Yifei Lu

Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Xian-an Cao

Committee Co-Chair

Parviz Famouri

Committee Member

Mark A Jerabek


Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications.;This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD-LEDs.;Secondly, CdS/CdSe/ZnS QDQWs were synthesized and their luminescence was tuned in an effort to realize efficient blue light emission from CdSe nanocrystals. CdSe QWs with a well width of 1.05 nm emitted at 467 nm with a spectral full-width-at-half-maximum of ~30 nm. With a 3-monolayer ZnS cladding layer which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ~35% PL quantum yield (QY). Blue and green EL was obtained from QDQW-LEDs with 3-4.5 monolayers (MLs) QWs. It was found that as the well width and peak wavelength decreased, the overall EL was increasingly dominated by defect state emission, suggesting the device performance is mainly limited by poor charge injection into the QDQWs.