Document Type


Publication Date



Eberly College of Arts and Sciences




Real-valued functions of a real variable which are continuous with respect to the density topology on both the domain and the range are called density continuous. A typical continuous function is nowhere density continuous. The same is true of a typical homeomorphism of the real line. A subset of the real line is the set of points of discontinuity of a density continuous function if and only if it is a nowhere dense F\sigma set. The corresponding characterization for the approximately continuous functions is a first category F\sigma set. An alternative proof of that result is given. Density continuous functions belong to the class Baire*1, unlike the approximately continuous functions.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.