Semester

Summer

Date of Graduation

2012

Document Type

Thesis

Degree Type

MS

College

Eberly College of Arts and Sciences

Department

Physics and Astronomy

Committee Chair

James P Lewis

Abstract

One of the most pressing issues for scientists today is the ever increasing amount of greenhouse gases entering the atmosphere. Carbon dioxide is considered the most prominent greenhouse gas, and emissions from fossil fuel power generation alone represent 26% of global CO2 emissions. Here we computationally examine the properties of a family of materials called delafossites for the photoreduction of CO2 emissions produced through fossil fuel power generation. These materials show promise to reduce CO2 into usable products such as methane through photoelectrochemical reduction. Delafossites are of interest due to the discrepancy between their fundamental and optically measured band gaps. Due to inversion symmetry a direct transition between the valence and conductions bands is forbidden resulting in an optically measured band gap in the UV region. To narrow the band gap, Huda proposed B-site alloying or doping with the intent to break the inversion symmetry. We expand upon the principle of this proposal, with a focus on computational work. We show the photocatalytic improvement of delafossite material CuGaO2 through B-site doping to obtain CuGa1-xFexO2.

Share

COinS