Document Type


Publication Date



Davis College of Agriculture, Natural Resources and Design


Animal and Nutritional Sciences



Uncoupling protein 2 (UCP2) belongs to the superfamily of mitochondrial anion carriers that dissociate the respiratory chain from ATP synthesis. It has been determined that UCP2 plays a role in several physiological processes such as energy expenditure, body weight control and fatty acid metabolism in several vertebrate species. We report the first characterization of UCP2 s in rainbow trout (Oncorhynchus mykiss).


Two UCP2 genes were identified in the rainbow trout genome, UCP2A and UCP2B. These genes are 93% similar in their predicted amino acid sequences and display the same genomic structure as other vertebrates (8 exons and 7 introns) spanning 4.2 kb and 3.2 kb, respectively. UCP2A and UCP2B were widely expressed in all tissues of the study with a predominant level in macrophage-rich tissues and reproductive organs. In fry muscle we observed an increase in UCP2B expression in response to fasting and a decrease after refeeding in agreement with previous studies in human, mouse, rat, and marsupials. The converse expression pattern was observed for UCP2A mRNA which decreased during fasting, suggesting different metabolic roles for UCP2A and UCP2B in rainbow trout muscle. Phylogenetic analysis including other genes from the UCP core family located rainbow trout UCP2A and UCP2B with their orthologs and suggested an early divergence of vertebrate UCPs from a common ancestor gene.


We characterized two UCP2 genes in rainbow trout with similar genomic structures, amino acid sequences and distribution profiles. These genes appeared to be differentially regulated in response to fasting and refeeding in fry muscle. The genomic organization and phylogeny analysis support the hypothesis of a common ancestry between the vertebrate UCPs.

Source Citation

Coulibaly, I., Gahr, S.A., Palti, Y. et al. Genomic structure and expression of uncoupling protein 2 genes in rainbow trout (Oncorhynchus mykiss). BMC Genomics 7, 203 (2006).


© 2006 Coulibaly et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.