Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Tim McGraw.


Analysis and visualization of fluid flow datasets has become increasing important with the development of computer graphics. Even though many direct visualization methods have been applied in the tensor fields, those methods may result in much visual clutter. The Helmholtz decomposition has been widely used to analyze and visualize the vector fields, and it is also a useful application in the topological analysis of vector fields. However, there has been no previous work employing the Helmholtz decomposition of tensor fields. We present a method for computing the Helmholtz decomposition of tensor fields of arbitrary order and demonstrate its application. The Helmholtz decomposition can split a tensor field into divergence-free and curl-free parts. The curl-free part is irrotational, and it is useful to isolate the local maxima and minima of divergence (foci of sources and sinks) in the tensor field without interference from curl-based features. And divergence-free part is solenoidal, and it is useful to isolate centers of vortices in the tensor field. Topological visualization using this decomposition can classify critical points of two-dimensional tensor fields and critical lines of 3D tensor fields. Compared with several other methods, this approach is not dependent on computing eigenvectors, tensor invariants, or hyperstreamlines, but it can be computed by solving a sparse linear system of equations based on finite difference approximation operators. Our approach is an indirect visualization method, unlike the direct visualization which may result in the visual clutter. The topological analysis approach also generates a single separating contour to roughly partition the tensor field into irrotational and solenoidal regions. Our approach will make use of the 2nd order and the 4th order tensor fields. This approach can provide a concise representation of the global structure of the field, and provide intuitive and useful information about the structure of tensor fields. However, this method does not extract the exact locations of critical points and lines.