b), respectively. In

both cases, the data is tapered to fall to zero at its edges. This is the reason the frequency

resolution of the FFT is reduced, since the sample is essentially shortened. Now notice the

effect on the spectrums. The Kaiser-Bessel window has caused the higher frequency spectral

data to fall to zero, while the spectral data around the true frequency is widened, as shown

in Fig. .4(c). A similar effect is observed as a result of application of the Flat top window,
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as seen in Fig. .5(c), but the widening about the true frequency is even larger.

The selection of an appropriate window to apply to data is largely dependent on the

nature of the data. Since the data in this thesis is sinusoidal in nature, the Kaiser-Bessel

window was applied to all data prior to application of the FFT. The reason for this is that this

window reduces sidelobe levels with minimal signal energy loss compared to other common

windows. For example, Harris [39] found that for window parameter α = 2.0, the signal

attenuation was approximately 3 decibels, with a maximum sidelobe level of −50 decibels.

This is useful for detecting sinusoidal tones with low signal-to-noise ratio while reducing

leakage.
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