Document Type


Publication Date



Statler College of Engineering and Mining Resources


Civil and Environmental Engineering


Recently, the issues of scour around a bridge have become prominent because of the recurrent occurrence of extreme weather events. Thus, a bridge must be designed with the appropriate protection measures to prevent failure due to scour for the high flows to which it may be subjected during such extreme weather events. However, the current scour depth estimation by several recommended equations shows inaccurate results in high flow. One possible reason is that the current scour equations are based on experiments using free-surface flow even though extreme flood events can cause bridge overtopping flow in combination with submerged orifice flow. Another possible reason is that the current practice for the maximum scour depth ignores the interaction between different types of scour, local and contraction scour, when in fact these processes occur simultaneously. In this paper, laboratory experiments were carried out in a compound shape channel using a scaled down bridge model under different flow conditions (free, submerged orifice, and overtopping flow). Based on the findings from laboratory experiments coupled with widely used empirical scour estimation methods, a comprehensive way of predicting maximum scour depth is suggested which overcomes the problem regarding separate estimation of different scour depths and the interaction of different scour components. Furthermore, the effect of the existence of a pier bent (located close to the abutment) on the maximum scour depth was also investigated during the analysis. The results show that the location of maximum scour depth is independent of the presence of the pier bent but the amount of the maximum scour depth is relatively higher due to the discharge redistribution when the pier bent is absent rather than present.

Source Citation

Saha, R., Lee, S., & Hong, S. (2018). A Comprehensive Method of Calculating Maximum Bridge Scour Depth. Water, 10(11), 1572.


  1. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.