Document Type

Poster

Publication Date

5-19-2021

College/Unit

Institute of Water Security and Science

Abstract

Wetland ecosystems play fundamental roles in regulating our freshwater resources, yet they are not comprehensively protected from degradation and loss. West Virginia, USA has wetlands across diverse landscapes and geography that feed into both the Chesapeake Bay and Gulf of Mexico. The state is also comprised of diverse anthropogenic land-use practices. We are assessing 200 wetlands over 2 years to evaluate how anthropogenic disturbance impact wetland water quality functions. Select water quality parameters (20), and relative diversity and abundance of vegetation and macroinvertebrates will be used as bioindicators. They will be compared with GIS assessments of watershed land cover/ land-use practices and climate data to evaluate relationships and determine how they impact a wetland’s ability to carry out select water quality functions. Preliminary results after one year of sampling indicate that wetlands at higher elevation with fewer watershed land-use practices generally had lower E. Coli, heavy metal (Lead and Zinc), and nutrient (Phosphorus and Nitrogen) concentrations relative to wetlands at lower elevations with greater watershed land-use practices. Seasonal conductivity readings increased following precipitation events. Conductivity and salinity readings also decreased along its drainage gradient, indicative of the wetland performing its water quality functions. We also observed that conductivity and nutrient concentrations were highest during the winter and lowest during the summer, coinciding with the bottom and peak periods of primary productivity. The results of this project will be used to develop wetland water quality standards for West Virginia and help advance more comprehensive wetland regulations.

Share

COinS