Document Type

Article

Publication Date

2019

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mechanical and Aerospace Engineering

Abstract

The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., “Flame Acceleration in Channels with Obstacles in the Deflagration-to-Detonation Transition,” Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between the obstacles, ΔZ, in the ranges 1/3 ≤ α ≤ 2/3 and 0.25 ≤ ΔZ/R ≤ 2.0, respectively. For these parameters, an impact of surface friction on flame acceleration is shown to be minor, only 1∼4%, slightly facilitating acceleration in a tube with ΔZ/R = 0.5 and moderating acceleration in the case of ΔZ/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the present work thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. While this result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion of an obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, where surface friction modifies the flame dynamics conceptually.

Source Citation

Cochrane, M., Brown, D., & Moen, R. (2019). GPS Technology for Semi-Aquatic Turtle Research. Diversity, 11(3), 34. https://doi.org/10.3390/d11030034

Comments

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5087139

page2image416608464 page2image416608736 page2image416609152 page2image416609568 page2image416609856 page2image416610288 page2image416610496page2image416610768page2image416611104page2image416611376

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.