#### Document Type

Article

#### Publication Date

1996

#### College/Unit

Eberly College of Arts and Sciences

#### Department/Program/Center

Mathematics

#### Abstract

Let F be a family of real functions, F ⊆ R R . In the paper we will examine the following question. For which families F ⊆ R R does there exist g : R → R such that f + g ∈ F for all f ∈ F? More precisely, we will study a cardinal function A(F) defined as the smallest cardinality of a family F ⊆ R R for which there is no such g. We will prove that A(Ext) = A(PR) = c + and A(PC) = 2c , where Ext, PR and PC stand for the classes of extendable functions, functions with perfect road and peripherally continuous functions from R into R, respectively. In particular, the equation A(Ext) = c + immediately implies that every real function is a sum of two extendable functions. This solves a problem of Gibson [6]. We will also study the multiplicative analogue M(F) of the function A(F) and we prove that M(Ext) = M(PR) = 2 and A(PC) = c. This article is a continuation of papers [10, 3, 12] in which functions A(F) and M(F) has been studied for the classes of almost continuous, connectivity and Darboux functions.

#### Digital Commons Citation

Ciesielski, Krzysztof, "Cardinal Invariants Concerning Extendable and Peripherally Continuous Functions" (1996). *Faculty & Staff Scholarship*. 823.

https://researchrepository.wvu.edu/faculty_publications/823