Document Type


Publication Date



Statler College of Engineering and Mining Resources


Mechanical and Aerospace Engineering


We present an investigation of electroactive Au/gadolinium doped ceria electrode interfaces under CO2/CO co-electrolysis environments using a combination of in situ high temperature scanning surface potential microscopy (HT-SSPM) and modified Poisson-Cahn (PC) models. Here charged surface adsorbate-oxygen vacancy inter- actions manifested in HT-SSPM potential profiles as small perturbations of opposite sign in reference to the applied biases. The positive deviation of surface potential on Au from applied cathodic biases is attributed to the work function difference between gold (φAu ∼ 5.31 eV) and graphitic carbon deposits (φC ∼ 5.0 eV) formed through CO disproportionation. The negative potential deviation from the applied anodic bias is attributed to negatively charged carboxylates. Results of the PC model confirmed the affinity of oxygen vacancies for the surface, thus supporting in situ experimental evidence of surface vacancy accumulation/depletion processes induced by cathodic/anodic biases. © 2017 Author(s). All article content, except where oth- erwise noted, is licensed under a Creative Commons Attribution (CC BY) license ( []

Source Citation

Zhu, J., Wang, J., Mebane, D. S., & Nonnenmann, S. S. (2017). In situ surface potential evolution along Au/Gd:CeO2 electrode interfaces. APL Materials, 5(4), 42503.


© Author(s) 2017



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.