Semester
Fall
Date of Graduation
2022
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Don Adjeroh
Committee Co-Chair
Gianfranco Doretto
Committee Member
Gianfranco Doretto
Committee Member
Jim Bardes
Abstract
Blood glucose monitoring is a key process in the prevention and management of certain chronic diseases, such as diabetes. Currently, glucose monitoring for those interested in their blood glucose levels are confronted with options that are primarily invasive and relatively costly. A growing topic of note is the development of non-invasive monitoring methods for blood glucose. This development holds a significant promise for improvement to the quality of life of a significant portion of the population and is overall met with great enthusiasm from the scientific community as well as commercial interest. This work aims to develop a potential pipeline for classifying blood glucose levels based on non-invasive biometric measurements. Starting with these non-invasive features this thesis develops a machine learning approach to classify the blood glucose levels using a training dataset. Classification is performed by adaptively applying the best classification modules for a given sample input sample. The dataset used was Pima Indians Diabetes (PID), which is a publically available multivariate dataset from the National Institute of Diabetes and Digestive and Kidney Diseases. Results from the approach demonstrate the feasibility of automated blood glucose level classification, using easy to acquire non-invasive measurements.
Recommended Citation
Reddy, Rishi, "Classifying Blood Glucose Levels Through Noninvasive Features" (2022). Graduate Theses, Dissertations, and Problem Reports. 11457.
https://researchrepository.wvu.edu/etd/11457
Included in
Artificial Intelligence and Robotics Commons, Data Science Commons, Other Computer Sciences Commons
Comments
Code stored on google colab notebook:
https://colab.research.google.com/drive/1IAFB0iiOf-dPVIeqTSJFjbmx1DNaI_dk?usp=sharing