Document Type

Article

Publication Date

6-1-2018

Department/Program/Center

Physiology, Pharmacology & Neuroscience

Abstract

Post-traumatic stress disorder (PTSD) is a learning-based anxiety disorder with significant public health challenges due to difficulties in treating the complex, multiple symptomology. We have developed an animal model of PTSD, based on Pavlovian eyeblink conditioning in rabbits, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). We have found previously that unpaired extinction is ideal for reducing both CRs and CRM simultaneously and shows sensitivity to systemic serotonergic and glutamatergic manipulations. The following study aimed to extend our work to examine the role of the noradrenergic system, dysregulation of which is strongly implicated as part of the neurobiology of PTSD and which may also play a role in the balance shift from fear reconsolidation to extinction during treatment. The goal of the following two studies was to examine whether the β-adrenergic receptor antagonist propranolol combined with either a full or brief course of unpaired extinction treatment could enhance extinction of CRs and/or CRM. Results showed a within-session facilitation of propranolol on extinction of CRs, particularly during the first extinction session, and a short-term enhancement of extinction of CRM when extinction treatment was brief. However, neither benefit translated to long-term extinction retention for the majority of subjects. Findings suggest that propranolol may provide the most therapeutic benefit in situations of high arousal early in treatment, which may be more important for future patient compliance rather than long-term treatment outcomes.

Source Citation

Burhans LB, Smith-Bell CA, Schreurs BG. Propranolol produces short-term facilitation of extinction in a rabbit model of post-traumatic stress disorder. Neuropharmacology. 2018;135:386-398. doi:10.1016/j.neuropharm.2018.03.029

Share

COinS