Document Type


Publication Date



Physics and Astronomy


This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical Examination.] While many studies have examined the structure, validity, and reliability of the Force Concept Inventory, far less research has been performed on other conceptual instruments in widespread use in physics education research. This study performs a confirmatory analysis of the Conceptual Survey of Electricity and Magnetism (CSEM) guided by a theoretical model of expert understanding of electricity and magnetism. Multidimensional Item Response Theory (MIRT) with the discrimination matrix constrained to the theoretical model was used to investigate two large datasets (N1=2014 and N2=2657) from two research universities in the United States. The optimal model identified by MIRT was similar, but not identical, for the two datasets and had very good model fit with comparative fit indices of 0.975 and 0.984, respectively. The most parsimonious optimal model required 23 independent principles of electricity and magnetism and was significantly better fitting than a more general model dividing the CSEM into 6 general topics. The optimal models for the two samples were quite similar, sharing 22 of a possible 26 conceptual principles. Most of the overall item difficulties and discriminations were significantly different between the two samples; however, the rank order of the overall difficulty and discrimination were generally similar. There was much more similarity between the discrimination by item of the individual principles. Five items had a difficulty ranking that was substantially different between the two samples, indicating that while generally similar, relative difficulty does depend on the student population and instructional environment.

Source Citation

Zabriskie, C., & Stewart, J. (2019). Multidimensional Item Response Theory and the Conceptual Survey of Electricity and Magnetism. Physical Review Physics Education Research, 15(2).


Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.