Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Mechanical and Aerospace Engineering

Committee Chair

Edward M Sabolsky

Committee Co-Chair

Dushyant Shekhawat

Committee Member

Kostas Sierros

Committee Member

John Zondlo


The use of a spray-pyrolysis method is studied for the continuous synthesis of refractory oxide reforming catalyst for the conversion of hydrocarbon fuels to H2 and CO at 900°C. Nickel- and rhodium-doped zirconate pyrochlore materials with the formulas La1.89Ni2.81Y 0.25Ca0.11Zr1.47 and La1.89Rh 1.09Y0.25Ca0.11Zr1.641 were synthesized using the spray pyrolysis method. Both Pechini and glycine-nitrate precursor solutions were used in order to control the particle morphology, crystallinity, and surface area of the catalyst powder. Samples synthesized by the Pechini solution required post-synthesis heat treatment to 1000 °C for 2 hours to form the fully-crystalline pyrochlore phase. Both the Ni- and Rh-doped compositions formed by the spray-pyrolysis method performed as reported elsewhere for powder produced by solid-state and Pechini bulk methods. The use of the glycine-nitrate precursor solution in the spray-pyrolysis resulted in the formation of fully crystalline pyrochlore catalyst for the Ni-doped composition without any additional high temperature treatment. The Rh-doped catalysts synthesized from the glycine-nitrate precursor did not form a fully crystalline material directly from the spray-pyrolysis process, but required a further thermal treatment to 800 °C for 8 hours to transform the powder and burn-off excess carbon remaining from the synthesis process. Rapid catalyst aging tests for the Rh-doped catalysts synthesized by spray-pyrolysis (using either the Pechini and glycine-nitrate precursor solutions) produced stable and active catalysts achieving equilibrium hydrogen yield of 90% for 15 hours. To conclude, the work showed that through proper chemical design of the precursor system, a high surface area, chemically active, and stable zirconate pyrochlore catalyst could be synthesized efficiently by the spray-pyrolysis method developed.