Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Petroleum and Natural Gas Engineering

Committee Chair

Shahab Mohaghegh

Committee Co-Chair

Samuel Ameri

Committee Member

Samuel Ameri

Committee Member

Kashy Aminian

Committee Member

Hassan Amini

Committee Member

Mehrdad Zamirian

Committee Member

Scott Reeves


Over the last two decades, there has been advances in downhole monitoring in oil and gas wells with the use of Fiber-Optic sensing technology such as the Distributed Temperature Sensing (DTS). Unlike a conventional production log that provides only snapshots of the well performance, DTS provides continuous temperature measurements along the entire wellbore.

Whether by fluid extraction or injection, oil and gas production changes reservoir conditions, and continuous monitoring of downhole conditions is highly desirable. This research study presents a tool for real-time quantification of production from individual perforation clusters in a multi-stage shale well using Artificial Intelligence and Machine Learning. The technique presented provides continuous production log on demand thereby providing opportunities for the optimization of completions design and hydraulic fracture treatments of future planned wells. A Fiber-Optic sensing enabled horizontal well MIP-3H in the Marcellus Shale has been selected for this work. MIP-3H is a 28-stage horizontal well drilled in July 2015, as part of a Department of Energy (DOE)-sponsored project - Marcellus Shale Energy & Environment Laboratory (MSEEL). A one-day conventional production logging operation has been performed on MIP-3H using a flow scanner while the installed Fiber-Optic DTS unit has collected temperature measurements every three hours along the well since completion. An ensemble of machine learning models has been developed using as input the DTS measurements taken during the production logging operation, details of mechanical logs, completions design and hydraulic fracture treatments data of the well to develop the real-time shale gas production monitoring tool.