Date of Graduation


Document Type


Degree Type



Eberly College of Arts and Sciences


Physics and Astronomy

Committee Chair

Raymond R. Raylman.


According to the American Cancer Society one in six men will be diagnosed with prostate cancer in their lifetime. Current methods for screening of prostate cancer including various PSA blood tests, as well as the digital rectal exam, are unreliability while current imaging modalities clinically employed (US, CT, MRI) are unable to localize intraprostatic cancer(s). Consequently, diagnosis via core needle biopsy is problematic and a game of chance at best. Therefore, in response to new radiopharmaceuticals applicable to both internal and external prostate cancer visualization and localization, novel prostate specific nuclear medical imagers are being developed.;The first prototype of a compact prostate specific PET detector utilizing silicon photomultiplier (SiPM) technology has been developed and tested at West Virginia University. The compact detector is proposed as an endorectal probe placed proximally to the rectal wall/prostate interface and operating in coincidence with one or more externally mounted large area gamma detectors or in tandem with a clinical whole body PET scanner. To ensure high reconstruction resolution, the scintillation array of the compact detector will be coupled to SiPMs on both axial ends in a dual ended readout approach. Such an approach allows for the extraction of continuous depth of interaction (DOI) information thus minimizing the effects of parallax error and providing nearly isotropic and uniform spatial resolution throughout the entire detector field of view (FOV).;Two compact DOI based prototype detectors were developed and tested. While both utilize pixelated LYSO scintillation crystal arrays, the first has a crystal pitch of 1.0 mm and is coupled to SensL SiPMs, while the second has a crystal pitch of 0.7mm and is coupled to Hamamatsu SiPMs. Initial proof of concept studies were preformed using the SensL based detector while more extensive and systematic studies were preformed using the Hamamatsu based detector. Ultimately, when averaged over all crystals and all depths the Hamamatsu based detector achieved a depth of interaction resolution of 0.78+/-0.09 mm FWHM and an energy resolution of 13.2+/-0.7 % FWHM. Validation studies with regards to the efficacy of incorporating DOI information extracted from a small compact DOI based PET detector module into image reconstruction algorithms were also preformed.