Document Type

Article

Publication Date

2018

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mechanical and Aerospace Engineering

Abstract

Metal silicide-based thermocouples were fabricated by screen printing thick films of the powder compositions onto alumina tapes followed by lamination and sintering processes. The legs of the embedded thermocouples were composed of composite compositions consisting of MoSi2, WSi2, ZrSi2, or TaSi2 with an additional 10 vol % Al2O3 to form a silicide–oxide composite. The structural and high-temperature thermoelectric properties of the composite thermocouples were examined using X-ray diffraction, scanning electron microscopy and a typical hot–cold junction measurement technique. MoSi2-Al2O3 and WSi2-Al2O3 composites exhibited higher intrinsic Seebeck coefficients (22.2–30.0 μV/K) at high-temperature gradients, which were calculated from the thermoelectric data of composite//Pt thermocouples. The composite thermocouples generated a thermoelectric voltage up to 16.0 mV at high-temperature gradients. The MoSi2-Al2O3//TaSi2-Al2O3 thermocouple displayed a better performance at high temperatures. The Seebeck coefficients of composite thermocouples were found to range between 20.9 and 73.0 μV/K at a temperature gradient of 1000 ◦C. There was a significant difference between the calculated and measured Seebeck coefficients of these thermocouples, which indicated the significant influence of secondary silicide phases (e.g., Mo5Si3, Ta5Si3) and possible local compositional changes on the overall thermoelectric response. The thermoelectric performance, high sensitivity, and cost efficiency of metal silicide–alumina ceramic composite thermocouples showed promise for high-temperature and harsh-environment sensing applications.

Source Citation

Yakaboylu, G., Pillai, R., Sabolsky, K., & Sabolsky, E. (2018). Fabrication and Thermoelectric Characterization of Transition Metal Silicide-Based Composite Thermocouples. Sensors, 18(11), 3759. https://doi.org/10.3390/s18113759

Comments

  1. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.