Document Type


Publication Date



Statler College of Engineering and Mining Resources


Mining Engineering


This paper presents technical and economic assessment of a hybrid energy system for electricity generation in rural communities in the six geopolitical zones of Nigeria. The study was based on a 500 rural household model having an electric load of 493 kWh per day. To simulate long-term continuous implementation of the hybrid system, 21 years (1992 – 2012) hourly mean global solar radiation and wind speed data for the selected sites were used. The mean annual wind speed and solar radiation for the locations ranged from 2.31 m/s for Warri to 3.52 m/ s for Maiduguri and 4.53 kWh/m2 for Warri to 5.92 kWh/m2 for Maiduguri, respectively. These weather data were used for simulation with the Micro-power Optimization Model software HOMER. From the optimum results of the hybrid system,Warri has the highest NPC and COE of $2,441,222 and $0.721/kWh, respectively while Maiduguri has the least NPC and COE of $2,225,387 and $0.658/kWh, respectively for the 21 years project lifespan. The high value of COE for Warri is due to its low renewable energy resource while low COE for Maiduguri is due to its high renewable energy resource. The Northern part of the country has ample renewable energy resource availability and with a strong political will, optimal utilization of these renewable resources (solar and wind) can be actualized. Researchers, Industrialists, Policy Makers and the Nigerian government should therefore seize this opportunity in developing a sustainable energy through utilization of abundant renewable energy resources in the country.

Source Citation

Oyedepo, S. O., Uwoghiren, T., Babalola, P. O., Nwanya, S. C., Kilanko, O., Leramo, R. O., Aworinde, A. K., Adekeye, T., Oyebanji, J. A., & Abidakun, O. A. (2019). Assessment of Decentralized Electricity Production from Hybrid Renewable Energy Sources for Sustainable Energy Development in Nigeria. Open Engineering, 9(1), 72–89.


Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.