•  
  •  
 

Mountaineer Undergraduate Research Review

Authors

Trevor R. Smith

Document Type

Article

Abstract

Current telepresence robots are costly and only allow the operator to see the environment on a 2D screen and move around on a wheelbase. Thus, these telepresence devices are severely limited because of the high barrier of entry, and the operator is unable to manipulate objects or easily perceive the world in 3D. Therefore, to address these gaps in capabilities, Gemini, an open-source telepresence humanoid robot and interface station, was designed to grant the operator the ability to manipulate objects, expand the human interface by putting the user in the 3D world with the use of a virtual reality (VR) headset, and be low-cost. The simplistic, low-cost, and intuitive controls of Gemini promote early adoption by businesses and medical personnel to grant increased telepresence needs. In addition, this platform can be utilized by robotics enthusiasts and university researchers studying humanoid robotics or human-robot interaction. This paper presents an overview of the Gemini robot’s mechanical, electrical, and programmatic systems. Upon completion of this study, it was found that Gemini was able to grant the ability to manipulate objects, increase user perception with intuitive controls, in addition to costing approximately 30% less than commercial telepresence robots. Furthermore, the paper is concluded with remarks on future iterations of the project.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.