Author ORCID Identifier

Document Type


Publication Date



Statler College of Engineering and Mining Resources


Mechanical and Aerospace Engineering


We present various performance trades for multiantenna global navigation satellite system (GNSS) multisensor attitude estimation systems. In particular, attitude estimation performance sensitivity to various error sources and system configurations is assessed. This study is motivated by the need for system designers, scientists, and engineers of airborne astronomical and remote sensing platforms to better determine which system configuration is most suitable for their specific application. In order to assess performance trade-offs, the attitude estimation performance of various approaches is tested using a simulation that is based on a stratospheric balloon platform. For GNSS errors, attention is focused on multipath, receiver measurement noise, and carrier- phase breaks. For the remaining attitude sensors, different performance grades of sensors are assessed. Through a Monte Carlo simulation, it is shown that, under typical conditions, sub-0.1-degree attitude accuracy is available when using multiple antenna GNSS data only, but that this accuracy can degrade to degree level in some environments warranting the inclusion of additional attitude sensors to maintain the desired level of accuracy. Further, we show that integrating inertial sensors is more valuable whenever accurate pitch and roll estimates are critical.

Source Citation

Tehrani, N. A., & Gross, J. N. (2018). Performance Trades for Multiantenna GNSS Multisensor Attitude Determination Systems. International Journal of Aerospace Engineering, 2018, 1–12.


Copyright © 2018 Nathan A. Tehrani and Jason N. Gross. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.