#### Document Type

Article

#### Publication Date

1990

#### College/Unit

Eberly College of Arts and Sciences

#### Department/Program/Center

Mathematics

#### Abstract

Real-valued functions of a real variable which are continuous with respect to the density topology on both the domain and the range are called density continuous. A typical continuous function is nowhere density continuous. The same is true of a typical homeomorphism of the real line. A subset of the real line is the set of points of discontinuity of a density continuous function if and only if it is a nowhere dense F_{\sigma} set. The corresponding characterization for the approximately continuous functions is a first category F_{\sigma} set. An alternative proof of that result is given. Density continuous functions belong to the class Baire*1, unlike the approximately continuous functions.

#### Digital Commons Citation

Ciesielski, Krzysztof, "Density Continuity Versus Continuity" (1990). *Faculty & Staff Scholarship*. 820.

https://researchrepository.wvu.edu/faculty_publications/820