Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Powsiri Klinkhachorn.


Thai handwriting in legal amounts is a challenging problem and a new field in the area of handwriting recognition research. The focus of this thesis is to implement Thai handwriting recognition system. A preliminary data set of Thai handwriting in legal amounts is designed. The samples in the data set are characters and words of the Thai legal amounts and a set of legal amounts phrases collected from a number of native Thai volunteers. At the preprocessing and recognition process, techniques are introduced to improve the characters recognition rates. The characters are divided into two smaller subgroups by their writing levels named body and high groups. The recognition rates of both groups are increased based on their distinguished features. The writing level separation algorithms are implemented using the size and position of characters. Empirical experiments are set to test the best combination of the feature to increase the recognition rates. Traditional recognition systems are modified to give the accumulative top-3 ranked answers to cover the possible character classes. At the postprocessing process level, the lexicon matching algorithms are implemented to match the ranked characters with the legal amount words. These matched words are joined together to form possible choices of amounts. These amounts will have their syntax checked in the last stage. Several syntax violations are caused by consequence faulty character segmentation and recognition resulting from connecting or broken characters. The anomaly in handwriting caused by these characters are mainly detected by their size and shape. During the recovery process, the possible word boundary patterns can be pre-defined and used to segment the hypothesis words. These words are identified by the word recognition and the results are joined with previously matched words to form the full amounts and checked by the syntax rules again. From 154 amounts written by 10 writers, the rejection rate is 14.9 percent with the recovery processes. The recognition rate for the accepted amount is 100 percent.