Document Type

Article

Publication Date

2013

College/Unit

School of Medicine

Department/Program/Center

Medicine

Abstract

Background

Nanotechnology, particularly the use of multi-walled carbon nanotubes (MWCNT), is a rapidly growing discipline with implications for advancement in a variety of fields. A major route of exposure to MWCNT during both occupational and environmental contact is inhalation. While many studies showed adverse effects to the vascular endothelium upon MWCNT exposure, in vitro results often do not correlate with in vivo effects. This study aimed to determine if an alveolar-capillary co-culture model could determine changes in the vascular endothelium after epithelial exposure to MWCNT.

Methods

A co-culture system in which both human small airway epithelial cells and human microvascular endothelial cells were separated by a Transwell membrane so as to resemble an alveolar-capillary interaction was used. Following exposure of the epithelial layer to MWCNT, the effects to the endothelial barrier were determined.

Results

Exposure of the epithelial layer to MWCNT induced multiple changes in the endothelial cell barrier, including an increase in reactive oxygen species, actin rearrangement, loss of VE-cadherin at the cell surface, and an increase in endothelial angiogenic ability. Overall increases in secreted VEGFA, sICAM-1, and sVCAM-1 protein levels, as well as increases in intracellular phospho-NF-κB, phospho-Stat3, and phospho-p38 MAPK, were also noted in HMVEC after epithelial exposure.

Conclusion

The co-culture system identified that alveolar-capillary exposure to MWCNT induced multiple changes to the underlying endothelium, potentially through cell signaling mediators derived from MWCNT-exposed epithelial cells. Therefore, the co-culture system appears to be a relevant in vitromethod to study the pulmonary toxicity of MWCNT.

Source Citation

Snyder-Talkington, B.N., Schwegler-Berry, D., Castranova, V. et al. Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells. Part Fibre Toxicol 10, 35 (2013). https://doi.org/10.1186/1743-8977-10-35

Comments

© 2013 Snyder-Talkington et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.