Document Type

Article

Publication Date

Summer 2021

College/Unit

Chambers College of Business and Economics

Department/Program/Center

Management Information Systems

Abstract

Modern multivariate machine learning and statistical methodologies estimate parameters of interest while leveraging prior knowledge of the association between outcome variables. The methods that do allow for estimation of relationships do so typically through an error covariance matrix in multivariate regression which does not scale to other types of models. In this article we proposed the MinPEN framework to simultaneously estimate regression coefficients associated with the multivariate regression model and the relationships between outcome variables using mild assumptions. The MinPen framework utilizes a novel penalty based on the minimum function to exploit detected relationships between responses. An iterative algorithm that generalizes current state of the art methods is proposed as a solution to the non-convex optimization that is required to obtain estimates. Theoretical results such as high dimensional convergence rates, model selection consistency, and a framework for post selection inference are provided. We extend the proposed MinPen framework to other exponential family loss functions, with a specific focus on multiple binomial responses. Tuning parameter selection is also addressed. Finally, simulations and two data examples are presented to show the finite sample properties of this framewok.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.