Date of Graduation


Document Type


Degree Type



Eberly College of Arts and Sciences


Geology and Geography

Committee Chair

Timothy A. Warner.

Committee Co-Chair

Rick Landenberger

Committee Member

Brenden McNeil

Committee Member

Jame B. McGraw

Committee Member

Mark Culp


This project investigated the spectral separability of the invasive species Ailanthus altissima, commonly called tree of heaven, and four other native species. Leaves were collected from Ailanthus and four native tree species from May 13 through August 24, 2008, and spectral reflectance factor measurements were gathered for each tree using an ASD (Boulder, Colorado) FieldSpec Pro full-range spectroradiometer. The original data covered the range from 350-2500 nm, with one reflectance measurement collected per one nm wavelength. To reduce dimensionality, the measurements were resampled to the actual resolution of the spectrometer's sensors, and regions of atmospheric absorption were removed. Continuum removal was performed on the reflectance data, resulting in a second dataset. For both the reflectance and continuum removed datasets, least angle regression (LARS) and random forest classification were used to identify a single set of optimal wavelengths across all sampled dates, a set of optimal wavelengths for each date, and the dates for which Ailanthus is most separable from other species. It was found that classification accuracy varies both with dates and bands used. Contrary to expectations that early spring would provide the best separability, the lowest classification error was observed on July 22 for the reflectance data, and on May 13, July 11 and August 1 for the continuum removed data. This suggests that July and August are also potentially good months for species differentiation. Applying continuum removal in many cases reduced classification error, although not consistently. Band selection seems to be more important for reflectance data in that it results in greater improvement in classification accuracy, and LARS appears to be an effective band selection tool. The optimal spectral bands were selected from across the spectrum, often with bands from the blue (401-431 nm), NIR (1115 nm) and SWIR (1985-1995 nm), suggesting that hyperspectral sensors with broad wavelength sensitivity are important for mapping and identification of Ailanthus. .