Document Type


Publication Date



Eberly College of Arts and Sciences




Let A stand for the class of all almost continuous functions from R to R and let A(A) be the smallest cardinality of a family F ⊆ R R for which there is no g: R → R with the property that f + g ∈ A for all f ∈ F. We define cardinal number A(D) for the class D of all real functions with the Darboux property similarly. It is known, that c < A(A) ≤ 2 c [10]. We will generalize this result by showing that the cofinality of A(A) is greater that c. Moreover, we will show that it is pretty much all that can be said about A(A) in ZFC, by showing that A(A) can be equal to any regular cardinal between c + and 2c and that it can be equal to 2c independently of the cofinality of 2c . This solves a problem of T. Natkaniec [10, Problem 6.1, p. 495]. We will also show that A(D) = A(A) and give a combinatorial characterization of this number. This solves another problem of Natkaniec. (Private communication.)

Included in

Mathematics Commons


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.