Date of Graduation


Document Type



Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the “curved arrows” that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a “Practice Makes Perfect” CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows” on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both “dry lab” actions with detailed animations of the actual chemistry occurring at the molecular level. The “dry lab” serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire implementation process over the course of three semesters. Results of the survey data indicate that students thought that they better understood the chemical principles and procedures of the laboratory experiment. Interestingly, students prefer the CPLEX prelaboratory materials, compared to the traditional textbooks, by a wide margin (Chapter 2). The utility of CPLEX was further demonstrated by enabling a study of the effectiveness of animated reaction mechanisms to promote student learning. While most instructors believe that animated mechanisms aid student understanding of reactions, there has been no quantitative data to-date to support this view. In this work, a quantitative study, using an experimental/control group study, was conducted to provide data on the effectiveness of animated reaction mechanisms to promote student learning. Analysis of student answers, using an appropriate rubric, demonstrated that there was a statistically significant improvement in students' scores in the mechanistic question of a pre-laboratory quiz in the post-treatment results of the experimental group which had had access to the animated reaction mechanisms (Chapter 3).