Semester

Summer

Date of Graduation

2023

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Not Listed

Committee Chair

Krishnamurthy Subramani

Committee Member

Donald Adjeroh

Committee Member

Piotr Wojciechowski

Abstract

In this thesis, we perform an experimental study of approximation algorithms for the tree augmentation problem (TAP). TAP is a fundamental problem in network design. The goal of TAP is to add the minimum number of edges from a given edge set to a tree so that it becomes 2-edge connected. Formally, given a tree T = (V, E), where V denotes the set of vertices and E denotes the set of edges in the tree, and a set of edges (or links) L ⊆ V × V disjoint from E, the objective is to find a set of edges to add to the tree F ⊆ L such that the augmented tree (V, E ∪ F) is 2-edge connected. Our goal is to establish a baseline performance for each approximation algorithm on actual instances rather than worst-case instances. In particular, we are interested in whether the algorithms rank on practical instances is consistent with their worst-case guarantee rankings. We are also interested in whether preprocessing times, implementation difficulties, and running times justify the use of an algorithm in practice. We profiled and analyzed five approximation algorithms, viz., the Frederickson algorithm, the Nagamochi algorithm, the Even algorithm, the Adjiashivili algorithm, and the Grandoni algorithm. Additionally, we used an integer program and a simple randomized algorithm as benchmarks. The performance of each algorithm was measured using space, time, and quality comparison metrics. We found that the simple randomized is competitive with the approximation algorithms and that the algorithms rank according to their theoretical guarantees. The randomized algorithm is simpler to implement and understand. Furthermore, the randomized algorithm runs faster and uses less space than any of the more sophisticated approximation algorithms.

Share

COinS